Electronic Supplementary Information

A F-deficient and high-Mn ternary perovskite fluoride anode with a dominant

conversion mechanism for advanced Li-ion batteries

Yongfa Huang, Rui Ding*, Danfeng Ying, Yuxi Huang, Caini Tan, Tong Yan, Xiujuan

Sun, and Enhui Liu

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education,

College of Chemistry, Xiangtan University, Hunan 411105, P.R. China

^{*} E-mails: drm8122@163.com; drm8122@xtu.edu.cn (R. Ding);

Tel: +86 731 58292202; Fax: +86 731 58292251

Table of contents

Experimental section
Figure S1 Quantitative analysis of XRD data of KNCMF-3# sample: XRD patterns (a),
quantitative results (b), integrated areas of impurity MF_2 (c) and $KNCMF-3#$ (d)7
Figure S2 (a) EDS spectra and (b-n) element mapping from SEM/TEM images of
KNCMF-3# sample
Figure S3 (a) BET, (b) pore volume and (c) pore size distribution of KNCMF-3# sample9
Figure S4 (a-f) GCD curves of KNCMF 1#~6# electrodes at 0.1-3.2 A g ⁻¹ 10
Figure S5 (a-d) GCD curves of KNCMF 7#~10# electrodes at 0.1-3.2 A g ⁻¹ 11
Figure S6 (a-f) rate performance and Coulombic efficiency of KNCMF 1#~6# electrodes at
0.1-3.2-0.1 A g ⁻¹
Figure S7 (a-d) rate performance and Coulombic efficiency of KNCMF 7#~10# electrodes at
0.1-3.2-0.1 A g ⁻¹
Figure S8 (a-f) cycling stability and Coulombic efficiency of KNCMF 1#~6# electrodes at 2
A g ⁻¹ for 1000 cycles
Figure S9 (a-d) cycling stability and Coulombic efficiency of KNCMF 7#~10# electrodes at
2 A g ⁻¹ for 1000 cycles
Figure S10 GCD curves of the first five cycles for KNCMF-3# electrode at 0.1 A g ⁻¹
Figure S11 (a-i) CV plots of the first three cycles of KNCMF (1#, 2#, 4#, 5#, 6#, 7#, 8#, 9#,
10#) electrodes at 0.3 mV s ⁻¹
Figure S12 (a-i) GCD curves of the first five cycles for KNCMF (1#, 2#, 4#, 5#, 6#, 7#, 8#,
9#, 10#) electrodes at 0.1 A g ⁻¹
Figure S13 Pseudocapacitive contribution CV plots in shadow regions (a-j) and ratios (k) of
the KNCMF-3# electrode19
Figure S14 CV plots at 0.5~50 mV s ⁻¹ (a, c, e) and plots of lgi~lgv (b, d, f) of the KNF, KCF
and KMF electrodes
Figure S15 The equivalent circuits used to fit the experimental Nyquist plots (a) before and
(b) after cycling of KNCMF-3# electrode
Figure S16 Performance of LFP electrode for Li-ion storage
Figure S17 GCD curves of KNCMF-3# electrode at the pre-charged current density of 0.1 A
g ⁻¹

