Supporting Information

Ruthenium-catalyzed coupling of α-carbonyl phosphoniums with sulfoxonium ylides *via* C-H activation/Wittig reaction sequences

Tian Chen,^a Zhiqiang Ding,^a Yuqiu Guan,^a Ruike Zhang,^a Jinzhong Yao*^b and Zhangpei Chen*^a

^a Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, P. R. China, Email: chenzhangpei@mail.neu.edu.cn.

^b College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China, Email: jzyao@zju.edu.cn.

Table of Contents

I. General Information	
II. General Procedures for the Synthesis of 3	
III. Larger-scale Synthesis and Derivatization of 3aa	
IV Mechanistic Studies	
V. References	S11
VI. Spectral Data for Representative Compounds	S12

I. General Information

All reagents and solvents used in this work were obtained from commercial sources and were used without further purification. Thin-layer chromatography (TLC) was performed on silica gel GF254 (0.25 mm thickness) plates and visualized under UV light. Organic solutions were concentrated under reduced pressure at 40 °C (water bath temperature) using a Büchi rotary evaporator, unless otherwise noted. Column chromatography was performed on silica gel (200-300 mesh). ¹H, ¹³C and ¹⁹F NMR spectra were recorded with Bruker Avance III HD (400 MHz, 101 MHz and 376 MHz respectively) spectrometers. NMR spectra are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quarter, m = multiplet, br = broad), coupling (*J*) constant and integration. High resolution mass spectra (HRMS) were recorded on a Waters TOFMS GCT Premier using ESI ionization. All phosphonium salts **1** were prepared according to literature reports¹.

II. General Procedures for the Synthesis of 3

A suspension of arylacyl phosphonium salts **1** (0.10 mmol), sulfoxonium ylides **2** (0.15 mmol), $[RuCl_2(p-cymene)]_2$ (3.1 mg, 5.0 mol %), and NaOAc (2.0 equiv.) in EtOH (1.0 mL) was stirred at 120 °C for 10 h under an ambient atmosphere of N₂. After completion, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (n-hexane/EtOAc: $30/1 \sim 10/1$) to yield the corresponding products.

3aa: 96% yield

3-Phenylnaphthalen-1-ol (3aa): known compound², 21.1 mg, 96% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.7 Hz, 1H), 7.92 – 7.85 (m, 1H), 7.70 – 7.66 (m, 3H), 7.53 – 7.45 (m, 4H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.10 (d, *J* = 1.5 Hz, 1H), 5.43 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 140.9, 138.9, 134.9, 128.8, 128.0, 127.4, 127.3, 126.9, 125.3, 123.5, 121.5, 118.7, 108.4.

6-Methyl-3-phenylnaphthalen-1-ol (3ba): unknown compound, 22.0 mg, 94% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.6 Hz, 1H), 7.69-7.66 (m, 2H), 7.64 (s, 1H), 7.57 (s, 1H), 7.47 (t, *J* = 7.3 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.33 (d, *J* = 8.5 Hz, 1H), 7.02 (s, 1H), 5.43 (s, 1H), 2.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 141.0, 138.9, 136.6, 135.2, 128.8, 127.6, 127.3, 127.3, 127.0, 121.7, 121.3, 118.2, 107.6, 21.7. HRMS (ESI) m/z: calcd for C₁₇H₁₄NaO [M+Na]⁺: 257.0937, found: 257.0921.

6-Methoxy-3-phenylnaphthalen-1-ol (3ca): unknown compound, 22.5 mg, 90% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.9 Hz, 1H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.55 (s, 1H), 7.51-7.44 (m, 2H), 7.42-7.34 (m, 1H), 7.14 (d, *J* = 13.2 Hz, 2H), 6.94 (s, 1H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 151.9, 141.0, 139.7, 136.4, 128.8, 127.4, 127.3, 123.3, 118.8, 117.8, 117.8, 106.5, 106.1, 55.3. HRMS (ESI) m/z: calcd for C₁₇H₁₄NaO₂ [M+Na]⁺: 273.0886, found: 273.0875.

