Zhang *et al.* Photo-initiated oxidation of C–H bonds by vanadium(V)

Supporting information for:

Photo-initiated oxidation of C–H bonds by diimine complexes of vanadium(V)

Rui Zhang and Jeffrey J. Warren

Simon Fraser University, Chemistry, 8888 University Drive, Burnaby, BC V5A 1S6, Canada

Contents	
Materials and methods	. 2
Synthetic scheme for V ^V (O)(O) and V ^V (O)(O ₂) compounds	. 2
Luminescence spectra for V ^V (O)(O) and V ^V (O)(O ₂)	. 3
¹ H NMR spectra for DHA and oxidation products	. 4
¹ H NMR spectra for xanthene and oxidation products	. 5
¹ H NMR spectra for fluorene and oxidation products	. 6
¹ H NMR spectra for triphenylmethane (Ph ₃ CH) and oxidation products	. 7
¹ H NMR spectra for toluene and oxidation products	. 8
Yields and product distribution for different substrates	. 9
X-ray crystallography	. 9
Crystal structure of compound 1 (9,9',10,10'-tetrahydro-9,9'-bianthracene)1	10
Crystal structure of compound 2 (bianthronyl)1	10
Crystal structure of compound 3 (anthraquinone)1	11
¹ H NMR spectra for the reaction of toluene with $V^{V}(O)(O)$ under air and N ₂ 1	11
¹ H NMR spectra for reaction of DHA with V ^V (O)(O) under air and N ₂ 1	12
Comparison of photochemical oxidations using different ratios of V-complexes and DHA under	
N ₂ and O ₂ 1	12
⁵¹ V NMR spectra for V ^V (O)(O) before and after irradiation under O ₂ , air and N ₂	13
⁵¹ V NMR spectra for V ^V (O)(O ₂) before and after photochemical reaction under O ₂ , air and N ₂ . 1	13
¹ H NMR spectra for V ^V (O)(O) before and after photochemical reaction under O ₂ , air and N ₂ 1	14
¹ H NMR spectra for $V^{V}(O)(O_{2})$ before and after photochemical reaction under O_{2} , air and N_{2}	15
IR spectra for V ^{IV} (O)(OH), V ^V (O)(O) and V ^V (O)(O ₂)	16
IR spectra for V ^V (O)(O) before and after photochemical reaction under O ₂ , air and N ₂	16
IR spectra for V ^V (O)(O ₂) before and after photochemical reaction under O ₂ , air and N ₂	17
UV-vis spectra for V ^{IV} (O)(OH), V ^V (O)(O) and V ^V (O)(O ₂)	17
UV-vis spectra for $V^{V}(O)(O)$ before and after photochemical reaction under O_2 , air and N_2	18
UV-vis spectra for $V^{V}(O)(O_2)$ before and after photochemical reaction under O_2 , air and $N_2 \dots 1$	18
Computational Details 1	19
References	21

Materials and methods

All chemicals were purchased from Sigma-Aldrich and were used as received, unless noted otherwise. Solvents were from J.T. Baker. Gases were got from Praxair Canada. All vanadium complexes were prepared (see below) and characterized following literature procedures.^{1,2} Nuclear magnetic resonance (NMR) was carried out using the Bruker UltrashieldTM 400 plus. The photochemical character was studied using Spectrofluorometer FS5 (Edinburgh Instruments Ltd). UV-visible (UV-vis) spectra were collected using a Cary100Bio UV-vis spectrophotometer. FT-IR was tested using NEXUS 670 FT-IR of Thermo Instruments (Canada) Inc.

Synthetic scheme for V^V(O)(O) and V^V(O)(O₂) compounds

Figure S1. The syntheses of $V^{V}(O)(O)$ and $V^{V}(O)(O_{2})$ compounds.

Luminescence spectra for $V^V(O)(O)$ and $V^V(O)(O_2)$

Figure S3. Photoluminescence spectra for $V^{V}(O)(O)$ in the presence (blue trace) and absence (red trace) of O_2 .

Figure S3. Photoluminescence spectra for $V^{V}(O)(O_2)$ in the presence (blue trace) and absence (red trace) of O_2 .

