Supporting Information

Copper-catalyzed cyclization reaction: synthesis of trifluoromethylated indolinyl ketones

Wangqin Ji[†], Hai-Hong Wu[†], Wenbo Li[†], and Junliang Zhang^{†*}

[†]Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China *Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R.China

e-mail : junliangzhang@fudan.edu.cn

Table of Contents for Supporting Information

1.	General Information	S3
2.	Figure S1. X-ray of 3a	S4
3.	Optimization of Reaction Conditions	S5
4.	General procedure for tandem annulation Reaction	S6
5.	Preliminary mechanistic study	S 6
6.	Characterization data for the products	. S9
7.	References	S20
8.	¹ H, ¹⁹ F and ¹³ C NMR Spectra for Compounds	S21

1. General Information

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under nitrogen. ¹H NMR, ¹³C NMR, ¹⁹F NMR spectra were measured at 300 MHz, 400 MHz (or 500 MHz) and 100 MHz (or 125 MHz) in CDCl₃ using TMS signal (δ 0.00 ppm) and the residual signals from CHCl₃ (δ 77.0 ppm) as internal references for ¹H and ¹³C NMR respectively. Data for ¹H NMR spectra are reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constant (Hz), and integration. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Aniline were commercially available. According to the literatures ^{[11}, the starting material β -CF₃-enones were prepared.

2. Figure S1. The X-ray crystallographic data of 3a

Recrystallization in hexane and dichloromethane afforded single crystals suitable for X-ray analysis. The **3a** was dissolved in DCM and hexane was added slowly and there is an upper layer formed. The small bottle was covered by a parafilm on the top with few small holes and the solvents was slowly evaporated until the crystal was formed.

CCDC: 2063261

3. Optimization of Reaction Conditions^a

\sim	$ \begin{array}{c} $	2-bromo-2-methylpropionic acid ethyl ester (2.0 eq) [Cu(OTf) ₂] (5 mol%) [2,2'-bipyridine] (10 mol%) Base (2.0 eq), solvent, T °C 12 h, N ₂		Grand CF3	
Entry	[Base]	[T]/ °C	Solvent	Yield [%] ^{<i>b,c</i>}	
1	K_3PO_4	80	DCM	69	
2	Na ₂ CO ₃	80	DCM	40	
3	NaHCO ₃	80	DCM	Trace	
4	KHCO ₃	80	DCM	70	
5	КОН	80	DCM	ND	
6	NaOH	80	DCM	Trace	
7	Cs ₂ CO ₃	80	DCM	ND	
8	K ₂ CO ₃	80	DCM	78	
9	K ₂ CO ₃	100	DCM	76	
10	K ₂ CO ₃	60	DCM	68	
11	K ₂ CO ₃	40	DCM	30	
12	K ₂ CO ₃	25	DCM	Trace	
15	K ₂ CO ₃	80	Acetone	ND	
16	K ₂ CO ₃	80	dioxane	ND	

^{*[a]*}Unless otherwise noted, all reactions were carried out with 0.2 mmol of **1a**, 0.2 mmol of **2a**, 2.0 equiv of base, 2.0 equiv of 2-bromo-2-methylpropionic acid ethyl ester, 5 mol% of catalyst ([Cu] to L = 1:2) in 2.0 mL solvent for 12 h. ^{*[b]*}Isolated yield. ^{*[c]*} Unless otherwise noted, the dr > 20:1, the diastereomeric ratio was determined by ¹H NMR analysis of the crude products. ND = no detected.

4. General procedure for tandem annulation Reaction

A mixture of Cu(OTf)₂ (3.6 mg, 5 mol%), 2,2'-bipyridine (3.1 mg, 10 mol%), K₂CO₃ (0.4 mmol) in DCM (2.0 mL) under nitrogen atmosphere, then **1** (0.2 mmol), **2** (0.2 mmol), 2-bromo-2-methylpropionic acid ethyl ester (0.4 mmol) were added to this mixture. The resulting mixture was then stirred at 80 °C for about 12 h. After cooling to room temperature, the solution was removed by reducing pressure distillation to yield a residue, which was purified by chromatography on a short silica gel column (hexane/EtOAc = 100/1) to afford the desired product **3**.

5. Preliminary mechanistic study

5.1 Free radical-trapping with BHT

A mixture of Cu(OTf)₂ (3.6 mg, 5 mol%), 2,2'-bipyridine (3.1 mg, 10 mol%), K₂CO₃ (0.4 mmol) in DCM (2.0 mL) under nitrogen atmosphere, then **1a** (0.2 mmol), **2a** (0.2 mmol), 2-bromo-2-methylpropionic acid ethyl ester (0.4 mmol) and BHT (88.1 mg, 0.40 mmol) were added to this mixture. The resulting mixture was then stirred at 80 °C for about 12 h. The reaction was completely inhibited, along with the formation of its adduct **6** with BHT. The following figure is the HRMS analysis of reaction mixture (Figure S2).

