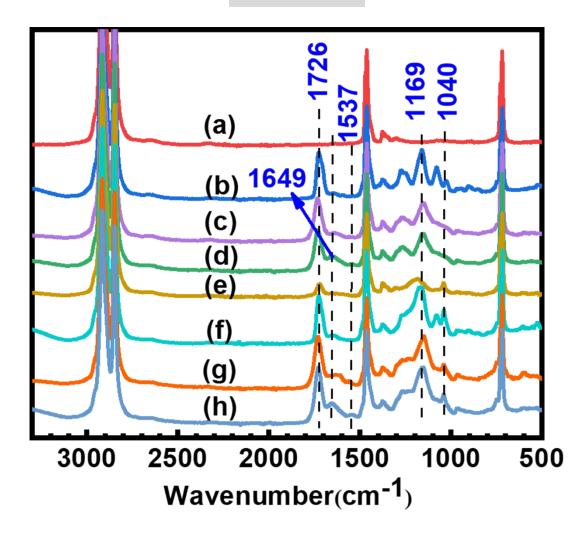
Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2022

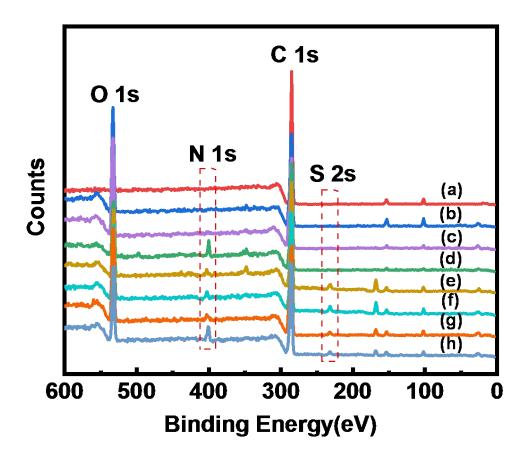
Supporting Information

A Self-defense Hierarchical Antibacterial Surface with Inherent Antifouling and Bacteria-activated Bactericidal Properties for Infection Resistance

Lu Wang^{a,b,c}, Liwei Sun^b, Xu Zhang^b, Huiyan Wang^{a,c*}, Lingjie Song^{b*} and Shifang Luan^b


^a Jilin Agricultural University, School of Life Science, Changchun 130118, P. R. China

^b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.


^c Jilin Medical University, Jilin 132013, P. R. China

^{*}Corresponding contributor. E-mail: jlmpcwhy@163.com; songlj@ciac.ac.cn

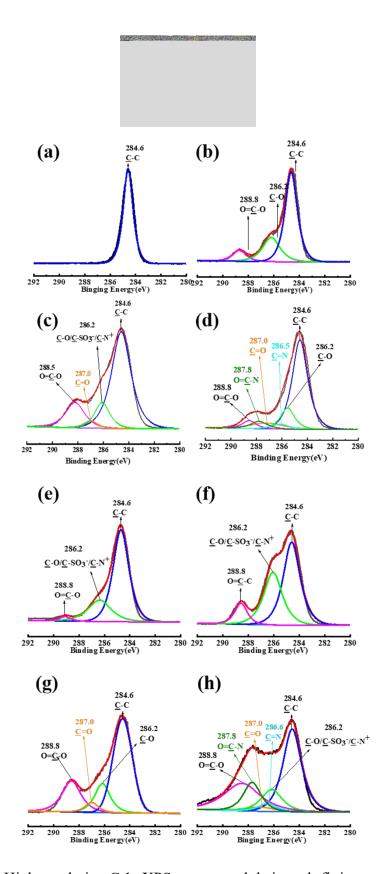

Figure S1. Schematic diagram of the synthesis route of a pH responsive hierarchical antibacterial surface on PE matrix.

Figure S2. ATR-FTIR spectra of the sample surfaces: (a) pristine PE surface, (b) PE-g-pHEMA, (c) PE-g-pHEMA_{OX}, (d) PE-g-pHEMA_{MLT}, (e) PE-g-pSBMA, (f) PE-g-pHEMA-b-pSBMA, (g) PE-g-pHEMA_{OX}-b-pSBMA and (h) PE-g-pHEMA_{MLT}-b-pSBMA.

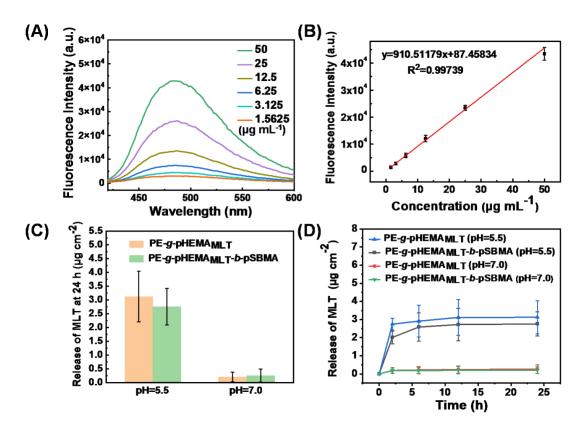


Figure S3. XPS analysis of different sample surfaces: (a) pristine PE surface, (b) PE-g-pHEMA, (c) PE-g-pHEMA_{OX}, (d) PE-g-pHEMA_{MLT}, (e) PE-g-pSBMA, (f) PE-g-pHEMA-b-pSBMA, (g) PE-g-pHEMA_{OX}-b-pSBMA and (h) PE-g-pHEMA_{MLT}-b-pSBMA.

Figure S4. High-resolution C 1s XPS spectra and their peak-fitting curves of the samples: (a) PE, (b) PE-g-pHEMA, (c) PE-g-pHEMA_{OX}, (d) PE-g-pHEMA_{MLT}, (e) PE-g-pSBMA, (f) PE-g-pHEMA-b-pSBMA, (g) PE-g-pHEMA_{OX}-b-pSBMA, (h) PE-g-pHEMA_{OX}-b-pSBMA

g-pHEMA_{MLT}-*b*-pSBMA.

Figure S5. (A) The fluorescence adsorption curves of fluorescamine after reacting with MLT at different concentrations ranging from 1.5625 μg mL⁻¹ to 50 μg mL⁻¹. (B) The linear relations of fluorescence intensity as a function of MLT concentration. (C) The released amounts of MLT from different surfaces at pH=5.5 and pH=7.0. (D) Time-dependent release profile of MLT under different conditions. (Error bars: standard deviation, n = 3).