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1. Experimental Section

1.1 Materials synthesis

Typically, nitrogen and phosphorus co-doped hierarchically porous carbon (NPC) 

was synthesized based on our previous work.1 For the synthesis of 1T/2H-MoSe2, 30 

mg NPC was added to 40 mL ethylene glycol (EG) to form a stable dispersion. Next, 

218 mg Na2MoO42H2O was dissolved in 20 mL EG under ultrasonication, which 

was then added to the NPC dispersion with vigorous stirring. Subsequently, a red 

solution prepared by 210 mg Se powder reacting with 10 mL N2H4·H2O was 

dropwised to the above-mixed solution. After vigorous stirring for 30 min, the 

resulting homogeneous dispersion was transferred to a 100 mL autoclave and 

hydrothermally reacted at 200 °C for 12 h. The as-obtained black precipitate was 

collected by filtration, washed with deionized water for several times, and finally 

dried at 80 °C in vacuum oven over night. 1T/2H-MoSe2 was then obtained after a 

further annealing at 600 °C for 5 h under argon (heating rate: 5 °C min-1). For 

comparison, 1T-MoSe2 was prepared under similar conditions but without NPC.

1.2 Material characterizations

SEM and TEM were acquired on a Verios G4 and FEI Talos F200X TEM, 

respectively. XRD patterns were measured on a Bruker D8 advance diffractometer 

with Cu Kα radiation. XPS was tested using an Axis Supra XPS spectrometer 

equipped with monochromated Al Kα. Raman spectroscopy was collected using a 

Electronic Supplementary Material (ESI) for ChemComm.
This journal is © The Royal Society of Chemistry 2021



Horiba LabRAM Evolution spectrometer with an excitation wavelength of 532 nm. 

N2 adsorption-desorption analysis was obtained on an ASAP2460 apparatus. TGA 

was conducted on a Netzsch STA449F3 analyzer under air.

1.3 Electrochemical measurements

The electrochemical properties were tested in half 2032 coin-type cells with 

metal potassium as the counter electrode and reference electrode. The electrode was 

prepared by mixing 80 wt% of active materials, 10 wt% of carbon black, and 10 wt% 

of sodium alginate in deionized water, after which the slurry was coated onto a copper 

foil and dried overnight at 80 °C under vacuum. Circular electrodes were punched out, 

and then weighed (0.7-1.0 mg on each electrode). The electrolyte is composed of 3 M 

KFSI dissolved in dimethyl ether. Electrochemical tests were performed on a 

NEWARE battery testing system and a CHI 760D electrochemical workstation in the 

voltage range of 0.01-3.0 V (vs. K+/K). 



2. Supplementary Figures

Fig. S1 (a) SEM and (b) HRTEM image of NPC.

Fig. S2 (a) XPS survey, high-resolution (b) C 1s, (c) N 1s, and (d) P 2p XPS spectra 

of 1T/2H-MoSe2. 



Fig. S3 (a, b) SEM images of 1T/2H-MoSe2.

Fig. S4 (a, b) SEM images of 1T-MoSe2.

Fig. S5 HRTEM image of 1T-MoSe2.



Fig. S6 SAED pattern of 1T/2H-MoSe2.

Fig. S7 (a) N2 adsorption-desorption isotherms and (b) the corresponding NLDFT 

pore size distribution plots of 1T/2H-MoSe2 and 1T-MoSe2.



Fig. S8 TGA curves of 1T/2H-MoSe2 and 1T-MoSe2. In the two samples, the weight 

gain before 350 ℃ could be attributed to the oxidation of MoSe2 to MoO3 and SeO2. 

In the case of 1T-MoSe2, the weight loss resulted from the sublimation of SeO2. In 

comparison, the weight loss of 1T/2H-MoSe2 is equal to the sum of weight loss of 

MoSe2 and NPC. As depicted in the formula below:2, 3

A×55.3%=A×Y×53.3%+A×(1-Y)

A: the mass of 1T/2H-MoSe2. Y: the loading of MoSe2 in the 1T/2H-MoSe2. 

Therefore, the accurate loading of MoSe2 in the 1T/2H-MoSe2 is calculated to be 95.7% 

and the carbon content in the 1T/2H-MoSe2 sample is calculated to be 4.3%.

Fig. S9 High-resolution (a) Mo 3d and (b) Se 3d XPS spectra of the cycled 1T/2H-

MoSe2 electrode.



Fig. S10 (a) Cycling performance (0.2 A g-1) and (b) rate capability of NPC.

Fig. S11 Nyquist plots of the 1T/2H-MoSe2 and 1T-MoSe2 electrodes after 10 cycles.



Fig. S12 The capacitive contribution to the total charge storage of (a) 1T/2H-MoSe2 

and (b) 1T-MoSe2 electrodes at 5 mV s-1.

Fig. S13 (a) GITT profiles of the discharging process and (b) corresponding K ion 

diffusion coefficients of 1T/2H-MoSe2 and 1T-MoSe2. 



3. Supplementary Tables

Table S1. Comparison of 1T/2H-MoSe2 with the previously reported TMDs-based 

anodes for PIBs. 

Samples Carbon content 
(%)

Voltage 
window

(V vs. K+/K)
Rate capacity ICE (%) Ref

1T/2H-MoSe2 4.3 0.01-3.0 211 mAh g-1 at 20.0 A g-1 61.9 This work

MoSe2@PNC-HNTs 36.8 0.01-3.0 79.1 mAh g-1 at 5.0 A g-1 27.2 4

MoSe2/MXene@C — 0.01-3.0 183 mAh g-1 at 10.0 A g-1 54.2 5

MoSe2@C — 0.1-2.5 224 mAh g-1 at 2.0 A g-1 63.4 6

MoSe2@N-C 8.2 0.01-3.0 178 mAh g-1 at 2.0 A g-1 79.9 7

MoSe2@NC 7 0.01-3.0 171 mAh g-1 at 5.0 A g-1 60 8

N-MoSe2@rGO — 0.01-3.0 155 mAh g-1 at 2.0 A g-1 — 9

MoS2@HPCS 28.5 0.01-3.0 93.1 mAh g-1 at 2.0 A g-1 37.4 10

MoS2@NC 25 0.01-2.5 131 mAh g-1 at 2.0 A g-1 — 11

Co0.85Se@C 49 0.01-2.6 166 mAh g-1 at 5.0 A g-1 50.2 12

v-MoSSe@CM 45.3 0.01-3.0 202.6 mAh g-1 at 5.0 A g-1 53.5 13

Fe9S10@MoS2@C 26.4 0.01-3.0 127 mAh g-1 at 5.0 A g-1 71 14

CoSeS@C/G 7.7 0.01-3.0 195.7 mAh g-1 at 2.0 A g-1 48 15

MoS2@rGO 12.6 0.01-3.0 178 mAh g-1 at 0.5 A g-1 — 16

Co9S8/NSC@MoS2@
NSC — 0.01-2.6 163 mAh g-1 at 3.0 A g-1 65.9 17

V3S4@C — 0.01 - 3.0 155 mAh g-1 at 10.0 A g-1 37 18

ZnSe@C 20.37 0.01-2.5 205 mAh g-1 at 0.5 A g-1 47.78 19
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