Figure S2. Analysis of reaction mixture by HRMS

5.2 Free radical-trapping with TEMPO

A mixture of Cu(OTf)₂ (3.6 mg, 5 mol%), 2,2'-bipyridine (3.1 mg, 10 mol%), K₂CO₃ (0.4 mmol) in DCM (2.0 mL) under nitrogen atmosphere, then **1a** (0.2 mmol), **2a** (0.2 mmol), 2-bromo-2-methylpropionic acid ethyl ester (0.4 mmol) and TEMPO (62.5 mg, 0.40 mmol) were added to this mixture. The resulting mixture was then stirred at 80 °C for about 12 h. The compound **7** via an addition of 2-methylpropionic acid ethyl ester and TEMPO was detected. The following figure is the HRMS analysis of reaction mixture (Figure S3).

Figure S3. Analysis of reaction mixture by HRMS

6. Characterization data for the products

1-methyl-2-(trifluoromethyl)indolin-3-yl)(phenyl)methanone: 3a

White solid. 48.0 mg, 78% yield. ¹H NMR (300 MHz, CDCl₃) δ : 8.10 – 8.07 (m, 2H), 7.70 – 7.65 (m, 1H), 7.59 – 7.54 (m, 2H), 7.14 (t, J = 7.8 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 6.61 – 6.55 (m, 2H), 5.19 (d, J = 6.6 Hz, 1H), 4.77 – 4.69 (m, 1H), 3.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 194.61, 152.02, 136.06, 134.04, 129.45, 129.36, 129.08, 126.02 (q, J = 278.6 Hz), 124.73, 124.25, 118.88, 109.03, 67.62 (q, J = 29.9 Hz), 49.99, 36.89; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.03; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₄F₃NNaO: 328.0920, Found: 328.0911.

(1-methyl-2-(trifluoromethyl)indolin-3-yl)(phenyl)methanone: from Z-enone, 3a White solid. 41.5 mg, 68% yield: ¹H NMR (500 MHz, CDCl₃) δ : 8.09 (t, *J* = 7.4 Hz, 2H), 7.69 (t, *J* = 7.0 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 6.74 (d, *J* = 7.5 Hz, 1H), 6.61 – 6.57 (m, 2H), 5.19 (d, *J* = 6.5 Hz, 1H), 4.76 – 4.70 (m, 1H), 3.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 194.62, 152.03, 136.04, 134.09, 129.49, 129.38, 129.11, 126.01 (q, *J* = 278.5 Hz), 124.72, 124.27, 118.90, 109.06, 67.59 (q, *J* = 29.8 Hz), 49.98, 36.95; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.05; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₄F₃NNaO: 328.0920, Found: 328.0912.

(1-methyl-2-(trifluoromethyl)indolin-3-yl)(p-tolyl)methanone: 3b

White solid. 49.2 mg, 77% yield.: ¹H NMR (500 MHz, CDCl₃) δ : 7.99 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 7.5 Hz, 1H), 6.60 – 6.56 (m, 2H), 5.16 (d, J = 7.0 Hz, 1H), 4.75 – 4.70 (m, 1H), 3.03 (s, 3H), 2.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 194.18, 152.05, 145.17, 133.49, 129.81, 129.63, 129.30, 126.06 (q, J = 278.5 Hz), 124.98, 124.27, 118.88, 109.04, 67.64 (q, J = 29.8 Hz), 49.87, 36.97, 21.76; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.98; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₆F₃NNaO: 342.1076, Found: 342.1082.

(4-isobutylphenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3c White solid. 47.0 mg, 65% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.77 (d, *J* = 7.6 Hz, 1H), 6.61 – 6.57 (m, 2H), 5.17 (d, *J* = 6.4 Hz, 1H), 4.75 – 4.69 (m, 1H), 3.04 (s, 3H), 2.59 (d, *J* = 7.2 Hz, 2H), 2.02 – 1.90 (m, 1H), 0.95 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 194.27, 152.06, 148.83, 133.74, 129.80, 129.47, 129.27, 126.04 (q, *J* = 278.6 Hz), 125.04, 124.24, 118.86, 109.00, 67.71 (q, *J* = 29.8 Hz), 49.87, 45.47, 36.95, 30.12, 22.38; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.96; HRMS (ESI) [(M+Na⁺)] Calcd. For C₂₁H₂₂F₃NNaO: 384.1546, Found: 384.1539.

