Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Access to 2-Arylquinazolines via Catabolism/Reconstruction of Amino Acids with Insertion of Dimethyl Sulfoxide

Jin-Tian Ma, Li-Sheng Wang, Zhi Chai, Xin-Feng Chen, Bo-Cheng Tang, Xiang-Long Chen, Cai

He, Yan-Dong Wu* and An-Xin Wu*

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

E-mail: chwuyd@mail.ccnu.edu.cn

chwuax@mail.ccnu.edu.cn

Table	of Contents	page
1.	General	S2
2.	General procedure for the synthesis of 4	
3.	General procedure for the synthesis of 5b	
4.	Mechanism studies	S3
5.	Characterization data for compounds 4 and 5b	S4-S15
6.	Crystallographic data and molecular structure of 4ba	S15-S16
7.	References	S17
8.	¹ H and ¹³ C NMR spectra of compounds 4 and 5b	S17-S55

1. General

All other substrates and reagents were commercially available and used without further purification. TLC analysis was performed using pre-coated glass plates. Column chromatography was performed using silica gel (200–300 mesh). ¹H spectra were recorded in CDCl₃/DMSO-d₆ on 600/400 MHz NMR spectrometers and resonances (δ) are given in parts per million relative to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C spectra were recorded in CDCl₃/DMSO-d₆ on 150/100 MHz NMR spectrometers and resonances (δ) are given in ppm. HRMS were obtained on a Bruker 7-tesla FT-ICR MS equipped with an electrospray source. The X-ray crystal-structure determinations of **4ba** were obtained on a Bruker SMART APEX CCD system. Melting points were determined using XT-4 apparatus and not corrected.

2. General procedure for the synthesis of 4 (4aa as an example)

A sealed tube was charged with phenylglycine (1a) (151 mg, 1 mmol), p-toluidine (2a) (53.5 mg, 0.5 mmol), 3 ml of DMSO and HI (50 wt % solution in H₂O, 320mg, 2.5 mmol) at 140 °C (heating block) for 18 h till almost completed conversion of the substrates by TLC analysis, the mixture was quenched with saturation Na₂S₂O₃ solution (50 mL), extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 30:1) to afford the product **4aa** (87.1 mg, 79% yield).

3. General procedure for the synthesis of 5b

A mixture of benzaldehyde (**5a**) (254.4 mg, 2.4 mmol), p-toluidine (**2a**) (214 mg, 2.0 mmol) and MgSO₄ (0.5 g) in CH₂Cl₂ (5 mL) was stirred overnight at room temperature. After filtration of MgSO₄, CH₂Cl₂ was removed under reduced pressure and the residue was subjected to column chromatography to give product **5b** over 90% yield.¹

4. Mechanistic studies

1a, 2a reacted with 3, and HI at 140 $^{\circ}$ C for 2 h , obtained the **intermediate 5b** (detected by GC-MS), which could converted to 4aa after 16 h under standard conditions.

The GC-MS Spectra is listed below:

5. Characterization data for compounds 4 and 5b.

6-methyl-2-phenylquinazoline (4aa): Yield 79%; 87.1 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 105-107 °C; ¹H NMR (600 MHz, CDCl3) δ 9.37 (s, 1H), 8.59 (d, J = 7.2 Hz, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.67 (s, 1H), 7.55–7.49 (m, 3H), 2.56 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.3, 159.7, 149.3, 138.0, 137.4, 136.4, 130.4, 128.6, 128.4, 128.2, 125.8, 123.5, 21.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂N₂⁺: 221.1073, found: 221.0175.

6-methyl-2-(p-tolyl)quinazoline (4ba): Yield 77%; 90.8 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 111-113 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.33 (s, 1H), 8.48 (d, J = 7.8 Hz, 2H), 7.95 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.63 (s, 1H), 7.33 (d, J = 7.2 Hz, 2H), 2.53 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.3, 159.6, 149.2, 140.6, 137.1, 136.3, 135.3, 129.3, 128.3, 128.1, 125.8, 123.4, 21.6, 21.5; HRMS (ESI): m/z [M+H]⁺ calcd for $C_{16}H_{15}N_2^+$: 235.1230, found: 235.1231.

