Supporting Information

One-pot synthesis of Na⁺-free Cu-SSZ-13 and its application in the

NH₃-SCR reaction

Juan Wang, ab Linying Wang, b Dali Zhu, bc Wenhao Cui, bc Peng Tian, *b Zhongmin Liu*acb

^aZhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
^b National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. E-mail: <u>tianpeng@dicp.ac.cn</u>; liuzm@dicp.ac.cn.
^c University of Chinese Academy of Sciences, Beijing 100049, China

Experimental Section

Materials

The chemical regents used for zeolite synthesis: *N*,*N*,*N*-trimethyl-l-adamant ammonium hydroxide (TMAdaOH, 25wt%), tetramethylammonium hydroxide (TMAOH, 25wt%); diethylamine (DEA, 99%), ethylenediamine (EDA, 99%), butylamine (BA, 99.5%), piprazine hexahydrate (PIP, 98%), tetraethylenepentamine (TEPA, 90%), pseudoboehmite (Al₂O₃, 66.5wt%), silica gel (99 wt%), CuSO₄·5H₂O (99%), aqueous NH₃ (25wt%).

Synthesis of Na⁺-free SSZ-13 in the presence of TMAdaOH and TMAOH (named SSZ-13_{TMAOH})

The molar composition of the synthesis gel was 30 SiO₂:1 Al₂O₃:3 TMAOH:600 H₂O:1.5 TMAdaOH. The synthesis procedure was as follows. Pseudoboehmite was added to an aqueous solution containing TMAdaOH, TMAOH and deionized water under stirring. After a clear solution is obtained (about 10 minutes), silica gel and seeds (commercial SSZ-13 in protonated form, Figure S1) were further added and stirred for 12 hours. The final gel was transferred to a Teflon-lined stainless steel autoclave and crystallized at 175 °C for a desired time. The product was collected by filtration, washed three times with deionized water, and dried at 100 °C for 24 hours. The as-synthesized sample was calcined in air at 600 °C for 5 h to obtain the H-SSZ-13.

Synthesis of Na⁺-free SSZ-13 in the presence of TMAdaOH and DEA (named SSZ-13_{DEA})

The synthesis procedure was the same as above, except DEA in place of TMAOH. Moreover, calcined Na⁺-free SSZ-13_{TMAOH} was used as the seeds. The final gel composition was 30 SiO₂:1 Al₂O₃:4 DEA:600 H₂O:1.5 TMAdaOH

Synthesis of Na⁺-free SSZ-13 in the presence of TMAdaOH and EDA (named SSZ-13_{EDA})

The synthesis procedure was the same as that of SSZ- 13_{DEA} , except EDA in place of DEA. The final gel composition was 30 SiO₂:1 Al₂O₃:4 EDA:600 H₂O:1.5 TMAdaOH.

Synthesis of Na⁺-free SSZ-13 in the presence of TMAdaOH and BA (named SSZ-13_{BA})

The synthesis procedure was the same as that of SSZ-13_{DEA}, except BA in place of DEA. The final gel

composition was 30 SiO₂:1 Al₂O₃:4 BA: 600 H₂O:1.5 TMAdaOH.

Synthesis of Na⁺-free SSZ-13 in the presence of TMAdaOH and PIP (named SSZ-13_{PIP})

The synthesis procedure was the same as that of SSZ- 13_{DEA} , except PIP in place of DEA. The final gel composition was 30 SiO₂:1 Al₂O₃:5 PIP: 600 H₂O:1.5 TMAdaOH.

Synthesis of Na⁺-free SSZ-13 in the presence of TMAdaOH and NH₃ (aq) (named SSZ-13NH₃)

The synthesis procedure was the same as that of SSZ-13_{DEA}, except NH₃ (aq) in place of DEA. The final gel composition was 30 SiO_2 :1 Al₂O₃:5 NH₃: 600 H₂O:1.5 TMAdaOH.