Figure S4. Before and after 60 min irradiation ¹H NMR spectra for a solution of DHA and $V^{V}(O)(O)$ in CD₃CN (green was before reaction and red was after reaction). Images of the NMR tubes before and after reactions are shown at left.

Figure S5. Before and after 40 min irradiation ¹H NMR spectra for a solution of DHA and $V^{V}(O)(O_2)$ in CD₃CN (green was before reaction and red was after reaction).

¹H NMR spectra for xanthene and oxidation products

Figure S6. Before and after 40 min irradiation ¹H NMR spectra for a solution of xanthene $V^{V}(O)(O)$ in CD₃CN (green was before reaction and red was after reaction).

Figure S7. Before and after 40 min irradiation ¹H NMR spectra for a solution of xanthene and $V^{V}(O)(O_2)$ in CD₃CN (green was before reaction and red was after reaction).

¹H NMR spectra for fluorene and oxidation products

Figure S8. Before and after 240 min irradiation ¹H NMR spectra for a solution of fluorene and $V^{V}(O)(O)$ in CD₃CN (green was before reaction and red was after reaction).

Figure S9. Before and after 240 min irradiation ¹H NMR spectra for a solution of fluorene and $V^{V}(O)(O_2)$ in CD₃CN (green was before reaction and red was after reaction).

¹H NMR spectra for triphenylmethane (Ph₃CH) and oxidation products

Figure S10. Before and after 360 min irradiation ¹H NMR spectra for a solution of Ph₃CH and $V^{V}(O)(O)$ in CD₃CN (green was before reaction and red was after reaction).

Figure S11. Before and after 360 min irradiation ¹H NMR spectra for a solution of Ph₃CH and $V^{V}(O)(O_2)$ in CD₃CN (green was before reaction and red was after reaction).

¹H NMR spectra for toluene and oxidation products

Figure S12. Before and after 540 min irradiation ¹H NMR spectra for a solution of toluene and $V^{V}(O)(O)$ in CD₃CN (green was before reaction and red was after reaction).

Figure S13. Before and after 540 min irradiation ¹H NMR spectra for a solution of toluene and $V^{V}(O)(O_2)$ in CD₃CN (green was before reaction and red was after reaction).

Yields and product distribution for different substrates

Substrates	Product	Relative	Relative	
		Yield w/	Yield w/	
		V(O)(O) (%)	V(O)(O ₂) (%)	
Xanthene	dixanthene	94	88	
	xanthone	6	12	
9,10	bianthracene	88	76	
dihydroanthracene	bianthronyl	6	11	
	anthraquinone	6	14	
fluorene	dimer	100	100	
triphenylmethane	dimer	100	100	
toluene	phenylethanol	71	29	
	benzaldehyde	34	67	

Table S1. Yields and product distribution for different substrates using V(O)(O) or $V(O)(O_2)$ calculated from ¹H NMR integration.

X-ray crystallography

Crystals were coated in paratone oil, mounted on a MiTeGen Micro Mount. Data were collected on a Bruker Smart instrument equipped with an APEX II CCD area detector fixed at a distance of 5.0 cm from the crystal and a Cu K α fine focus sealed tube ($\lambda = 1.54178$ nm) operated at 1.5 kW (50 kV, 30 mA), filtered with a graphite monochromator. All diffraction data were processed with the Bruker Apex II software suite. Selected data are shown in Table S2.

Identification code	1	2	3
Empirical formula	$C_{28}H_{22}$	$C_{28}H_{22}O_{0.25}$	C7H4O
Formula weight	358.45	362.45	104.10
Temperature/K	296(2)	296(2)	296(2)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/n$	C2/c	$P2_1/c$
a/Å	12.5501(12)	22.3284(6)	7.8768(2)
b/Å	5.8657(6)	7.7485(2)	3.97070(10)
c/Å	12.8898(13)	13.6688(3)	15.8098(3)
α/°	90	90	90
β/°	95.234(6)	126.7290(10)	102.6710(10)
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	944.93(16)	1895.37(8)	482.43(2)

Crystal structure of compound 1 (9,9',10,10'-tetrahydro-9,9'-bianthracene)