8-Methoxy-3-phenylnaphthalen-1-ol (3da): known compound³, 18.0 mg, 72% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 7.72 (d, *J* = 7.1 Hz, 2H), 7.53 (d, *J* = 1.7 Hz, 1H), 7.50-7.45 (m, 3H), 7.35 (dt, *J* = 16.0, 7.7 Hz, 2H), 7.19 (d, *J* = 1.7 Hz, 1H), 6.78 (d, *J* = 7.7 Hz, 1H), 4.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 154.8, 140.6, 140.4, 136.9, 128.7, 127.5, 127.3, 126.1, 122.1, 116.9, 114.2, 109.8, 103.9, 56.1.

6,7-Dimethoxy-3-phenylnaphthalen-1-ol (3ea): unknown compound, 25.8 mg, 92% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 12.0 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 7.16 (s, 1H), 6.97 (s, 1H), 4.05 (br, 1H), 4.02 (s, 3H), 4.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.0, 150.0, 148.9, 141.1, 137.3, 130.9, 128.7, 127.0, 124.9, 118.8, 117.1, 107.0, 106.6, 100.7, 55.8, 55.8. HRMS (ESI) m/z: calcd for C₁₈H₁₇O₃ [M+H]⁺: 281.1172, found: 281.1190.

6-Fluoro-3-phenylnaphthalen-1-ol (3fa): known compound⁴, 20.0 mg, 83% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.19-8.15 (m, 1H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.53 (s, 1H), 7.46-7.42 (m, 3H), 7.38-7.33 (m, 1H), 7.24-7.19 (m, 1H), 6.97 (s, 1H), 5.54 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (*J* = 246.6 Hz), 151.9, 140.4 (*J* = 23.0 Hz), 136.0 (*J* = 9.7 Hz), 128.8, 127.7, 127.3, 124.5 (*J* = 9.3 Hz), 120.6, 118.0, 118.0, 115.4 (*J* = 25.2 Hz), 111.0 (*J* = 20.6 Hz), 107.7 (*J* = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.0.

6-Chloro-3-phenylnaphthalen-1-ol (3ga): unknown compound, 21.6 mg, 85% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.9 Hz, 1H), 7.84-7.82 (m, 1H), 7.65 (d, *J* = 7.4 Hz, 2H), 7.54 (s, 1H), 7.49-7.45 (m, 2H), 7.43-7.30 (m, 2H), 7.04 (s, 1H), 5.52 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 140.4, 140.3, 135.7, 132.8,

128.9, 127.7, 127.3, 126.5, 126.0, 123.5, 121.8, 117.8, 108.6. HRMS (ESI) m/z: calcd for $C_{16}H_{13}CIO [M+H]^+$: 255.0571, found: 255.0580.

6-Bromo-3-phenylnaphthalen-1-ol (3ha): known compound⁴, 28.0 mg, 93% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.9 Hz, 1H), 8.01 (d, *J* = 2.0 Hz, 1H), 7.66-7.64 (m, 2H), 7.56-7.52 (m, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.42-7.36 (m, 1H), 7.08 (d, *J* = 1.6 Hz, 1H), 5.46 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 140.5, 140.3, 136.1, 129.9, 128.9, 128.5, 127.8, 127.3, 123.6, 122.0, 121.2, 117.7, 108.8.

6-Iodo-3-phenylnaphthalen-1-ol (3ia): unknown compound, 28.0 mg, 81% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.26-8.23 (m, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.71 (dd, J = 8.8, 1.7 Hz, 1H), 7.67-7.62 (m, 2H), 7.51-7.44 (m, 3H), 7.41-7.36 (m, 1H), 7.08 (d, J = 1.5 Hz, 1H), 5.47 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 140.4, 140.0, 136.5, 136.5, 133.7, 128.9, 127.7, 127.3, 123.4, 122.3, 117.5, 108.9, 93.1. HRMS (ESI) m/z: calcd for C₁₆H₁₂IO [M+H]^{+-:} 346.9927, found: 346.9939.

