Supporting Information

Difluorocarbene-based Cyanodifluoromethylation of

Alkenes Induced by a Dual-Functional Cu-catalyst

Min Zhang,^a Jin-Hong Lin,^a Chuan-Ming Jin^{*b}, and Ji-Chang Xiao^{*a} ^aKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic

Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences,

345 Lingling Road, Shanghai 200032, China.

Fax: (+86) 21-6416-6128; Tel: (+86)21-5492-5340; E-mail: jchxiao@sioc.ac.cn

^bDepartment of Chemistry and Chemical Engineering, Hubei Normal University, 11

Cihu Road, 435002, Huangshi, Hubei, China

Tel: (+86)-714 -6515602; E-mail: cmjin@hbnu.edu.cn

Table of Contents

1. General Information	S2
2. Screening of Ligand	S2
3. General Procedures for Difluorocarbene-based Cyanodifluoromethylation of Alkener	sS3
4. Preliminary Mechanistic Studies	S15
4.1 Cyanide Detection Test with Picric Acid Paper	S15
4.2 The Exclusion of the Path Involving	S16
4.3 Radical Trapping Experiments	S18
4.4 UV-Vis Absorption Experiment	S19
4.5 Stern–Volmer Measurements	S20
5. The Transformations of 4a	S21
6. References	S23
7. Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR Spectra of Products	S25

1. General Information

¹H, ¹³C and ¹⁹F NMR spectra were detected on a 500 MHz, 400 MHz or 300 MHz NMR spectrometer. Data for ¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (s) in Hz). Mass spectra were obtained on GC-MS or LC-MS (ESI). High resolution mass data were recorded on a high resolution mass spectrometer in the EI, FI or ESI mode. The mass analyzer types for HRMS-EI, HRMS-FI and HRMS-ESI are time-of-flight and Fourier transform mass spectrometer, respectively. Unless otherwise noted, all reagents were obtained commercially and used without further purification.

2. Screening of Ligand

			CuCN (5 mol%)	
			Ligand (6 mol%)	
	PrCE.CO.Et		K ₂ CO ₃ (2.0 equiv.)	
Ph' 🚿 T	DICF2CO2EL	+ N1411CO3	blue LED, N ₂ , 35 °C	Ph CF ₂ CO ₂ Et
1a	2		DMF (2 ml.)	
0.2 mmol	(2.5 equiv)	(2.0 equiv.)		4a

Entry	Ligand	Yield $(\%)^b$
1	BINAP	85
2	L1	25
3	L2	60
4	L3	25
5	L4	0
6 ^{<i>c</i>}	(S)-BINAP	65 ^d

^{*a*}Reaction conditions: Substrate **1a** (0.2 mmol), BrCF₂CO₂Et (2.5 equiv), NH₄HCO₃ (2 equiv), CuCN (5 mmol%), BINAP (6 mmol%), K₃PO₄ (2 equiv), DG (2.5 equiv) and H₂O (3 equivl) in DMF (2 mL) irradiated with blue LEDs at 35 °C under a N₂ atmosphere for 12 h; ^{*b*}The yields were determined by ¹⁹F NMR spectroscopy with 1-fluoronaphthalene as the internal standard; ^{*c*}(*S*)-BINAP and CuCN were stirred in 1mL DMF under N₂ atmosphere for 30 min, then add other reagent; ^{*d*}No enantioselectivity.

3. General Procedures for Cyanodifluoromethylation of Alkenes

-			CuCN (5 mol%) BINAP (6 mol%) K ₂ CO ₃ (2.0 equiv.)	CN
R´ ≥ +	BICF2CO2EL	+ Nn ₄ ncO ₃	blue LED, N ₂ , 35 °C	R CF ₂ CO ₂ Et
1 0.4 mmol	2 (2.5 equiv)	(2.0 equiv.)	DMF (4 mL)	4

Into a 15 mL Schlenk tube were added CuCN (1.8 mg, 0.02 mmol, 5 mol %), BINAP (14.9 mg, 0.024 mmol, 6 mol %), NH₄HCO₃ (63.2 mg, 0.8 mmol, 2 equiv.), K₃PO₄ (169.8 mg, 0.8 mmol, 2 equiv.) and DMF (4 mL) under a N₂ atmosphere. Then substrate **1** (0.4 mmol, 1.0 equiv.), BrCF₂CO₂Et (203.0 mg, 1.0 mmol, 2.5 equiv.), DG (134.2 mg, 1.0 mmol, 2.5 equiv.) and H₂O (21.6 mg, 1.2 mmol, 3 equiv.) were added. The resulting mixture was stirred at 35 °C under the irradiation of 11.5 W blue LEDs for 12 h under a N₂ atmosphere. When the reaction was completed, as monitored by ¹⁹F NMR spectroscopy, the crude reaction mixture was diluted with EA (20 mL). The solution was washed with water (3×20 mL) and brine (20 mL), and then dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was subjected to flash column chromatography to give the final product **4**.

Ethyl 4-cyano-2,2-difluoro-4-phenylbutanoate (4a)

80.3 mg, 79% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.32 (m, 5H), 4.34 – 4.19 (m, 2H), 4.12 (dd, J = 9.3, 5.0 Hz, 1H), 2.84 (ddd, J = 30.7, 15.3, 9.4 Hz, 1H), 2.59 (ddd, J = 31.0, 15.2, 5.0 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.89 (dt, J = 268.5, 15.5 Hz, 1F), -105.62 (dt, J = 268.5, 15.4 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, J = 31.8 Hz), 134.2 (s), 129.6 (s),

128.9 (s), 127.5 (s), 119.3 (s), 114.0 (t, J = 252.9 Hz), 63.6 (s), 40.3 (t, J = 23.9 Hz), 30.8 (t, J = 4.8 Hz), 13.9 (s); **HRMS (EI)**: Calcd. For C₁₃H₁₃F₂NO₂ ([M]⁺): 253.0909; Found: 253.0907; **IR (KBr)**: 2954, 2924, 2852, 2360, 2246, 1738, 1456, 1376, 1216, 1092, 748, 697 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(o-tolyl)butanoate (4b)

43.3 mg, 40 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 1H), 7.28 – 7.22 (s, 2H), 7.22 – 7.17 (m, 1H), 4.31 – 4.21 (m, 3H), 2.80 (ddd, J = 30.5, 15.1, 10.0 Hz, 1H), 2.48 (ddd, J = 31.3, 15.0, 4.5 Hz, 1H), 2.36 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.19 (dt, J = 267.3, 15.5 Hz, 1F), -105.96 (dt, J = 267.7, 15.4 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, J = 31.8 Hz), 135.2 (s), 132.6 (s), 131.5 (s), 129.0 (s), 127.7 (s), 127.3 (s), 119.5 (s), 114.0 (t, J = 252.7 Hz), 63.7 (s), 39.1 (t, J = 24.0 Hz), 27.6 (t, J = 4.8 Hz), 19.1 (s), 14.0 (s); HRMS (EI): Calcd. For C₁₄H₁₅F₂NO₂ ([M]⁺): 267.1065; Found: 267.1056; IR (KBr): 2985, 2916, 2849, 2357, 2242, 1769, 1490, 1375, 1218, 1194, 1086, 913, 747 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(p-tolyl)butanoate (4c)^[1]