Synthesis of Na⁺-free CuSSZ-13 zeolites

Pseudoboehmite was added to an aqueous solution containing TMAdaOH, TMAOH and deionized water under stirring. After a clear solution was obtained (about 10 minutes), silica gel and seeds (commercial SSZ-13 in calcined form) were added and stirred for 2 hours. Subsequently, aqueous solution of Cu-TEPA complex, which was prepared by mixing a 20 wt% aqueous solution of CuSO₄·5H₂O with the required amount of TEPA, was added into the gel. After being stirred for 12 hours, the final gel was transferred to a Teflon-lined stainless steel autoclave and crystallized at 175 °C for a desired time. The product was collected by filtration, washed three times with deionized water, and dried at 100 °C for 24 hours. The as-synthesized sample was calcined in air at 600 °C for 5 h to remove the organics.

Characterization

The powder X-ray diffraction (PXRD) data used for the phase identification were collected on a PANalytical X'Pert PRO X-ray diffract meter using the Cu K α radiation ($\lambda = 1.54059$ Å), operating at 40 kV and 40 mA. The inorganic elemental compositions of the solid samples were measured with Philips Magix-601 X-ray fluorescence (XRF) spectrometer. The crystal morphology was observed using a scanning electron microscope (Hitachi SU8020). The textural properties of the calcined samples were measured by N₂ sorption at -196 °C on a Micromeritics ASAP2020 volumetric adsorption analyzer. Prior to the measurement, the sample was degassed at 350 °C under vacuum for 4 h. The total surface area was evaluated based on the BET equation. The micropore surface area and micropore volume were calculated using the t-plot method.

Thermal gravimetric analyses (TG-DSC) were carried out on NETZSCH ATS 449 F3 analyzer from room temperature to 1000 °C with a heating rate of 10 °C min⁻¹ in an air flow of 20 mL min⁻¹.

All the solid state NMR experiments were performed using a Varian Infinity-plus 400 spectrometer equipped with a 9.4 T wide-bore magnet. Chemical shifts of ²⁹Si and ²⁷Al were referenced to kaolinite at -91.5 ppm and (NH₄)Al(SO₄)₂·2H₂O at -0.4 ppm respectively. The spinning rate is 10 kHz. The liquid ¹³C NMR analysis was performed on Bruker Avance III 400 using D₂O as deuterated reagent. Before NMR analysis, the assynthesized sample was dissolved by 40 wt% HF acid (solid/liquid $\approx 0.1g/1mL$), and the liquids were analyzed as they were.

NH₃-TPD experiments were carried out in Micromeritics Autochem II 2920 device. In the tests, 100 mg of calcined sample particles (40-60 mesh) were loaded into a U-shaped quartz tube and pretreated in He flow (30 mL/min) at 650 °C for 1 h to remove any impurities. Then, the mixture of 2% NH₃ and 98 % He was treated with a flow rate of 30 mL/min at 120 °C, and the adsorbed NH₃ (60 min) was used. Subsequently, He

(30 mL/min) was purified by a filter for 30 min to remove weakly adsorbed NH_3 molecules. NH_3 desorption measurement was conducted at 100-600 °C (10°C /min) under He flow (30 mL/min).

EPR measurements were performed on a Bruker A200 spectrometer. The samples were sealed in a nuclear magnetic tube and then purged with dry N_2 at ambient temperature for 1 h. During the spectral collection, the microwave power was 2 mW, and the frequency was 9.2 GHz. The sweep width was 2000 G, and the sweep time was 84 s, modulated at 100 kHz with a 2 G amplitude. A time constant of 41 ms was used. The spectra were collected at 102 K. For the quantification of isolated Cu²⁺ species, copper sulfate solution was used as a standard (at 102 K).

Temperature-programmed reduction by hydrogen (H₂-TPR) was performed on an AUTOCHEM II instrument from Micromeritics. In the TPR experiments, 150 mg calcined sample particles (40-60 mesh) were pretreated in Ar flow (30 mL/min) at 80 °C for 1h to remove impurities. The H₂-TPR experiments were carried out at a 10% H₂ and 90% Ar flow (30 mL/min) from 80 °C to 900 °C at a heating rate of 10 °C/min, and the consumption of H₂ was determined by thermal conductivity detector (TCD).

