Electronic Supplementary Information

Selective Methanethiol-to-Olefins Conversion over HSSZ-13 Zeolite

Miao Yu, Nicoló Tormene, Aleksei Bolshakov, Brahim Mezari, Anna Liutkova, Nikolay Kosinov* and Emiel J.M. Hensen*

Experimental section

Catalysts preparation

Commercial zeolite powders NH₄ZSM-5 (Si/Al = 40) and NH₄FER (Si/Al = 10) were purchased from Alfa Aesar and zeolite NH₄BEA (Si/Al = 12) was purchased from Akzo Nobel. Zeolite NaSSZ-13 (Si/Al = 18.7) was synthesized according to a previously reported procedure.^[1] The proton forms of the commercial zeolites were obtained by calcination in a shallow-bed configuration at 550 °C for 4 h. The proton form of SSZ-13 was obtained by 3 consecutive ion-exchange steps with a 1.0 M solution of NH₄NO₃ for 3 h at 70 °C, followed by drying overnight at 110 °C and calcination at 550 °C for 4 h. Prior to catalytic activity measurements, the zeolite catalysts were pelletized, crushed and sieved to obtain particles with a size in the range of 0.25 - 0.5 mm.

Catalytic activity measurements

An amount of 0.1 g zeolite powder was loaded between two quartz wool plugs in a tubular quartz reactor (i.d. = 4 mm, o.d. = 8 mm, 1 = 250 mm). The zeolite catalyst was first calcined in a flow of 20 vol% O_2 in He at 550 °C for 1 h. Two different reaction feed mixtures were used, either CH₃SH and N₂ or CH₃OH and N₂. CH₃SH and N₂ were fed to the reactor using thermal mass flow controllers. CH₃OH (Merck, 99%) was introduced into the reactor by flowing the N₂ stream through a thermostated saturator containing CH₃OH. The gas-phase products were analyzed by an online gas chromatograph (CGC, Interscience) equipped with 2 columns and detectors: (i) Rtx-1 column: 1 = 15 m, i.d. = 0.32 mm, FID: CH₃SH, CH₃SCH₃ and hydrocarbons; (ii) Rt-QBond column, 1 = 12 m, i.d. = 0.32 mm, TCD: N₂; (iii) Molsieve 5A column (1 = 7 m, i.d. = 0.32 mm) TCD: H₂S. In order to analyze heavier products, the effluent stream was directed to a diethylene glycol trap. The obtained solution was analyzed by offline gas chromatography-mass spectrometry (GC-MS, Shimadzu GC-17A) equipped with a Stabilwax column (1 = 30 m, i.d. = 0.32 mm).

Catalysts characterization

XRD. X-ray diffraction (XRD) patterns of zeolite catalysts were collected on a Bruker D2 Phaser using Cu K α radiation in the 2θ range of 5 - 50° with a step size of 0.02° s⁻¹ and time step size of 0.4 s.

Ar physisorption. Ar adsorption/desorption isotherms were measured at -186 °C with a Micromeritics ASAP-2020 instrument. The zeolite catalysts were pretreated at 500 °C for 6 h under vacuum prior to the measurements. The *t-plot* method was used to calculate the microporous volume. The BET surface area was determined in the relative pressure range 0.05 - 0.25.

SEM. Scanning electron microscopy (SEM) images of the zeolites were taken on a FEI Quanta 200F scanning electron microscope at an accelerating voltage of 2 kV.

Pyridine-adsorption IR spectroscopy. Pyridine-adsorption IR spectra of zeolites were recorded on a Bruker Vertex 70v spectrometer in the range of 4000 - 800 cm⁻¹. Spectra were acquired at 4 cm⁻¹ resolution as an average of 64 scans. The samples were prepared as thin wafers with a density of ~ 9 mg/cm² and placed inside a controlled-environment transmission IR cell with CaF₂ windows. After calcination at 530 °C in air flow, a background spectrum was collected at 150 °C and a pressure < 10⁻⁵ mbar. Then, pyridine was introduced into the cell. Desorption was carried out under vacuum at 150 °C, 300 °C and 500 °C using a dwell time of 1 h at each temperature. The IR spectra were collected at 150 °C.

NMR spectroscopy. Solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR) spectra were recorded using an 11.7 Tesla Bruker DMX500 NMR spectrometer, operated at 132 MHz, 500 MHz and 125 MHz for ²⁷Al, ¹H and ¹³C, respectively. ²⁷Al MAS NMR spectra were recorded with a spinning rate of 25 kHz and a single excitation pulse length of 1 μ s with a 1 s repetition time. The reference signal for the ²⁷Al chemical shift was a saturated solution of Al(NO₃)₃. One-dimensional ¹³C{¹H} cross polarization (CP) and two-dimensional ¹H-¹³C{¹H} HETCOR (Heteronuclear Correlation) MAS NMR spectra were recorded with a ramped contact pulse of 3 ms and an interscan delay of 3 s. ¹³C Direct Excitation (DE) spectra were measured using a high power proton decoupling Hahn Echo pulse sequence p1- τ 1-p2- τ 2-aq with a 90° pulse p1=5 μ sec, a 180° pulse p2=10 μ sec and an interscan delay of 10 sec. ¹³C NMR spectra were recorded at spinning rate of 8 kHz. ¹H shifts were calibrated suing tetramethylsilane (TMS). Solid adamantane was used for the ¹³C NMR shift calibration.