Figure S18 (a) CV plots of 4.7 V-KNCMF-3#//LFP LIBs, (b) GCD curves of 4.7
V-KNCMF-3#//LFP LIBs
Figure S19 Performance of KNCMF-3#//LFP LIBs at the -20°C
Figure S20 Performance of KNCMF-3#//LFP LIBs at the 40°C
Figure S21 The experiment on lighting up a LED lamp at different time points based on the
KNCMF//LFP LIB, (a) initial, (b) after 10 minutes, and (c) after 20 minutes27
Figure S22 XPS control experiments (Ar-protected and Air-exposed) of the KNCMF-34
electrode in charged-3 V and discharged-0.01 V states for the first cycle
Figure S23 XPS spectra (air-exposed) of the KNCMF-3# electrode in pristine
discharged -0.01 V and charged -3 V states for the first cycle at 0.05 A g^{-1} : (a) survey
(b) Ni2p, (c) Co2p, (d) Mn2p, (e) K2p, (f) F1s and (g) Li1s29
Figure S24 Ex-situ XRD plots in pristine and initial discharged/charged states
(discharged-0.6 V, discharged-0.2 V, discharged-0.01 V, charged-1 V, charged-1.4 V
charged-2.4 V, charged-3 V) of the KNCMF-3# electrode
Figure S25 (a) Schematics of reaction mechanisms of F-deficient and high-Mn ternary
perovskite fluoride KNCMF-3# electrode during the discharging/charging processes under the
first two cycles for Li-ion storage; (b) Crystalline information of Ni, Co, Mn, LiF and KMF
(M=Ni, Co, Mn) phases; (c) The equations for reaction mechanisms of the KNCMF-3#
electrode for Li-ion storage
Table S1 Orthogonal experimental design
Table S2 Synthesis condition of KNCMF 1#~10#
Table S3 Summary of performance of KNCMF electrodes
Table S4 Orthogonal experimental analysis results of KNCMF
Table S5 EIS parameters of KNCMF-3# electrode before and after cycling
Table S6 Design of m_+/m ratios for KNCMF-3#//LFP LIBs
Table S7 Summary of performance of KNCMF-3#//LFP LIBs at room temperature (abou
25 °C)
Table S8. A performance comparison of this work with some reported LIBs40
Table S9 Summary of performance of KNCMF-3#//LFP LIBs at the -20 / 40 °C41
Table S10 A performance comparison of this work with some reported perovskite fluorides
anode materials for LIBs42
Table S11 Chemicals, reagents and materials used in the study43
References

Experimental section:

Preparation of KNCMF: The KNCMF materials were synthesized by one-pot solvothermal method based on the orthogonal experiment (**Table S1, S2**). Take the procedure of KNCMF-3# for an example. Firstly, 0.4 mmol of NiCl₂·6H₂O, 0.4 mmol of CoCl₂·6H₂O, 1.2 mmol of MnCl₂·4H₂O, 4 mmol of KF·2H₂O and 0.2 g of PVP-K30 were dissolved into the mixed solvents of 18 mL ethylene glycol and 18 mL of N-butanol, and then ultrasonically dispersed to an uniform mixture; Secondly, the mixture was poured into a 50 mL stainless steel Teflon reactor, and then placed in an oven under 180 °C for 24 h and allowed to cool down to room temperature; Finally, the precipitates were centrifuged three times with absolute ethanol and then dry in an oven under 100 °C. The other samples were prepared as the above synthetic steps according to the specific orthogonal experimental conditions.

Characterizations: The phases and crystal structures of samples were analysed by X-ray diffraction (XRD). The morphology and size of samples were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The microstructures of samples were measured by high-resolution TEM (HRTEM) and selected area electron diffraction (SAED). The element composition and distribution of samples were resolved by inductively coupled plasma-optical emission spectrometer (ICP-OES), X-ray energy dispersive spectra (EDS) and mapping. The chemical bonds and electronic structures of samples were checked by X-ray photoelectron spectra (XPS). The specific surface area and pore structure were tested by nitrogen isothermal sorptions with Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively.

Electrochemical Measurements: The electrode fabrication is as follows: the mixture of active materials (for the cathode: LiFePO₄ (LFP); for the anode: KNCMF (1-10#)), acetylene black (AB) and polyvinylidene fluoride (PVDF) (7:2:1, w/w/w) were evenly mixed in N-methyl-2-pyrrolidone (NMP), which was coated onto an carbon-coated Al foil for cathode or Cu foil for anode, then dried in vacuum at 110 °C for 12 h. The coating mass of the active materials is controlled at around 1-3 mg cm^{-2} . Li-ion half cells were assembled into a 2032-type coin cells by using Li plate as a reference electrode and a counter electrode (RE/CE), and using an active material (LFP, KNCMF (1-10#)) as a working electrode (WE), 1 M LiPF₆ in ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) (1:1:1, v/v) with 1 wt% vinylene carbonate (VC) as the electrolytes, and a glass fiber as a separator. The LIBs were also assembled into 2032-type coin cells, the LFP electrode and the pre-lithiated KNCMF-3# anode (0.1 A g⁻¹ for 4.5 cycles) were used as the cathode and anode respectively. All cells were assembled in an argon-filled glove box (MIKROUNA, O₂ and H₂O<0.1 ppm). All electrochemical tests were conducted on CHI 660E and Neware-CT-4008 working stations at room temperature (about 25 °C) except the assigned tests under the low and high temperatures (-20 $^{\circ}$ C and 40 $^{\circ}$ C). The chemicals, agents and materials for electrochemical tests are listed in the Table S10; The calculations for the specific capacity (C_m , mAh g⁻¹), energy density (E_m , Wh kg⁻¹)

and power density (P_m , kW kg⁻¹) were conducted on the basis of Equations (1), (2) and (3):

$$C_m = Q/m$$
 S(1)

$$E_m = C_m V \qquad \qquad \mathbf{S}(2)$$

$$P_{\rm m} = 3.6 E_{\rm m}/t$$
 S(3)

Where m, Q, V, and t are mass of active materials (g, for full cells, it refers to the total masses of active materials of anode and cathode), charge quantity (mAh), discharge platform voltage (V), and discharge time (s), respectively.

