Supporting Information

Pd-catalyzed *sp*³ C-H alkoxycarbonylation of 8-methylquinolines using Mo(CO)₆ as CO surrogate

Table of Contents

1	General Information	S2
2	General Procedure for the sp ³ C-H Alkoxycarbonylation of 8-MQs	S2
3	Procedure for the Scale up Synthesis of 3aa	S2
4	Procedure for the Synthesis of 4aa	S2-S3
5	Procedure for the Synthesis of [D ₃]-1a	S3
6	Mechanistic Investigation	S4-S6
7	Characterization Data of 3aa-ao , 3ba-3ja and 4aa	S7-S17
8	References	S17
9	NMR Spectra of 3aa-3ao , 3ba-3ja and 4aa	S18-42

General Information. $Pd(OAc)_2 (\ge 99.9\%)$, benzoquinone, $Mo(CO)_6$, NaOAc, $Ag_2CO_3 (99\%)$, 8methylquinoline, 5-methylquinoxaline, benzylmercaptan and alcohols were purchased from Aldrich and used as received. The substituted 8-MQs **1b-i**, 8-ethyl-4-phenylquinoline **1j** and 4methylbenzo[d]oxazole **1l** were prepared according to literature.¹ Merck silica gel G/GF 254 plates were used for analytical TLC and Rankem silica gel (60-120 mesh) was used for column chromatography. NMR (¹H and ¹³C) spectra were recorded in Bruker Avance III 400 and 600 spectrometers using CDCl₃ as solvent and TMS as an internal standard. Chemical shifts (δ) and spin-spin coupling constant (*J*) are reported in ppm and in Hz, respectively, and other data are reported as follows: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet and q = quartet. Melting points were determined using a Büchi B-540 apparatus and are uncorrected. IR spectra were collected on a PerkinElmer Fourier transform infrared (FT-IR) spectrometer. Quadrupole time-of-flight electrospray ionization (ESI) mass spectrometer (model HAB 273) was used for mass analysis.

General Procedure for the sp³ C-H Alkoxycarbonylation of 8-MQs. 8-MQ 1 (0.2 mmol), alcohol 2 (2 mmol), Pd(OAc)₂ (10 mol %, 4.4 mg), BQ (0.2 mmol, 21.2 mg), Mo(CO)₆ (0.2 mmol, 52.8 mg) and Ag₂CO₃ (0.3 mmol, 83 mg) were stirred at 100 °C for 24 h in 1,2-dichloroethane (2 mL) in a sealed tube. The mixture was diluted with dichloromethane (10 mL) and passed through a short pad of celite. The organic layer was washed with brine (5 mL) and water (5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using *n*-hexane/EtOAc (10:2) as eluent to afford the desired **3**.

Scale-up Synthesis of 3aa. 8-Methylquinoline 1a (5 mmol, 715 mg), EtOH 2 (50 mmol, 2.3 g), Pd(OAc)₂ (10 mol %, 110 mg), BQ (5 mmol, 530 mg), Mo(CO)₆ (5 mmol, 1.32 g) and Ag₂CO₃ (7.5 mmol, 2 g) were subjected to the above described standard reaction condition. The mixture was diluted with dichloromethane (20 mL) and passed through a celite pad and washed with brine (5 mL) and water (5 mL). The organic layer was dried over Na₂SO₄ and the solvent was evaporated to produce a residue, which was purified by column chromatography on silica gel using *n*-hexane/EtOAc (10:2) as eluent to afford **3aa** in 54% (580 mg) yield.

Synthesis of 4aa.² 3-Chloroperbenzoic acid (0.2 mmol, 34.5 mg) was added to a stirred solution of ethyl 2-(quinolin-8-yl)acetate **3aa** (0.2 mmol, 43 mg) in CH₂Cl₂ (1 mL) at 0 °C. The reaction mixture was allowed to stir at room temperature for 24 h and then treated with an aqueous

NaHCO₃. The resultant mixture was extracted with CH_2Cl_2 (10 mL) and the organic phase was washed with brine (3 mL) and water (3 mL). The organic layer was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure to give the residue, which was purified by column chromatography on silica gel using EtOAc /MeOH (8:1) as an eluent.