75.1 mg, 70 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 4.31 – 4.18 (m, 2H), 4.06 (dd, J = 9.3, 5.1 Hz, 1H), 2.80 (ddd, J = 30.6, 15.3, 9.4 Hz, 1H), 2.55 (ddd, J = 30.7, 15.3, 5.0 Hz, 1H), 2.34 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.92 (dt, J = 268.5, 15.8 Hz, 1F), -105.62 (dt, J = 268.1, 15.4 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, J = 31.9 Hz), 138.9 (s), 131.2 (s), 130.2 (s), 127.3 (s), 119.4 (s), 114.0 (t, J = 252.7 Hz), 63.6 (s), 40.3 (t, J = 23.8 Hz), 30.5 (t, J = 4.8 Hz), 21.2 (s), 13.9 (s); HRMS (EI): Calcd. For C₁₄H₁₅F₂NO₂ ([M]⁺): 267.1065; Found: 267.1059; IR (KBr): 2987, 2942, 2360, 2246, 1770, 1514, 1434, 1223, 1197, 1092, 816 cm⁻¹.

Ethyl 4-cyano-4-(3,4-dimethylphenyl)-2,2-difluorobutanoate (4d)

64.4 mg, 57 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.09 (d, J = 7.8 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 4.33 – 4.22 (m, 3H), 2.81 (ddd, J = 31.2, 14.9, 9.9 Hz, 1H), 2.47 (dtd, J = 17.0, 14.8, 4.3 Hz, 1H), 2.34 (s, 3H), 2.32 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.18 (ddd, J = 267.0, 16.0, 14.9 Hz, 1F), -106.00 (ddd, J = 260.57, 16.7, 14.7 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, J = 31.9 Hz), 137.0 (s), 132.3 (s), 131.9 (s), 131.4 (s), 129.7 (s), 128.3 (s), 119.7 (s), 114.1 (t, J = 252.6 Hz), 63.7 (s), 39.2 (t, J = 24.0 Hz), 27.5 (t, J = 4.7 Hz), 21.0 (s), 18.6 (s), 14.0 (s); HRMS (EI): Calcd. For C₁₅H₁₇F₂NO₂ ([M]⁺): 281.1222; Found: 281.1215; **IR (KBr)**: 2985, 2928, 2874, 2357, 2245, 1770, 1505, 1376, 1222, 1194,1089, 817 cm⁻¹.

Ethyl 4-(4-(tert-butyl)phenyl)-4-cyano-2,2-difluorobutanoate (4e)^[2]

53.8 mg, 43 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2 H), 4.31 – 4.17 (m, 2H), 4.09 (dd, J = 9.3, 5.1 Hz, 1H), 2.91 – 2.75 (m, 1H), 2.60 (dtd, J = 19.9, 14.8, 5.1 Hz, 1H), 1.34 – 1.28 (m, 12H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.82 (ddd, J = 267.0, 16.5, 14.6 Hz, 1F), -105.69 (dt, J = 270.7, 15.0 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, J = 31.9 Hz), 152.1 (s), 131.1 (s), 127.2 (s), 126.4 (s), 119.4 (s), 114.0 (t, J = 252.6 Hz), 63.5 (s), 40.2 (t, J = 23.9 Hz), 34.7 (s), 31.3 (s), 30.3 (t, J = 4.9 Hz), 13.9 (s); HRMS (EI): Calcd. For C₁₇H₂₁F₂NO₂ ([M]⁺): 309.1535; Found: 309.1528; IR (KBr): 2968, 2871, 2246, 1760, 1513, 1310, 1217, 1092, 834 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(4-methoxyphenyl)butanoate (4f)

78.7 mg, 69 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.29 – 4.16 (m, 2H), 4.04 (dd, J = 9.2, 5.3 Hz, 1H), 3.77 (s, 3H), 2.78 (ddd, J = 30.8, 14.9, 9.3 Hz, 1H), 2.54 (dtd, J = 20.1, 14.9, 5.3 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.86 (dt, J = 267.0, 15.7 Hz, 1F), -105.67 (dt, J = 267.0, 15.5 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (t, J = 31.9 Hz), 159.9 (s), 128.6 (s), 126.0 (s), 119.5 (s), 114.8 (s), 114.0 (t, J = 252.6 Hz), 63.5 (s), 55.4 (s), 40.2 (t, J = 23.7 Hz), 30.0 (t, J = 4.8 Hz), 13.8 (s); HRMS (EI): Calcd. For C₁₄H₁₅F₂NO₃ ([M]⁺): 283.1015; Found: 283.1009; IR (KBr): 2969, 2841, 2245, 1748, 1514, 1217, 1091, 832 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(3-methoxyphenyl)butanoate (4g)

50.2 mg, 44 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 1H), 6.91 (d, J = 7.8 Hz, 1H), 6.88 – 6.83 (m, 2H), 4.31 – 4.18 (m, 2H), 4.06 (dd, J = 9.4, 4.9 Hz, 1H), 3.79 (s, 3H), 2.80 (ddd, J = 30.9, 15.2, 9.5 Hz, 1H), 2.56 (ddd, J = 31.1, 15.2, 4.9 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 104.90 (dt, J = 267.0, 15.6 Hz, 1F), -105.64 (dt, J = 271.0, 15.5 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (t, J = 31.9 Hz), 160.3 (s), 135.6 (s), 130.6 (s), 119.5 (s), 119.2 (s), 114.2 (s), 113.9 (t, J = 252.7 Hz), 113.2 (s), 63.6 (s), 55.4 (s), 40.1 (t, J = 23.7 Hz), 30.7 (t, J = 4.7 Hz), 13.8 (s); HRMS (EI): Calcd. For C₁₄H₁₅F₂NO₃ ([M]⁺): 283.1015; Found: 283.1010; **IR (KBr)**: 2944, 2841, 2357, 2251, 1770, 1470, 1088, 778, 696 cm⁻¹.

