Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2021

In Situ Gelling and Dissolvable Hydrogels for Use as On-Demand Wound Dressings for Burns

Katherine A. Cook¹, Nada Naguib¹, Jack Kirsch¹, Katherine Hohl¹, Aaron H. Colby¹, Robert Sheridan,³ Edward K. Rodriguez², Ara Nazarian², and Mark W. Grinstaff¹

¹Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA 02215.

²Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215

³Shriners Hospitals for Children and Burns Service, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA, 02214

*Correspondence to: mgrin@bu.edu

Supplemental Information:

١.	Synthesis and characterization of	Page 2
II.	NMR spectra of crosslinkers 5. 6.	Page 3
	and 7	
III.	MALDI spectra of crosslinkers 5,	Page 9
	6, and 7	
IV.	Kinetics studies of crosslinker	Page 11
	reactions	
V.	Rheology, swelling, and	Page 13
	dissolution of hydrogels	
VI.	In vivo porcine study	Page 15

I. Synthesis and characterization of compounds

PEG Diacid. The synthesis of the PEG diacid compound was based on a previously reported protocol.¹⁴ ¹⁻ H and ¹³C NMR spectra were similar to the literature.¹⁴

¹H NMR (500MHz), CDCl₃: δ 1.93 (q, *J* = 7.21 Hz, 4H), 2.4 (tt, *J* = 7.21, 8H), 3.62 (m, 292H), 4.22 (tt, *J* = 4.73 Hz, 4H) ppm; ¹³C NMR (500 MHz), CDCl₃: 175.3, 172.8, 70.6, 68.9, 63.4, 33.1, 32.6, 19.9 ppm.

Compound 1. The synthesis of the starting material was based on a previously reported protocol.¹⁴ ¹H and ¹³C NMR spectra were similar to the literature.¹⁴

¹**H NMR (500MHz), CDCl₃:** δ 4.15 (tt, J = 3.3, 1.5, 4H), 3.54 (m, 296H), 2.8 (b, 8H), 2.6 (t, J = 7.3, 4H), 2.4 (t, J = 7.3, 4H), 2.0 (q, J = 7.3, 4H) ppm; ¹³**C NMR (500 MHz), CDCl₃:** 172.3, 169.0, 168.0, 70.5, 69.0, 63.6, 32.4, 29.9, 25.5, 19.7 ppm

Compound 2. The synthesis of compound **2** was based off of a previously reported protocol.^{13,16} ¹H NMR (500MHz), CDCI₃: δ 4.21 (m, J = 4.6, 4.9, 4H), 3.62 (m, 296H), 2.68 (t, J = 7.3, 4H), 2.40 (t, J = 7.2, 4H), 1.98 (t, J = 7.2, 4H) ppm; ¹³C NMR (500 MHz), CDCI₃: 196.8, 172.6, 169.8, 70.6, 69.0, 63.6, 42.3, 32.8, 31.0, 20.5 ppm;

Compound 3. In a flame dried flask, 1,8-Diazabicyclo(5.4.0)undec-7-ene (265μ L) and 6-mercaptohexanoic acid (122μ L) were added to a solution of **1** (1g) in anhydrous DMF (5mL). The solution was stirred at room temperature for 16 hours. The organic phase was extracted with a 1M HCl solution, water, and brine. The organic phase was dried over sodium sulfate, filtered, and precipitated in diethyl ether. The precipitate was filtered and dried under vacuum to afford compound **3** as a white solid (96% yield).

¹H NMR (500MHz), CDCI₃: δ 4.22 (t, J = 4.8, 4H), 3.63 (m, 308H), 2.86 (t, J = 7.2, 4H), 2.61 (t, J = 7.3, 4H), 2.38 (t, J = 7.4, 4H), 2.30 (t, J = 7.4, 4H), 1.97 (t, J = 7.3, 4H), 1.60 (m, 8H), 1.39 (m, 4H), ppm; ¹³C NMR (500 MHz), CDCI₃: 198.6, 176.1, 172.7, 70.7, 69.0, 42.8, 33.5, 32.9, 29.2, 28.5, 28.1, 24.2, 20.6 ppm;

Compound 4. Synthesis of compound 4 follows the above procedure using 11-mercaptoundecanoic acid (0.190g) as the thiol source (92% yield).