Synthesis of $[D_3]$ -1a.³ 8-MQ 1a (0.3 mmol, 43.0 mg), $[RhCp*Cl_2]_2$ (2.5 mol %, 4.6 mg), AcOD (0.9 mmol, 54.1 mg), Cu(OAc)₂ (0.6 mmol, 109.0 mg) and D₂O (1 mL) were stirred at 100 °C for 20 h. The resultant mixture was extracted with EtOAc (10 mL) and the organic layer was dried over Na₂SO₄. Evaporation of the solvent gave a residue that was purified on silica gel column chromatography using *n*-hexane/EtOAc (10:1) to afford $[D_3]$ -1a in 90% yield. The deuterium incorporation was determined using 400 MHz ¹H NMR as 98%.

Mechanistic Investigations

H/D Exchange Experiment with D_2O . 8-MQ 1a (0.2 mmol, 28.6 mg), Pd(OAc)₂ (10 mol %, 4.4 mg), BQ (0.2 mmol, 21.2 mg), Mo(CO)₆ (0.2 mmol, 52.8 mg), Ag₂CO₃ (0.3 mmol, 83 mg) and D_2O (2 mmol) were stirred in 1,2-dichloroethane at 100 °C for 24 h in a sealed tube. The work-up and purification were performed as described in the general procedure. 400 MHz ¹H NMR spectrum of the product showed no deuterium incorporation.

H/D Exchange Experiment with D_2O in Presence of Alcohol. 8-Methylquinoline 1a (0.2 mmol, 28.6 mg), EtOH (2 mmol, 92 mg), Pd(OAc)₂ (10 mol %, 4.4 mg), BQ (0.2 mmol, 21.2 mg), Mo(CO)₆ (0.2 mmol, 52.8 mg), Ag₂CO₃ (0.3 mmol, 83 mg) and D₂O (2 mmol) were stirred in 1,2-dichloroethane at 100 °C for 24 h. The work-up and purification was performed as above, and the 400 MHz ¹H NMR spectrum of the product revealed no deuterium incorporation.

Kinetic Isotope Effect Experiment. A mixture of 8-Methylquinoline **1a** (0.2 mmol, 28.6 mg) and $[D_3]$ -**1a** (0.2 mmol, 29.2 mg) was reacted with EtOH **2a** (2 mmol, 92 mg) for 2 h under standard reaction conditions. The reaction mixture was diluted with DCM (5 mL), and passed through a short pad of celite using DCM (3 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent on vacuo produced a residue, which was purified on silica gel column chromatography on silica gel using *n*-hexane and EtOAc (10:2) as eluent to afford **3aa**/[D₂]-**3aa**. The intermolecular k_H/k_D was found to be 1.13, based on the 400 MHz ¹H NMR spectroscopy.

Characterization data

Ethyl 2-(quinolin-8-yl)acetate 3aa. Yellow liquid; yield 76% (33 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.91 (q, J = 2.4 Hz, 1H), 8.15 (dd, J = 8.4 Hz, 6.4 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 6.8 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.40 (q, J = 4.0 Hz, 1H), 4.27 (s, 2H), 4.19 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 149.7, 146.8, 136.3, 133.6, 130.4, 128.4, 127.5, 126.3, 121.2, 60.8, 37.3, 14.3; FT-IR (neat) 2980, 2924, 2852, 1729, 1499, 1367, 1026, 830, 797 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₃H₁₄NO₂⁺: 216.1019, found: 216.1025.

Methyl 2-(quinolin-8-yl)acetate 3ab. Yellow liquid; yield 73% (29 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.92 (q, J = 2.4 Hz, 1H), 8.15 (dd, J = 8.0 Hz, 6.4 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.41 (q, J = 4.0 Hz, 1H), 4.29 (s, 2H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 149.8, 146.8, 136.3, 133.5, 130.4, 128.5, 127.6, 126.3, 121.3, 52.1, 37.0; FT-IR (neat) 2952, 2921, 2852, 1734, 1499, 1259, 1171, 1014, 794, 733 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₂H₁₂NO₂⁺: 202.0863, found: 202.0868.