Figure S1 Quantitative analysis of XRD data of KNCMF-3# sample: XRD patterns (a), quantitative results (b), integrated areas of impurity MF₂ (c) and KNCMF-3# (d).

Figure S2 (a) EDS spectra and (b-n) element mapping from SEM/TEM images of KNCMF-3# sample.

Figure S3 (a) BET, (b) pore volume and (c) pore size distribution of KNCMF-3# sample.

The N₂ sorption isotherms in Fig. S3 show the smaller hyshysteresis loop and the upswept line at the end of the isotherms, indicating the existence of mesopores and macropores. The small specific surface area and pore volume (23.96 m² g⁻¹, 0.32 cm³ g⁻¹) indicate the limited sign of mesoporous features. The pore size mainly locates at 50.2 nm with the average pore diameter of 41.2 nm, which may be formed by the aggregations of particles.

Figure S4 (a-f) GCD curves of KNCMF 1#~6# electrodes at 0.1-3.2 A g⁻¹.

Figure S5 (a-d) GCD curves of KNCMF 7#~10# electrodes at 0.1-3.2 A g⁻¹.

Figure S6 (a-f) rate performance and Coulombic efficiency of KNCMF $1\#\sim6\#$ electrodes at 0.1-3.2-0.1 A g⁻¹.

Figure S7 (a-d) rate performance and Coulombic efficiency of KNCMF $7\#\sim10\#$ electrodes at 0.1-3.2-0.1 A g⁻¹.

Figure S8 (a-f) cycling stability and Coulombic efficiency of KNCMF $1\#\sim6\#$ electrodes at 2 A g⁻¹ for 1000 cycles.

Figure S9 (a-d) cycling stability and Coulombic efficiency of KNCMF $7\#\sim10\#$ electrodes at 2 A g⁻¹ for 1000 cycles.

Figure S10 GCD curves of the first five cycles for KNCMF-3# electrode at 0.1 A g^{-1} .

Figure S11 (a-i) CV plots of the first three cycles of KNCMF (1#, 2#, 4#, 5#, 6#, 7#, 8#, 9#, 10#) electrodes at 0.3 mV s⁻¹.

Figure S12 (a-i) GCD curves of the first five cycles for KNCMF (1#, 2#, 4#, 5#, 6#, 7#, 8#, 9#, 10#) electrodes at 0.1 A g⁻¹.

Figure S13 Pseudocapacitive contribution CV plots in shadow regions (a-j) and ratios (k) of the KNCMF-3# electrode.

Figure S14 CV plots at $0.5 \sim 50 \text{ mV s}^{-1}$ (a, c, e) and plots of lgi~lgv (b, d, f) of the KNF, KCF and KMF electrodes.

Figure S15 (a) the equivalent circuits used to fit the experimental Nyquist plots before and (b) after cycling of KNCMF-3# electrode.

Figure S16 Performance of LFP electrode for Li-ion storage.

Figure S17 GCD curves of KNCMF-3# electrode at the pre-charged current density of 0.1 A g^{-1} .

Figure S18 (a) CV plots of 4.7 V-KNCMF-3#//LFP LIBs, (b) GCD curves of 4.7 V-KNCMF-3#//LFP LIBs.

Figure S19 Performance of KNCMF-3#//LFP LIBs at the -20°C.

Figure S20 Performance of KNCMF-3#//LFP LIBs at the 40℃.

Figure S21 The experiment on lighting up a LED lamp at different time points based on the KNCMF//LFP LIB, (a) initial, (b) after 10 minutes, and (c) after 20 minutes.

Figure S22 XPS control experiments (Ar-protected and Air-exposed) of the KNCMF-3# electrode in charged-3 V and discharged-0.01 V states for the first cycle.