6-methyl-2-(m-tolyl)quinazoline (4ca): Yield 75%, 87.7 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 115-117 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.39 (s, 1H), 8.41 (d, J = 8.4 Hz, 2H), 8.02 (d, J = 7.8 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.70 (s, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.33 (s, 1H), 2.58 (s, 3H), 2.49 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.4, 159.8, 149.2, 138.3, 137.8, 137.5, 136.6, 131.3, 129.0, 128.6, 128.2, 125.8, 125.6, 123.5, 21.7, 21.5; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂⁺; 235.1230, found: 235.1231.

6-methyl-2-(o-tolyl)quinazoline (4da):Yield 69%; 80.7 mg; yellow oil; column chromatography, silica gel (PE/EA, 30:1); ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.42 (s, 1H), 8.00 (d, J = 7.2 Hz, 1H), 7.88 (s, 1H), 7.78–7.71 (m, 2H), 7.34 (d, J = 7.8 Hz, 3H), 2.59 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 163.3, 159.3, 148.9, 138.6, 137.7, 137.2, 136.4, 131.2, 130.5, 129.1, 128.2, 125.9, 125.7, 122.9, 21.7, 20.9; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂⁺: 235.1230, found: 235.1231.

2-(3,5-dimethylphenyl)-6-methylquinazoline (4ea): Yield 73%; 86.8 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 150-152 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.37 (s, 1H), 8.21 (s, 2H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.67 (s, 1H), 7.14 (s, 1H), 2.56 (s, 3H), 2.44 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.6, 159.7, 149.3, 138.2, 137.9, 137.3, 136.4, 132.2, 128.1, 126.2, 125.8, 123.5, 21.6, 21.4. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇N₂⁺: 249.1386, found: 249.1388.

2-(4-ethylphenyl)-6-methylquinazoline (4fa): Yield 75%; 92.9 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 77-78 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.36 (s, 1H), 8.51 (d, *J* = 7.8 Hz, 2H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.66 (s, 1H), 7.36 (d, *J* = 7.8 Hz, 2H), 2.74 (d, *J* = 7.8 Hz, 2H), 2.56 (s, 3H), 1.29 (t, *J* = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.4, 159.7, 149.3, 146.9, 137.2, 136.3, 135.6, 128.4, 128.2, 125.8, 123.5, 28.8, 21.6, 15.4; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇N₂⁺: 249.1386, found: 249.1389.

2-(4-methoxyphenyl)-6-methylquinazoline (4ga): Yield 76%; 94.8 mg; yellow solid; column chromatography, silica gel (PE/EA, 20:1); mp 113-115 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.34 (s, 1H), 8.56 (s, 2H), 7.96 (s, 1H), 7.72 (s, 1H), 7.66 (s, 1H), 7.05 (s, 2H), 3.90 (s, 3H), 2.56 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 161.6, 160.2, 159.7, 149.3, 136.9, 136.4, 130.7, 130.0, 128.0, 125.8, 123.3, 113.9, 55.4, 21.6; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂O⁺: 251.1179, found: 251.1181.

2-(3-methoxyphenyl)-6-methylquinazoline (4ha): Yield 72%; 90.1 mg; yellow solid;

column chromatography, silica gel (PE/EA, 20:1); mp 111-113 °C; ¹H NMR (600

MHz, CDCl₃) δ (ppm) 9.38 (s, 1H), 8.20 (d, J = 7.8 Hz, 1H), 8.17 (s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.69 (s, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 3.96 (s, 3H), 2.57 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.1, 159.9, 159.7, 149.2, 139.5, 137.5, 136.4, 129.6, 128.2, 125.8, 123.6, 120.9, 117.1, 112.7, 55.4, 21.7; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂O⁺: 251.1179, found: 251.1181.

2-(4-ethoxyphenyl)-6-methylquinazoline (4ia): Yield 74%; 97.6 mg; yellow solid;

column chromatography, silica gel (PE/EA, 20:1); mp 130-132 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.31 (s, 1H), 8.53 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.62 (s, 1H), 7.02 (d, J = 8.4 Hz, 2H), 4.12 (dd, J = 13.2, 6.6 Hz, 2H), 2.53 (s, 3H), 1.45 (t, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 161.0, 160.2, 159.6, 149.3, 136.8, 136.3, 130.6, 129.9, 128.0, 125.8, 123.2, 114.4, 63.5, 21.6, 14.8; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇N₂O⁺: 265.1335; found: 265.1337.