Propyl 2-(quinolin-8-yl)acetate 3ac. Yellow liquid; yield 71% (32 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.91 (q, *J* = 2.8 Hz, 1H), 8.15 (dd, *J* = 8.0 Hz, 6.4 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.40 (q, *J* = 4.0 Hz, 1H), 4.29 (s, 2H), 4.07 (t, *J* = 6.8 Hz, 2H), 1.66-1.58 (m, 2H), 0.85 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 172.4, 149.7, 146.9, 136.3, 133.7, 130.3, 128.4, 127.4, 126.3, 121.2, 66.4, 37.3, 22.0, 10.4; FT-IR (neat) 2965, 2934, 2877, 1730, 1499, 1336, 1153, 1059, 794, 762 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₄H₁₆NO₂⁺: 230.1176, found: 203.1175.

Butyl 2-(quinolin-8-yl)acetate 3ad. Yellow liquid; yield 74% (36 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.91 (q, *J* = 2.4 Hz, 1H), 8.15 (dd, *J* = 8.0 Hz, 6.4 Hz, 1H), 7.77 (d, *J* = 9.2 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.40 (q, *J* = 4.0 Hz, 1H), 4.27 (s, 2H), 4.11 (t, *J* = 6.8 Hz, 2H), 1.61-1.54 (m, 2H), 1.33-1.25 (m, 2H), 0.86 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 149.7, 146.9, 136.3, 133.7, 130.3, 128.4, 127.4, 126.3, 121.2, 64.7, 37.3, 30.7, 19.1, 13.8; FT-IR (neat) 2958, 1730, 1499, 1338, 1258, 1172, 1061, 794, 763 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₅H₁₈NO₂⁺: 244.1332, found: 244.1337.

Isopentyl 2-(quinolin-8-yl)acetate 3ae. Yellow liquid; yield 70% (36 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.91 (q, *J* = 2.4 Hz, 1H), 8.15 (dd, *J* = 8.0 Hz, 6.4 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 6.8 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.40 (q, *J* = 4.0 Hz, 1H), 4.27 (s, 2H), 4.14 (t, *J* = 6.8 Hz, 2H), 1.61-1.53 (m, 1H), 1.49 (q, *J* = 6.8 Hz, 2H), 0.85 (s, 3H), 0.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 149.7, 146.9, 136.3, 133.7, 130.3, 128.4, 127.5, 126.3, 121.2, 63.5, 37.4, 25.1, 22.5; FT-IR (neat) 2956, 1731, 1499, 1367, 1258, 1154, 1049, 981, 794, 761 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₆H₂₀NO₂⁺: 258.1489, found: 258.1493.

2,2,2-Trifluoroethyl 2-(quinolin-8-yl)acetate 3af. Colorless liquid; yield 75% (40 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.90 (q, *J* = 2.4 Hz, 1H), 8.16 (dd, *J* = 8.4 Hz, 6.4 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 6.4 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.42 (q, *J* = 4.0 Hz, 1H), 4.52 (q, *J* = 7.6 Hz, 2H), 4.36 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 149.8, 146.7, 136.3, 132.5, 130.4, 128.4, 127.9, 126.3, 124.5 (q, *J*_{C-F} = 275.7), 121.4, 60.8 (q, *J*_{C-F} = 36.3), 36.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -73.6; FT-IR (neat) 2921, 2852, 1716, 1595, 1401, 1279, 979, 812, 764 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₃H₁₁F₃NO₂⁺: 270.0736, found: 270.0740.

Decyl 2-(quinolin-8-yl)acetate 3ag. Yellow liquid; yield 68% (44 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.91 (q, J = 2.4 Hz, 1H), 8.15 (dd, J = 8.4 Hz, 6.4 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 6.8 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.40 (q, J = 4.0 Hz, 1H), 4.27 (s, 2H), 4.10 (t, J = 6.8 Hz, 2H), 1.59-1.54 (m, 1H), 1.31-1.28 (m, 15H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 149.7, 146.9, 136.3, 133.8, 130.3, 128.4, 127.4, 126.3, 121.2, 65.0, 37.3, 32.0, 29.6, 29.4, 29.3, 28.7, 25.9, 22.8, 14.2; FT-IR (neat) 2923, 2853, 1734, 1595, 1338, 1171, 1028, 795, 783 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₁H₃₀NO₂⁺: 328.2271, found: 328.2287.