[1,1'-biphenyl]-4-yl(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3d

White solid. 61.0 mg, 80% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 7.17 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.69 – 7.67 (m, 2H), 7.50 (t, J = 7.2 Hz, 2H), 7.45 – 7.41 (m, 1H), 7.15 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.62 – 6.59 (m, 2H), 5.22 (d, J = 6.4 Hz, 1H), 4.78 – 4.72 (m, 1H), 3.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 194.17, 152.08, 146.82, 139.56, 134.65, 130.12, 129.41, 129.11, 128.60, 127.71, 127.39, 126.05 (q, J = 278.3 Hz), 124.86, 124.31, 118.95, 109.10, 67.67 (q, J = 29.8 Hz), 50.01, 36.99; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.96; HRMS (ESI) [(M+Na⁺)] Calcd. For C₂₃H₁₈F₃NNaO: 404.1233, Found: 404.1233.

(4-methoxyphenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone:

3e

White solid. 55.7 mg, 83% yield: ¹H NMR (400 MHz, CDCl₃) δ : 8.08 (d, J = 9.2 Hz, 2H), 7.14 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 7.6 Hz, 1H), 6.61 – 6.58 (m, 2H), 5.13 (d, J = 6.8 Hz, 1H), 4.75 – 4.68 (m, 1H), 3.92 (s, 3H), 3.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.08, 164.36, 152.10, 131.86, 129.29, 128.87, 126.08 (q, J = 278.1 Hz), 125.24, 124.19, 118.89, 114.32, 109.05, 67.76 (q, J = 29.8 Hz), 55.65, 49.66, 37.04; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.95; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₆F₃NNaO₂: 358.1025, Found: 358.1029.

(4-fluorophenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3f

White solid. 45.3 mg, 70% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 8.14 – 8.09 (m, 2H), 7.27 – 7.22 (m, 2H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 6.61 – 6.58 (m, 2H), 5.13 (d, *J* = 6.8 Hz, 1H), 4.74 – 4.67 (m, 1H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 193.10, 166.37 (d, *J* = 255.2 Hz), 152.03, 132.45 (d, *J* = 2.9 Hz), 132.13 (d, *J* = 37.6 Hz), 129.48, 127.34 (q, *J* = 278.7 Hz), 124.54, 124.09, 118.91, 116.32 (q, *J* = 21.8 Hz), 109.11, 67.67 (q, *J* = 29.9 Hz), 49.93, 36.84; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.01, -103.23; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₃F₄NNaO: 346.0825, Found: 346.0826.

(4-chlorophenyl) (-1-methyl-2-(trifluoromethyl) indolin-3-yl) methanone: 3g

White solid. 49.6 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ : 8.02 (d, *J* = 8.8 Hz, 2H), 7.55 (d, *J* = 8.8 Hz, 2H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.71 (d, *J* = 7.6 Hz, 1H), 6.61 – 6.58 (m, 2H), 5.11 (d, *J* = 6.4 Hz, 1H), 4.72 – 4.68 (m, 1H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 193.46, 151.99, 140.74, 134.38, 130.78, 129.51, 129.45, 125.91 (q, *J* = 278.8 Hz), 124.36, 124.11, 118.92, 109.09, 67.58 (q, *J* = 29.9 Hz), 49.98, 36.81; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.02; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₃ClF₃NNaO: 362.0530, Found: 362.0527.

(4-chlorophenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: from

Z-enone, 3g

White solid. 39.4 mg, 58% yield: ¹H NMR (500 MHz, CDCl₃) δ : 8.02 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.15 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.61 – 6.58 (m, 2H), 5.12 (d, J = 6.5 Hz, 1H), 4.73 – 4.68 (m, 1H), 3.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.46, 152.01, 140.78, 134.36, 130.83, 129.55, 129.49, 125.93 (q, J = 278.3 Hz), 124.35, 124.15, 118.95, 109.15, 67.56 (q, J = 29.9 Hz), 49.99, 36.87; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.06; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₃ClF₃NNaO: 362.0530, Found: 362.0525.

(4-bromophenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3h White solid. 57.6 mg, 75% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 7.94 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.61 – 6.58 (m, 2H), 5.11 (d, *J* = 6.4 Hz, 1H), 4.73 – 4.66 (m, 1H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 193.66, 151.98, 134.79, 132.45, 130.85, 129.52, 129.50, 125.91 (q, *J* = 278.6 Hz), 124.32, 124.12, 118.93, 109.10, 67.56 (q, *J* = 29.9 Hz), 49.98, 36.81; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.01; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₃BrF₃NNaO: 406.0025, Found: 406.0028.

(4-iodophenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3i

White solid. 65.5 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ : 7.94 (d, *J* = 8.8 Hz, 2H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.61 – 6.58 (m, 2H), 5.10 (d, *J* = 6.4 Hz, 1H), 4.73 – 4.66 (m, 1H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 193.97, 151.97, 138.45, 135.32, 130.68, 129.51, 125.90 (q, *J* = 278.7 Hz), 124.31, 124.14, 118.93, 109.09, 102.37, 67.54 (q, *J* = 29.9 Hz), 49.91, 36.81; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.01; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₃F₃INNaO: 453.9886, Found: 453.9884.