2-(3,4-dimethoxyphenyl)-6-methylquinazoline (4ja): Yield 68%; 95.1 mg; yellow solid; column chromatography, silica gel (PE/EA, 15:1); mp 113-115 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.34 (s, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 8.19 (s, 1H), 7.98 (d, *J* = 5.4 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.67 (s, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 4.07 (s, 3H), 3.98 (s, 3H), 2.56 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 159.9, 159.7, 151.2, 149.0, 137.1, 136.5, 127.9, 125.8, 123.3, 121.8, 111.1, 110.84, 110.76, 56.00, 55.95, 21.6; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇N₂O₂⁺: 281.1285; found: 281.1287.

2-(3-fluorophenyl)-6-methylquinazoline (4ka): Yield 67%; 79.7 mg; yellow solid;

column chromatography, silica gel (PE/EA, 30:1); mp 116-118 °C; ¹H NMR (400

MHz, CDCl₃) δ (ppm) 9.36 (s, 1H), 8.39 (dd, J = 8.0, 0.8 Hz, 1H), 8.33–8.28 (m, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.74 (dd, J = 8.8, 1.6 Hz, 1H), 7.68 (s, 1H), 7.51–7.45 (m, 1H), 7.18 (ddd, J = 8.4, 5.6, 2.0 Hz, 1H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.3 (d, J = 243.0 Hz, ¹ J_{CF}), 159.8, 159.2 (d, J = 3.0 Hz, ⁴ J_{CF}), 149.2, 140.5 (d, J = 8.0 Hz, ³ J_{CF}), 137.9, 136.6, 130.0 (d, J = 8.0 Hz, ³ J_{CF}), 128.3, 125.8, 124.0 (d, J = 3.0 Hz, ⁴ J_{CF}), 123.8, 117.2 (d, J = 21.0 Hz, ² J_{CF}), 115.2 (d, J = 23.0 Hz, ² J_{CF}), 21.7; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -113.28; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂FN₂⁺: 239.0979; found: 239.0981.

2-(4-fluorophenyl)-6-methylquinazoline (4la): Yield 68%; 80.9 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 101-103 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.37 (s, 1H), 8.63–8.59 (m, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.70 (s, 1H), 7.21 (t, J = 8.4 Hz, 2H), 2.58 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 165.4, 159.8, 149.2, 141.4, 137.6, 136.7, 131.1 (d, J = 249.0 Hz, ¹ J_{CF}), 130.5 (d, J = 9.0 Hz, ³ J_{CF}), 128.1, 125.8, 123.4, 115.6 (d, J = 21.0 Hz, ² J_{CF}), 115.5, 21.7; ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -110.80; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂FN₂⁺: 239.0979; found: 239.0981.

2-(2-chlorophenyl)-6-methylquinazoline (4ma): Yield 66%; 83.8 mg; white solid; column chromatography, silica gel (PE/EA, 30:1); mp 64-66 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.44 (s, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.81 (dd, *J* = 12.4, 7.2 Hz, 2H), 7.75 (s, 1H), 7.53 (dd, *J* = 6.8, 2.8 Hz, 1H), 7.43–7.37 (m, 2H), 2.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 161.2, 159.5, 148.9, 138.34, 138.32, 136.7, 132.9, 131.8, 130.5, 130.2, 128.3, 126.8, 125.8, 123.3, 21.7; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂ClN₂⁺: 255.0684; found: 255.0686.

2-(3-chlorophenyl)-6-methylquinazoline (4na): Yield 69%; 87.5 mg; white solid; column chromatography, silica gel (PE/EA, 30:1); mp 131-133 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.38 (s, 1H), 8.61 (s, 1H), 8.49 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.70 (s, 1H), 7.46 (s, 2H), 2.58 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 159.8, 159.0, 149.2, 139.9, 137.9, 136.6, 134.7, 130.3, 129.8, 128.4, 128.3, 126.4, 125.8, 123.7, 21.7; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂ClN₂⁺: 255.0684; found: 255.0685.