Isopropyl 2-(quinolin-8-yl)acetate 3ah. Yellow liquid; yield 67% (31 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.90 (q, J = 2.4 Hz, 1H), 8.14 (dd, J = 8.4 Hz, 6.4 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 6.8 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.39 (q, J = 4.4 Hz, 1H), 5.11-5.01

(m, 1H), 4.24 (s, 2H),1.24 (s, 3H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 149.6, 146.8, 136.2, 133.9, 130.3, 128.4, 127.4, 126.3, 121.2, 68.1, 37.6, 21.9; FT-IR (neat) 2978, 2934, 1725, 1499, 1372, 1241, 1104, 957, 794, 763 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₄H₁₆NO₂⁺: 230.1176, found: 230.1181.

tert-Butyl 2-(quinolin-8-yl)acetate 3ai. Yellow liquid; yield 62% (30 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.91 (q, J = 2.4 Hz, 1H), 8.14 (dd, J = 8.0 Hz, 6.4 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.40 (q, J = 4.4 Hz, 1H), 4.19 (s, 2H),1.44 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 149.6, 146.9, 136.3, 134.2, 130.3, 128.4, 127.3, 126.3, 121.2, 80.7, 38.5, 28.2; FT-IR (neat) 2977, 1731, 1499, 1392, 1345, 1367, 1256, 797 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₅H₁₈NO₂⁺: 244.1332, found: 244.1329.

tert-Pentyl 2-(quinolin-8-yl)acetate 3aj. Yellow liquid; yield 64% (33 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.90 (q, J = 2.0 Hz, 1H), 8.14 (dd, J = 8.4 Hz, 6.8 Hz, 1H), 7.75 (d, J = 7.2 Hz, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.39 (q, J = 4.0 Hz, 1H), 4.19 (s, 2H), 1.72 (q, J = 7.2 Hz, 2H) 1.40 (s, 6H), 0.78 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 149.6, 146.9, 136.2, 134.3, 130.3, 128.4, 127.2, 126.3, 121.2, 83.0, 38.5, 33.6, 25.6, 8.1; FT-IR (neat) 2973, 2925, 2855, 1726, 1499, 1196, 1142, 1060, 949, 829, 762 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₆H₂₀NO₂⁺: 258.1489, found: 258.1486.

Allyl 2-(quinolin-8-yl)acetate 3ak. Yellow liquid; yield 63% (28 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.91 (q, J = 2.4 Hz, 1H), 8.15 (dd, J = 8.0 Hz, 6.8 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.41 (q, J = 4.0 Hz, 1H), 5.95-5.86 (m, 1H), 5.29-5.24 (m, 1H), 5.20-5.16 (m, 1H), 4.64-4.62 (m, 2H), 4.32 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 149.8, 146.8, 136.3, 133.4, 132.4, 130.4, 128.4, 127.6, 126.3, 121.3, 118.0, 65.4, 37.2; FT-IR (neat) 2926, 2854, 1731, 1499, 1365, 1239, 1150, 987, 828, 794, 764 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₄H₁₄NO₂⁺: 228.1019, found: 228.1020.

2-Hydroxyethyl 2-(quinolin-8-yl)acetate 3al. Yellow liquid; yield 68% (31 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.90 (q, J = 2.8 Hz, 1H), 8.18 (dd, J = 8.4 Hz, 6.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.43 (q, J = 4.0 Hz, 1H), 4.29 (t, J = 4.4 Hz, 2H), 4.26 (s, 2H), 3.79 (t, J = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 149.9, 146.6, 136.7, 133.3, 130.8, 128.6, 127.8, 126.5, 121.4, 66.4, 61.2, 37.9; FT-IR (neat) 3406, 2924, 2854, 1732, 1500, 1259, 1173, 1077, 794, 765 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₃H₁₄NO₃⁺: 232.0968, found: 232.0976.