3j

White solid. 50.1 mg, 69% yield.: ¹H NMR (300 MHz, CDCl₃) δ : 8.26 (d, J = 8.1 Hz, 2H), 8.16 (d, J = 8.4 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.65 – 6.57 (m, 2H), 5.21 (d, J = 6.3 Hz, 1H), 4.80 – 4.71 (m, 1H), 4.01 (s, 3H), 3.07 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 194.15, 166.01, 151.92, 139.30, 134.76, 130.21, 129.55, 129.34, 125.89 (q, J = 278.9 Hz), 124.19, 124.05, 118.90, 109.10, 67.35 (q, J = 30.0 Hz), 52.63, 50.34, 36.78; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.08; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₉H₁₆F₃NNaO₃: 386.0974, Found: 386.0966.

(1-methyl-2-(trifluoromethyl) indolin-3-yl)(4-(trifluoromethyl) phenyl) metha

none: 3k

White solid. 49.3 mg, 66% yield: ¹H NMR (400 MHz, CDCl₃) δ : 8.18 (d, *J* = 8.0 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.16 (t, *J* = 8.0 Hz, 1H), 6.68 (d, *J* = 7.6 Hz, 1H), 6.62 – 6.58 (m, 2H), 5.17 (d, *J* = 6.4 Hz, 1H), 4.75 – 4.68 (m, 1H), 3.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.78, 151.97, 138.81, 135.33 (q, *J* = 32.5 Hz), 129.77, 129.68, 126.18 (q, *J* = 3.6 Hz), 125.87 (q, *J* = 278.6 Hz), 124.13, 123.95, 123.49 (q, *J* = 271.1 Hz), 119.00, 109.20, 67.48 (q, *J* = 30.0 Hz), 50.28, 36.77; ¹⁹F NMR (376 MHz, CDCl₃): δ -63.21, -75.10; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₃F₆NNaO: 396.0794, Found: 396.0793.

(1-methyl-2-(trifluoromethyl)indolin-3-yl)(4-(trifluoromethoxy)phenyl)m

ethanone: 31

White solid. 56.8 mg, 73% yield.: ¹H NMR (500 MHz, CDCl₃) δ : 8.15 (d, J = 9.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.16 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.63 – 6.60 (m, 2H), 5.13 (d, J = 6.5 Hz, 1H), 4.73 – 4.67 (m, 1H), 3.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.16, 153.38, 152.00, 134.10, 131.50, 129.56, 125.88 (q, J = 278.8 Hz), 124.29, 124.07, 120.68, 120.30 (q, J = 258.0 Hz), 118.96, 109.16, 67.63 (q, J = 29.9 Hz), 49.98, 36.84; ¹⁹F NMR (376 MHz, CDCl₃): δ -57.51, -75.03; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₃F₆NNaO₂: 412.0743, Found: 412.0733.

(3-methoxyphenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3m

White solid. 46.9 mg, 70% yield: ¹H NMR (500 MHz, CDCl₃) δ : 7.68 (d, *J* = 7.5 Hz, 1H), 7.58 (s, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.24 – 7.21 (m, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 6.78 (d, *J* = 7.5 Hz, 1H), 6.60 – 6.58 (m, 2H), 5.15 (d, *J* = 6.5 Hz, 1H), 4.75 – 4.69 (m, 1H), 3.86 (s, 3H), 3.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 194.46, 160.23, 152.02, 137.43, 130.07, 129.41, 126.03 (q, *J* = 278.4 Hz), 124.74, 124.36, 122.06, 120.66, 118.95, 113.60, 109.07, 67.65 (q, *J* = 29.9 Hz), 55.54, 50.16, 36.95; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.99; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₆F₃NNaO₂: 358.1025, Found: 358.1029.

(3-fluorophenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3n

White solid. 47.8 mg, 74% yield.: ¹H NMR (300 MHz, CDCl₃) δ : 7.89 (d, J = 7.8 Hz, 1H), 7.77 (dt, J = 9.0, 2.7 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.43 – 7.36 (m, 1H), 7.17 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 7.8 Hz, 1H), 6.63 – 6.59 (m, 2H), 5.13 (d, J = 6.6 Hz, 1H), 4.76 – 4.67 (m, 1H), 3.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.48 (d, J = 1.8 Hz), 164.09, 162.11,

151.97, 138.16 (d, J = 6.1 Hz), 130.79 (d, J = 7.8 Hz), 129.55, 125.89 (q, J = 278.8 Hz), 125.17 (d, J = 2.9 Hz), 124.20 (d, J = 6.8 Hz), 121.18 (d, J = 21.5 Hz), 118.94, 116.14 (d, J = 22.5 Hz), 109.13, 67.55 (q, J = 29.9 Hz), 50.15, 36.83; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.05, -110.73; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₃F₄NNaO: 346.0825, Found: 346.0816.