XPS. X-ray photoelectron spectroscopy (XPS) was performed using a Thermo Fischer K-Alpha spectrometer, equipped with a monochromatic X-ray source (Al K α = 1486.6 eV), and a delay line detector. Used catalysts were dispersed on alumina sample holders coated with carbon tape in a nitrogen-filled glovebox (H₂O < 1 ppm, O₂ < 1 ppm). The samples were transferred to the XPS apparatus using a protective atmosphere transport vessel. The background pressure prior to analysis was 2×10⁻⁹ mbar. Survey scans were collected at a constant pass energy of 160 eV, region scans at 40 eV. The spectra were fitted using the CasaXPS software. The main C 1s signal served as an energy reference and was set at 284.8 eV.

TG-MS. The thermal gravimetric and mass spectrometry (TG-MS) analysis of used catalysts was performed with a Mettler Toledo TGA-DSC 1 instrument coupled to a mass spectrometer (Pfeiffer Vacuum, OmniStar GSD 300). The used catalysts (~10 mg) was placed in an alumina crucible and then heated up to 700 °C with a ramp rate of 5 °C/min in 40 mL/min He and 20 mL/min O₂ flow.

Figure S1. (a) CH₃SH conversion and (b) $C_2^{=}/C_1$ ratio (carbon-based) during thermal decomposition of CH₃SH (3 kPa, 6 kPa, and 10 kPa CH₃SH in N₂). The total flow rate was 5 mL/min, the temperature was increased from 350 °C to 550 °C at a rate of 0.5 °C/min.

Figure S2. GC-MS analysis of the products of CH₃SH thermal decomposition (reaction at 550 °C) collected in diethylene glycol.

Below 500 °C (Fig. S1), the non-catalytic conversion of CH₃SH is negligible, while conversion strongly increase from 5% to 75%, when the temperature is raised from 500 °C to 550 °C. Under these conditions the main hydrocarbon products in the gas phase are CH₄ and C₂H₄. The carbon-based C₂H₄/CH₄ ratio reached a maximum value of ~1 at a CH₃SH partial pressure of 10 kPa and a temperature in the range of 520 – 530 °C. The C₂H₄/CH₄ ratio increased with the CH₃SH partial pressure. Analysis of the condensable gases (Fig. S2) showed a range of other products such as CS₂, CH₃SCH₃, CH₃SSCH₃, CH₃SSCH₃, C₂H₅SH, CH₃SSC₂H₅ and thiophene. A representative gas chromatogram is shown in Fig. S2. These findings demonstrate that selective catalytic conversion of CH₃SH can only be achieved below 500 °C where thermal decomposition can be avoided.

Figure S3. XRD patterns of calcined zeolite catalysts.

Figure S4. Ar physisorption isotherms of calcined zeolite catalysts.

Sample	V_{tot} (cm ³ g ⁻¹)	V_{micro} (cm ³ g ⁻¹)	S_{BET} (m ² g ⁻¹)	
HSSZ-13	0.32	0.26	701.6	
HZSM-5	0.33	0.05	418.4	
HBEA	0.31	0.11	420.5	
HFER	0.14	0.09	258.8	

Table S1. Textural properties of calcined zeolite catalysts determined by Ar physisorption.

V_{tot} total pore volume at $p/p_0 = 0.95$

V_{micro} micropore volume calculated by the *t-plot* method

S_{BET} Brunauer-Emmett-Teller (BET) surface area ($p/p_0 = 0.05-0.25$)

Figure S5. SEM images of calcined zeolite catalysts.

Figure S6. Pyridine adsorbed IR spectra of calcined (a) HSSZ-13, (b) HZSM-5, (c) HBEA, and (d) HFER after evacuation at 150 $^{\circ}$ C, 300 $^{\circ}$ C, and 500 $^{\circ}$ C.

Table S2. Acidic properties of calcined zeolite catalysts based on pyridine IR and ¹H MAS NMR spectroscopy.

							BAS
Sample	BAS (mmol/g) ^a			LAS (mmol/g) ^a			(mmol/g)
							b
	150 °C	300 °C	500 °C	150 °C	300 °C	500 °C	
HSSZ-13	-	-	-	-	-	-	0.70
HZSM-5	0.48	0.44	0.20	0.16	0.14	0.11	-
HBEA	0.81	0.65	0.20	0.47	0.39	0.32	-
HFER	0.47	0.36	0.13	0.03	0.04	0.07	-

^{*a*} determined by IR spectroscopy of pyridine adsorption

^b determined from ¹H MAS NMR spectroscopy^[1]

Figure S7. (a) CH₃SH conversion and (b) carbon-based product distribution within first 2 h of respective reactions over HSSZ-13, HZSM-5, HBEA, and HFER. Conditions: 6 kPa of CH₃OH/CH₃SH in N₂ (5 mL/min), 450 °C, 100 mg of catalysts, 6 h.

Figure S8. (a) CH₃SH conversion and (b) carbon basis selectivity within first 2 h of HSSZ-13 of 6kPa of CH₃SH in N₂ (5 mL/min) reaction at 400 °C, 450 °C and 500 °C for 6 h.

Figure S9. ¹³C cross polarization NMR spectra of used HZSM-5 and HSSZ-13 after 6 h MtTO reaction at 450 °C. Asterisks denote spinning side bands.

Figure S10. ²⁷Al MAS NMR spectra of calcined and used (a) HSSZ-13 and (b) HZSM-5 zeolites.

Figure S11. TGA curves and MS signals of CO_2 (m/z = 44) and SO_2 (m/z = 64) collected under air flow of used (a) HBEA and (b) HFER.

Figure S12. TGA curves of used HSSZ-13 and HZSM-5 after MTO and MtTO reaction.

Figure S13. XPS spectra of S 2p region of used HSSZ-13 after 6 h reaction at (a) 400 °C, (b) 450 °C,and(c)500°C.

References

 A. Bolshakov, A. J. F. Van Hoof, B. Mezari, N. Kosinov, E. Hensen, *Catal. Sci. Technol.* 2019, 9, 6737–6748.