(3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-

17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-

cyclopenta[a]phenanthren-3-yl 2-(quinolin-8-yl)acetate 3an. Colorless solid; mp 155-157 °C; yield 51% (57 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.91 (q, J = 2.4 Hz, 1H), 8.15 (dd, J = 8.4 Hz, 6.4 Hz, 1H), 7.76 (d, J = 6.8 Hz, 1H), 7.65 (d, J = 6.8 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.40 (q, J = 4.4 Hz, 1H), 5.35 (d, J = 5.2 Hz, 1H), 4.70-4.62 (m, 1H), 4.25 (s, 2H), 2.34-2.30 (m, 2H), 2.04-1.97 (m, 2H), 1.92-1.77 (m, 3H), 1.60-1.57 (m, 4H), 1.54-1.51 (m, 2H), 1.47-1.41 (m, 4H), 1.33-1.32 (m, 2H), 1.25 (s, 1H), 1.15-1.03 (m, 7H), 0.99 (s, 4H), 0.91 (d, J = 4.8 Hz, 3H), 0.86 (dd, J = 6.8 Hz, 4.8 Hz, 6H), 0.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 149.6, 146.9, 139.9, 136.2, 133.9, 130.3, 128.4, 127.4, 126.3, 122.6, 121.2, 74.4, 56.8, 56.2, 50.1, 42.4, 39.8, 39.6, 38.1, 37.6, 37.1, 36.7, 36.3, 35.9, 32.05, 32.00, 28.3, 28.1, 27.8, 24.4, 23.9, 22.9, 22.7, 21.1, 19.4, 18.8, 12.0; FT-IR (neat) 2933, 2867, 2852, 1732, 1499, 1260, 1172, 1028, 796, 764, 703 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₈H₅₄NO₂⁺: 556.4149, found: 556.4149.

(1R,2S,5S)-2-Isopropyl-5-methylcyclohexyl 2-(quinolin-8-yl)acetate 3ao. Yellow solid; mp 85-87 °C; yield 40% (26 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.88 (q, J = 2.8 Hz, 1H), 8.17 (dd, J = 8.0 Hz, 6.4 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 6.8 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.40 (q, J = 4.0 Hz, 1H), 4.72-4.65 (m, 1H), 4.23 (s, 2H), 1.66-1.59 (m, 3H), 1.34-1.25 (m, 3H), 0.97 (q, J = 6.0 Hz, 1H), 0.91 (t, J = 6.0 Hz, 2H), 0.88 (d, J = 6.8 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H), 0.67 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 149.6, 146.9, 136.2, 134.0, 130.2, 128.4, 127.3, 126.3, 121.2, 74.6, 47.1, 40.9, 38.0, 34.4, 31.5, 26.0, 23.5, 22.1, 20.8, 16.4; FT-IR (neat) 2953, 2925, 2868, 1729, 1499, 1368, 1259, 1173, 985, 811, 795 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₁H₂₈NO₃⁺: 326.2115, found: 326.2116.

Ethyl 2-(4-phenylquinolin-8-yl)acetate 3ba. Yellow liquid; yield 58% (34 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d *J* = 4.4 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 6.8 Hz, 1H), 7.52-7.47 (m, 6H), 7.33 (d, *J* = 4.4 Hz, 1H), 4.31 (s, 2H), 4.22 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.4, 149.1, 148.6, 147.1, 138.2, 133.8, 130.2, 129.5, 128.5, 128.3, 126.8, 126.1, 125.5, 121.4, 60.7, 37.6, 14.2; FT-IR (neat) 2918, 2849, 1731, 1490, 1396, 1252, 1154, 1030, 853, 765 cm⁻¹; HRMS (ESI) m/z [M+H]⁺calcd for C₁₉H₁₈NO₂⁺: 292.1332, found: 292.1334.

Ethyl 2-(5-bromoquinolin-8-yl)acetate 3ca. Yellow solid; mp 104-106 °C; yield 66% (39 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.92 (q, *J* = 2.8 Hz, 1H), 8.54 (dd, *J* = 8.4 Hz, 6.8 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.52-7.49 (m, 2H), 4.22 (s, 2H), 4.18 (q, *J* = 6.8 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 150.3, 147.5, 135.8, 133.8, 130.6, 130.1, 127.8, 122.3, 121.2, 60.9, 37.2, 14.3; FT-IR (neat) 2978, 2988, 2937, 1718, 1568, 1496, 1343, 1179, 1028, 934, 847, 789 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₃H₁₃BrNO₂⁺: 294.0124, found: 294.0131.