2-(4-chlorophenyl)-6-methylquinazoline (40a): Yield 74%; 93.8 mg; white solid;

column chromatography, silica gel (PE/EA, 30:1); mp 185-187°C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.37 (s, 1H), 8.55 (d, J = 8.4 Hz, 2H), 7.98 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.70 (s, 1H), 7.50 (d, J = 8.4 Hz, 2H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.8, 159.3, 149.2, 137.9, 136.8, 136.4, 129.8, 128.8, 128.2, 125.9, 123.6, 21.7; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂ClN₂⁺: 255.0684; found: 255.0685.

2-(3-bromophenyl)-6-methylquinazoline (4pa): Yield 70%; 104.5 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 179-182°C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.36 (s, 1H), 8.76 (s, 1H), 8.53 (d, *J* = 7.8 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.68 (s, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 1H), 2.57 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.8, 158.8, 149.2, 140.2, 137.9, 136.6, 133.2, 131.4, 130.1, 128.3, 126.9, 125.8, 123.7, 122.9, 21.7; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂BrN₂⁺: 301.0158; found:301.0160.

2-(4-bromophenyl)-6-methylquinazoline (4qa): Yield 71%; 106.1 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 186-188 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.36 (s, 1H), 8.48 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.71–7.63 (m, 3H), 2.57 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 159.8, 159.3, 149.2, 137.8, 136.9, 136.6, 131.7, 130.0, 128.2, 125.8, 125.2, 123.6, 21.7; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂BrN₂⁺: 301.0158; found: 301.0160.

6-methyl-2-(4-(methylthio)phenyl)quinazoline (4ra): Yield 69%; 91.7 mg; yellow solid; column chromatography, silica gel (PE/EA, 20:1); mp 109-111 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.35 (s, 1H), 8.52 (d, *J* = 8.4 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.73–7.71 (m, 1H), 7.66 (s, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 2.56 (d, *J* = 3.0 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 159.9, 159.7, 149.2, 141.7, 137.3, 136.5, 134.6, 128.7, 128.1, 125.82, 125.77, 123.5, 21.6, 15.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂S⁺: 267.0950; found:267.0953.

6-methyl-2-(naphthalen-2-yl)quinazoline (4sa): Yield 65%; 87.7 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 148-151 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.39 (s, 1H), 9.12 (s, 1H), 8.70 (d, J = 7.8 Hz, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.98 (d, J = 7.8 Hz, 1H), 7.88 (s, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.66 (s, 1H), 7.52 (s, 2H), 2.54 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.2, 159.7, 149.3, 137.5, 136.4, 135.4, 134.5, 133.4, 129.2, 128.6, 128.2, 127.7, 126.9, 126.1, 125.8, 125.3, 123.5, 21.6; HRMS (ESI): m/z [M+H]+ calcd for C₁₉H₁₅N₂+: 271.1230; found:271.1229.

6-ethyl-2-phenylquinazoline (4ab): Yield 79%; 92.4 mg; yellow solid; column chromatography; silica gel (PE/EA, 30:1); mp 87-89 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.41 (s, 1H), 8.59 (d, J = 7.2 Hz, 2H), 8.02 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.70 (s, 1H), 7.55–7.50 (m, 3H), 2.87 (dd, J = 15.0, 7.2 Hz, 2H), 1.36 (t, J = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.3, 159.9, 149.5, 143.7, 138.0, 135.5, 130.4, 128.6, 128.4, 128.3, 124.4, 123.6, 28.9, 15.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂⁺: 235.1230; found:235.1231.

6-isopropyl-2-phenylquinazoline (4ac): Yield 73%; 90.5 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 104-106 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.42 (s, 1H), 8.59 (d, J = 7.2 Hz, 2H), 8.03 (d, J = 9.0 Hz, 1H), 7.82 (dd, J = 9.0, 1.8 Hz, 1H), 7.72 (s, 1H), 7.55–7.50 (m, 3H), 3.14 (dd, J = 13.8, 6.6 Hz, 1H), 1.37 (d, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.4, 160.0, 149.6, 148.2, 138.1, 134.2, 130.4, 128.6, 128.4, 123.6, 123.0, 34.1, 23.7; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇N₂⁺: 249.1386; found: 249.1388.