XPS control experiments (Ar-protected and Air-exposed) of the KNCMF-3# charged/discharged samples have also conducted to examine the influence of aging time on the XPS results (Fig. S22), which show that the plots shapes and peaks binding energy of Ni2p, Co2p, Mn2p, K2p and F1s are basically same, although the light difference in peak binding energy of Li1s owing to the light difference of charge/discharge capacity and virable SEI thickness of the specific electrodes, showing that the aging time in air has a negligible influence on the XPS interpretation.

Figure S23 XPS spectra (Air-exposed) of the KNCMF-3# electrode in pristine, discharged -0.01 V and charged -3 V states for the first cycle at 0.05 A g^{-1} : (a) survey, (b) Ni2p, (c) Co2p, (d) Mn2p, (e) K2p, (f) F1s and (g) Li1s.

Figure S24 Ex-situ XRD plots in pristine and initial discharged/charged states (discharged-0.6 V, discharged-0.2 V, discharged-0.01 V, charged-1 V, charged-1.4 V, charged-2.4 V, charged-3 V) of the KNCMF-3# electrode.

(b)

Phases	PDF Card	Crystal system	Space group	Cell (a x b x c) / Å
Ni	45-1027	Hexagonal	P63/mmc	2.651 × 2.651 ×4.343
Co	05-0727	Hexagonal	P63/mmc	2.503 ×2.503 ×4.061
Mn	17-0910	Tetragonal	I4/mmm	2.672 × 2.672 × 3.55
LiF	45-1460	Cubic	Fm-3m	4.027 × 4.027 × 4.027
NiF ₂	24-0792	Tetragonal	P42/mnm	4.651 × 4.651× 3.084
CoF ₂	38-0883	Cubic	Pa3	4.958 × 4.958× 4.958
MnF ₂	34-1326	Tetragonal	P-42m	5.112 × 5.112× 5.256
KF	36-1458	Cubic	Fm-3m	$5.348 \times 5.348 \times 5.348$
KNiF ₃	21-1002	Cubic	Pm-3m	4.013 × 4.013 × 4.013
KCoF ₃	18-1006	Cubic	Pm-3m	$4.071 \times 4.071 \times 4.071$
KMnF ₃	17-0116	Cubic	Pm-3m	$4.189 \times 4.189 \times 4.189$

(c)

$xKMF_{2.92} + 1.92xLi^+ + 1.92xe^- \rightarrow xKF + 1.92xLiF + xM$	S(4)
$yM + 2yLiF \leftrightarrow yMF_2 + 2yLi^+$	S(5)
zLi⁺+ze⁻+xM/1.92xLiF↔xM/zLi/1.92xLiF	S(6)
$qLi^+ + qe^- + xM/1.92xLiF \leftrightarrow qLi/xM/1.92xLiF$	S(7)
Li ⁺ + electrolytes + e ⁻ ↔ SEI films	S(8)

Where M=Ni, Co and Mn; 0<x<1; 0<y, z, q<x.

Figure S25 (a) Schematics of reaction mechanisms of the KNCMF-3# electrode during the discharging/charging processes for the first two cycles for Li-ion storage; (b) Crystalline information of Ni, Co, Mn, LiF and KMF₃ (M=Ni, Co, Mn) phases; (c) The equations for reaction mechanisms of the KNCMF-3# electrode for Li-ion storag.

		Fa	ctors	
Level	mol ratio -A	Solvent (mL)-B	Temperature (℃)-C	Time (h)-D
1	1:2	EG+EA	160	6
2	1:2.5	EG+NPA	170	12
3	1:3	EG+NBA	180	24

 Table S1 Orthogonal experimental design.

Samples	Conditions
1#	$A_1B_1C_1D_1$
$2^{\#}$	$A_1B_2C_2D_2$
3#	$A_1B_3C_3D_3$
4 [#]	$A_2B_1C_2D_3$
5#	$A_2B_2C_3D_1$
6#	$A_2B_3C_1D_2$
7#	$A_{3}B_{1}C_{3}D_{2}$
8#	$A_3B_2C_1D_3$
9#	$A_3B_3C_2D_1$
10#	$A_1B_3C_3D_1$

Table S2 Synthesis conditions of KNCMF 1#~10#.