Ethyl 2-(5-nitroquinolin-8-yl)acetate 3da. Yellow solid; mp 66-67 °C; yield 76% (39 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.04-9.00 (m, 2H), 8.36 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* =

8.0 Hz, 1H), 7.65 (q, J = 4.4 Hz, 1H), 4.33 (s, 2H), 4.19 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 150.7, 146.6, 144.9, 141.7, 132.3, 128.6, 124.4, 124.0, 121.3, 61.2, 37.9, 14.3; FT-IR (neat) 2930, 2854, 1734, 1521, 1336, 1275, 1176, 1028, 815, 764 cm⁻¹; HRMS (ESI) m/z [M+H]⁺calcd for C₁₃H₁₃N₂O₄⁺: 261.0870, found: 261.0882.

Ethyl 2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinolin-8-yl)acetate 3ea. Yellow liquid; yield 60% (41 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.11 (dd, J = 8.4 Hz, 2.8 Hz, 1H), 8.89 (q, J = 2.4 Hz, 1H), 8.09 (d, J = 7.2 Hz, 1H), 7.63 (d, J = 6.8 Hz, 1H), 7.43 (q, J = 4.4 Hz, 1H), 4.28 (s, 2H), 4.16 (q, J = 7.2 Hz, 2H), 1.41 (s, 12H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 149.2, 146.7, 137.2, 137.0, 135.9, 132.2, 130.4, 129.6, 121.4, 84.0, 60.8, 37.8, 25.1, 14.3; FT-IR (neat) 2979, 2927, 2854, 1733, 1502, 1368, 1259, 1111, 1029, 976, 856, 795 cm⁻¹; HRMS (ESI) m/z [M+H]⁺calcd for C₁₉H₂₅BNO₄⁺: 342.1871, found: 342.1886.

Ethyl 2-(6-methyl-4-phenylquinolin-8-yl)acetate 3fa. Yellow liquid; yield 70% (43 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 4.4 Hz, 1H), 7.59 (s, 1H), 7.55-7.47 (m, 6H), 7.28 (d, *J* = 4.4 Hz, 1H), 4.27 (s, 2H), 4.22 (q, *J* = 6.4 Hz, 2H), 2.44 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 148.3, 147.9, 145.8, 138.6, 136.0, 133.5, 132.6, 129.6, 128.6, 128.3, 126.9, 124.3, 121.6, 60.8, 37.7, 21.9, 14.3; FT-IR (neat) 2980, 2919, 2849, 1731, 1491, 1366, 1253, 1160, 1031, 867, 764 cm⁻¹; HRMS (ESI) m/z [M+H]⁺calcd for C₂₀H₂₀NO₂⁺: 306.1489, found: 306.1486.

Ethyl 2-(4-(4-bromophenyl)-6-methylquinolin-8-yl)acetate 3ga. Yellow liquid; yield 72% (55 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.85 (d, *J* = 4.2 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 13.2 Hz, 2H), 7.35 (d, *J* = 7.8 Hz, 2H), 7.24 (d, *J* = 4.2 Hz, 1H), 4.26 (s, 2H), 4.21 (q, *J* = 7.2 Hz, 2H), 2.44 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.5, 148.2, 146.6, 145.8, 137.4, 136.4, 133.7, 132.8, 131.8, 131.2, 126.6, 123.9, 122.7, 121.4, 60.9, 37.7, 21.9, 14.3; FT-IR (neat) 2978, 2924, 2865, 1731, 1485, 1387, 1160, 1009, 827, 764, 749 cm⁻¹; HRMS (ESI) m/z [M+H]⁺calcd for C₂₀H₁₉BrNO₂⁺: 384.0594, found: 384.0595.