Ethyl 4-cyano-4-(3,5-dimethoxyphenyl)-2,2-difluorobutanoate (4h)

52.7 mg, 42 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.48 – 6.46 (m, 1H), 6.43 – 6.40 (m, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.02 (dd, J = 9.4, 4.6 Hz, 1H), 3.79 (s, 6H), 2.81 (ddd, J = 24.5, 15.5, 10.2 Hz, 1H), 2.57 (ddd, J = 19.9, 15.6, 4.7 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.95 (dt, J = 268.5, 15.5 Hz, 1F), -105.68 (dt, J = 259.1, 15.5Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, J = 31.9 Hz), 161.6 (s), 136.3 (s), 119.1 (s), 113.9 (t, J = 252.8 Hz), 105.5 (s), 100.5 (s), 63.6 (s), 55.6 (s), 40.2 (t, J = 24.0 Hz), 30.9 (t, J = 4.8 Hz), 13.9 (s); HRMS (EI): Calcd. For C₁₅H₁₇F₂NO₄ ([M]⁺): 313.1120; Found: 313.1111; IR (KBr): 2943, 2846, 2359, 2247, 1770, 1092, 789, 850 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(4-fluorophenyl)butanoate (4i)

69.1 mg, 64 % yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.10 (t, J = 8.5 Hz, 2H), 4.29 (q, J = 7.1 Hz, 2H), 4.12 (dd, J = 8.9, 5.3 Hz, 1H), 2.83 (ddd, J = 30.7, 15.3, 9.2 Hz, 1H), 2.57 (ddd, J = 30.7, 15.3, 5.2 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.30 (t, J = 15.4 Hz, 2F), -112.34 – -112.47 (m, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (t, J = 31.8 Hz), 162.9 (d, J = 248.9 Hz), 130.1 (d, J = 3.3 Hz), 129.4 (d, J = 8.5 Hz), 119.1 (s), 116.6 (d, J = 22.0 Hz), 113.9 (t, J = 253.1 Hz), 63.7 (s), 40.3 (t, J = 23.6 Hz), 30.2 (t, J = 4.7 Hz), 14.0 (s); HRMS (EI): Calcd. For C₁₃H₁₂F₃NO₂ ([M]⁺): 271.0815; Found: 271.0824; IR (KBr): 2991, 2970, 2944, 2370, 2247, 1754, 1511, 1375, 1217, 1091, 837 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(3-fluorophenyl)butanoate (4j)

63.7 mg, 59 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (td, J = 7.9, 6.0 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.13 – 7.04 (m, 2H), 4.30 (q, J = 7.1 Hz, 2H), 4.13 (dd, J = 9.3, 5.1 Hz, 1H), 2.84 (qd, J = 15.4, 9.3 Hz, 1H), 2.59 (qd, J = 15.3, 5.0 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.26 (t, J = 15.6

Hz, 2F), -110.69 (td, J = 8.8, 5.8 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (d, J = 248.7 Hz), 162.9 (t, J = 31.8 Hz), 136.5 (d, J = 7.5 Hz), 131.3 (d, J = 8.3 Hz), 123.2 (d, J = 3.1 Hz), 118.8 (s), 116.1 (d, J = 21.0 Hz), 114.8 (d, J = 23.0 Hz), 113.8 (t, J = 276.0 Hz), 63.8 (s), 40.1 (t, J = 23.9 Hz), 30.6 (td, J = 4.7, 1.9 Hz), 14.0 (s); **HRMS** (EI): Calcd. For C₁₃H₁₂F₃NO₂ ([M]⁺): 271.0815; Found: 271.0817; **IR (KBr)**: 3002, 2970, 2944, 2370, 2247, 1738, 1435, 1365, 1228, 1092, 744 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(2-fluorophenyl)butanoate (4k)

33.5 mg, 31 % yield; yellow oil; ¹**H** NMR (400 MHz, CDCl₃) δ 7.47 (t, J = 7.6 Hz, 1H), 7.38 (dd, J = 14.1, 6.9 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.16 – 7.09 (m, 1H), 4.40 (dd, J = 9.0, 5.1 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 2.85 (ddd, J = 30.7, 15.3, 9.2 Hz, 1H), 2.62 (ddd, J = 30.8, 15.5, 5.0 Hz, 1H), 1.34 (t, J = 7.2 Hz, 3H); ¹⁹**F** NMR (376 MHz, CDCl₃) δ -105.55 (td, J = 15.5, 3.2 Hz, 2F), -117.25 – -117.33 (m, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (t, J = 31.8 Hz), 159.8 (d, J = 248.8 Hz), 131.1 (d, J = 8.3 Hz), 129.3 (d, J = 2.7 Hz), 125.2 (d, J = 3.7 Hz), 121.4 (d, J = 13.7 Hz), 118.3 (s), 116.3 (d, J = 20.9 Hz), 113.9 (t, J = 253.1 Hz), 63.7 (s), 38.4 (t, J = 24.0 Hz), 25.2 (dd, J = 8.7, 4.9 Hz), 13.9 (s); HRMS (EI): Calcd. For C₁₃H₁₂F₃NO₂ ([M]⁺): 271.0815; Found: 271.0811; **IR (KBr)**: 2987, 2970, 2361, 2248, 1769, 1590, 1494, 1231, 1088, 760 cm⁻¹.

Ethyl 4-(2-chlorophenyl)-4-cyano-2,2-difluorobutanoate (41)

51.9 mg, 45 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 1H), 7.44 (dd, J = 7.3, 1.9 Hz, 1H), 7.40 – 7.29 (m, 2H), 4.61 (dd, J = 10.0, 4.0 Hz, 1H), 4.32 (q, J = 7.2 Hz, 2H), 2.87 – 2.70 (m, 1H), 2.68 – 2.53 (m, 1H), 1.36 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.94 (ddd, J = 267.0, 17.0, 13.3 Hz, 1F), -105.92 (ddd, J = 267.0, 17.6, 13.8 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ

163.0 (t, J = 31.8 Hz), 132.8 (s), 131.9 (s), 130.51 (s), 130.47 (s), 129.3 (s), 128.1 (s), 118.6 (s), 113.9 (t, J = 253.5 Hz), 63.7 (s), 38.3 (t, J = 24.0 Hz), 28.5 (t, J = 4.7 Hz), 14.0 (s); **HRMS (EI)**: Calcd. For $C_{13}H_{12}{}^{35}ClF_2NO_2$ ([M]⁺): 287.0519; Found: 287.0529; **IR (KBr)**: 2987, 2941, 2874, 2360, 2248, 1760, 1376, 1217, 1092, 756 cm⁻¹.

Ethyl 4-(4-chlorophenyl)-4-cyano-2,2-difluorobutanoate (4m)

94.8 mg, 82 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.6 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 4.35 – 4.23 (m, 2H), 4.11 (dd, J = 9.1, 5.2 Hz, 1H), 2.82 (qd, J = 15.3, 9.2 Hz, 1H), 2.56 (qd, J = 15.4, 5.2 Hz, 1H), 1.34 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.22 (t, J = 15.4 Hz, 2F); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (t, J = 31.8 Hz), 135.1 (s), 132.7 (s), 129.8 (s), 128.9 (s), 118.9 (s), 113.8 (t, J = 253.0 Hz), 63.8 (s), 40.1 (t, J = 23.9 Hz), 30.3 (t, J = 4.7 Hz), 13.9 (s); HRMS (EI): Calcd. For C₁₃H₁₂³⁵ClF₂NO₂ ([M]⁺): 287.0519; Found: 287.0516; IR (KBr): 2988, 2942, 2248, 1770, 1494, 1223, 1197, 1095, 829 cm⁻¹.