Specific capacity / mAh g ⁻¹									
samples	0.1 (Ag ⁻¹)	0.2 (Ag ⁻¹)	0.4 (Ag ⁻¹)	0.8 (Ag ⁻¹)	1.6 (Ag ⁻¹)	3.2 (Ag ⁻¹)	Cycle retention /%	after 1000 cycles / mAh g ⁻¹	
KNCMF-1#	215	195	178	154	122	91	76	122	
KNCMF-2#	197	173	147	123	91	63	71	82	
KNCMF -3 #	240	228	213	187	147	110	72	128	
KNCMF-4#	292	278	250	214	168	119	30	61	
KNCMF-5#	215	195	178	154	122	91	69	101	
KNCMF-6#	241	216	196	165	126	79	38	57	
KNCMF-7#	253	144	87	46	19	7	118	13	
KNCMF-8#	278	127	73	42	19	8	100	12	
KNCMF-9#	370	280	189	91	40	17	115	23	
KNCMF-10#	209	176	139	102	68	42	91	98	

 Table S3 Summary of performance of KNCMF electrodes

			Experiment fa	actor		0	Dete	
Test number		А	В	С	D		Kate	Cycle retention
	(mo	ol ratio)	(solvent)	(°C)	(h)	(1A/g)	(70)	(70)
1#	1	(1:2)	1(EG+EA)	1(160℃)	1(6h)	215	42	76
2#		1	2(EG+NPA)	2(170℃)	2(12h)	197	32	71
3#		1	3(EG+NBA)	3(180℃)	3(24h)	240	46	72
4#	2((1:2.5)	1	2	3	292	41	30
5#		2	2	3	1	215	42	69
6#		2	3	1	2	241	33	38
7#	3	(1:3)	1	3	2	253	3	118
8#		3	2	1	3	278	3	100
9#		3	3	2	1	370	5	115
	K1	652	760	734	800			
	K2	748	690	859	691			
Specific	K3	901	851	708	810			
Capacity	k1	217.33	253.33	244.67	266.67			
(mAh/g)	k2	249.33	230.00	286.33	230.33			
	k3	300.33	283.67	236.00	270.00			
	R	83.00	53.67	41.67	36.33			
	K1	120	86	78	89			
	K2	116	77	78	68			
Pata	K3	11	84	91	90			
(%)	k1	40.00	28.67	26.00	29.67	KNCMF		
(70)	k2	38.67	25.67	26.00	22.67			
	k3	3.67	28.00	30.33	30.00			
	R	36.33	3.00	4.33	7.33			
	K1	219	224	214	260			
	K2	137	240	216	227			
Cycle	K3	333	225	259	202			
retention	k1	73.00	74.67	71.33	86.67			
(%)	k2	45.67	80.00	72.00	75.67			
	k3	111.00	75.00	86.33	67.33			
	R	65.33	5.00	15.00	19.33			
		Spec	ific capacity			A>B>C	>D	A3B3C2D3(or D1)
		Rat	e retention			A>D>C	2>B	A1B1C3D3(or D1)
		Cyc	le retention			A>D>C	2>B	A3B2C3D1
		The opt	imal conditions			Α	1B3C3	(D1 or D3)
	Selected o		A1B3	3C3D3				

Table S4 Orthogonal experimental analysis results of KNCMF electrodes

	EIS	parameters	
Befor	e cycling	Aft	er cycling
Model	R(QR)(QR)	Model	R(QR)(Q(RW))C
$R_{\rm s}\left(\Omega ight)$	3.348	$R_{s}\left(\Omega ight)$	4.322
$Q_1(\mathbf{S}\cdot\mathbf{sec^n})$	1.518×10 ⁻⁵	Q_1 (S·sec ⁿ)	8.806×10-6
n_1	0.8523	n_1	0.9694
$R_{ m ct}\left(\Omega ight)$	56.83	$R_{ m SEI}\left(\Omega ight)$	3.793
Q_2 (S·sec ⁿ)	6.698×10 ⁻⁴	$Q_2(\mathbf{S}\cdot\mathbf{sec^n})$	1.25410-3
n_2	0.9538	n_2	0.4712
$R_{ m e}\left(\Omega ight)$	1.195×10 ⁵	$R_{ ext{ct}}\left(\Omega ight)$	41.23
χ²	2.39×10 ⁻³	$W(\mathbf{S}\cdot\mathbf{sec}^{0.5})$	0.03593
		<i>C</i> (F)	0.05372
		χ^2	9.56×10 ⁻⁴

 Table S5 EIS parameters of KNCMF-3# electrode before and after cycling.

