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Section S1 Baeyer-Villiger oxidation

Baeyer-Villiger oxidation is a classic small-scale reaction where ketones or 
aldehydes can be transformed into esters by peroxyacid or peroxide.1 The detailed 
description of the Baeyer-Villiger reaction is shown schematically in Fig. S1. As a typical 
1,2-hydrocarbyl migration reaction, the mechanism is similar to pinacol 
rearrangement. Firstly, the oxygen of the carbonyl group is protonated by the 
hydrogen ion of peroxyacid, which increases the electrophilicity of carbonyl group and 
makes it more vulnerable to be attacked by the peroxyacid. Next, peroxyacid attacks 
the carbonyl carbon to form the Criegee intermediate. In a concerted process, a 
substituent of the carbonyl group moves to the electron-deficient oxygen of the 
peroxide group as the carboxylic acid leaves away from the intermediate. Finally, an 
ester is formed with the deprotonation of the oxocarbenium ion. What of particular 
note, it is generally believed that the hydrocarbyl group that can stabilize positive 
charge the best would be most likely to migrate.2 The Baeyer-Villiger reaction follows 
the rule of group migration and the migratory ability is approximately ranked tertiary 
> secondary > aryl > primary > methyl.3 Therefore, the Baeyer–Villiger oxidation can 
be viewed as a regioselective reaction, which remains an additional level of challenge 
in prediction task. The GCN model needs to not only focus on the stability of bonds 
but also determine which hydrocarbon group will migrate.

Fig. S1. A detailed description of the Baeyer-Villiger reaction. A. General mechanism of Bae-yer-
Villiger reaction. B. Examples of Baeyer-Villiger reaction in which (a) is a ketone reactant and (b) 
is an aldehyde reactant, both of which are oxidized to esters.
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Section S2 Model

S2.1 Weisfeiler-Lehman Network (WLN)

As a category of graph convolutional networks, the WLN4 is adopted to learn the 
molecular graph isomorphism by embedding the Weisfeiler-Lehman (WL) algorithm5. 
In the GCN model, a chemical reaction consists of a pair of molecular graphs where Gr 
and Gp represent the reactant and the product respectively. A molecular graph G = (V, 
E) is composed of an atom set (V) and a bond set (E). Rely on the WL algorithm that 
aggregates flowing information between neighboring atoms, the information about 
state features of the atom and structures of adjacent atoms could be up-dated. In each 
iteration, the GCN model can obtain information about local atom environment. 

S2.2 Attention Mechanism

To further improve the capability of the WLN model, attention mechanism, a 
powerful algorithm in machine learning field,6 has been adopted to the GCN model for 
propagating information among disconnected molecules. Taking into account the fact 
that the atoms that are not involved in reaction center may have an effect on a 
chemical reaction, the attention mechanism allows chemical information to flow more 
widely. By doing the weighted sum of the atom to all other atoms, the global chemical 
environment is recorded. Finally, the likelihood of atomic bond pair changes is 
calculated with the weightings of local and global attention strength. An overview of 
the

Fig. S2 Wisfeller-Lehman Network (WLN) model embeds the attention mechanism to predict the 
reaction center. Start to represent the molecule (A) as a graph (B), and iteratively update the 
feature vector by merging passing information between neighboring atoms and calculate the 
local feature vector for each atom (C). The global attention mechanism generates a context 
vector for each atom by extracting the information of all other atoms. Finally, calculate the 
(D)likelihood of atom bond pair changes based on the weighting of local and global attention 
strength.



attention mechanism can be found in Fig. S2. As is depicted in Fig. S2, the tert-butyl 
group has a higher attention weight, which indicates the tert-butyl group is more likely 
to migrate in the tert-butyl methyl ketone. It's worth remembering that the 
information about reactions obtains not only the connectivity between the atoms but 
also the atom properties such as atomic number, formal charge.

S2.3 Reaction Center Prediction

From Gr to Gp, the chemical reaction sites are considered as the change of atoms 
and bonds in graph connectivity.7 In the training procedure of reaction center 
prediction, local and global atomic features from WLN are transferred to another 
neural network where the cross-entropy loss function is chosen to minimize 
differences between product labels and predicted scores. Only with this step, can the 
atom pairs that may change be determined and scored by the GCN model. And the 
top-k atom pairs are ranked according to their scores.