Catalytic experiments

NH₃-SCR reaction was carried out in a fixed-bed quartz reactor. For each test, 0.30 g of Cu-SSZ-13 and 0.24 g of quartz beads (60-80 mesh) were blended and put into the reactor. The catalyst was activated in N₂ at 550 °C for 2 h prior to activity test. The feed gas contained NO (500 ppm), NH₃ (500 ppm), H₂O (6.4%), O₂ (6.4%) and N₂. The gas hourly space velocity (GHSV) was controlled as 100,000 h⁻¹. The gas compositions (NO, NO₂ and N₂O) were continually monitored by an FTIR spectrometer (Bruker). The FTIR spectra were collected after the reaction reaching a steady state (about 40 min). The formula shown below was used to determine the NOx conversion:

NO conversion (%)=
$$\frac{\left([NO]_{in} - [NO]_{out} - [NO_2]_{out} - 2[N_2O]_{out}\right)}{[NO]_{in}} \times 100\%$$

High-temperature hydrothermal aging (HTA) treatment

HTA was performed at 750 °C for 16 h in the presence of 12.5% H_2O in air. The GHSV was controlled as 90.000 h^{-1} .

Figure S1 The XRD pattern and SEM image of the H-SSZ-13 seeds (commercial sample)

Table S1 Starting gel compositions, crystallization time and product SiO₂/Al₂O₃ ratios of Na⁺-free SSZ-13

Sample ^a	m SR	Time (h)	SiO ₂ /Al ₂ O ₃
SSZ-13 _{TMAOH}	m=3 SR: TMAOH	9	24.8
SSZ-13 _{EDA}	m=4 SR: EDA	108	27.3
SSZ-13 _{BA}	m=4 SR: BA	72	24.8
SSZ-13 _{DEA}	m=4 SR: DEA	108	24.0
SSZ-13 _{PIP}	m=5 SR: PIP	108	25.1
SSZ-13NH3	m=5 SR: NH ₃ (aq)	72	26

^aAll samples were synthesized with the initial gel of 30 SiO₂:1 Al₂O₃:m SR:600 H₂O:1.5 TMAdaOH (10 wt% seeds addition) at 175 °C.

Figure S2 XRD patterns of the as-synthesized Na⁺-free SSZ-13.

Figure S3 SEM images of the as-synthesized Na⁺-free SSZ-13 zeolites.

Figure S4 Liquid ¹³C NMR spectra of the as-synthesized samples dissolved in HF solution.

Figure S5 XRD patterns of the as-synthesized Na⁺-free CuSSZ-13.

Figure S6 SEM images of the as-synthesized Na⁺-free CuSSZ-13.

Figure S7 UV/Vis spectra of Na⁺-free CuSSZ-13 before (left) and after calcination (right).

Sample	Pore volume ^a (cm ³ g ⁻¹) ^a			Surf	Surface area ^b (m ² g ⁻¹) ^b		
	V _{total}	V _{micro}	V _{meso}	S _{total}	Smicro	Sext	
CuSSZ-13-4	0.29	0.27	0.02	603	583	20	

a. V_{total} is evaluated at P/P₀=0.97; V_{micro} = t-plot micropore volume; V_{meso} = V_{total} - V_{micro} .

b. S_{total} : BET surface area; S_{micro} : t-plot micropore surface area; $S_{ext} = S_{total} - S_{micro}$.

Figure S8 (a) ²⁷Al and (b) ²⁹Si MAS NMR spectra of the as-synthesized CuSSZ-13-4. * denotes spinning side band.

Figure S9 The N_2 selectivity over the CuSSZ-13-4 before and after hydrothermal aging treatment. The N_2 selectivity was calculated according to the formula below:

$$N_2 Selectivity = \left(1 - \frac{2[N_2O]}{[NO_X]in - [NO_X]out + [NH_3]in - [NH_3]out}\right) \times 100\%$$

Since NH₃ has not been monitored in real-time, the amount of NH₃ is considered equal to NO.

Figure S10 XRD patterns of calcined CuSSZ-13-4 before and after hydrothermal aging treatment.

Figure S11 NH_3 -TPD curves of calcined SSZ-13 $_{TMAOH}$ and CuSSZ-13-4 before and after hydrothermal aging treatment.

Figure S12 EPR spectra (left) and H₂-TPR profiles (right) of the calcined CuSSZ-13-4 before and after hydrothermal aging treatment.

Table S3. Isolated Cu^{2+} content of the samples by EPR analyses

Sample	Fresh (wt%)	After hydrothermal aging (wt%)
CuSSZ-13-4	2.11	2.11