3-Phenyl-6-(trifluoromethyl)naphthalen-1-ol (3ja): unknown compound, 19.0 mg, 66% yield, yellow solid; ¹H NMR (400 MHz, DMSO-d₆) δ 8.31 (d, *J* = 8.5 Hz, 1H), 8.16 (s, 1H), 7.72 (s, 1H), 7.69-7.60 (m, 3H), 7.52-7.47 (m, 2H), 7.43-7.39 (m, 1H), 7.19-7.17 (m, 1H), 5.55 (s, 1H). ¹³C NMR (101 MHz, DMSO-d₆) δ 13C NMR (101 MHz, cdcl3) δ 151.7, 140.4, 140.2, 133.8, 129.0, 128.6, 127.9, 127.3, 125.7, 125.57 (q, *J* = 4.6 Hz), 124.7, 123.1, 120.74 (q, *J* = 3.0 Hz), 119.3, 110.3. HRMS (ESI) m/z: calcd for C₁₇H₁₂F₃O [M+H]⁺: 289.0835, found: 289.0834.

5-Hydroxy-7-phenyl-2-naphthonitrile (3ka): unknown compound, 19.1 mg, 78% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 10.76 (s, 1H), 8.53 (s, 1H), 8.26 (d, *J* = 8.9 Hz, 1H), 7.80 (s, 1H), 7.73-7.68 (m, 3H), 7.55-7.49 (m, 2H), 7.44 (d, *J* = 6.8 Hz, 1H), 7.34 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 140.2, 139.7, 134.3, 133.6, 129.1, 128.0, 126.9, 125.1, 125.0, 123.6, 119.3, 116.7, 110.2, 109.1. HRMS (ESI) m/z: calcd for C₁₇H₁₂NO [M+H]⁺: 246.0913, found: 246.0912.

6,7-Dichloro-3-phenylnaphthalen-1-ol (3la): unknown compound, 15.6 mg, 54% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 9.0 Hz, 1H), 8.06 (s, 1H), 7.70 (d, J = 7.4 Hz, 2H), 7.52-7.46 (m, 3H), 7.41 (t, J = 7.3 Hz, 1H), 7.13 (s, 1H), 5.46 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.0, 140.3, 139.4, 132.4, 130.7, 128.4, 128.0, 127.0, 126.5, 125.4, 121.9, 120.8, 114.6, 108.2. HRMS (ESI) m/z: calcd for C₁₆H₉Cl₂O [M-H]⁻: 287.0030, found: 287.0036.

3-(*p***-Tolyl)naphthalen-1-ol (3ab):** known compound², 22.0 mg, 94% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.15 (m, 1H), 7.87-7.83 (m, 1H), 7.64-7.64 (m, 1H), 7.61-7.56 (m, 2H), 7.54-7.45 (m, 2H), 7.32-7.26 (m, 2H), 7.09 (d, *J* = 1.6 Hz, 1H), 5.36 (br, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 138.8, 138.0, 137.3, 135.0, 129.5, 127.9, 127.1, 126.8, 125.1, 123.4, 121.4, 118.4, 108.3, 21.1.

3-([1,1'-Biphenyl]-4-yl)naphthalen-1-ol (3ac): known compound⁴, 27.3 mg, 92% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.0 Hz, 1H), 7.92-7.84 (m, 1H), 7.79-7.74 (m, 2H), 7.73-7.64 (m, 5H), 7.56-7.45 (m, 4H), 7.39-7.35 (m, 1H), 7.15 (s, 1H), 5.49 (br, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 140.6, 140.3, 139.8, 138.3, 135.0, 128.8, 128.0, 127.6, 127.5, 127.4, 127.0, 126.9, 125.3, 123.6, 121.5, 118.6, 108.2.

3-(4-Methoxyphenyl)naphthalen-1-ol (3ad): known compound², 23.0 mg, 92% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 7.7 Hz, 1H), 7.61 (d, *J* = 8.8 Hz, 3H), 7.53-7.44 (m, 2H), 7.09-6.98 (m, 3H), 5.57 (br, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 151.7, 138.5, 135.0, 133.4, 128.4, 127.9, 126.8, 125.0, 123.3, 121.4, 117.9, 114.3, 108.2, 55.4.

3-(4-(Trifluoromethyl)phenyl)naphthalen-1-ol (3ae): known compound², 23.9 mg, 83% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.23-8.17 (m, 1H), 7.90-7.85 (m, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.67 (s, 1H), 7.57-7.49 (m, 2H), 7.08 (d, *J* = 1.6 Hz, 1H), 5.43 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 144.4, 137.3, 134.8, 129.4 (q, *J* = 32.5Hz), 128.1, 127.5, 127.1, 125.9, 125.73 (q, *J* = 3.8 Hz), 123.9, 122.9, 121.5, 119.3, 108.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.4.