6-(tert-butyl)-2-phenylquinazoline (4ad): Yield 55%; 72.0 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 107-109 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.44 (d, J = 7.2 Hz, 1H), 8.61 (s, 2H), 8.03 (d, J = 4.8 Hz, 2H), 7.84 (d, J = 5.6 Hz, 1H), 7.59–7.50 (m, 3H), 1.46 (d, J = 7.2 Hz, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 160.3, 150.5, 149.3, 138.1, 133.2, 130.4, 128.6, 128.5, 128.1, 123.4, 121.9, 35.1, 31.1; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₉N₂⁺: 263.1543; found: 263.1542.

5,7-dimethyl-2-phenylquinazoline (4ae): Yield 53%; 61.9 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 85-87 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.57 (s, 1H), 8.60 (d, *J* = 6.0 Hz, 2H), 7.71 (s, 1H), 7.53 (d, *J* = 6.6 Hz, 3H), 7.22 (s, 1H), 2.74 (s, 3H), 2.54 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.6, 157.0, 151.5, 145.0, 138.1, 135.0, 130.4, 130.2, 128.6, 128.4, 125.7, 121.0, 22.3, 17.5; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂⁺: 235.1230; found:235.1231.

5,6,7-trimethyl-2-phenylquinazoline (4af): Yield 62%; 76.8 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 136-138 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.64 (s, 1H), 8.59 (d, *J* = 7.2 Hz, 2H), 7.77 (s, 1H), 7.53 (d, *J* = 7.8 Hz, 2H), 7.51–7.48 (m, 1H), 2.70 (s, 3H), 2.53 (s, 3H), 2.40 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 156.8, 156.6, 149.7, 145.3, 138.0, 135.2, 131.9, 130.3, 128.6, 128.3, 126.2, 121.5, 22.2, 15.9, 13.8; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇N₂⁺: 249.1386; found:249.1388.

6-methoxy-2-phenylquinazoline (4ag): Yield 75%; 88.5 mg; yellow solid; column chromatography, silica gel (PE/EA, 20:1); mp 106-108 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.38 (s, 1H), 8.58 (d, J = 6.6 Hz, 2H), 8.02 (d, J = 9.0 Hz, 1H), 7.58–7.47 (m, 4H), 7.16 (s, 1H), 3.97 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 159.2, 158.8, 158.3, 146.9, 137.9, 130.3, 130.1, 128.6, 128.2, 127.3, 124.4, 103.9, 55.8; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃N₂O⁺: 237.1022; found 237.1024.

6-ethoxy-2-phenylquinazoline (4ah): Yield 73%; 91.2 mg; yellow solid; column chromatography, silica gel (PE/EA, 20:1); mp 142-144 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.36 (s, 1H), 8.57 (d, J = 7.8 Hz, 2H), 8.01 (d, J = 9.0 Hz, 1H), 7.54 (dd, J = 16.2, 9.0 Hz, 3H), 7.50–7.48 (m, 1H), 7.14 (s, 1H), 4.18 (dd, J = 13.8, 6.6 Hz, 2H), 1.52 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 159.1, 158.7, 157.6, 146.8, 137.9, 130.2, 130.0, 128.6, 128.2, 127.6, 124.5, 104.5, 64.1, 14.6; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂O⁺⁺: 251.1179; found:251.1181.

6-isopropoxy-2-phenylquinazoline (4ai): Yield 69%; 91.0 mg; yellow solid; column chromatography, silica gel (PE/EA, 20:1); mp 108-110 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.33 (s, 1H), 8.57 (d, J = 7.2 Hz, 2H), 7.99 (d, J = 9.0 Hz, 1H), 7.58–7.46 (m, 4H), 7.13 (s, 1H), 4.79–4.69 (m, 1H), 1.43 (d, J = 5.4 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 159.2, 158.7, 156.4, 146.6, 138.2, 130.1, 128.6, 128.14, 128.11, 124.5, 105.8, 103.8, 70.4, 21.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₇N₂O⁺: 265.1335; found: 265.1337.