	Q _m (mAh		
Systems	Positive electrode	Negative electrode	<i>m</i> +/ <i>m</i> -
	LFP	KNCMF- 3#	
KNCMF-3#//LFP LIBs	146	240	1.6:1

Table S6 Design of m_+/m_- ratios for KCMF-3#//LFP LIBs.

Systems	Voltage window	Energy density (Wh kg ⁻¹)	Power density (kW kg ⁻¹)	Cycles
KNCMF-3#//LFP LIBs				5 A g ⁻¹ /1000/ 84.8%
	0.471	270.5~35.9	0.63~11.6	5 A g ⁻¹ /2000/ 82.6%
	0-4. / V			5 A g ⁻¹ /3000/ 86.2%
				5 A g ⁻¹ /5000/71.1%

Table S7 Summary of performance of KNCMF-3#//LFP LIBs at room temperature (about 25 ℃).

LIBs Systems	Voltage window / V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling behavior / retention%, repeated cycles current density	Refs.
$Li_{4/3}Ti_{5/3}O_4//LiNi_xCo_yMn_{1\text{-}x\text{-}y}O_2$	1.5-2.7	90	2.2	#	S1
Li ₄ Ti ₅ O ₁₂ -Li ₂ Ti ₃ O ₇ //LiFePO ₄	1.9-2.5	75	0.048	#	S2
TiO2 nanofiber//LiMn2O4	1.7-2.5	220	0.314	90%/700/0.3 A g ⁻¹	S 3
$FeSb\text{-}TiC//Li_{1+x}Mn_{1.5}Ni_{0.5}O_4$	0-5.0	260	0.127	68%/50/0.0365 A g ⁻¹	S4
Graphene/Si multilayer// LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂	3-4.3	156	0.03	70.4%/15/0.0375 A g ⁻¹	85
TiO ₂ hollow nanofiber //LiFePO ₄	0.9-2.5	165	0.16	88%/300/0.1 A g ⁻¹	S 6
Ni ₃ N nanosheets//LiNi _{0.5} Mn _{1.5} O ₄	2.5-4.1	120	3.39	99%/250/1.4 A g ⁻¹	S 7
KNCMF-3#//LFP	0-4.7	270.5-35.9	0.63-11.6	86%/3000/5 A g ⁻¹ 71%/5000/5 A g ⁻¹	This work

Table S8. A performance comparison of this work with some reported LIBs.

Systems	T (°C)	Voltage window	Energy density (Wh kg ⁻¹)	Power density (kW kg ⁻¹)	Cycles
KNCMF-3#//LFP LIBs	-20	0-4.7 V	63.2~2	0.63~11.6	3 A g ⁻¹ /1000/ 78.1% 3 A g ⁻¹ /2000/ 78.1% 3 A g ⁻¹ /3000/ 84.4% 3 A g ⁻¹ /5000/ 86.8%
	40	0-4.7 V	268.5~16	0.57~14.5	5 A g ⁻¹ /500/ 64.8% 5 A g ⁻¹ /1000/ 50.4% 5 A g ⁻¹ /1500/ 42.3% 5 A g ⁻¹ /2000/ 35.2%

Table S9 Summary of performance of KNCMF-3#//LFP LIBs at the -20 / 40 $^{\circ}$ C.

LIBs	Working voltage/ V	Energy density/ Wh kg ⁻¹	Power density/ kW kg ⁻¹	Cycling behavior/ retention%, repeated cycles, current density	Refs
KNCF(1:6)//LFP	0-4.7	173-29	0.75-15.3	67% / 2000 / 2 A g $^{-1}$	S 8
NNCF(1:1)//LFP	1~4.7	196.2~35.2	0.8~19.2	63% / 2000 / 3 A g ⁻¹	S9
KZMF(1-3)//LFP	0.5-4.6	130.8~15.9	0.8~14.3	48% / 5000 / 5 A g ⁻¹	S10
KNCMF-3#//LFP	0~4.7	270.5~35.9	0.63~11.6	71% / 5000 / 5 A g ⁻¹	This work

Note: KNCF(1:6), NNCF(1:1), KZMF(1-3) and KNCMF-3# mean the materials of $K_{1.0}Ni_{0.1}Co_{0.9}F_{3.0}$, $Na_{0.85}Ni_{0.45}Co_{0.55}F_{3.56}$, $K_{1.1}Zn_{0.17}Mn_{0.83}F_{3.03}$ and $K_{1.00}Ni_{0.06}Co_{0.14}Mn_{0.80}F_{2.92}$ respectively.