3-(4-Fluorophenyl)naphthalen-1-ol (3af): known compound², 20.3 mg, 85% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ1H NMR (400 MHz, Chloroform-d) δ 8.20-8.13 (m, 1H), 7.89-7.83 (m, 1H), 7.67-7.57 (m, 3H), 7.54-7.45 (m, 2H), 7.20-7.12 (m, 2H), 7.04 (d, *J* = 1.5 Hz, 1H), 5.40 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ162.5 (d, *J* = 246.7 Hz), 151.8, 137.9, 137.0, 134.9, 128.8, 128.8 (d, *J* = 8.1 Hz), 128.0, 127.0, 125.4, 123.5, 121.4, 118.6, 115.7 (d, *J* = 21.4 Hz), 108.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -115.4.

3-(4-Chlorophenyl)naphthalen-1-ol (3ag): known compound², 22.2 mg, 87% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.60 (d, *J* = 9.2 Hz, 3H), 7.55-7.47 (m, 2H), 7.46-7.40 (m, 2H), 7.03 (s, 1H), 5.46 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 139.3, 137.6, 134.9, 133.5, 129.0, 128.5, 128.0, 127.1, 125.5, 123.6, 121.5, 118.7, 108.0.

3-(4-Bromophenyl)naphthalen-1-ol (3ah): known compound⁴, 25.7 mg, 86% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ1H NMR (400 MHz, Chloroform-d) δ 8.17 (d, *J* = 8.4 Hz, 1H), 7.87-7.82 (m, 1H), 7.62-7.57 (m, 3H), 7.56-7.47 (m, 4H), 7.04 (d, *J* = 1.6 Hz, 1H), 5.37 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 139.8, 137.6, 134.9, 131.9, 128.9, 128.0, 127.1, 125.6, 123.7, 121.7, 121.5, 118.7, 107.9.

3-(3-Bromophenyl)naphthalen-1-ol (3ai): known compound², 23.9 mg, 80% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.22-8.14 (m, 1H), 7.89-7.79 (m, 2H), 7.66-7.44 (m, 5H), 7.37-7.29 (m, 1H), 7.05 (d, *J* = 1.6 Hz, 1H), 5.42 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 143.1, 137.3, 134.8, 130.4, 130.3, 130.3, 128.1, 127.1, 125.9, 125.7, 123.8, 122.9, 121.5, 118.9, 108.0.

3aj: 51% yield

3-(2-Bromophenyl)naphthalen-1-ol (3aj): known compound⁵, 15.3 mg, 51% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.22-8.18 (m, 1H), 7.71-7.67 (m, 1H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.54-7.50 (m, 2H), 7.44 (s, 1H),

7.42-7.35 (m, 2H), 7.25-7.20 (m, 1H), 6.92 (d, *J* = 1.3 Hz, 1H), 5.38 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 142.2, 138.8, 134.4, 133.1, 131.4, 128.9, 128.0, 127.4, 126.8, 125.6, 123.6, 121.6, 121.2, 110.5.

3ak: 84% yield

3-Benzylnaphthalen-1-ol (3ak): known compound⁶, 19.7 mg, 84% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.12-8.09 (m, 1H), 7.76-7.7 (m, 1H), 7.50-7.41 (m, 2H), 7.32-7.27 (m, 3H), 7.24-7.20 (m, 3H), 6.63 (d, *J* = 1.4 Hz, 1H), 5.15 (s, 1H), 4.07 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.4, 140.8, 139.0, 134.8, 129.0, 128.5, 127.3, 126.6, 126.2, 124.8, 123.1, 121.4, 120.0, 110.1, 42.1.

3-(Thiophen-2-yl)naphthalen-1-ol (3al): known compound², 20.4 mg, 90% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 3H), 7.50 – 7.44 (m, 2H), 7.06 – 6.99 (m, 3H), 5.57 (br, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 151.7, 138.5, 135.0, 133.4, 128.3, 127.9, 126.8, 125.0, 123.3, 121.4, 118.0, 114.3, 108.2, 55.4.