6-fluoro-2-phenylquinazoline (4aj): Yield 63%; 70.5 mg; white solid; column chromatography, silica gel (PE/EA, 30:1); mp 120-122 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.42 (s, 1H), 8.59 (d, J = 6.6 Hz, 2H), 8.12–8.07 (m, 1H), 7.67 (s, 1H), 7.53 (d, J = 7.2 Hz, 4H) ¹³C NMR (150 MHz, CDCl₃) δ 160.6, 160.4 (d, J = 250.5 Hz, ¹ J_{CF}), 159.8 (d, J = 4.5 Hz, ⁴ J_{CF}), 147.9, 137.6, 131.3 (d, J = 9.0 Hz, ³ J_{CF}) 130.7, 128.7, 128.4, 124.5 (d, J = 25.5 Hz, ² J_{CF}), 123.9 (d, J = 9.0 Hz, ³ J_{CF}), 110.1 (d, J = 22.5 Hz, ² J_{CF}). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -110.60 HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₀FN₂⁺: 225.0823; found: 225.0824.

6-chloro-2-phenylquinazoline (4ak): Yield 70%; 83.9 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 137-139 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.41 (s, 1H), 8.60 (d, J = 6.6 Hz, 2H), 8.05 (d, J = 9.0 Hz, 1H), 7.92 (s, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.54 (d, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.2, 159.5, 149.2, 137.4, 135.2, 132.8, 130.9, 130.3, 128.7, 128.6, 125.8, 123.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₀ClN₂⁺: 241.0527; found: 241.0529.

6-bromo-2-phenylquinazoline (4al): Yield 58%; 82.6 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 162-164 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.41 (s, 1H), 8.61 (d, J = 5.4 Hz, 2H), 8.10 (s, 1H), 7.98 (s, 2H), 7.54 (s, 3H) ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 161.2, 159.4, 149.4, 137.7, 137.5, 130.9, 130.4, 129.2, 128.7, 128.6, 124.4, 120.8, 77.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₀BrN₂⁺: 287.0001; found: 287.0180.

2-phenyl-6-(trifluoromethoxy)quinazoline (4am): Yield 63 %; 91.3 mg; yellow solid; column chromatography, silica gel (PE/EA, 15:1); mp 104-106 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.46 (s, 1H), 8.60 (d, *J* = 6.0 Hz, 2H), 8.13 (d, *J* = 9.6 Hz, 1H), 7.73 (s, 2H), 7.54 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 161.5, 160.2, 149.0, 147.0, 137.4, 131.1, 130.9, 128.7, 128.6, 128.3, 128.2, 123.4, 121.3, 120.4 (q, *J* = 256.5 Hz, ¹*J*_{CF}); ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -57.90; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₀F₃N₂O⁺: 291.0740; found: 291.0741.

6-(methylthio)-2-phenylquinazoline (4an): Yield 69%; 86.9 mg; yellow solid; column chromatography, silica gel (PE/EA, 20:1); mp 132-134 °C; ¹H NMR (600 MHz, CDCl₃) δ (ppm) 9.36 (s, 1H), 8.58 (d, J = 7.2 Hz, 2H), 7.97 (d, J = 9.0 Hz, 1H), 7.77–7.74 (m, 1H), 7.59 (s, 1H), 7.55–7.50 (m, 3H), 2.63 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 160.3, 158.9, 149.0, 138.9, 137.9, 133.4, 130.5, 128.7, 128.6, 128.3, 124.0, 120.9, 15.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃N₂S⁺: 253.0794; found: 253.0796.

2-phenylquinazolin-6-yl propionate (4ao): Yield 52%; 72.2 mg; white solid; column chromatography, silica gel (PE/EA, 15:1); mp 180-182 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm) 9.91 (s, 1H), 8.85 (d, *J* = 1.6 Hz, 1H), 8.63–8.58 (m, 2H), 8.45 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.14 (d, *J* = 8.8 Hz, 1H), 7.63–7.59 (m, 3H), 4.42 (q, *J* = 7.2 Hz, 2H), 1.40 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm) 164.9, 163.1, 161.6, 151.9, 137.1, 133.6, 131.5, 130.7, 129.0, 128.7, 128.5, 122.8, 61.5, 14.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₅N₂O₂+: 279.1128; found: 279.1130.