Ethyl 4-(4-bromophenyl)-4-cyano-2,2-difluorobutanoate (4n)

82.9 mg, 62 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 6.4 Hz, 2H), 4.27 (q, J = 7.1 Hz, 2H), 4.08 (dd, J = 8.9, 5.3 Hz, 1H), 2.81 (qd, J = 15.4, 9.3 Hz, 1H), 2.54 (ddd, J = 30.7, 15.2, 5.1 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.22 (t, J = 15.4 Hz, 2F); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (t, J = 31.8 Hz), 133.3 (s), 132.8 (s), 129.2 (s), 123.2 (s), 118.8 (s), 113.8 (t, J = 253.1 Hz), 63.8 (s), 40.1 (t, J = 23.8 Hz), 30.4 (t, J = 4.7 Hz), 14.0 (s); HRMS (EI): Calcd. For C₁₃H₁₂⁷⁹BrF₂NO₂ ([M]⁺): 331.0014; Found: 331.0006; IR (KBr): 2928, 2355, 2255, 1766, 1489, 1195, 1086, 822 cm⁻¹.

Ethyl 4-(3-bromophenyl)-4-cyano-2,2-difluorobutanoate (40)

86.6 mg, 65 % yield; yellow oil; ¹**H** NMR (400 MHz, CDCl₃) δ 7.55 – 7.47 (m, 2H), 7.35 – 7.27 (m, 2H), 4.30 (q, J = 7.1 Hz, 2H), 4.10 (dd, J = 9.2, 5.2 Hz, 1H), 2.84 (qd, J = 15.2, 9.3 Hz, 1H), 2.58 (qd, J = 15.4, 5.1 Hz, 1H), 1.36 (t, J = 7.2 Hz, 3H); ¹⁹**F** NMR (376 MHz, CDCl₃) δ -105.23 (t, J = 15.4 Hz, 2F); ¹³**C** NMR (101 MHz, CDCl₃) δ 162.9 (t, J = 31.8 Hz), 136.3 (s), 132.3 (s), 131.1 (s), 130.6 (s), 126.2 (s), 123.5 (s), 118.7 (s), 113.8 (t, J = 253.2 Hz), 63.8 (s), 40.1 (t, J = 24.0 Hz), 30.5 (t, J =4.8 Hz), 14.0 (s); **HRMS (EI)**: Calcd. For C₁₃H₁₂⁷⁹BrF₂NO₂ ([M]⁺): 331.0014; Found: 331.0024; **IR (KBr)**: 2987, 2925, 2850, 2326, 2247, 1766, 1475, 1195, 1088, 785, 693 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(4-(trifluoromethyl)phenyl)butanoate (4p)

87.4 mg, 68 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.53 (d, *J* = 8.1 Hz, 2H), 4.29 (q, *J* = 7.2 Hz, 2H), 4.21 (dd, *J* = 9.1, 5.1 Hz, 1H), 2.86 (ddd, *J* = 30.9, 15.0, 9.2 Hz, 1H), 2.60 (ddd, *J* = 31.1, 15.0, 5.2 Hz, 1H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.92 (s, 3F), -105.20 (td, *J* = 15.4, 5.7 Hz, 2F); ¹³C NMR (101 MHz, CDCl₃) δ 162.8 (t, *J* = 31.7 Hz), 138.2 (s), 131.4 (q, *J* = 32.9 Hz), 128.1 (s), 126.6 (q, *J* = 3.7 Hz), 123.7 (q, *J* = 272.3 Hz), 118.6 (s), 113.8 (t, *J* = 253.4 Hz), 63.8 (s), 40.0 (t, *J* = 23.9 Hz), 30.7 (t, *J* = 4.6 Hz), 13.9 (s); HRMS (EI): Calcd. For C₁₄H₁₂F₅NO₂ ([M]⁺): 321.0783; Found: 321.0781; IR (KBr): 2991, 2970, 2945, 2361, 2249, 1766, 1620, 1328, 1092, 842 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(3-(trifluoromethyl)phenyl)butanoate (4q)

63.1 mg, 49 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.54 (m, 4H), 4.30 (q, J = 7.1 Hz, 2H), 4.22 (dd, J = 9.1, 5.2 Hz, 1H), 2.88 (qd, J = 15.3, 9.3

Hz, 1H), 2.61 (qd, J = 15.3, 5.1 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.83 (s, 3F), -105.17 (td, J = 15.6, 2.1 Hz, 2F); ¹³C NMR (101 MHz, CDCl₃) δ 162.8 (t, J = 31.7 Hz), 135.3 (s), 132.1 (q, J = 32.8 Hz), 131.0 (s), 130.3 (s), 126.0 (q, J = 3.6 Hz), 124.4 (q, J = 3.8 Hz), 123.6 (q, J = 272.5 Hz), 118.6 (s), 113.8 (t, J = 253.3 Hz), 63.8 (s), 40.0 (t, J = 23.9 Hz), 30.7 (t, J = 4.7 Hz), 13.9 (s); **HRMS (EI)**: Calcd. For C₁₄H₁₂F₅NO₂ ([M]⁺): 321.0783; Found: 321.0795; **IR (KBr)**: 2990, 2945, 2249, 1770, 1599, 1494, 1330, 1170, 779, 702 cm⁻¹.

Ethyl 4-(4-acetoxyphenyl)-4-cyano-2,2-difluorobutanoate (4r)

68.0 mg, 55% yield; orange oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, J = 8.6 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), 4.34 – 4.21 (m, 2H), 4.13 (dd, J = 9.3, 5.1 Hz, 1H), 2.83 (ddd, J = 30.8, 14.8, 9.3 Hz, 1H), 2.59 (dtd, J = 19.9, 14.8, 5.1 Hz, 1H), 2.31 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃)) δ -104.87 (dt, J = 267.0, 15.3 Hz, 1F), -105.68 (dt, J = 270.7, 15.3 Hz, 1F); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.3 (s), 162.9 (t, J = 31.8 Hz), 151.1 (s), 131.7 (s), 128.7 (s), 122.8 (s), 119.1 (s), 113.9 (t, J = 253.0 Hz), 63.7 (s), 40.3 (t, J = 23.9 Hz), 30.4 (t, J = 4.9 Hz), 21.2 (s), 14.0 (s); **HRMS (EI)**: Calcd. For C₁₅H₁₅F₂NO₄ ([M]⁺): 311.0964; Found: 311.0956; **IR (KBr)**: 3001, 2970, 2943, 2366, 2247, 1739, 1366, 1217, 1092, 910 cm⁻¹.