3am: 87% yield

3-(Turan-2-yl)naphthalen-1-ol (3am): known compound², 18.3 mg, 87% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.1 Hz, 1H), 7.84-7.79 (m, 1H), 7.76 (s, 1H), 7.52-7.42 (m, 3H), 7.15-7.12 (m, 1H), 6.72 (d, *J* = 3.4 Hz, 1H), 6.53-6.49 (m, 1H), 5.38 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 151.7, 142.3, 134.9, 128.4, 128.0, 127.0, 125.3, 123.8, 121.5, 115.3, 111.8, 105.6, 104.9.

3an: 88% yield

3-(Benzo[*d*][1,3]dioxol-5-yl)naphthalen-1-ol (3an): unknown compound, 23.3 mg, 88% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.59-7.43 (m, 3H), 7.16-7.13 (m, 2H), 7.04-6.98 (m, 1H), 6.91 (d, *J* = 7.9 Hz, 1H), 6.02 (s, 2H), 5.42 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 148.1, 147.2, 138.6, 135.3, 134.9, 127.9, 126.9, 125.1, 123.4, 121.4, 120.8, 118.2, 108.6, 108.3, 107.8, 101.2. HRMS (ESI) m/z: calcd for C₁₇H₁₁O₃ [M-H]⁻: 263.0708, found: 263.0713.

[2,2'-Binaphthalen]-4-ol (3ao): known compound², 24.3 mg, 90% yield, yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.22-8.19 (m, 1H), 8.13 (d, J = 1.7 Hz, 1H), 7.96-7.88 (m, 4H), 7.86-7.83 (m, 1H), 7.79 (s, 1H), 7.57-7.48 (m, 4H), 7.23 (d, J = 1.6 Hz, 1H), 5.49 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 138.8, 138.2, 135.0, 133.7, 132.7, 128.5, 128.2, 128.1, 127.7, 127.0, 126.4, 126.0, 125.6, 125.4, 123.6, 121.5, 119.1, 108.5.

III. Larger-scale Synthesis and Derivatization of 3aa.

Larger-scale synthesis. A suspension of arylacyl phosphonium salt **1b** (1.061 g, 2.00 mmol), sulfoxonium ylides **2a** (0.432 g, 2.2mmol), $[RuCl_2(p-cymene)]_2$ (61.2 mg, 5.0 mol %), and NaOAc (0.544 g, 2.0 equiv.) in EtOH (10.0 mL) was stirred at 120 °C for 10 h under an ambient atmosphere of N₂. After completion, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (n-hexane/EtOAc: 30/1~10/1) to yield the corresponding product **3aa** (400.9 mg, 91% yield).

Derivatization of 3aa.⁷ To a solution of 3-phenylnaphthalen-1-ol (**3aa**) (22 mg, 1 mmol, 1.0 eq.) in 2 mL DCM was added pyridine (0.16 mL, 2 mmol, 2.0 eq.) and the solution was cooled to 0 °C. Trifluoromethanesulfonic anhydride (0.2 mL, 1.2 mmol, 1.2 eq.) was added dropwise and the mixture was warmed to room temperature. The reaction was complete within 5 min as shown by TLC. The mixture was diluted with Et₂O, quenched with 1 M aq. HCl and washed successively with sat. NaHCO₃ and brine. After drying over Na₂SO₄, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the triflate as a light yellow liquid (35.2 mg, 100%). A 25-mL, one-necked, round-bottomed flask equipped with a rubber septum was charged with the obtained 3-phenylnaphthalen-1-yl trifluoromethanesulfonate (35.2 mg, 0.1 mmol) and tributylphenyltin (40 mg, 0.11 mmol) in 1 mL of DMF. Bis(triphenylphosphine)palladium(II) chloride (3.5 mg, 0.005 mmol) was added and the resulting yellow suspension was stirred at room temperature for 30 min. The reaction mixture was then heated at 60 °C for an additional 8 h. The reaction mixture was allowed to cool and then filtered through silica gel in a short column with the aid of Et₂O to remove the majority of the residual palladium. The filtrate was then washed with 1 N aq HCl solution, water, and saturated NaCl solution, dried over Na₂SO₄, filtered, and concentrated to afford a dark brown oily mixture. Column chromatography silica gel (elution with petroleum ether) furnished the desired compound as a colorless oily product.