Figure S14. Crystal structure of 1 (50 % ellipsoids). All hydrogen atoms are omitted for clarity other than hydrogen on sp³ carbon. Color scheme: gray = C, white = H, and red = O. Crystal parameters matched those reported elsewhere.^{3,4}

Crystal structure of compound 2 (bianthronyl)

Figure S15. Crystal structure of **2** (50 % ellipsoids). All hydrogen atoms are omitted for clarity. Color scheme: gray = C and red = O. Crystal parameters matched those reported elsewhere.⁵

Crystal structure of compound 3 (anthraquinone)

Figure S16. Crystal structure of **3** (50 % ellipsoids). All hydrogen atoms are omitted for clarity. Color scheme: gray = C and red = O. Crystal parameters matched those reported elsewhere.⁶ ¹H NMR spectra for the reaction of toluene with $V^{V}(O)(O)$ under air and N₂

Figure S17. ¹H NMR spectra for reaction with toluene in CD₃CN under air (top) and N_2 (bottom) (540 min irradiation for both cases).

1H NMR spectra for reaction of DHA with $V^V(O)(O)$ under air and N_2

Figure S18. ¹H NMR spectra for reaction with DHA in CD₃CN under air (top) and N_2 (bottom) (60 min irradiation for both cases).

S19. The conversion versus different ratios of $V(O)(O)^{\dagger}Bu/V(O)(O_2)^{\dagger}Bu$ and DHA under N₂ (A) and air (B). In all cases, irradiation time was 60 min.*Note: Figures S19-S28 involve reactions of vanadium complexes in the absences of substrate All reactions times were 60 minutes.*

Figure

Figure S20. ⁵¹V NMR spectra for $V^{V}(O)(O)$ in CD₃CN. (A) Before photochemical reaction; (B) Under air after reaction; (C) Under O₂ after reaction; (D) Under N₂ after reaction.

^{51}V NMR spectra for $V^V(O)(O_2)$ before and after photochemical reaction under $O_2,$ air and N_2

Figure S21. ⁵¹V NMR spectra for $V^{V}(O)(O_2)$ in CD₃CN. (A) Before photochemical reaction; (B) Under air after reaction; (C) Under O₂ after reaction; (D) Under N₂ after reaction.

 1H NMR spectra for $V^V(O)(O)$ before and after photochemical reaction under O2, air and N2

Figure S22. ¹H NMR spectra for $V^{V}(O)(O)$ in CD₃CN. (A) Before photochemical reaction; (B) Under air after reaction; (C) Under O₂ after reaction; (D) Under N₂ after reaction.

 1H NMR spectra for $V^V(O)(O_2)$ before and after photochemical reaction under $O_2,$ air and N_2

Figure S23. ¹H NMR spectra for $V^{V}(O)(O_2)$ in CD₃CN. (A) Before photochemical reaction; (B) Under air after reaction; (C) Under O₂ after reaction; (D) Under N₂ after reaction.

IR spectra for V^{IV}(O)(OH), V^V(O)(O) and V^V(O)(O₂)

Figure S24. IR spectra for $V^{IV}(O)(OH)$, $V^{V}(O)(O)$ and $V^{V}(O)(O_2)$ in CH₃CN. The V – O stretch for $V^{IV}(O)(OH)$, $V^{V}(O)(O)$ and $V^{V}(O)(O_2)$ were about 969, 925 and 950 cm⁻¹, respectively.

IR spectra for $V^V(O)(O)$ before and after photochemical reaction under O_2 , air and N_2

Figure S25. IR spectra for $V^{V}(O)(O)$ before and after photochemical reaction under O₂, air and N₂ in CH₃CN.

IR spectra for $V^{V}(O)(O_2)$ before and after photochemical reaction under O_2 , air and N_2

Figure S26. IR spectra for $V^{V}(O)(O_2)$ before and after photochemical reaction under O_2 , air and N_2 in CH₃CN.