S2.4 Weisfeiler-Lehman Difference Network (WLDN)

In the former phase, the top-k atom pairs with the highest score are selected and 
ranked in an atom pair set. Furthermore, the candidate set is gained by enumerating 
all possible bond pair changes in the atom pair set. To highlight the difference between 
reactants and products, the WLDN7 is divided into two components. The first 
component called Siamese WLN is used to learn the atom feature vectors of reactants 
and candidate products that combine with local and remote information. And then 
the vector difference of the homologous atoms is fed into another WLN to calculate 
the candidate scores. The candidate products are ranked and we compare the top-3 
candidates with the true product.

Section S3 Performance of the transformer and GCN models on the 

USPTO_MIT Data Set 

Table S1 Comparison of the top-n accuracies of the transformer and GCN models on the 
USPTO_MIT Data Set

Top-N accuracy (%)a

Model
Top-1 Top-2 Top-3

Transformer 90.4 93.7 94.6
GCN 85.6 90.5 92.8

aThe top-n accuracies of transformer and GCN models on the USPTO_MIT Data Set are originally derived from 

Philippe et al.'s work.8



Section S4 Comparison between GCN model and transformer model
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Fig. S3 Comparisons between the GCN model's top-1 correct predictions and the transformer 
model's top-1 wrong predictions, in which the transformer model makes group migration error.
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Fig. S4 Comparisons between the GCN model's top-1 correct predictions and the transformer 
model's top-1 wrong predictions, in which the transformer model makes other errors.
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Fig. S5 Comparisons between the GCN model's top-1 correct predictions and the transformer 
model's top-1 wrong predictions, in which the transformer model makes invalid SMILES code 
error.

Section S5 Error analysis of the GCN model

Table S2 Distribution and description of the major predicted errors of the GCN model in the 
Baeyer-Villiger reaction top-1 predictions.

Types of top-1 predicted 

errors
Rate (%) Count

Group migration error 45.5 10

2H recognition error 9.1 2

No chemical reaction 13.6 3

Other error 31.8 7

Total 100.0 22

Examples of group migration error category are displayed in Table S2. Take the 
Table S2(1) as an example, since the conjugation effect of the aryl group, the positive 
charge is dispersed and tends to be stable. The aryl group displays an enhanced 
migration ability compared to primary alkyl group. Moreover, the substitution of the 
electron-donating group on the benzene ring further strengthens its migratory 
aptitude. As a result, the ground truth product is chroman-2-one rather than 
isochroman-1-one. This error type is also common in compounds with other complex 
structures. Such as the reaction in Table S2(3), we can observe that the reactant 



containing complex bridged ring structure makes the task more complicated. Even 
that the complex compounds may add to complexity of task, the GCN model is 
equipped with the ability to precisely predict the preferential migration groups in most 
reactions and gains better results than the transformer model in the face of small 
shortage of training samples.

Table S2 Examples of group migration error in GCN model top-1 predictions.
Reactant Reported Ground Truth Top-1 Prediction

1

O OO
O

O

2

O
O

O
O O

3
N

O

O O

OH
O N

O

O O

O

OH

O

N
O

O O

O

OH

O

Analyzing the predictions made by the GCN model, we noticed that this model 
ignores the identification of isotope atoms. As listed in Table S3(1), the reported 
ground truth is 3,5-bis(2-(methyl-d3)propan-2-yl-1,1,1,3,3,3-d6)phenyl acetate when 
1-(3,5-bis(2-(methyl-d3)propan-2-yl-1,1,1,3,3,3-d6)phenyl)ethan-1-one is given. 
However, the prediction product provided by the GCN model is 3,5-di-tert-butylphenyl 
acetate, which shows the error of the identification of isotope atoms. In spite of the 
fact that the predictions given by the GCN conform to the group migration rule of 
Baeyer-Villiger oxidation reaction, this model fails to distinguish the difference 
between 1H and 2H.