¹H NMR (500MHz), CDCl₃: δ 4.22 (t, J = 4.9, 4H), 2.85 (t, J = 7.4, 7.3, 4H), 2.60 (t, J = 7.3, 4H), 2.38 (t, J = 7.3, 4H), 2.30 (t, J = 7.5, 4H), 1.97 (t, J = 7.3, 4H), 1.60 (m, 8H), 1.39 (m, 24H) ppm; ¹³C NMR (500 MHz), CDCl₃: 198.7, 176.5, 172.7, 70.5, 69.0, 63.5, 33.8, 32.9, 29.4, 29.3, 29.2, 29.1, 29.0, 28.95, 28.8, 28.7, 24.7, 20.6 ppm;

Compound 5, 6 and 7. The synthesis of compounds 5, 6 and 7 are based off of a previously reported protocol (yield 96-98%).^{13,16} The HNMR and CNMR spectra are similar to those previously reported. *Compound 5:* ¹H NMR (500MHz), **CDCI**₃: δ 4.16 (t, *J* = 4.3, 4H), 3.92 (s, 4H), 3.57 (m, 257H), 2.78 (b, 8H), 2.67 (t, *J* = 7.3, 4H), 2.34 (t, *J* = 7.3, 4H), 1.95 (q, *J* = 7.3, 4H) ppm; ¹³C NMR (500 MHz), **CDCI**₃: δ ppm; **MALDI-TOF (pos): M_w:** 3763 m/z **GPC: M_n:** 5077; **M_w:** 5312; **PDI:** 1.05; **Mp (DSC):** 46.06°C

Compound 6:

¹H NMR (500MHz), CDCI₃: δ 4.21 (tt, *J* = 1.5, 3.4, 4H), 3.63 (m, 290H), 2.86 (t, *J* = 7.3, 4H), 2.81 (b, 8H), 2.60 (tt, *J* = 2.5, 4.9, 8H), 2.37 (t, *J* = 7.3, 4H), 1.96 (q, *J* = 7.3, 7.4, 4H), 1.74 (q, *J* = 7.4, 7.7, 4H), 1.59 (m, 4H), 1.46 (m, 4H) ppm; ¹³C NMR (500 MHz), CDCI₃: δ 198.6, 172.7, 169.1, 168.4, 70.5, 69.1, 63.6, 42.9, 33.0, 29.1, 28.4, 27.8, 25.6, 24.1, 20.6 ppm; MALDI-TOF (pos): M_w: 3807 m/z GPC: M_n: 4999; M_w: 5196; PDI: 1.04; Mp (DSC): 45.80°C

Compound 7:

¹H NMR (500MHz), CDCl₃: δ 4.22 (m, 4H), 3.62 (m, 278H), 2.85 (m, 8H), 2.70 (t, *J* = 7.2, 7.3, 2H), 2.60 (tt, *J* = 7.3, 4H), 2.45 (t, *J* = 7.2, 7.4, 4H), 2.37 (t, *J* = 7.2, 7.3, 4H), 2.04 (q, *J* = 7.2, 7.4, 4H), 1.95 (m, 4H), 1.71 (m, 2H), 1.52 (m, 4H), 1.25 (m, 10H) ppm; ¹³C NMR (500 MHz), CDCl₃: δ 198.8, 172.7, 169.2, 168.6, 70.5, 69.0, 63.5, 42.8, 32.9, 30.9, 29.5, 29.3, 29.2, 29.0, 28.8, 28.7, 25.6, 24.5, 20.6 ppm; MALDI-TOF (pos): M_w: 4210 m/z GPC: M_n: 6038; M_w: 6313; PDI: 1.05; Mp (DSC): 47.42°C

I. NMR spectra of crosslinkers

Figure S1. Representative ¹H NMR spectrum of crosslinker 5

S4

Figure S3. Representative ¹H NMR spectrum of crosslinker 6

Figure S4. Representative ¹³C NMR spectrum of crosslinker 6

Figure S5. Representative ¹H NMR spectrum of crosslinker 7

Figure S6. Representative ¹³C NMR spectrum of crosslinker 7

II. MALDI spectra

Figure S7. Representative MALDI spectrum of PEG starting material, 3000Da (top) crosslinker **5** (bottom)

Figure S8. Representative MALDI spectrum of crosslinker 6

Figure S9. Representative MALDI spectrum of crosslinker 7

Figure S10. Representative ¹H NMR spectrum of crosslinker **6** before (red bold) and after (red narrow) reaction with PEI mimetic, *N*-butylamine. We observe a shift in the NHS peak that is conjugated to crosslinker **6** at 2.78ppm (red bold) to 2.49ppm (red) after the NHS ester is cleaved from crosslinker **6** when reacted with *N*-butylamine.