UV-vis spectra for V^{IV}(O)(OH), V^V(O)(O) and V^V(O)(O₂)

Figure S27. UV-vis spectra for $V^{IV}(O)(OH)$, $V^{V}(O)(O)$ and $V^{V}(O)(O_2)$ in CH₃CN. The absorption for $V^{IV}(O)(OH)$, $V^{V}(O)(O)$ and $V^{V}(O)(O_2)$ were about 390, 360 and 475 nm, respectively.

UV-vis spectra for $V^{V}(O)(O)$ before and after photochemical reaction under O_2 , air and N_2

Figure S28. UV-vis spectra for $V^{V}(O)(O)$ before and after photochemical reaction under O₂, air and N₂ in CH₃CN.

UV-vis spectra for $V^V(O)(O_2)$ before and after photochemical reaction under O_2 , air and N_2

Figure S29. UV-vis spectra for $V^{V}(O)(O_2)$ before and after photochemical reaction under O_2 , air and N_2 in CH₃CN.

Computational Details

Calculations were performed using the ORCA 4.2.1 *ab initio* quantum chemistry program.^{7,8} Geometry optimizations and single point calculations were carried out using the TPSSh functional, utilizing the RIJCOSX algorithm.⁹ The basis set was def2-TZVP(-f)/def2/J ^{10–12} and the Becke-Johnson damping scheme^{13,14} on all atoms. The optimized structure were characterized using vibrational frequency calculations at the same level of theory to confirm that the structures were located at a minimum on the potential energy surface. Metrical parameters calculated for cis-V(O)(O)(4,4'-dimethylbipyridyl)⁺ are similar to those in an experimental X-ray structure.¹ TD-DT For direct comparison with TD-DFT calculations, single-point energy calculations used the TPSS¹⁵ functional and def2-TZVP(-f) def2-TZVP/C basis set^{10–12} in acetonitrile solvent using the a dielectric continuum model (CPCM).¹⁶

v	6,11941896773942	-0.45497842799425	3,17792006162757
0	7.42171822791517	0.23419708693504	3.86243064469444
0	6.65719097869000	-1.33642884485130	1.92568235155056
N	4.90224421813376	0.20495097743733	5.00593609921729
N	5.86680993267706	-2.15956357626153	4.41219124184775
Ν	5.59842040115707	1,28724768358628	2.09684091518601
N	3.94659965808749	-0.71658254645268	2.45953161097691
C	4.45331742695137	1.44126138659987	5.24301677471115
Н	4.55686894493672	2.15638250989757	4.43685147531889
С	3.88177309989034	1.81700556961199	6.45017516511002
Н	3.53235847962820	2.83382548579273	6.57910038850640
С	3.76555004642875	0.88260017728372	7.47868161441956
C	3.17191589502349	1.23169622560776	8.81227298886765
C	4.23524915805885	-0.40633581426814	7.22273530428836
Н	4.16410983024288	-1.16372569386770	7.99205479390295
С	4.79373627190739	-0.71246390423155	5.98763644167676
С	5.30848029449492	-2.04854263543925	5.64286968173848
С	5.22302256403763	-3.14193344774523	6.49295071223675
Н	4.76732605086169	-3.02885337046565	7.46749181117825
С	5.71069817625889	-4.38915485856112	6.09913448395671
С	5.63818005727617	-5.57167189933142	7.01733407871840
С	6.26840371438234	-4.48106495991579	4.82411739003691
Н	6.65625235425533	-5.42017760211314	4.45051916537879
С	6.33099818220032	-3.35797662742191	4.01934778166465
Н	6.75786610467339	-3.39417972947902	3.02665613159933
С	6.50832691900401	2.26516780156075	1.93586676410267
Н	7.40346949084912	2.17671399377596	2.53529399130056
С	6.32298626480415	3.31382859135832	1.05688718228515
Н	7.09219703746401	4.07043477005487	0.96823643051088
С	5.15654928616686	3.37762011981659	0.29066339086914
С	4.94565516708622	4.46753963124754	-0.71530720005892
С	4.20979895419081	2.37326547693818	0.48471605219002
Н	3.28769584917825	2.39084285286609	-0.08011213049193
С	4.44673079857131	1.34428309425520	1.38820613786388
С	3.49165760480615	0.25239442965249	1.64241305705319
С	2.21071685355333	0.21725914403950	1.09656135295604
Н	1.87227101327832	1.01493385530226	0.44890095863973
С	1.35098681052311	-0.83783910057734	1.39387454612903