1,3-Diphenylnaphthalene (5): known compound⁸, 21.8 mg, 78% yield, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.93 (d, *J* = 8.3 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.73 (s, 1H), 7.59-7.36 (m,

10H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 140.8, 140.6, 138.0, 134.1, 130.8, 130.1, 128.9, 128.6, 128.3, 127.4, 127.4, 126.7, 126.7, 126.2, 126.1, 125.9, 125.4.

IV Mechanistic Studies

H/D Exchange Experiments. Under N₂, a suspension of phenacyl phosphonium salt **1b** (53.0 mg, 0.10 mmol), $[RuCl_2(p-cymene)]_2$ (3.1 mg, 5.0 mol %), D₂O (18 µL, 1.0 mmol), and NaOAc (27.2 mg, 0.2 mmol) in ethanol-*d*₆ (1.0 mL) was stirred at 120 °C for 10 h. At ambient temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using n-hexane/EtOAc to afford a yellow solid product, which was characterized by ¹H NMR spectroscopy.

A suspension of phenacyl phosphonium salt **1b** (53.0 mg, 0.10 mmol), sulfoxonium ylides **2** (29.4 mg, 0.15 mmol), $[RuCl_2(p-cymene)]_2$ (3.1 mg, 5.0 mol %), D_2O (18 µL, 1.0 mmol), and NaOAc (27.2 mg, 0.2 mmol) in ethanol- d_6 (1.0 mL) was stirred at 120 °C for 10 h under an ambient atmosphere of N₂. At ambient temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using n-hexane/EtOAc to afford a white solid product, which was characterized by ¹H NMR spectroscopy.

Kinetic Isotope Effect Experiments. Two pressure tubes were separately charged with **1b** (0.10 mmol) and **1b**- d_5 (0.1 mmol), and to each tube was added sulfoxonium ylides **2** (0.15 mmol), [RuCl₂(*p*-cymene)]₂ (3.1 mg, 5.0 mol %), NaOAc (2.0 equiv.), and EtOH (1.0 mL). The two reaction mixtures were stirred side by side in an oil bath preheated at 100 °C for 30 min. After that, the reaction was quenched in an ice bath and n-hexane was rapidly added to each tube. The two mixtures were combined and the solvent was removed under vacuum and the residue was purified by silica gel chromatography using n-hexane/EtOAc: $30/1 \sim 10/1$ to yield the product **3aa** and **3aa**- d_4 as white solid (2.6 mg, 12% yield). The KIE value was determined to be $k_H/k_D = 2.1$ on the basis of ¹H NMR analysis.

V. References

- (a) Y. Li, Q. Wang, X. Yang, F. Xie, X. Li, Org. Lett., 2017, 19, 3410-3413; (b) Y. Li, X. Yang, L. Kong, X. Li, Org. Chem. Front., 2017, 4, 2114-2118.
- (a) Z. Lou, S. Zhang, C. Chen, X. Pang, M. Li, L. Wen, *Adv. Synth. Catal.*, 2014, 356, 153-159; (b) Y. Guan, Z. Lu, X. Yin, A. Mohammadlou, R. J. Staples, W. D. Wulff, *Synthesis*, 2020, 52, 2073-2091.
- 3. T. Hamura, T. Suzuki, T. Matsumoto, K. Suzuki, Angew. Chem. Int. Ed., 2006, 45, 6294-6296.
- 4. Y. Zhang, R. Jin, W. Kang, H. Guo, Org. Lett., 2020, 22, 5502-5505.
- X. Yu, P. Zhu, M. Bao, Y. Yamamoto, A. I. Almansour, N. Arumugam, R. S. Kumar, Asian J. Org. Chem., 2016, 5,699-704.
- 6. F. Makra, J. C. Rohloff, A. V. Muehldorf, J. O. Link, Tetrahedron Lett., 1995, 36, 6815-6818.
- I. Piel, M. Steinmetz, K. Hirano, R. Fröhlich, S. Grimme, F. Glorius, *Angew. Chem. Int. Ed.*, 2011, 50, 4983-4987.
- 8. C. Ge, G. Wang, P. Wu, C. Chen, Org. Lett., 2019, 21, 13, 5010-5014.

S12

S14

0 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -2: f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)

S29

100 90 f1 (ppm) 180 170 160 150 140