Table S10. A performance comparison of this work with some reported perovskite fluorides anode materials for LIBs.

Materials, chemicals and reagents	Type or level	Company	Characteristics
NiCl ₂ •6H ₂ O	AR	SinoPharm	Purity 298.0%
CoCl ₂ •6H ₂ O	AR	SinoPharm	Purity 299.0%
MnCl ₂ •4H ₂ O	AR	SinoPharm	Purity 299.0%
KF•2H ₂ O	AR	SinoPharm	Purity 299.0%
PVP-K30	GR	SinoPharm	#
EG	AR	SinoPharm	Purity 299.0%
EA	AR	SinoPharm	Purity 299.7%
NPA	AR	SinoPharm	Purity 299.0%
NBA	AR	SinoPharm	Purity 299.5%
			D50: $4 \pm 2 \mu m$;
LiFePO ₄	LFP-NCO	Aleees	Tab: $1 \pm 0.2 \text{ g cm}^{-3}$;
			SSA: $13 \pm 2 \text{ m}^2 \text{ g}^{-1}$
AB	Battery grade	#	#
NMP	AR	Kermel	Purity 299.0%
PVDF	Battery grade	#	#
Electrolytes	LBC-305-01	CAPCHEM	1 M LiPF ₆ /EC: EMC: DMC (1:1:1)/1% VC
Li plate	15.6*0.45 mm	China Energy	15.6*0.45 mm
Cu foil	200*0.015	GuangZhou JiaYuan	Total thickness: 15 μm; Weight: 87 g m ⁻²
Carbon coated-Al foil	222*0.015	GuagZhou NaNuo	Total thickness: 17 μm; Strength: 192 Ma
Glass microfiber filters	GF/D 2.7 μm 1823-025	Whatman	Diameter: 25 mm; Thickness: 675 μm; Weight: 121 g m ⁻²
Cell components	CR-2032	ShenZhen TianChenHe	#

 Table S11. Chemicals, reagents and materials used in the study.

References

- S1. N. Takami, H. Inagaki, Y. Tatebayashi, H. Saruwatari, K. Honda and S. Egusa, J. Power Sources, 2013, 244, 469-475.
- S2. G. N. Zhu, L. Chen, Y. G. Wang, C. X. Wang, R. C. Che and Y. Y. Xia, Adv. Funct. Mater., 2013, 23, 640-647.
- S3. V. Aravindan, J. Sundaramurthy, P. S. Kumar, N. Shubha, W. C. Ling, S. Ramakrishna and S. Madhavi, *Nanoscale*, 2013, 5, 10636-10645.
- S4. Z. Moorhead-Rosenberg, E. Allcorn and A. Manthiram, *Chem. Mater.*, 2014, 26, 5905-5913.
- S5. L. W. Ji, H. H. Zheng, A. Ismach, Z. K. Tan, S. D. Xun, E. Lin, V. Battaglia, V. Srinivasan and Y. G. Zhang, *Nano Energy*, 2012, 1, 164-171.
- S6. X. Zhang, V. Aravindan, P. S. Kumar, H. Liu, J. Sundaramurthy, S. Ramakrishna and S. Madhavi, *Nanoscale*, 2013, 5, 5973-5980.
- S7. M. S. Balogun, Y. X. Zeng, W. T. Qiu, Y. Luo, A. Onasanya, T. K. Olaniyi and Y. X. Tong, *J. Mater. Chem. A*, 2016, 4, 9844-9849.
- S8. Q. L. Xu, R. Ding, W. Shi, D. F. Ying, Y. F. Huang, T. Yan, P. Gao, X. J. Sun and E. H. Liu, *J. Mater. Chem. A*, 2019, 7, 8315-8326.
- S9. W. Shi, R. Ding, Q. L. Xu, T. Yan, Y. X. Huang, C. N. Tan, X. J, Sun, P. Gao and E. H. Liu, *Chem. Commun.*, 2019, **55**, 6739-6742.
- S10. D. F. Ying, Q. L. Xu, R. Ding, Y. F. Huang, T. Yan, Y. X. Huang, C. N. Tan, X.
 J. Sun, P. Gao and E. H. Liu, *Chem. Eng. J.*, 2020, **388**, 124154.