Electronic Supplementary Information (ESI)

Multifunctional Cu_xS- and DOX-loaded AuNR@mSiO₂ Platform for Combined Melanoma Therapy with Inspired Antitumor Immunity

Yamin Zhang, ^{#, a} Biling Jiang, ^{#, a} Chen Guo, ^{#, b} Liping Liu, ^b Jian Xu, ^c Yujue Wang, ^a Chen Shen,^a Jinjin Zhu, ^a Guanxin Shen,^d Hao Jiang, ^{*,b} Jintao Zhu, ^b and Juan Tao^{*,a}

^a Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China

^b Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of

Education, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China

^c Department of Hematology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China

^d Department of Immunology, Tongji Medical College, HUST, Wuhan 430022, China

[#] These authors contributed equally to this work

* Corresponding authors. E-mail: hustjh@hust.edu.cn (H. Jiang) and tjhappy@126.com (J.

Tao.)

Contents

Fig. S1 The BET assay of pore size and specific surface area of AuNR@mSiO₂.

Fig. S2 The photothermal conversion efficiency of AuNR@mSiO₂-Cu_xS-PEG, AuNR@mSiO₂ and Cu_xS NPs.

Fig. S3 Cell viability of B16/F10 melanoma cells treated with AuNR@mSiO₂-Cu_xS-PEG with or without laser irradiation.

Fig. S4 The photographs of the in-situ tumors collected at the end of experiments.

Fig. S5 Body weight changes of tumor-bearing mice during experiments.

Supplementary Figures:

Fig. S1 The BET assay of pore size and specific surface area of AuNR@mSiO₂. (a) Nitrogen absorption isotherms of AuNR@mSiO₂ and (b) the corresponding pore size distribution obtained from adsorption branch of AuNR@mSiO₂.

Fig. S2 The photothermal conversion efficiency of AuNR@mSiO₂-Cu_xS-PEG, AuNR@mSiO₂ and Cu_xS NPs. (a) The temperature elevation of nanocomposites aqueous solutions irradiated with 1.0 W/cm² NIR for 5 min and turned off for 5 min. (b-d) Linear time data versus -ln θ obtained from the cooling period of the aqueous solution containing (b) AuNR@mSiO2-CuxS-PEG nanocomposites (containing 0.1 mg/mL Cu_xS NPs and 0.05 mg/mL AuNR@mSiO₂), (c) AuNR@mSiO₂ (0.05 mg/mL) and (d) Cu_xS NPs (0.1 mg/mL), respectively. The photothermal conversion efficiency calculated is 69.7 %, 36.8 % and 14.5 %, respectively.

Fig. S³ Cell viability of B16/F10 melanoma cells treated with various concentrations of AuNR@mSiO₂-Cu_xS-PEG with or without laser irradiation. (a) Cell viability of B16/F10 cells treated with AuNR@mSiO₂-Cu_xS-PEG with various concentrations for 24 h. (b-d) The B16/F10 melanoma cells were treated with AuNR@mSiO₂-Cu_xS-PEG at concentration of 50 and 100 μ g/mL as indicated for 24 h. After that, the cells were irradiated by a 808 nm laser with varying time and power densities.

Fig. S4 *In-situ* subcutaneous melanoma mice model was constructed as indicated. The photographs of the in-situ tumors collected at the end of experiment (n = 5).

Fig. S5 Body weight of tumor-bearing mice receiving treatments as indicated. Data were presented as mean \pm SD (n = 5).