Ethyl 4-cyano-4-(4-(cyanomethyl)phenyl)-2,2-difluorobutanoate (4s)

69.2 mg, 59 % yield; white solid; m.p.: 76.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.36 (m, 4H), 4.29 (q, J = 7.1 Hz, 2H), 4.14 (dd, J = 9.2, 5.1 Hz, 1H), 3.77 (s, 2H), 2.83 (ddd, J = 30.7, 15.3, 9.3 Hz, 1H), 2.57 (ddd, J = 30.9, 15.3, 5.1 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.86 (dt, J = 274.5, 15.3 Hz, 1F), -105.59 (dt, J = 270.1, 15.5 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (t, J = 31.8 Hz), 134.4 (s), 131.0 (s), 129.2 (s), 128.3 (s), 118.9 (s), 117.4 (s), 113.9 (t, J = 253.2 Hz), 63.7 (s), 40.1 (t, J = 23.8 Hz), 30.5 (t, J = 4.7 Hz), 23.4 (s), 13.9 (s); **HRMS (EI)**: Calcd. For C₁₅H₁₄F₂N₂O₂ ([M]⁺): 292.1018; Found: 292.1025; **IR** (**KBr**): 2995, 2970, 2944, 2366, 2249, 1739, 1365, 1217, 1092, 850 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-4-(6-methoxynaphthalen-2-yl)butanoate (4t)

56.5 mg, 42 % yield; red solid; m.p.: 58.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.70 (m, 3H), 7.38 (d, J = 8.5 Hz, 1H), 7.20 (d, J = 8.9 Hz, 1H), 7.13 (s, 1H), 4.29 – 4.13 (m, 3H), 3.93 (s, 3H), 2.90 (ddd, J = 30.5, 15.2, 9.3 Hz, 1H), 2.68 (ddd, J= 30.5, 15.2, 5.1 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ-104.76 (dt, J = 270.7, 15.0 Hz, 1F), -105.60 (dt, J = 267.0, 15.4 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, J = 31.8 Hz), 158.6 (s), 134.5 (s), 129.5 (s), 128.9 (s), 128.8 (s), 128.4 (s), 126.6 (s), 125.1 (s), 120.0 (s), 119.4 (s), 114.0 (t, J = 252.7 Hz), 105.8 (s), 63.6 (s), 55.5 (s), 40.3 (t, J = 23.9 Hz), 30.9 (t, J = 4.8 Hz), 13.9 (s); HRMS (EI): Calcd. For C₁₈H₁₇F₂NO₃ ([M]⁺): 333.1171; Found: 333.1173; IR (KBr): 2986, 2941, 2845, 2246, 1770, 1608, 1485, 1093, 854 cm⁻¹.

Ethyl 4-cyano-2,2-difluoro-6-phenylhexanoate (4u)

44.7 mg, 40 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 7.3 Hz, 2H), 7.23 (d, J = 7.6 Hz, 1H), 7.19 (d, J = 7.3 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 2.91 (ddd, J = 13.3, 9.4, 4.9 Hz, 1H), 2.86 – 2.71 (m, 2H), 2.63 – 2.44 (m, 1H), 2.36 – 2.20 (m, 1H), 2.08 – 1.89 (m, 2H), 1.33 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.18 (ddd, J = 267.0, 18.9, 12.1 Hz, 1F), -105.91 (dddd, J = 267.0, 16.9, 13.9, 2.5 Hz. 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, J = 32.0 Hz), 139.4 (s), 128.8 (s), 128.5 (s), 126.7 (s), 120.1 (s), 114.3 (t, J = 252.5 Hz), 63.6 (s), 36.8 (t, J = 23.9 Hz), 34.3 (s), 32.9 (s), 24.5 (t, J = 4.1 Hz), 13.9 (s); HRMS (EI): Calcd. For C₁₅H₁₇F₂NO₂ ([M]⁺): 281.1222; Found: 281.1228; **IR (KBr)**: 2940, 2867, 2366, 2366,

Ethyl 4-cyano-2,2-difluoro-5-phenoxypentanoate (4v)

48.8 mg, 43 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.7 Hz, 2H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.91 (d, *J* = 8.6 Hz, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 4.22 – 4.12 (m, 2H), 3.36 (td, *J* = 10.8, 5.4 Hz, 1H), 2.78 – 2.54 (m, 2H), 1.38 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.65 (ddd, *J* = 267.0, 18.7, 13.1 Hz, 1F), -105.74 (ddd, *J* = 267.0, 18.9, 14.1 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, *J* = 31.9 Hz), 157.6 (s), 129.8 (s), 122.3 (s), 118.4 (s), 114.8 (s), 114.3 (t, *J* = 252.5 Hz), 66.8 (s), 63.8 (s), 34.0 (t, *J* = 24.1 Hz), 25.9 (t, *J* = 4.1 Hz), 14.0 (s); HRMS (EI): Calcd. For C₁₄H₁₅F₂NO₃ ([M]⁺): 283.1015; Found: 283.1011; IR (KBr): 2969, 2928, 2850, 2362, 2250, 1752, 1599, 1375, 1217, 1053, 913, 748, 691 cm⁻¹.

Ethyl 4-cyano-2,2-difluorotetradecanoate (4w)

77.9 mg, 61 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.35 (q, J = 7.1 Hz, 2H), 2.91 – 2.78 (m, 1H), 2.60 – 2.42 (m, 1H), 2.33 – 2.17 (m, 1H), 1.74 – 1.60 (m, 2H), 1.60 – 1.50 (m, 1H), 1.50 – 1.40 (m, 1H), 1.36 (t, J = 7.2 Hz, 3H), 1.33 – 1.17 (m, 14H), 0.87 (t, J = 6.7 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.38 (ddd, J = 263.2, 18.9, 12.0 Hz, 1F), -106.30 (ddd, J = 267.0, 19.4, 14.1 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (t, J = 31.9 Hz), 120.5 (s), 114.4 (t, J = 252.5 Hz), 63.6 (s), 37.0 (t, J = 23.8 Hz), 32.8 (s), 32.0 (s), 29.62 (s), 29.56 (s), 29.4 (s), 29.0 (s), 26.8 (s), 25.0 (t, J = 5.0 Hz), 22.8 (s), 14.2 (s), 14.0 (s); HRMS (EI): Calcd. For C₁₇H₂₉F₂NO₂ ([M-H]⁺): 316.2083; Found: 316.2078; IR (KBr): 2927, 2856, 2361, 2244, 1770, 1467, 1377, 1198, 1098 cm⁻¹.

69.5 mg, 50 % yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, J = 8.0 Hz, 1H), 6.87 (s, 1H), 6.82 (d, J = 8.0 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 3.19 – 3.08 (m, 1H), 2.97 (d, J = 7.0 Hz, 2H), 2.58 – 2.41 (m, 1H), 2.40 – 2.25 (m, 1H), 2.30 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.13 (ddd, J = 266.6, 18.9, 12.0 Hz, 1F), -105.32 -106.22 (m, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 169.1 (s), 163.1 (t, J = 31.8 Hz), 151.4 (s), 139.4 (s), 134.4 (s), 123.2 (s), 121.4 (s), 120.0 (s), 114.4 (t, J = 203.0 Hz), 113.3 (s), 63.7 (s), 56.0 (s), 38.3 (s), 36.1 (t, J = 23.8 Hz), 26.8 (t, J = 3.7 Hz), 20.7 (s), 13.9 (s); HRMS (EI): Calcd. For C₁₇H₁₉F₂NO₅ ([M]⁺): 355.1226; Found: 355.1218; IR (KBr): 2985, 2941, 2245, 1606, 1512, 1467, 1371, 1124, 1095, 852 cm⁻¹.