Ethyl 2-(6-methyl-4-(*p***-tolyl)quinolin-8-yl)acetate 3ha**. Yellow liquid; yield 55% (35 mg); ¹H NMR (600 MHz, CDCl₃) δ 8.84 (d, *J* = 4.4 Hz, 1H), 7.62 (s, 1H), 7.48 (s, 1H), 7.39-7.32 (m, 4H), 7.27 (d, *J* = 4.4 Hz, 1H), 4.26 (s, 2H), 4.22 (q, *J* = 7.2 Hz, 2H), 2.47 (s, 3H), 2.44 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 148.3, 148.0, 145.8, 138.2, 135.9, 135.6, 133.5, 132.5, 129.5, 129.3, 127.1, 124.4, 121.6, 60.8, 37.7, 21.9, 21.4, 14.3; FT-IR (neat) 2980, 29128, 2850, 1731, 1498, 1439, 1386, 1159, 1029, 908, 867, 817, 729 cm⁻¹; HRMS (ESI) m/z [M+H]⁺calcd for C₂₁H₂₂NO₂⁺: 320.1645, found: 320.1659.

Ethyl 2-(4-(4-(tert-butyl)phenyl)-6-methylquinolin-8-yl)acetate 3ia. Yellow liquid; yield 68% (49 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.4 Hz, 1H), 7.59 (s, 1H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.41 (s, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.19 (t, *J* = 4.4 Hz, 1H), 4.19 (s, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 2.38 (s, 3H), 1.34 (s, 9H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.7, 151.4, 148.3, 147.9, 145.8, 135.9, 135.6, 133.4, 132.6, 129.4, 127.0, 125.5, 124.5, 121.6, 60.8, 37.7, 34.8, 31.5, 21.9, 14.3; FT-IR (neat) 2961, 2906, 2867, 1733, 1498, 1365, 1254, 1160, 1031, 834, 750 cm⁻¹; HRMS (ESI) m/z [M+H]⁺calcd for C₂₄H₂₈NO₂⁺: 362.2115, found: 362.2116.

Ethyl 2-(4-phenylquinolin-8-yl)propanoate 3ja. Colorless liquid; yield 32% (19 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, *J* = 4.4 Hz, 1H), 7.83 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 7.67 (dd, *J* = 6.8 Hz, 1.2 Hz, 1H), 7.52-7.44 (m, 6H), 7.33 (d, *J* = 4.4 Hz, 1H), 5.08 (q, *J* = 7.2 Hz, 1H), 4.18 (q, *J* = 6.8 Hz, 2H), 1.66 (d, *J* = 7.2 Hz, 3H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 149.0, 146.3, 140.4, 138.4, 129.7, 128.6, 128.4, 127.3, 127.0, 126.4, 125.1, 121.5, 60.7, 40.4, 18.5, 14.3; FT-IR (neat) 2977, 2922, 2850, 1730, 1490, 1395, 1189, 1096, 855, 767 cm⁻¹; HRMS (ESI) m/z [M+H]⁺calcd for C₂₀H₂₀NO₂⁺: 306.1489, found: 306.1489.

8-(2-Ethoxy-2-oxoethyl)quinoline 1-oxide 4aa. Brown solid; 109-110 °C; yield 81% (37 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 6.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 6.8 Hz, 1H), 7.22 (q, *J* = 2.4 Hz, 1H), 4.39 (s, 2H), 4.23 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 149.7, 137.2, 134.7, 132.5, 129.4, 128.6, 128.2, 126.5, 121.1, 60.7, 43.5, 14.4; FT-IR (neat) 3415, 3070, 2983, 2905, 1730, 1575, 1370, 1301, 1228, 1180, 1024, 817, 762 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₃H₁₄NO₃⁺: 232.0968, found: 232.0982.

References

- (a) X. Xu, Y. Yang, X. Zhang and W. Yi, *Org. Lett.*, 2018, **20**, 566; (b) S. Fukagawa, M. Kogima, T. Yoshino and S. Matsunaga, *Angew. Chem. Int. Ed.*, 2019, **58**, 18154; (c) S. H. Cho, J. Y. Kim, S. Y. Lee and S. Chang, *Angew. Chem. Int. Ed.*, 2009, **48**, 9127.
- 2. J. Zhao, P. Li, C. Xia and F. Li, RSC Adv. 2015, 5, 32835.
- S. Kim, S. Han, J. Park, S. Sharma, N. K. Mishra, H. Oh, J. H. Kwak and I. S. Kim, *Chem. Commun.*, 2017, **53**, 3006.