Figure S11. Representative ¹H NMR spectrum of intact crosslinker **6** (bottom) (NHS at 2.78ppm), and NHS-hydrolyzed (2.54ppm) crosslinker **6** in 0.3M sodium bicarbonate buffer, pH 8.0 (top).

Figure S12. Rate order of A) thioester hydrolysis in crosslinker **5** in 0.3M Borate buffer, pH 8.0, B) thioester hydrolysis in crosslinker **6** in 0.3M Borate buffer, pH 8.0, C) **NHS** ester stability in 0.1M phosphate buffer pH 6.5.

Figure S13. Strain sweep (left) and frequency sweep (right) of hydrogel 6.

Figure S14. Storage modulus of hydrogels composed of crosslinkers **5**, **6**, and **7** and 10 wt% (left) and 20 wt% (right)

Figure S15. Storage modulus for crosslinkers 5 (left), 6 (middle), and 7 (right) at 10, 15, and 20 wt% over 30 days of swelling or until dissolution.

Figure S17. Dissolution of hydrogel formulations with crosslinkers **5**, **6**, and **7** at 10 wt% (left) and 20 wt% (right) upon submersion in 0.3M CME solution, pH 8.6.

Figure S18. Rheological measurements on hydrogels from crosslinker **6** with 2:1 (black) or 1:1 (pink) NHS:NH₂ mole ratio.

Figure S19. Rheological measurements of hydrogels made of crosslinker 6 with and without EtOH.

Figure S20. Cell viability of hydrogel formulations **5**:PEI, **6**:PEI and **7**:PEI against NIH3T3 fibroblasts. The cells were purchased from ACTT.

Parameter	lonic Hydrogel Dissolving (n=3)		Gauze Spor (Sterile) (n=3)	ige	No Material Used (n=3)	
Inflammation	1.00 ± 0.00	%0	1.00 ± 0.00	100%	1.33 ± 0.58	100%
Innamination	1.00	<u>10</u>	1.00		1.00	
Noutrophilo	0.33 ± 0.58	%	0.00 ± 0.00	%0	1.00 ± 1.00	67%
Neutrophilis	0.00	33	0.00		1.00	
Histicovtoo	0.00 ± 0.00	%	0.00 ± 0.00	%0	0.00 ± 0.00	%0
HISHOCYLES	0.00	0	0.00		0.00	
Lymphonytoo	1.00 ± 0.00	%(1.00 ± 0.00	%(1.00 ± 0.00	%(
Lymphocytes	1.00	100	1.00	100	1.00) Ó
Multinucleated	0.00 ± 0.00	%	0.00 ± 0.00	%0	0.00 ± 0.00	%0
Giant Cells	0.00	0	0.00		0.00	
Disama Calla	0.00 ± 0.00	%0	0.00 ± 0.00	%0	0.00 ± 0.00	%0
Plasma Celis	0.00		0.00		0.00	
Facinonhila	1.00 ± 0.00	%(1.00 ± 0.00	%(1.00 ± 0.00	%(
	1.00	10(1.00	10(1.00	10(

V. In vivo porcine study

Table S1. Mean ± SD, median and incidence of inflammation and inflammatory cell types. Day 3, Group 1, no dressing changes.

Figure S21. H&E of Group 1 for gauze (left), no dressing (middle), and hydrogel dressing (right).

Parameter	Ionic Hydrogel Dissolving (n=3)		Gauze Sponge (Sterile) (n=3)		No Material Used (n=3)	
Inflammation	1.33 ± 0.58	100%	1.33 ± 0.58	100%	1.33 ± 0.58	100%
Innamination	1.00		1.00		1.00	
Noutrophilo	1.33 ± 0.58	%(1.33 ± 0.58	100%	1.33 ± 0.58	100%
Neutrophils	1.00	100	1.00		1.00	
Listicantes	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
Histiocytes	1.00		1.00		1.00	
Lymphonytoo	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
Lymphocytes	1.00		1.00		1.00	
Multinucleated	0.00 ± 0.00	%0	0.00 ± 0.00	%0	0.00 ± 0.00	%0
Giant Cells	0.00		0.00		0.00	
Disema Calla	0.00 ± 0.00	%	0.00 ± 0.00	%	0.00 ± 0.00	%
Plasma Cells	0.00	õ	0.00	0	0.00	0
Fasinanhila	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
	1.00		1.00		1.00	

Table S2. Mean ± SD, median and incidence of inflammation and inflammatory cell types. Day 7, Group 3, no dressing changes.

Figure S22. H&E of Group 1 for gauze (left), no dressing (middle), and hydrogel dressing (right).