Ethyl-4-cyano-2,2-difluoro-4-((8R,9S,13S,14R)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3yl)butanoate (4y)

83.7 mg, 49 % yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.0 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.09 (s, 1H), 4.27 (q, J = 7.1 Hz, 2H), 4.04 (dd, J = 9.6, 4.7 Hz, 1H), 2.95 – 2.88 (m, 2H), 2.87 – 2.71 (m, 1H), 2.62 – 2.46 (m, 2H), 2.45 – 2.37 (m, 1H), 2.28 (t, J = 8.3 Hz, 1H), 2.15 (dd, J = 18.4, 9.3 Hz, 1H), 2.11 – 1.99 (m, 2H), 1.95 (dd, J = 11.1, 8.9 Hz, 1H), 1.68 – 1.39 (m, 6H), 1.33 (t, J = 7.1 Hz, 3H), 0.90 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.30 (t, J = 15.5 Hz, 2F); ¹³C NMR (101 MHz, CDCl₃) δ 220.7 (s), 162.9 (t, J = 32.0 Hz), 140.6 (s), 137.9 (s), 131.6 (s), 127.9 (s), 126.5 (s), 124.7 (s), 119.4 (s), 113.9 (t, J = 252.5 Hz), 63.5 (s), 50.4 (s), 47.9 (s), 44.3 (s), 40.2 (t, J = 23.8 Hz), 38.0 (s), 35.8 (s), 31.5 (s), 30.34 – 30.10 (m),

29.35 (s), 29.32 (s), 26.3 (s), 25.7 (s), 21.6 (s), 13.9 (s), 13.8 (s); **HRMS (EI)**: Calcd. For C₂₅H₂₉F₂NO₃ ([M]⁺): 429.2110; Found: 429.2106; **IR (KBr)**: 2933, 2865,2358, 2345, 2244, 1770, 1738, 1500, 1375, 1192, 1088, 851, 732 cm⁻¹.

4. Preliminary Mechanistic Studies

4.1 Cyanide Detection Test with Picric Acid Paper

The cyanide detection tests with picric acid paper were performed according to previous procedures.^[3] Picrate paper was prepared by wetting filter paper with a solution of sodium bicarbonate (5.0 g) and picric acid (0.5 g) in water (100 mL). After being dried, the paper was cut into strips and the strips were separately inserted into 2 mL vials.

The reaction mixture indicated in Table 2 in the main text was stirred at room temperature for 12 h in a 15 mL Schlenk tube under a N_2 atmosphere. The Schlenk tube was opened, tartrate acid (0.5 g) was added into the reaction mixture, and the vial containing the picric acid paper obtained above was inserted into the Schlenk tube. The vial was kept opened, and the Schlenk tube was sealed. The reaction mixture was stirred at 60 °C for 30 minutes. If CN⁻ anion was generated from the reaction mixture, the color of the test paper would turn to rose-red. If not, no change in the color would be observed. The Schlenk tubes containing the vials were shown as follows.

	NH ₄ HCO ₃ + 0.4 mmol	BrCF ₂ COOEt <u>2</u> 1.25 equiv.	2 equiv. K ₃ PO ₄ mL Solvent, rt, 12 <u>þ</u>	CN⁻
Entry	NH ₄ HCO ₃	BrCF ₂ COOE	t Solvent	CN ⁻ produce
1	\checkmark	×	DMF	-
2	×	\checkmark	DMF	-
3	\checkmark	\checkmark	DMF	+
4	\checkmark	\checkmark	DMAc	+
5	\checkmark	\checkmark	MeCN	+
6	\checkmark	\checkmark	DG	+

[a] " $\sqrt{}$ " means the reagent was used; " \times " means the reagent was not used; "+" means positive result; "-" means negative result.

Rose-red color indicating CN⁻ generation, no change in color indicating no CN⁻

4.2 The Exclusion of the Path Involving

4.2.1 The Preparation of 3a

			CuCN (5 mol%) BINAP (6 mol%)	Br
Ph' 🚿 T	BICF2CODEL +		blue LED. N ₂ . 35 °C	Ph CF ₂ CO ₂ Et
1a , 0. 4 mmol	2 , 2.5 eq.	2.0 eq.	DMF (4 mL)	3a

Into a 15 mL Schlenk tube were added CuCN (1.8 mg, 0.02 mmol, 5 mol %), binap (14.9 mg, 0.024 mmol, 6 mol %), NH₄Br (78.3 mg, 0.8 mmol, 2 equiv.) and DMF (4 mL) under a N₂ atmosphere. Then the alkene substrate **1a** (41.6 mg, 0.4 mmol, 1.0 equiv.) and BrCF₂CO₂Et (203.0 mg, 1.0 mmol, 2.5 equiv.) were added. The resulting mixture was stirred at 35 °C and irradiated with blue LEDs for 12 h under a N₂ atmosphere. When the reaction was completed, as monitored by ¹⁹F NMR spectroscopy, the crude reaction mixture was diluted with EA (20 mL). The solution was washed with water (3×20 mL) and brine (20 mL), and then dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was subjected to flash column chromatography (1%→2% ethyl acetate/petroleum ether) to give the final product **3a**.

104.1 mg, 85 % yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 8.1, 1.4 Hz, 2H), 7.39 – 7.28 (m, 3H), 5.18 (t, J = 7.3 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.27 – 3.04 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 103.93 (dt, J = 265.8, 14.7 Hz, 1F), -104.67 (dt, J = 265.8, 14.7 Hz, 1F); ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (t, J = 32.1 Hz), 140.4 (s), 129.1 (s), 128.9 (s), 127.4 (s),

114.3 (t, J = 252.3 Hz), 63.2 (s), 44.57 (t, J = 24.0 Hz), 44.55 (t, J = 5.6 Hz), 13.8 (s); **HRMS (FI)**: Calcd. For C₁₂H₁₃⁷⁹BrF₂O₂ ([M]⁺): 306.0062; Found: 306.0064; **IR** (**KBr**): 2964, 1766, 1455, 1433, 1375, 1094, 1024, 798, 696 cm⁻¹.

4.2.2 The Conversion of 3a

Into a 15 mL Schlenk tube were added CuCN (1.8 mg, 0.02 mmol, 5 mol %), BINAP (14.9 mg, 0.024 mmol, 6 mol %), NH₄HCO₃ (63.2 mg, 0.8 mmol, 2 equiv.), K₃PO₄ (169.8 mg, 0.8 mmol, 2 equiv.) and DMF (4 mL) under a N₂ atmosphere. Then substrate **3a** (0.4 mmol, 1.0 equiv.), BrCF₂CO₂Et (203.0 mg, 1.0 mmol, 2.5 equiv.), DG (134.2 mg, 1.0 mmol, 2.5 equiv.) and H₂O (21.6 mg, 1.2 mmol, 3 equiv.) were added. The resulting mixture was stirred at 35 °C under the irradiation of 11.5 W blue LEDs for 12 h under a N₂ atmosphere. When the reaction was completed, as monitored by ¹⁹F NMR spectroscopy, while 32 % of **3a** was converted to **5a**.The ¹⁹F NMR spectrum is shown as follows. Characterization data of $5a^{[4]}$: ¹⁹F NMR (376 MHz, DMF) δ -102.85 (dd, J = 11.2, 2.4 Hz, 2F); MS (EI, m/z, %): 226 (M⁺, 13.0), 153 (100.0), 133 (82.0).