(3-bromophenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 30

White solid. 60.7 mg, 79% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 8.22 (s, 1H), 8.02 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 6.64 – 6.61 (m, 2H), 5.12 (d, J = 6.4 Hz, 1H), 4.75 – 4.68 (m, 1H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 193.34, 151.97, 137.81, 136.92, 132.37, 130.61, 129.58, 127.92, 125.89 (q, J = 278.9 Hz), 124.18, 124.14, 123.56, 118.96, 109.13, 67.50 (q, J = 29.9 Hz), 50.12, 36.81; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.01; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₃BrF₃NNaO: 406.0025, Found: 406.0010.

(2-methoxyphenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3p White solid. 45.6 mg, 68% yield: ¹H NMR (400 MHz, CDCl₃) δ : 7.59 – 7.52 (m, 2H), 7.10 (t, J = 7.6 Hz, 1H), 7.06 – 7.02 (m, 2H), 6.62 – 6.53 (m, 3H), 5.48 (d, J = 6.0 Hz, 1H), 4.74 – 4.67 (m, 1H), 3.93 (s, 3H), 3.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 197.61, 158.38, 151.76, 134.32, 131.45, 128.96, 126.96, 126.15 (q, J = 278.6 Hz), 125.42, 124.20, 121.13, 118.69, 111.75, 108.73, 67.00 (q, J = 29.8 Hz), 55.74, 54.26, 36.83; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.44; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₆F₃NNaO₂: 358.1025, Found: 358.1030.

(2-fluorophenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3q

White solid. 45.9 mg, 71% yield: ¹H NMR (400 MHz, CDCl₃) δ : 7.80 (td, J = 7.6, 1.6 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.30 – 7.22 (m, 2H), 7.13 (t, J = 8.0 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 6.59 – 6.55 (m, 2H), 5.19 (d, J = 5.6 Hz, 1H), 4.78 – 4.71 (m, 1H), 3.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.48 (d, J = 3.8 Hz), 162.53, 160.51, 151.75, 135.50 (d, J = 9.1 Hz), 131.71 (d, J = 1.8 Hz), 129.41, 125.97 (q, J = 278.9 Hz), 125.02 (d, J = 3.4 Hz), 124.76 (d, J = 11.6 Hz), 124.15 (d, J = 1.6 Hz), 118.84, 117.02 (d, J = 23.4 Hz), 108.90, 66.75 (q, J = 30.0 Hz), 54.29 (d, J = 9.0 Hz), 36.61; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.48, -110.80; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₃F₄NNaO: 346.0825, Found: 346.0828.

(2-chlorophenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3r

White solid. 47.6 mg, 70% yield: ¹H NMR (400 MHz, CDCl₃) δ : 7.52 – 7.46 (m, 2H), 7.40 – 7.37 (m, 2H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.57 – 6.53 (m, 2H), 6.47 – 6.45 (m, 1H), 5.18 (d, *J* = 5.6 Hz, 1H), 4.74 – 4.68 (m, 1H), 3.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 197.29, 151.51, 137.66, 132.46, 131.51, 130.82, 130.14, 129.49, 127.07, 125.89 (q, *J* = 279.5 Hz), 124.40, 123.44, 118.64, 108.77, 66.18 (q, *J* = 30.1 Hz), 54.11, 36.46; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.54; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₃ClF₃NNaO: 362.0530, Found: 362.0523.

(1-methyl-2-(trifluoromethyl)indolin-3-yl)(naphthalen-1-yl)methanone: 3s White solid. 56.9 mg, 80% yield.: ¹H NMR (500 MHz, CDCl₃) δ : 8.28 (d, *J* = 7.5 Hz, 1H), 8.08 (d, *J* = 8.5 Hz, 1H), 7.97 (d, *J* = 7.0 Hz, 1H), 7.92 – 7.90 (m, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 1H), 6.46 – 6.42 (m, 2H), 5.27 (d, *J* = 6.0 Hz, 1H), 4.84 – 4.79 (m, 1H), 3.07 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 197.47, 151.87, 135.24, 134.02, 133.54, 130.83, 129.51, 129.36, 128.50, 128.36, 126.96, 126.16 (q, *J* = 278.5 Hz), 125.67, 124.50, 124.29, 124.13, 118.87, 109.01, 67.10 (q, *J* = 29.9 Hz), 53.43, 36.90; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.92; HRMS (ESI) [(M+Na⁺)] Calcd. For C₂₁H₁₆F₃NNaO: 378.1076, Found: 378.1074.