Coordinates for the optimized geometry of cis-V(O)(O)(4,4'-dimethylbipyridyl)⁺

С	-0.04047505532337	-0.90127360638836	0.83569190376245
С	1.84206559650787	-1.83784362811795	2.23695964165054
Н	1.22988066516078	-2.68838466149653	2.51083784221371
С	3.12980964585105	-1.74097343613457	2.73661384486284
Н	3.52296814893012	-2.51187841187625	3.38557366452571
Н	2.73493196267835	2.23009194271820	8.80176900979656
н	3.94508268008313	1.19678393794816	9.58507099940136
Н	2.40175192396629	0.50890977548609	9.09012220136003
Н	5.94782491806296	-6.48434213621923	6.50935774886174
Н	4.62293374777036	-5.69930508354470	7.40025593584026
Н	6.29195709798322	-5.41170489880348	7.87949093445543
Н	-0.26412944995417	-0.02555203344425	0.22687575219766
Н	-0.77061178649273	-0.96437134836633	1.64667260558404
Н	-0.16132063317417	-1.79695038277863	0.22053597448694
Н	3.89792628828449	4.54438512279118	-1.00576822757744
Н	5.53394736760948	4.25100272709856	-1.61275052690357
Н	5.28709579667204	5.42659829648508	-0.32209894627820

Posit	ions of th	ne 25 lowest	energy	transi	tions fo	or cis-V	((O)(O) (4	l,4´-dime	thylbipyr	idyl)+
Stata	Engenery	Waxalanath	face	т <u>э</u>	DV	DV	D7			

State	e Energy	Wave	length	fosc	P2		PX	P	Y	ΡZ	
	(cm ¹)	(nm)	_		(au**2)	(8	u)	(au)	(au)	
1	19525.8	512.1	0.0047	70175	0 0.0792	27	-0.08	012	0.1	7069	-0.20910
2	20625.0	484.8	0.0033	30131	7 0.0526	59	-0.17	988	-0.0	3603	0.13799
3	25287.2	395.5	0.0002	29192	0.0038	30	-0.02	163	-0.0	2164	0.05352
4	26332.6	379.8	0.0009	98159	9 0.0122	27	-0.09	759	0.0	4195	-0.03143
5	26729.3	374.1	0.0021	18981:	5 0.0269	97	-0.11	418	0.0	0941	0.11767
6	28220.0	354.4	0.002	18431	6 0.0254	18	-0.05	093	0.1	4499	-0.04321
7	28459.5	351.4	0.0005	51715	6 0.0059	98	0.000	559	0.0	0759	0.07669
8	28588.4	349.8	0.0028	34829	5 0.0328	30	-0.07	702	-0.1	4139	0.08292
9	29340.5	340.8	0.0004	48910	6 0.0054	19	-0.00	819	-0.0	3346	0.06558
10	29861.2	334.9	0.000	53662	0.005	92	-0.06	5927	0.0	00719	0.03266
11	30249.3	330.6	0.003	52360	0.038	35	-0.03	512	0.1	13285	-0.13952
12	30807.1	324.6	0.047	47639	0.507	34	0.15	695	-0.3	37109	0.58737
13	31333.1	319.2	0.001	52442	0.016	02	-0.00	265	-0.	10897	0.06430
14	31502.9	317.4	0.001	83738	6 0.019	20	-0.04	504	0.0)8939	-0.09583
15	31938.4	313.1	0.002	20379	0.022	72	0.06	619	0.1	2029	0.06217
16	32448.4	308.2	0.113	83451	0 1.154	93	-0.92	2003	-0.3	52043	0.19397
17	32558.3	307.1	0.074	58389	0.754	15	-0.20	047	0.7	77142	0.34479
18	32699.4	305.8	0.044	33207	8 0.446	33	-0.05	807	0.6	54027	0.18170
19	33679.5	296.9	0.025	79003	5 0.252	09	0.32	184	-0.2	29485	0.24815
20	33998.7	294.1	0.012	93577	6 0.125	26	0.13	213	0.0)9858	-0.31318
21	34043.2	293.7	0.009	77104	7 0.094	49	-0.24	317	-0.	18742	-0.01527
22	34118.1	293.1	0.021	67450	6 0.209	14	0.11	466	0.0)8637	-0.43421
23	34587.9	289.1	0.020	39452	.4 0.194	12	-0.20	396	0.3	35140	0.17040
24	34736.1	287.9	0.004	40793	0.041	78	0.19	852	0.0	0719	0.04810
25	35221.4	283.9	0.001	70960	0.015	98	0.11	510	-0.0)5221	0.00238

