Supporting Information

A Non-Isolated Pentagon Rule C₈₂ Cage Stabilized by a Stretched Sc₃N Cluster

Min Guo,^{a†} Xiaomeng Li,^{a†} Yang-Rong Yao,^b Jiaxin Zhuang,^a Qingyu Meng,^a Yingjing Yan,^a Xinye Liu^a and Ning Chen^{a*}

 ^a College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P.R. China.
Email: chenning@suda.edu.cn
^b Department of chemistry, University of Texas at El Paso. 500W University Avenue, El Paso, Texas 79968, USA

⁺These authors contribute equally to this work.

Table of Contents

Experimental Details
Synthesis and isolation of Sc ₃ N@C ₅ (39663)-C ₈₂ and Sc ₃ N@C ₂ (39718)-C ₈₂
Fig. S1 HPLC separation process and corresponding mass spectra of $Sc_3N@C_s(39663)C_{82}$ 5
Fig. S2 HPLC separation process and corresponding mass spectra of $Sc_3N@C_{2\nu}(39718)C_{82}6$
Electrochemical studies of Sc ₃ N@C _s (39663)-C ₈₂ 7
Spectroscopic studies of Sc ₃ N@C ₅ (39663)-C ₈₂ and Sc ₃ N@C _{2v} (39718)-C ₈₂ 7
Single-Crystal X-ray Diffraction7
Fig. S3 (a) a diagram showing the relative orientation of the two different triangular Sc_3N
units. (b) Perspective drawing show the disorder of Sc in the Sc_3N cluster. N atom is fully
ordered8
Table S1. Comparison of the distances between the metal and closest cage carbon for
Sc ₃ N@C _s (39663)-C ₈₂ and Gd ₃ N@C _s (39663)-C ₈₂ 8
Table S2. Occupancy of disorder Sc site in the Sc ₃ N cluster8
Table S3. Bond lengths and bond angles of the Sc ₃ N cluster in the major orientation9
Fig. S4 Comparison of the endohedral structures of $Sc_3N@C_s(39663)-C_{82}$ (a) and
Sc ₃ N@ <i>C</i> _{2v} (39718)-C ₈₂ (b)9
Fig. S5 Stone-Wales transformation of C _s (39663)-C ₈₂ , C _s (6)-C ₈₂ and C _{2v} (39718)-C ₈₂ 9
Reference

Experimental Details

Synthesis of Sc₃N@*C*_s(39663)-C₈₂. Sc₃N@*C*_s(39663)-C₈₂ was synthesized by a modified Krätschmer-Huffman DC arc-discharge method. Each graphite rod packed with a mixture of Sc₂O₃ and graphite powder (molar ratio of Sc/C = 1:24) was vaporized in the arcing chamber under 266 mbar He and 5 mbar N₂ atmosphere. The resulting raw soot was collected and extracted with CS₂ for 12 h. On the average ca. 30 mg of crude fullerene mixture per rod was obtained. Finally, 150 graphite rods was vaporized and ca. 0.8 mg Sc₃N@*C*_s(39663)-C₈₂ was obtained. Besides Sc₃N@*C*_s(39663)-C₈₂, ca. 0.2 mg Sc₃N@*C*_{2ν}(39718)-C₈₂ was obtained and other scandium-based endohedral fullerenes Sc@*C*_{2n} and Sc₃N@*C*_{2n} were also formed along with empty fullerenes during arcing progress.