(1-methyl-2-(trifluoromethyl)indolin-3-yl)(naphthalen-2-yl)methanone: 3t

White solid. 59.0 mg, 83% yield.: ¹H NMR (300 MHz, CDCl₃) δ : 8.63 (s, 1H), 8.12 (dd, J = 8.7, 1.8 Hz, 1H), 8.04 (d, J = 8.1 Hz, 1H), 7.99 – 7.96 (m, 1H), 7.94 – 7.91 (m, 1H), 7.69 – 7.58 (m, 2H), 7.14 (t, J = 7.8 Hz, 1H), 6.78 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 7.8 Hz, 1H), 6.54 (t, J = 7.5 Hz, 1H), 5.36 (d, J = 6.6 Hz, 1H), 4.85 – 4.76 (m, 1H), 3.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 194.46, 152.09, 136.04, 133.43, 132.61, 131.53, 129.84, 129.41, 129.19, 129.08, 127.93, 127.24, 125.72 (q, J = 353.6 Hz), 124.87, 124.70, 124.35, 118.93, 109.10, 67.71 (q, J = 29.8 Hz), 50.08, 36.98; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.86; HRMS (ESI) [(M+Na⁺)] Calcd. For C₂₁H₁₆F₃NNaO: 378.1076, Found: 378.1071.

Cl (3,4-dichlorophenyl)(1-methyl-2-(trifluoromethyl)indolin-3-yl)methanone: 3u White solid. 47.1 mg, 63% yield: ¹H NMR (500 MHz, CDCl₃) δ : 8.15 (d, *J* = 2.0 Hz, 1H), 7.91 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 6.72 (d, *J* = 7.5 Hz, 1H), 6.62 (t, *J* = 7.5 Hz, 2H), 5.06 (d, *J* = 6.5 Hz, 1H), 4.71 – 4.66 (m, 1H), 3.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 192.55, 151.97, 138.94, 135.59, 134.07, 131.30, 131.22, 129.71, 128.31, 125.83 (q, *J* = 278.5 Hz), 124.10, 123.90, 119.01, 109.21, 67.50 (q, *J* = 30.0 Hz), 50.07, 36.80; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.03; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₂Cl₂F₃NNaO: 396.0140, Found: 396.0135.

benzo [b] thiophen-2-yl (1-methyl-2-(trifluoromethyl) indolin-3-yl) methanone:

3v

White solid. 57.1 mg, 79% yield: ¹H NMR (400 MHz, CDCl₃) δ : 8.19 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.54 – 7.44 (m, 2H), 7.17 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.66 – 6.62 (m, 2H), 5.11 (d, J = 6.4 Hz, 1H), 4.70 – 4.63 (m, 1H), 3.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 189.12, 152.16, 143.39, 142.87, 139.09, 131.15, 129.67, 128.17, 126.44, 125.89 (q, J = 278.4 Hz), 125.43, 124.71, 124.29, 123.14, 119.15, 109.29, 67.78 (q, J = 30.0 Hz), 51.29, 37.03; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.02; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₉H₁₄F₃NNaOS: 384.0640, Found: 384.0638.

(1-methyl-2-(trifluoromethyl)indolin-3-yl)(thiophen-2-yl)methanone: 3w

White solid. 49.8 mg, 80% yield: ¹H NMR (400 MHz, CDCl₃) δ : 7.92 (dd, J = 4.0, 1.2 Hz, 1H), 7.80 (dd, J = 5.2, 1.2 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.17 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.67 – 6.60 (m, 2H), 4.96 (d, J = 6.4 Hz, 1H), 4.66 – 4.59 (m, 1H), 3.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 187.63, 152.16, 143.38, 135.87, 133.80, 129.55, 128.68, 125.87 (q, J = 278.4 Hz), 124.93, 124.18, 119.08, 109.20, 67.77 (q, J = 30.0 Hz), 51.46, 37.02; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.06; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₅H₁₂F₃NNaOS: 334.0484, Found: 334.0477.

(1-methyl-2-(perfluoroethyl)indolin-3-yl)(phenyl)methanone: 3x

White solid. 42.6 mg, 60% yield.: ¹H NMR (500 MHz, CDCl₃) δ : 8.08 (d, *J* = 7.5 Hz, 2H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 6.72 (d, *J* = 7.5 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.59 (t, *J* = 7.5 Hz, 1H), 5.30 (d, *J* = 6.0 Hz, 1H), 4.88 – 4.82 (m, 1H), 3.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 194.63, 152.27, 135.87, 134.09, 129.45, 129.37, 129.14, 125.15, 124.16, 119.17, 119.14 (qt, *J* = 285.0, 35.9 Hz), 114.76 (tq, *J* = 254.2, 35.1 Hz), 109.92, 66.93 (t, *J* = 21.4 Hz), 49.88, 38.58; ¹⁹F NMR (376 MHz, CDCl₃): δ -81.49 (s, 3F), -121.79 – -123.39 (m, 2F); HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₄F₅NO: 378.0888, Found: 378.0886.