2,6-diphenylquinazoline (4ap): Yield 55%; 77.5 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 155-157 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.54 (s, 1H), 8.65 (d, J = 7.2 Hz, 2H), 8.20 (s, 2H), 8.12 (s, 1H), 7.74 (d, J = 7.6 Hz, 2H), 7.54 (dd, J = 10.8, 7.6 Hz, 5H), 7.45 (d, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.8, 160.7, 150.0, 140.3, 139.6, 137.7, 134.0, 130.8, 129.1, 129.0, 128.7, 128.6, 128.2, 127.4, 124.6, 123.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₅N₂⁺: 283.1230; found: 283.1232.

6,7-dimethyl-2-phenylquinazoline (4aq): Yield 62%; 72.5 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 118-121 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.33 (s, 1H), 8.58 (d, J = 7.6 Hz, 2H), 7.86 (s, 1H), 7.65 (s, 1H), 7.56–7.47 (m, 3H), 2.51 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.3, 159.1, 149.8, 145.3, 138.2, 137.6, 130.3, 128.6, 128.3, 127.8, 126.1, 122.3, 20.9, 20.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅N₂⁺: 235.1230; found: 235.1232.

6-methyl-2-phenylquinazoline (4aa- d_1 **):** Yield 62%; 68.5 mg; yellow solid; column chromatography, silica gel (PE/EA, 30:1); mp 107-109 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.60 (s, 2H), 8.03 (s, 1H), 7.77 (s, 1H), 7.72 (s, 1H), 7.54 (s, 3H), 2.59 (s, 3H). HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₂DN₂⁺: 222.1136, found: 222.1135.

Ĩ N►

1-phenyl-N-(p-tolyl)methanimine (5b): Yield 90%; 351 mg; yellow oil; column chromatography, silica gel (PE/EA, 50:1); ¹H NMR (600 MHz, CDCl₃) δ 8.31 (s, 1H), 7.84–7.80 (m, 2H), 7.34–7.31 (m, 3H), 7.09 (s, 4H), 2.26 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 148.9, 135.9, 135.4, 130.8, 129.5, 128.43, 128.37, 120.6, 20.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₄N⁺: 196.1121, found: 196.1109.

6. Crystallographic data and molecular structure of 4ba

Figure S1. X-ray crystal structure of **4ba**, thermal ellipsoids shown at 50% probability level. Sample preparation: 30 mg of **4ba** was dissolved in 4 ml CH₂Cl₂ and 2 ml EtOAc at room temperature for slow evaporation about a week. The crystals were mounted on a glass fiber for diffraction experiments. Intensity data were collected on a Bruker SMART APEX CCD diffractometer with Mo K α radiation (0.71073 Å) at room temperature. Crystal Data for Compound **4ba**: CCDC 2055069 contains the supplementary crystallographic data for this paper. These data could be obtained free of charge from The Cambridge Crystallographic.

Bond precision:	= 0.0000 A	Wavelength=0.71073			
Cell:	a=9.856(4) alpha=90	b=4.9044(18) beta=92.965(7)	c=12.905(5) gamma=90		
Temperature:	296 K				
	Calculated	Repo	orted		
Volume	623.0(4)	623.	0(4)		
Space group	P 21/c	P 1 21/c 1			
Hall group	-P 2ybc	-P 2ybc			
Moiety formula	C16 H14 N2	C16 H14 N2			
Sum formula	C16 H14 N2	C16 H14 N2			
Mr	234.29	234.	29		
Dx,g cm-3	1.249	1.24	19		
Z	2	2			
Mu (mm-1)	0.074	0.07	74		
F000	248.0	248.	0		
F000'	248.08				
h,k,lmax	11,5,15	11,5	5,15		
Nref	1097	1058	3		
Tmin, Tmax	0.982,0.993	0.63	33,0.746		
Tmin'	0.978				
Correction method= # Reported T Limits: Tmin=0.633 Tmax=0.746 AbsCorr = MULTI-SCAN					
Data completene:	ss= 0.964	Theta(max) =	24.999		
R(reflections) = 0.1243(703) WR2(reflections) = 0.3918(1058					
S = 1.604 Npar= 141					

7. References

(1) A. K. Ghosh, S. Mondal, A. Hajra, Org. Lett. 2020, 22, 2771–2775

8. ¹H and ¹³C NMR spectra of compounds 4 and 5b

---0.000

2.580

---0.000

-2.565

0.000

-1.258

---0.000

---0.000

-2.586