High performance liquid chromatography (HPLC) separation process of Sc₃N@*C*₃(39663)-C₈₂. The first stage was performed on a Buckyprep-M column (25 mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as mobile phase. After that, as shown in Figure S1, fraction 9 (from 34 to 60 min, marked in orange) was re-injected into a Buckyprep column (10mm × 250 mm, Cosmosil Nacalai Tesque) for the second stage separation using toluene as the eluent. The fraction marked in green which contained Sc₃N@*C*_s(39663)-C₈₂ was collected. The third stage of separation was conducted on a 5PBB column (10mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as the eluent. The fraction marked in cyan which contained Sc₃N@*C*_s(39663)-C₈₂ was collected. The last stage separation was conducted on a Buckyprep-M column (10mm × 250 mm, Cosmosil Nacalai Tesque) using toluene as the eluent and pure Sc₃N@*C*_s(39663)-C₈₂ was got. The purity of the isolated Sc₃N@*C*_s(39663)-C₈₂ was reconfirmed by chromatography on a Buckyprep-M column with toluene at the flow rate 4 mL/min, along with MALDI-TOF mass spectrometry in a positive charge mode. The wavelength of detection used for HPLC was 310 nm.

High performance liquid chromatography (HPLC) separation process of $Sc_3N@C_{2\nu}(39718)-C_{82}$. The first stage was performed on a Buckyprep-M column (25 mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as mobile phase. After that, as shown in Figure S2, fraction 8 (from 28 to 33 min, marked in red) was re-injected into a Buckyprep column (10mm × 250 mm, Cosmosil Nacalai Tesque) for the second stage separation using toluene as the eluent. The fraction marked in yellow which contained $Sc_3N@C_{2\nu}(39718)-C_{82}$ was collected. The third stage of separation was conducted on a 5PBB column (10mm × 250 mm, Cosmosil Nacalai Tesque) with toluene as the eluent. The fraction marked in orange which contained $Sc_3N@C_{2\nu}(39718)-C_{82}$ was collected. The last stage separation was recycled on a 5PBB column (10mm × 250 mm, Cosmosil Nacalai Tesque) using toluene as the eluent and pure $Sc_3N@C_{2\nu}(39718)-C_{82}$ was got. The purity of the isolated $Sc_3N@C_{2\nu}(39718)-C_{82}$ was reconfirmed by chromatography on a Buckyprep-M column with toluene at the flow rate 4 mL/min, along with MALDI-TOF mass spectrometry in a positive charge mode. The wavelength of detection used for HPLC was 310 nm.

Fig. S1 HPLC profiles showing the separation of $Sc_3N@C_s(39663)-C_{82}$ (left) and the corresponding MALDI-TOF mass spectra (right).

Fig. S2 HPLC profiles showing the separation of $Sc_3N@C_{2v}(39718)-C_{82}$ (left) and the corresponding MALDI-TOF mass spectra (right).

Electrochemical studies of Sc₃**N**@*C*_s(**39663**)-**C**₈₂. Cyclic voltammetry (CV) was obtained in *o*dichlorobenzene using a CHI-660E instrument. A conventional three-electrode cell consisting of a platinum counter-electrode, a glassy carbon working electrode, and a silver reference electrode was used for the measurement. (n-Bu)₄NPF₆ (0.05 M) was used as the supporting electrolyte. The CV was measured at a scan rate of 100 mV/s.

Spectroscopic studies of Sc₃N@C_s(39663)-C₈₂ and Sc₃N@C_{2v}(39718)-C₈₂. The positive-ion mode matrix assisted laser desorption/ionization time-of-flight (Bruker, German) was employed for the mass characterization. UV–vis–NIR spectrum of the purified Sc₃N@C_s(39663)-C₈₂ and Sc₃N@C_{2v}(39718)-C₈₂ was measured in CS₂ solution with a Cary 5000 UV–vis–NIR spectrophotometer (Agilent, USA).

Single-Crystal X-ray Diffraction. Black cocrystals of $Sc_3N@C_s(39663)-C_{82}\cdot[Ni^{II}(OEP)] \cdot C_6H_6$ were obtained by allowing a solution of the fullerene in CS₂ and a solution of $[Ni^{II}(OEP)]$ in benzene to diffuse together. X-ray data were collected at 130 K using a diffractometer (APEX II; Bruker Analytik GmbH) equipped with a CCD collector. The multi-scan method was used for absorption correction. The structure was resolved using direct methods¹ (SIR2004) and refined on F^2 using full-matrix least-squares using SHELXL2015.² Hydrogen atoms were inserted at calculated positions and constrained with isotropic thermal parameters.