Me[´] (4-chlorophenyl)(1,5-dimethyl-2-(trifluoromethyl)indolin-3-yl)methanone: 4a White solid. 53.1 mg, 75% yield.: ¹H NMR (500 MHz, CDCl₃) δ: 8.03 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 1H), 6.53 (s, 2H), 5.10 (d, J = 6.0 Hz, 1H), 4.64 – 4.61 (m, 1H), 3.00 (s, 3H), 2.11 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ: 193.80, 150.06, 140.78, 134.42, 130.82, 129.96, 129.50, 128.65, 125.99 (q, J = 278.1 Hz), 124.85, 124.66, 109.39, 68.20 (q, J = 29.8 Hz), 49.91, 37.62, 20.69; ¹⁹F NMR (376 MHz, CDCl₃): δ -74.98; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₅ClF₃NNaO: 376.0686, Found: 376.0687.

(4-chlorophenyl) (5-methoxy-1-methyl-2-(trifluoromethyl) indolin-3-yl) metha

none: 4b

White solid. 51.8 mg, 70% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 8.04 – 8.00 (m, 2H), 7.57 – 7.54 (m, 2H), 6.73 (dd, J = 8.0, 2.4 Hz, 1H), 6.56 (d, J = 8.8 Hz, 1H), 6.34 – 6.33 (m, 1H), 5.09 (d, J = 6.8 Hz, 1H), 4.65 – 4.58 (m, 1H), 3.60 (s, 3H), 2.98 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 193.51, 153.55, 146.45, 140.88, 134.34, 130.75, 129.55, 125.98 (q, J = 277.8 Hz), 125.96, 113.74, 111.75, 110.10, 68.37 (q, J = 29.8 Hz), 55.93, 50.03, 38.41; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.08; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₅ClF₃NNaO₂: 392.0636, Found: 392.0631.

(5-chloro-1-methyl-2-(trifluoromethyl)indolin-3-yl)(4-chlorophenyl)methano

ne: 4c

White solid. 50.9 mg, 68% yield.: ¹H NMR (500 MHz, CDCl₃) δ : 8.03 – 8.01 (m, 2H), 7.60 – 7.57 (m, 2H), 7.11 (dd, J = 8.5, 1.5 Hz, 1H), 6.67 (s, 1H), 6.50 (d, J = 8.5 Hz, 1H), 5.08 (d, J = 6.5 Hz, 1H), 4.72 – 4.67 (m, 1H), 3.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 192.95, 150.65, 141.20, 133.86, 130.75, 129.70, 129.44, 126.01, 125.67 (q, J = 278.6 Hz), 124.27, 123.57, 109.71, 67.87 (q, J = 30.3 Hz), 49.45, 36.75; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.21; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₂Cl₂F₃NO: 373.0248, Found: 373.0245.

(5-bromo-1-methyl-2-(trifluoromethyl)indolin-3-yl)(4-chlorophenyl)methano

ne: 4d

White solid. 60.3 mg, 72% yield: ¹H NMR (500 MHz, CDCl₃) δ : 8.02 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.26 – 7.24 (m, 1H), 6.80 (s, 1H), 6.46 (d, J = 8.5 Hz, 1H), 5.09 (d, J = 6.0 Hz, 1H), 4.71 – 4.66 (m, 1H), 3.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 192.97, 151.06, 141.21, 133.83, 132.33, 130.75, 129.71, 127.01, 126.50, 125.62 (q, J = 278.6 Hz), 110.39, 110.23, 67.82 (q, J = 30.0 Hz), 49.38, 36.58; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.21; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₂BrClF₃NO: 416.9743, Found: 416.9740.

Me (4-chlorophenyl)(1,6-dimethyl-2-(trifluoromethyl)indolin-3-yl)methanone: 4e White solid. 32.5 mg, 46% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 8.03 – 8.00 (m, 2H), 7.56 – 7.53 (m, 2H), 6.59 (d, J = 7.6 Hz, 1H), 6.42 – 6.40 (m, 2H), 6.06 (d, J = 6.4 Hz, 1H), 4.72 – 4.65 (m, 1H), 3.02 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 193.51, 152.12, 140.64, 139.74, 134.37, 130.77, 129.41, 125.95 (q, J = 278.9 Hz), 123.82, 121.57, 119.66, 109.97, 67.72 (q, J = 29.8 Hz), 49.75, 36.79, 21.61; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.16; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₅ClF₃NNaO: 376.0686, Found: 376.0677.