4.3 Radical Trapping Experiments

Into a 15 mL Schlenk tube were added CuCN (1.8 mg, 0.02 mmol, 5 mol %), BINAP (14.9 mg, 0.024 mmol, 6 mol %), NH₄HCO₃ (63.2 mg, 0.8 mmol, 2 equiv.), K_3PO_4 (169.8 mg, 0.8 mmol, 2 equiv.), a radical scavenger (0.4 mmol, 1.0 equiv.) and DMF (4 mL) under a N₂ atmosphere. Then alkene substrate **1a** (41.6 mg, 0.4 mmol, 1.0 equiv.), BrCF₂CO₂Et (203.0 mg, 1.0 mmol, 2.5 equiv.), DG (134.2 mg, 1.0 mmol, 2.5 equiv.) and H₂O (21.6 mg, 1.2 mmol, 3 equiv.) were added. The resulting mixture was stirred at 35 °C and irradiated with blue LEDs for 12 h under a N₂ atmosphere. 1-Fluoronaphthalene (0.2 mmol), an internal standard, was added into the reaction mixture for the calculation of the yield of product **4a**.

Ph	+ BrCF ₂ COOEt + NH ₄ HCO ₃ $\frac{K_2CO_3}{blue LE}$ (2.5 equiv) (2.0 equiv.) $\frac{dditiv}{DW}$	I (5 mol%) ρ (6 mol%) ρ (2.0 equiv.) ED, N ₂ , 35 °C Ph CF ₂ CO ₂ Et /e (1 equiv.) 4a IF (4 mL)
Entry	additive	Yield(%) ^a
1	-	85
2	TEMPO	0
3	BHT	44
4	hydroquinone	trace
5	HOBT	22

In the case of TEMPO, ¹⁹F NMR and GC-MS analysis of the reaction mixture revealed that TEMPO-CF₂CO₂Et was produced (16% yield determined by ¹⁹F NMR spectroscopy). The ¹⁹F NMR spectrum is shown as follows. Characterization data of TEMPO-CF₂CO₂Et ^[5]: ¹⁹F NMR (376 MHz, CDCl₃) δ -72.0 (s, 2F); MS (EI, *m/z*, %): 279 (M⁺, 1.0), 264 (85.0), 109 (38.0), 69 (50.0), 58 (73.0), 56 (100.0).

4.4 UV-Vis absorption experiment

UV-Vis absorption were recorded using UV-3600 UV-VIS-NIR spectrophotometer for all experiments.

Solutions of CuCN in DMF (5×10^{-5} M), BINAP in DMF (5×10^{-5} M), BrCF₂CO₂Et in DMF (5×10^{-5} M), [CuCN and BINAP] in DMF (5×10^{-5} and 5×10^{-4} M, respectively) were prepared. Each above solution (3 mL) was added into a screw top 1.0 cm quartz cuvette for UV-Vis absorption experiment. For CuCN, BINAP and BrCF₂CO₂Et, the absorption was less than 300 nm wavelength. Only the in situ generated (BINAP)-CuCN complex has absorptions in the visible-light range.

Scheme S1. UV-vis absorption spectra of CuCN (0.05 mM), $BrCF_2CO_2Et$ (0.05 mM), BINAP (0.05 mM), the in-situ-generated (BINAP)-CuCN (0.5 and 0.05 mM, CuCN: BINAP = 1:1) in DMF.

4.5 Stern–Volmer Measurements

Emission intensities were recorded using HITACHI F-2700 fluorescence spectrometer for all experiments. All [CuCN and BINAP] solutions were excited at 370 nm and emission intensity at 516 nm was collected.

Typical procedure for the preparation of a sample: Into a solution of [CuCN and BINAP] in DMF (5×10^{-5} M, 5 mL) was added BrCF₂CO₂Et (2.0 mg, 0.01 mmol) under a N₂ atmosphere. 3 mL of the resulting solution (the concentration of BrCF₂CO₂Et was 2.0 mM) was added into a screw top 1.0 cm quartz cuvette under a N₂ atmosphere.

The emission spectra of five samples containing varied concentration of $BrCF_2CO_2Et$ (0, 2.0 mM, 4.0 mM, 6.0 mM and 8.0 mM) were collected. I₀ is the luminescence intensity without the quencher and I is the intensity with the quencher. The emission quenching of [CuCN and BINAP] indicated that the photoexcited complex (BINAP)-CuCN could be easily quenched by $BrCF_2CO_2Et$.

Scheme S2. [CuCN and BINAP] emission quenching with BrCF₂COOEt

5. The Transformations of 4a

The Procedure for the preparation of 7a: To a stirring solution of 4a (101.3 mg, 0.4 mmol) in EtOH (0.90 mL) was added sulfuric acid (0.36 mL) at room temperature. The resulting mixture was stirred at 110 °C for 24 h. After being cooled to roomtemperature, the reaction mixture was quenched with saturated aqueous NaHCO₃ (3 mL) and extracted with CH₂Cl₂. The organic solution was washed with brine, dried over Na₂SO₄, and filtered. After the solvent was removed under reduced pressure, the residue was subjected to flash column chromatography (ethyl acetate/hexanes = 1/100) to afford the desired product as a yellow oil (85.3 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.22 (m, 5H), 4.21–4.10 (m, 3H), 4.10 – 4.00 (m, 1H), 3.89 (dd, J = 8.4, 5.2 Hz, 1H), 3.13 – 2.95 (m, 1H), 2.56 – 2.39 (m, 1H), 1.27 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.61 (ddd, J = 261.7,

17.9, 13.5 Hz), -106.05 (ddd, J = 262.1, 18.0, 16.4 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 172.4 (s), 163.6 (t, J = 33.8 Hz), 137.6 (s), 128.9 (s), 127.81 (s), 127.80 (s), 115.0 (t, J = 251.0 Hz), 63.0 (s), 61.4 (s), 44.9 (t, J = 4.2 Hz), 37.9 (t, J = 23.5 Hz), 14.0 (s), 13.8 (s); **HRMS (FI)**: Calcd. For C₁₅H₁₈F₂O₄ ([M]⁺): 300.1168; Found: 300.1169; **IR** (**KBr**): 3032, 2985, 1759, 1738, 1603, 1497, 1456, 1203, 1099, 1018, 731, 699 cm⁻¹.