Crystal data for Sc₃N@*C*_s(39663)-C₈₂·[Ni^{II}(OEP)]·C₆H₆: C124 H50 N5 Ni Sc3, *M*_r = 1803.28, 0.2 × 0.15 × 0.08 mm³, monoclinic, space group *P*2₁/*c* (No. 14), *a* = 19.830(5) Å, *b* = 15.111(3) Å, *c* = 25.233(8) Å, *a* = 90°, *b* = 93.958(19)°, *y* = 90°, *V* = 7543(3) Å³, *Z* = 4, ρ_{calcd} = 1.588 g cm⁻³, μ (Cu K α) = 3.039mm⁻¹, ϑ = 2.233– 68.331°, *T* = 130(2) K, *R*₁ = 0.0921, *wR*₂ = 0.2368 for all data; *R*₁ = 0.0794, *wR*₂ = 0.2210 for 11277 reflections (*I* > 2.0 σ (*I*)) with 1233 parameters. Goodness of fit indicator 1.057. Maximum residual electron density 1.353 e Å⁻³.

Fig. S3 (a) a diagram showing the relative orientation of the two different triangular Sc_3N units. (b) Perspective drawing shows the disorder of Sc in the Sc_3N cluster. N atom is fully ordered.

compound	M-C	Distance / Å		
	Sc1-C1	2.329(6)		
	Sc1-C5	2.316(6)		
Sc N/@C (20662) C	Sc2-C49	2.272(6)		
SC3N@C3(S9003)-C82	Sc2-C50	2.280(6)		
	Sc3-C59	2.340(5)		
	Sc3-C60	2.256(5)		
	Gd1-C78	2.476(10)		
	Gd1-C82	2.48(10)		
Gd ₃ N@C _s (39663)-C ₈₂	Gd2-C28	2.370(8)		
	Gd3-C17	2.438(9)		
	Gd3-C18	2.429(8)		

Table	S1.	Comparison	of	the	distances	between	the	metal	and	closest	cage	carbon	for
Sc₂NØ)C.(3	9663)-C ₂₂ and	l Gd	l₂N@	C.(39663)-	C₀₂³ (dista	nces	are giv	en in	angstror	n)		

Atom	Sc1	Sc2	Sc3	Sc4	Sc5	Sc6
Occupancy	0.817	0.817	0.817	0.183	0.183	0.183

Table S3. Bond lengths and bond angles of the Sc_3N cluster in the major orientation.

	Sc1-N1	Sc2-N1	Sc3-N1
Length (Å)	2.112(3)	2.052(4)	2.038(3)
	Sc1-N-Sc2	Sc1-N-Sc3	Sc2-N-Sc3
Angle (°)	118.05(17)	117.45(14)	124.43(18)

Fig. S4 Comparison of the endohedral structures of $Sc_3N@C_3(39663)-C_{82}$ (a) and $Sc_3N@C_{2\nu}(39718)-C_{82}$ (b).

Fig. S5 Stone-Wales transformation of $C_s(39663)-C_{82}$, $C_s(6)-C_{82}$ and $C_{2\nu}(39718)-C_{82}$.

Reference

1 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., *J. Appl. Crystallogr.*, 2009, **42**, 339-341.

2 Sheldrick, G., Acta Crystallogr., Sect. C: Struct. Chem., 2015, **71**, 3-8.

3 Mercado, B. Q.; Beavers, C. M.; Olmstead, M. M.; Chaur, M. N.; Walker, K.;

Holloway, B. C.; Echegoyen, L.; Balch, A. L., J. Am. Chem. Soc., 2008, 130, 7854-7855.