(4-chlorophenyl)(1,4-dimethyl-2-(trifluoromethyl)indolin-3-yl)methanone 4e' White solid. 21.2 mg, 30% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 7.97 – 7.94 (m, 2H), 7.50 – 7.46 (m, 2H), 7.11 (t, *J* = 8.0 Hz, 1H), 6.51 (dd, *J* = 13.6, 7.6 Hz, 2H), 5.09 (d, *J* = 6.0 Hz, 1H), 4.09 – 4.03 (m, 1H), 3.00 (s, 3H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.40, 152.54, 140.56, 134.60, 134.06, 130.11, 129.58, 129.38, 125.63 (q, *J* = 279.8 Hz), 125.29, 121.24, 106.62, 70.55 (q, *J* = 29.9 Hz), 49.44, 36.95, 19.50; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.02; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₅ClF₃NNaO: 376.0686, Found: 376.0686.

C

(4-chlorophenyl)(1-ethyl-2-(trifluoromethyl)indolin-3-yl)methanone: 4f

White solid. 46.7 mg, 66% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 8.03 – 8.00 (m, 2H), 7.56 – 7.53 (m, 2H), 7.13 (t, *J* = 8.0 Hz, 1H), 6.72 (d, *J* = 7.1 Hz, 1H), 6.61 – 6.55 (m, 2H), 5.08 (d, *J* = 5.6 Hz, 1H), 4.91 – 4.84 (m, 1H), 3.59 – 3.50 (m, 1H), 3.44 – 3.35 (m, 1H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 193.58, 150.68, 140.68, 134.30, 130.79, 129.46, 129.42, 125.95 (q, *J* = 278.5 Hz), 124.64, 124.32, 118.52, 109.21, 64.45 (q, *J* = 30.0 Hz), 49.94, 43.55, 11.09; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.80; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₈H₁₅ClF₃NNaO: 376.0686, Found: 376.0684.

4g

White solid. 49.6 mg, 65% yield.: ¹H NMR (400 MHz, CDCl₃) δ : 8.03 – 8.00 (m, 2H), 7.56 – 7.53 (m, 2H), 7.12 (t, *J* = 7.6 Hz, 1H), 6.71 (d, *J* = 7.6 Hz, 1H), 6.58 – 6.53 (m, 2H), 5.08 (d, *J* = 6.0 Hz, 1H), 4.91 – 4.84 (m, 1H), 3.48 – 3.40 (m, 1H), 3.34 – 3.26 (m, 1H), 1.78 – 1.67 (m, 1H), 1.63 – 1.54 (m, 1H), 1.43 – 1.34 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 193.55, 151.15, 140.66, 134.30, 130.79, 129.43, 129.41, 129.06, 125.93 (q, *J* = 279.0 Hz), 124.29, 118.29, 108.94, 65.02 (q, *J* = 30.0 Hz), 49.98, 49.14, 28.46, 20.23, 13.90; ¹⁹F NMR (376 MHz, CDCl₃): δ -75.64; HRMS (ESI) [(M+Na⁺)] Calcd. For C₂₀H₁₉ClF₃NNaO: 404.0999, Found: 404.0989.

1-(4-chlorophenyl)-4,4,4-trifluoro-3-(methyl(phenyl)amino)butan-1-one: 5 White solid. 52.0 mg, 76% yield.: ¹H NMR (300 MHz, CDCl₃) δ : 7.89 – 7.84 (m, 2H), 7.46 – 7.41 (m, 2H), 7.28 – 7.23 (m, 2H), 6.97 (d, *J* = 8.1 Hz, 2H), 6.84 (t, *J* = 7.2 Hz, 1H), 5.21 – 5.08 (m, 1H), 3.61 (dd, *J* = 17.4, 9.0 Hz, 1H), 3.24 (dd, *J* = 17.4, 3.9 Hz, 1H), 2.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 194.01, 149.93, 140.34, 134.66, 129.63, 129.26, 129.25, 126.45 (q, *J* = 285.4 Hz), 119.53, 115.11, 57.55 (q, *J* = 28.8 Hz), 35.43, 32.84; ¹⁹F NMR (376 MHz, CDCl₃): δ -71.64; HRMS (ESI) [(M+Na⁺)] Calcd. For C₁₇H₁₅ClF₃NNaO: 364.0686, Found: 364.0689.

7. References:

[1] (a) H. Wang, W. Lu and J. Zhang, *Chem. Eur. J.*, 2017, 23, 13587–13590. (b) P.
Kwiatkowski, A. Cholewiak and A. Kasztelan, *Org. Lett.*, 2014, 16, 5930–5933.

8. ¹H, ¹⁹F NMR and ¹³C NMR spectra of the products