The Procedure for the preparation of 7b^[6]: To a solution of 4a (101.3 mg, 0.4 mmol) in dry THF (6 mL) was added NaBH₄ (155.3 mg, 4 mmol, 10 equiv) gradually at 0 °C. Then the mixture was stirred under room temperature. After 4a was consumed completely (detected by TLC), the crude production was diluted with saturated NaCl solution and then extracted with DCM (3 times). The organic layers were combined and concentrated under vacuo. The residue was purified by flash column chromatography (ethyl acetate/hexanes = 1/3) to afford the desired product as a colorless oil (69.3 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.31 (m, 5H), 4.15 (dd, *J* = 10.0, 4.2 Hz, 1H), 3.86 – 3.67 (m, 2H), 2.81 – 2.59 (m, 2H), 2.41 (ddd, *J* = 33.7, 15.3, 4.3 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -107.44 – -107.73 (m, 2F); ¹³C NMR (101 MHz, CDCl₃) δ 135.0 (s), 129.5 (s), 128.7 (s), 127.3 (s), 121.4 (t, *J* = 244.2 Hz), 120.3 (s), 63.9 (t, *J* = 32.0 Hz), 39.4 (t, *J* = 24.1 Hz), 30.7 (t, *J* = 4.4 Hz); HRMS (EI): Calcd. For C₁₅H₂₀F₂O₂ ([M]⁺): 211.0803; Found: 211.0796; IR (KBr): 3453, 2936, 2248, 1738, 1601, 1497, 1455, 1071, 754, 700 cm⁻¹.

The Procedure for the preparation of $7c^{[7]}$: To a solution of 4a (101.3 mg, 0.4 mmol) in dry THF (6 mL) was added NaBH₄ (151.3 mg, 4 mmol, 10 equiv) gradually at 0 °C. Then the mixture was stirred under room temperature. After 4a was consumed completely (detected by TLC), the crude production was diluted with saturated NaCl solution and then extracted with DCM (3 times). The organic layers were combined and concentrated under vacuo. The residue was used for the next step without purification. The residue was dissolved in MeOH (8 mL). NiCl₂·6H₂O (2 equiv.) and Boc₂O (6 equiv.) were then added. Into the resulting mixture was added NaBH₄ (16 equiv) gradually at 0 °C. Then the mixture was stirred at room temperature for 24 h.

The solvent was then removed under reduced pressure, leaving a black precipitate. The precipitate was then dissolved in EtOAc (20 mL) and then washed with brine. The organic phases were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate/hexanes = 1/5) to afford the desired product as colorless oil (113.7 mg, 72% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.33 (t, *J* = 7.3 Hz, 2H), 7.24 (d, *J* = 7.3 Hz, 1H), 7.20 (d, *J* = 7.3 Hz, 2H), 4.51 (br, 1H), 3.69 – 3.57 (m, 1H), 3.58 – 3.46 (m, 2H), 3.23 – 3.08 (m, 2H), 2.91 (br, 1H), 2.40 – 2.21 (m, 2H), 1.39 (S, 9H); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.58 – -106.24 (m, 2F); ¹³C NMR (101 MHz, CDCl₃) δ 156.2 (s), 142.1 (s), 128.9 (s), 127.8 (s), 127.2 (s), 123.1 (t, *J* = 195.5 Hz), 79.7 (s), 64.0 (t, *J* = 26.0 Hz), 46.3 (s), 40.0 (s), 36.8 (t, *J* = 20.4 Hz), 28.4 (s); **HRMS (FI)**: Calcd. For C₁₆H₂₃F₂NO₃ ([M]⁺): 315.1641; Found: 315.1638; **IR (KBr)**: 3435, 3367, 2977, 2934, 1694, 1603, 1515, 1367, 1172, 1076, 758, 701 cm⁻¹.

6. References

- [1] Q. Guo, M. Wang, Y. Wang, Z. Xu and R. Wang, Chem. Commun., 2017, 53, 12317-12320.
- [2] Q. Guo, M. Wang, Q. Peng, Y. Huo, Q. Liu, R. Wang and Z. Xu, ACS Catal., 2019, 9, 4470 - 4476.
- [3] a) G. Zhang, X. Ren, J. Chen, M. Hu, and J. Cheng, Org. Lett. 2011, 13, 5004-5007; b) J. Kim, J. Choi, K. Shin, S. Chang, J. Am. Chem. Soc. 2012, 134, 2528-2531; c) Y. Zhu, M. Zhao, W. Lu, L. Li, and Z. Shen, Org. Lett. 2015, 17, 2602-2605. d) M. Zhang, J.-H. Lin, J.-C. Xiao, Angew. Chem. Int. Ed. 2019, 58, 6079-6083.
- [4] F. Zhang, Q.-Q. Min, H.-Y. Zhao, J.-W. Gu, and X.-G. Zhang, Angew. Chem. Int. Ed. 2015, 54, 4, 1270-1274.
- [5] A. Prieto, R. Melot, D. Bouyssi and N. Monteiro, Angew. Chem. Int. Ed. 2016, 55, 1885-1889.
- [6] W. Kong, C. Yu, H. An and Q. Song, Org. Lett. 2018, 20, 4975-4978.
- [7] S. Caddick, A. K. Haynes, D. B. Judd, M. R. V. Williams, Tetrahedron Lett. 2000,

41, 3513-3516.

¹H NMR Spectrum of 4a

¹⁹F NMR Spectrum of **4b**

-40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 fl (ppm)

¹H NMR Spectrum of **4d**

¹⁹F NMR Spectrum of 4d

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹⁹F NMR Spectrum of 4f

¹⁹F NMR Spectrum of **4h**

 ci
 ci

 30
 20
 10
 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -100
 -110
 -120
 -130
 -140
 -150
 -160
 -170
 -180
 -190
 -200

 fl (ppm)
 fl
 fl

¹⁹F NMR Spectrum of 4j

¹H NMR Spectrum of 41

¹⁹F NMR Spectrum of **4**I

¹⁹F NMR Spectrum of **4m**

¹⁹F NMR Spectrum of **4n**

¹⁹F NMR Spectrum of **40**

S47

 $2.10_{1.08}$

5.5 5.0 4.5 4.0 3.5 3.0 2.5 fl (ppm)

3.094

1.5 1.0 0.5 0.0 -0.5

2.0

1.27

2.00 ₹ 2.07 ₹

7.5

7.0 6.5 6.0

10.5 10.0 9.5 9.0 8.5 8.0

¹⁹F NMR Spectrum of **4p**

¹H NMR Spectrum of 4r

¹⁹F NMR Spectrum of 4s

¹H NMR Spectrum of 4t

¹³C NMR Spectrum of 4t

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹⁹F NMR Spectrum of 4v

¹⁹F NMR Spectrum of **4**y

¹⁹F NMR Spectrum of **3a**

¹⁹F NMR Spectrum of 7a

^{30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200} f1 (ppm)

¹H NMR Spectrum of 7b

¹⁹F NMR Spectrum of **7b**

¹³C NMR Spectrum of **7b**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)