References

- Waidmann, C. R.; Zhou, X.; Tsai, E. A.; Kaminsky, W.; Hrovat, D. A.; Borden, W. T.; Mayer, J. M. Slow Hydrogen Atom Transfer Reactions of Oxo- and Hydroxo-Vanadium Compounds: The Importance of Intrinsic Barriers. J. Am. Chem. Soc. 2009, 131, 4729–4743. https://doi.org/doi: 10.1021/ja808698x.
- (2) Waidmann, C. R.; DiPasquale, A. G.; Mayer, J. M. Synthesis and Reactivity of Oxo-Peroxo-Vanadium(V) Bipyridine Compounds. *Inorg. Chem.* 2010, 49 (5), 2383–2391. https://doi.org/10.1021/ic9022618.
- (3) Li, P.-C.; Wang, T.-S.; Lee, G.-H.; Liu, Y.-H.; Wang, Y.; Chen, C.-T.; Chao, I. Theoretical Study and X-Ray Determination of Bianthrones: Long C-C Bond Length and Preferred Gauche Conformation. J. Org. Chem. 2002, 67 (23), 8002–8009. https://doi.org/10.1021/jo020196g.
- (4) Li, P.-C.; Wang, T.-S.; Lee, G.-H.; Liu, Y.-H.; Wang, Y.; Chen, C.-T.; Chao, I. Theoretical Study and X-Ray Determination of Bianthrones: Long C-C Bond Length and Preferred Gauche Conformation. *J. Org. Chem.* 2003, 68 (6), 2528–2528. https://doi.org/10.1021/jo0399246.
- (5) Wen, Z.-G.; Li, J.-M. Redermination of 9,9'-Bianthracene-10,10'(9H,9'H)-Dione. *Acta Cryst E* **2008**, 64 (10), o1931–o1931. https://doi.org/10.1107/S1600536808028833.
- (6) Lonsdale, K.; Milledge, J.; El Sayed, K. The Crystal Structure (at Five Temperatures) and Anisotropic Thermal Expansion of Anthraquinone. *Acta Cryst* **1966**, *20* (1), 1–13. https://doi.org/10.1107/S0365110X6600001X.
- (7) Neese, F. The ORCA Program System. WIREs: Comput. Mol. Sci. 2012, 2, 73–78.
- (8) Neese, F. Software Update: The ORCA Program System, Version 4.0. WIREs: Comput. Mol. Sci. 2018, 8 (1), e1327. https://doi.org/10.1002/wcms.1327.
- (9) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A 'Chain-of-Spheres' Algorithm for the Hartree–Fock Exchange. *Chem. Phys.* **2009**, *356* (1), 98–109. https://doi.org/10.1016/j.chemphys.2008.10.036.
- (10) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057–1065. https://doi.org/10.1039/B515623H.
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005, 7 (18), 3297–3305. https://doi.org/10.1039/B508541A.
- (12) Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized Accurate Auxiliary Basis Sets for RI-MP2 and RI-CC2 Calculations for the Atoms Rb to Rn. *Theor Chem Acc* 2007, *117* (4), 587–597. https://doi.org/10.1007/s00214-007-0250-5.
- (13) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.
- (14) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. https://doi.org/10.1002/jcc.21759.
- (15) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta--Generalized Gradient Approximation Designed for Molecules and Solids. *Phys. Rev. Lett.* 2003, *91* (14), 146401. https://doi.org/10.1103/PhysRevLett.91.146401.
- (16) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24 (6), 669–681. https://doi.org/10.1002/jcc.10189.