Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2021

Supporting Information

The Energy Storage Behavior of a Phosphate-Based Cathode

Material in Rechargeable Zinc Batteries

Cuicui Li,^a Wanlong Wu,^a Hua-Yu Shi,^a Zengming Qin,^a Duo Yang,^a Xianpeng Yang,^a Yu Song,^a Di Guo,^a Xiao-Xia Liu^{a,b} and Xiaoqi Sun^{*a}

^a Department of Chemistry, Northeastern University, Shenyang, 110819, China
^b Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, China

*Corresponding author Email: sunxiaoqi@mail.neu.edu.cn

Experimental Section

Synthesis of the Li₃V₂(PO₄)₃/rGO composite: The Li₃V₂(PO₄)₃/rGO composite was obtained using a previously reported method ¹. Typically, oxalic acid and V₂O₅ (3:1 molar ratio) were dissolved in deionized water under magnetic stir at 70 °C. After a clear blue solution was formed, the stoichiometric NH₄H₂PO₄ and Li₂CO₃ were added to the solution. The GO suspension was also added. The mixture was stirred and sonicated, followed by drying in an oven at 100 °C to form a gel. The gel was heated at 350 °C for 4 h under argon, and the obtained product was ground. The powder was then pressed into pellets and sintered at 750 °C for 6 h under argon.

Material characterization: X-ray diffraction (XRD) patterns of the samples were measured using a PANalytical Empyrean diffractometer with Cu Kα radiation. The morphology and elemental contents were obtained using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectroscopy (EDS) detector (HITACHI SU8010, Japan). The carbon content was obtained with a carbon sulfur analyzer (CS-200), and the weight percentage of rGO was 9.19%.

Electrochemical measurement: The cathodes were prepared by mixing $Li_3V_2(PO_4)_3/rGO$ with super P and polyvinylidene fluoride (PVDF) with a weight ratio of 8:1:1 in N-methyl-2-pyrrolidone (NMP), drop casting on carbon paper substrate and drying at 60 °C in air then under vacuum. The diameter of the electrodes is 12 mm, and the area is 1.13 cm⁻². The mass loading of active material is around 2.0 mg cm^{-2} or 2.3 mg per electrode. The 1 m Zn(ClO₄)₂/H₂O electrolyte was prepared by dissolving desired amount of Zn(ClO₄)₂·6H₂O in water, while 1 m Zn(ClO₄)₂/ACN-11%H₂O was obtained by dissolving desired amount of $Zn(ClO_4)_2$ 6H₂O in acetonitrile. The water content in the latter was confirmed to be 10.85% using a Mettler Toledo DL31 Karl Fischer Coulometer. To prepare the $Zn(ClO_4)_2/ACN-3\%H_2O$ electrolyte, the $Zn(ClO_4)_2GH_2O$ was dried at 100 °C under vacuum and dissolved in acetonitrile. The water content was measured to be 2.7%. The cathode, electrolyte, zinc foil anode and filter paper separators were assembled in CR2032-type coin cells in air. For the test in Li ion cells, FePO₄ was obtained by electrochemical delithiation of LiFePO₄. The FePO₄ electrode was prepared by mixing

FePO₄ with super P and polyvinylidene fluoride (PVDF) with a weight ratio of 7:2:1 in N-methyl-2-pyrrolidone (NMP). The obtained slurry was droped casted onto carbon paper and dried at 60 °C in vacuum. The mass loading of FePO₄ was more than four times of Li₃V₂(PO₄)₃. Galvanostatic charge/discharge tests were performed with a Land CT2001A battery cycler. Electrochemical impedance spectroscopy (EIS) was obtained in T-shaped PFA Swagelok 3-electrode cells with Zn as the counter and reference electrodes on the Bio-logic VMP3 potentiostat/galvanostat. The measurements were carried out in 3-electrodes to ensure the precise control of potential.

Figure S1. Zn plating/stripping tests in symmetric cells.

Figure S2. Cyclic voltammograms of $Li_3V_2(PO_4)_3$ at 0.5 mV s⁻¹ in the electrolytes of (a)

Zn(ClO₄)₂/H₂O, (b) Zn(ClO₄)₂/ACN-3%H₂O, (c) Zn(ClO₄)₂/ACN-11%H₂O.

Figure S3. XRD of the $Li_3V_2(PO_4)_3$ electrode after running at 2C for 200 cycles in (a)

 $Zn(ClO_4)_2/H_2O$, (b) $Zn(ClO_4)_2/ACN-3\%H_2O$ and (c) $Zn(ClO_4)_2/ACN-11\%H_2O$ electrolytes.

Figure S4. Voltage profiles of $Li_3V_2(PO_4)_3$ in (a) 3 m Zn(OTf)₂, (b) 3 m Zn(ClO₄)₂, (c) 1 m Zn(OTf)₂ and (d) 1 m Zn(ClO₄)₂ aqueous electrolytes at 2C during different cycles.

Figure S5. Voltage profile of bare carbon paper in the $Zn(ClO_4)_2/ACN-11\%H_2O$ electrolyte at 1C (mass based on the average loading of $Li_3V_2(PO_4)_3$).

Figure S6. Cycling performance of $Li_3V_2(PO_4)_3$ in the $Zn(ClO_4)_2/ACN-11\%H_2O$ and $Zn(ClO_4)_2/ACN-15\%H_2O$ electrolytes at 5C.

Figure S7. The charge/discharge and differential capacity curves of Li₃V₂(PO₄)₃ in the

(a,b) LiClO₄/ACN and (c,d) LiClO₄/ACN-11%H₂O electrolytes.

Figure S8. (a) The differential capacity curves of $Li_3V_2(PO_4)_3$ in zinc cells with the $Zn(ClO_4)_2/ACN-11\%H_2O$ electrolyte at 5C. (b) XRD pattern and (c) SEM image of the electrode after 1000 cycles.

Table S1. The EIS fitting results

Electrolyte	R _s (ohm)	R _{ct} (ohm)
$Zn(ClO_4)_2/ACN-11\%H_2O$	4.8	55.7
Zn(ClO ₄) ₂ /ACN-3%H ₂ O	6.9	201.5

Reference

1 M. J. Park, H. Yaghoobnejad Asl, S. Therese and A. Manthiram, J. Mater. Chem. A, 2019, 7, 7159-7167.