Parameter	lonic Hydrogel Dissolving (n=3)		Gauze Sponge (Sterile) (n=3)		No Material Used (n=3)	
Inflommation	1.67 ± 0.58	%(1.67 ± 0.58	100%	2.00 ± 0.00	100%
mammation	2.00	100	2.00		2.00	
Neutrophile	1.33 ± 0.58	100%	1.33 ± 0.58	100%	2.00 ± 0.00	100%
Neutrophils	1.00		1.00		2.00	
	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
Histiocytes	1.00		1.00		1.00	
	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
Lymphocytes	1.00		1.00		1.00	
Multinucleated	0.00 ± 0.00	%0	0.00 ± 0.00	%0	0.00 ± 0.00	%0
Giant Cells	0.00		0.00		0.00	
Diagma Calla	0.00 ± 0.00	%	0.00 ± 0.00	%	0.00 ± 0.00	%
Plasma Cells	0.00	0	0.00	0	0.00	õ
Eccinophilo	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
Eosinophils	1.00		1.00		1.00	

Table S3. Mean ± SD, median and incidence of inflammation and inflammatory cell types. Day 7, Group 2, 1 dressing changes.

Figure S23. H&E of Group 2 for gauze (left), no dressing (middle), and hydrogel dressing (right).

Parameter	lonic Hydrogel Dissolving (n=3)		Gauze Sponge (Sterile) (n=3)		No Materia Used (n=3	al 5)
Inflammation	1.33 ± 0.58	100%	2.00 ± 0.00	100%	1.00 ± 0.00	100%
Innanination	1.00		2.00		1.00	
Noutrophilo	1.33 ± 0.58	%(2.00 ± 0.00	100%	1.00 ± 0.00	100%
Neutrophils	1.00	10	2.00		1.00	
Listiantes	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
Histiocytes	1.00		1.00		1.00	
	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
Lymphocytes	1.00		1.00		1.00	
Multinucleated	0.00 ± 0.00	%	0.00 ± 0.00	%0	0.00 ± 0.00	%0
Giant Cells	0.00	Ő	0.00		0.00	
	0.00 ± 0.00	%	0.00 ± 0.00	%0	0.00 ± 0.00	%0
Plasma Cells	0.00	0	0.00		0.00	
Fasinanhila	1.00 ± 0.00	%(1.00 ± 0.00	%(1.00 ± 0.00	%(
⊏osinopniis	1.00	100	1.00	100	1.00	100

Table S4. Mean ± SD, median and incidence of inflammation and inflammatory cell types. Day 14, Group 4, 1 dressing changes.

Figure S24. H&E of Group 4 for gauze (left), no dressing (middle), and hydrogel dressing (right).

Parameter	lonic Hydrogel Dissolving (n=3)		Gauze Sponge (Sterile) (n=3)		No Material Used (n=3)	
Inflommation	1.33 ± 0.58	%0	2.00 ± 0.00	%0	1.00 ± 0.00	%С
Innanination	1.00	100	2.00	100	1.00	100
Noutrophilo	1.33 ± 0.58	%(2.00 ± 0.00	100%	1.00 ± 0.00	100%
Neutrophilis	1.00	10(2.00		1.00	
Listiantes	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
Histiocytes	1.00		1.00		1.00	
Lymphoottoo	1.00 ± 0.00	100%	1.00 ± 0.00	100%	1.00 ± 0.00	100%
Lymphocytes	1.00		1.00		1.00	
Multinucleated	0.00 ± 0.00	%	0.00 ± 0.00	%0	0.00 ± 0.00	%0
Giant Cells	0.00	0	0.00		0.00	
	0.00 ± 0.00	%0	0.00 ± 0.00	%0	0.00 ± 0.00	%0
Plasma Cells	0.00		0.00		0.00	
Fasinanh ³ -	1.00 ± 0.00	%(1.00 ± 0.00	100%	1.00 ± 0.00	100%
Eosinophiis	1.00	100	1.00		1.00	

Table S5. Mean ± SD, median and incidence of inflammation and inflammatory cell types. Day 14, Group 4, 2 dressing changes.

Figure S25. H&E of Group 5 for gauze (left), no dressing (middle), and hydrogel dressing (right).

Figure S26. Gauze soaked in 0.3M CME solution, placed over the hydrogel **6** burn wound dressing for 10 minutes to induce dressing dissolution. Subsequently, burn wound was wiped with gauze soaked in H_2O and new hydrogel dressing was prepared on top of the wound.