Table S3 Examples of 2H recognition error in GCN model top-1 predictions.
Reactant Reported Ground Truth Top-1 Prediction
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Several examples of non-reactive error type and other unexplainable mistakes are 
depicted in Table S4 and Table S5, respectively. The prediction product 2-fluoro-1-
phenylethan-1-one (Table S4(3)) is the same as the reactant, which can be considered 
as a non-reactive error. Compare to 3-((benzyloxy)methyl)-2-methylpentan-3-yl 
formate (Table S5(2)) that is the reported ground truth, the ((3-((benzyloxy)methyl)-
2-methylpentan-3-yl)oxy)methanol is a prediction product that violates the basic 
chemical rules. We guess that these errors are related to the atom mapping. In our 
work, the data need to be preprocessed by RXN Mapper for obtaining the atom 
mapping information. By tracing the atom mapping process, we find that atom 
mapping of some reactions is wrong. An example is listed in Fig. S6, carbonyl group of 
the product 2-methyl-1-phenylbutan-2-yl acetate should come from 3-benzyl-3-
methylpentan-2-one, but the RXN Mapper attribute it to peracetic acid. The proper 
one-to-one correspondence of the atom labels plays a critical role in the model's 
training process. The atom mapping error makes the GCN model misjudge the reaction 
center as well as affect the predictive power of the model.

Table S4 Examples of non-reactive error in GCN model top-1 predictions.
Reactant Reported Ground Truth Top-1 Prediction
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Table S5 Examples of other errors in GCN model top-1 predictions.
Reactant Reported Ground Truth Top-1 Prediction
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Fig. S6 An example in which the predicted result of atom mapping does not match the recorded 
result.

Section S6 Prediction of Suzuki reaction

Suzuki reaction is a reaction where the organoboron species is cross-coupled 
with the halide by using a palladium catalyst and a base to form a carbon-carbon 
single bond. To manifest the power of GCN model on small-scale reaction, we further 
adopt the Suzuki reaction to show the predictive performance of GCN model. 
Meanwhile, we have explored the prediction accuracies comparison between 
transformer model and GCN model on different size of Suzuki reaction. As displayed 
in Fig. S7, when the size of data is small, the top-1 accuracy of GCN is significantly 
higher than that of transformer model. As the size of data increases, the top-1 
accuracy of the transformer is gradually improved, while the GCN model can 
maintain an excellent prediction result.



Fig. S7 The top-1 accuracies of GCN model and transformer model on different size of Suzuki 
reaction.

We further extract some reactions containing more than two reactants from the 
Suzuki data set, and use the GCN model for training and testing. The top-n accuracy 
is shown in Table S6. The top-1 accuracy reaches 98.2%, which is similar to that of 
the Suzuki reaction containing only two reactants.

Table S6 The top-n accuracy of GCN model on Suzuki reaction containing more than two 
reactants.

Top-n accuracy (%)
Model

Top-1 Top-2 Top-3
GCN 98.2 98.8 99.3

Section S7 Application of GCN model in other fields

Apart from reaction prediction, the GCN shows the potential power in other fields. 
Torng et al.9 apply a model based on GCN to make drug-target interactions prediction 
and their work demonstrated that the model can effectively capture the information 
about protein-ligand binding interactions. By utilizing molecular graphs, the GCN 
model can be helpful for finding the structure-property relationships and this method 
outperforms state-of-the-art quantitative structure-property relationship (QSPR) 
models.10 What's more, the GCN approach makes a contribution to revealing 
molecular property by learning relevant knowledge from graphs of molecules.10 The 
GCN model becomes an important tool in chemical research gradually.

The neural network model, processed data sets, and evaluation code will be made 
available at https://github.com/hongliangduan/A-graph-convolutional-neural-
network-for-addressing-small-scale-reaction-prediction.

https://github.com/hongliangduan/A-graph-convolutional-neural-network-for-addressing-small-scale-reaction-prediction
https://github.com/hongliangduan/A-graph-convolutional-neural-network-for-addressing-small-scale-reaction-prediction
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