SUPPORTING INFORMATION

Supporting Information

A vacancy-rich perovskite fluoride K_{0.79}Ni_{0.25}Co_{0.36}Mn_{0.39}F_{2.83}@rGO anode for advanced Na-based dual-ion batteries

Caini Tan^a, Rui Ding^{*a}, Yuxi Huang ^a, Tong Yan^a, Yongfa Huang^a, Feng Yang^a, Xiujuan Sun^a, Ping Gao^a, and Enhui Liu^a

^a Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China

*Corresponding Author

*E-mails: drm8122@163.com; drm8122@xtu.edu.cn

Supporting Information

	Table of contents			
	Table of contents			
Experimental	Synthesis of materials, characterizations, electrochemical	P4-6		
section	measurements, and calculations for $C_{\rm m}$, $E_{\rm m}$, and $P_{\rm m}$.			
Figure S1	The crystal structures of perovskite KMF ₃ and detailed	P7		
8	crystalline parameters for KNiF ₃ , KCoF ₃ , and KMnF ₃ .			
Figure S2	SEM (a), TEM (b), HRTEM (c), SAED(d), mapping (e-l) of	P8		
i igui e >=	the KNCMF@rGO candidate.			
Figure S3	SEM and TEM images of the KNCMF@rGO Sample.	P9		
Figure S4	EDS of the KNCMF@rGO Sample.	P10		
Figure S5	ICP of the KNCMF@rGO Sample.	P11		
Figure S6	TG/DTG curves of the KNCMF@rGO Sample.	P12		
E' 07	N_2 isothermal sorptions (a), pore volumes (b), and pore size	D12		
Figure S7	distributions of the KNCMF@rGO Sample (c).	P13		
	CV plots for the first three cycles at 0.3 mV s ⁻¹ of KNF@rGO			
Figure S8	electrode (a); KCF@rGO electrode (b); and KMF@rGO	P14		
8	electrode (c).			
	Specific capacity (a) and cycling stability (b) of KNF@rGO,			
Figure S9	KCF@rGO, KMF@rGO, and KNCMF@rGO electrode (the	P15		
- G	cycle test used a new cell).			
	XRD patterns of KNCF@rGO, KCMF@rGO and			
	KNMF@rGO samples (a), Specific capacity (b) and cycling			
Figure S10	stability (c) of KNMF@rGO, KNCF@rGO, KCMF@rGO,	P16		
	KNF@rGO, KCF@rGO and KMF@rGO electrodes.			
Eiguna S11		P17		
Figure S11	GCD curves of the KNCMF@rGO electrodes.	P1/		
	CV plots at 0.1-1.0 mV s ⁻¹ (a); plots of $\lg i$ vs.lgv (b); the			
	pseudocapacitive contribution at a scan rate of 0.5 mV s ^{-1} (c);	740		
Figure S12	and charge contributions by the diffusion-controlled and	P18		
	pseuodcapacitive contribution at different scan rates (d) of the			
	KNCMF@rGO electrode.			
Figure S13	Pseudocapacitive contribution map at 0.1 (a), 0.2 (b), 0.3 (c),	P19		
i igui e site	0.5 (d), 0.8 (e), and 1.0 (c) mV s ⁻¹ .	117		
	Ex-situ XPS spectra of the KNCMF@rGO electrode in			
Figure S14	pristine, discharged-0.01 V and charged-3.0 V states during the	P20		
Figure 514	first discharged/ charged cycle at 0.02 A g ⁻¹ : survey (a), C1s	1 20		
	(b) and O1s (c).			
	Ex-situ XRD in pristine and first fully discharged/charged stat-	DO 1		
Figure S15	es of the KNCMF@rGO electrode.	P21		
	Schematics of reaction mechanisms for the KNCMF@rGO			
Figure S16	electrode during the discharging/charging processes under the			
	first two cycles (a); Crystalline structure information of Ni, Co,			
	Mn, NiF ₂ , CoF ₂ , MnF ₂ , NaF, KF, and Na ₂ CO ₃ phases (b), and			
	reaction equation 1-7 (c).			

Figure S17	Electrochemical performance of KS6 electrode.	P23			
Figure S18	Specific capacity at 0.5-8 A g^{-1} (a) (c) (e), GCD curves at 0.5- 8.0 A g^{-1} (b) (d) (f) of the KNCMF@rGO//KS6(1:1/1:.5/1.5:1) Na-DIBs.				
Figure S19	ElectrochemicalperformanceoftheNa-DIBs(KNCMF@rGO//KS6)under low (-20 °C)temperature.	P25			
Figure S20	Electrochemical performance of the Na-DIBs (KNCMF@rGO//KS6) under high (40 °C) temperature.	P26			
Table S1	Materials, chemicals and reagents used in this study.	P27			
Table S2	Specific capacity and cycling retention of the KNCMF@rGO electrode.				
Table S3	Specific capacity, rate capability and cycling retention of KNCMF@rGO, KNMF@rGO, KNCF@rGO, KCMF@rGO, KNF@rGO, KNF@rGO, KCF@rGO and KMF@rGO electrodes.				
Table S4	Specific capacity and cycling retention of the KS6 electrode.	P30			
Table S5	Comparison of electron binding energy of K2p and F1s.	P31			
Table S6	Performance summary of the Na-DIBs in the study under room temperature (25 °C).				
Table S7	Performance summary of the Na-DIBs in the study under low (-20 °C) and high (40 °C) temperature.				
Table S8	A comparison for the performance of the KNCMF@rGO//KS6 in the study with some reported Na (Li)-DIBs	P34			
References	References.	P35			

Synthesis of KNCMF@rGO materials

Analytical/guaranteed reagents (AR/GR) were directly used in the experiment (Table S1). The KNCMF@rGO(Ni:Co:Mn=1:1:1) sample was synthesized via a facile one-pot solvothermal route. Firstly, 60 mg graphene oxides (GO) powder was dispersed in 32 mL ethylene glycol (EG) solvents with an ultrasonic bath for 2 h at 100 W. Secondly, 0.66 mmol NiCl₂•6H₂O, 0.66 mmol CoCl₂•6H₂O, 0.66 mmol MnCl₂•4H₂O, 5 mmol KF•2H₂O, and 0.20 g PVP-K30 were dissolved into GO solution, and then the mixture was magnetically stirred thoroughly and dispersed well in an ultrasonic bath for 30 min at 100 W. Thirdly, the mixture was transferred into a 50 mL Teflon-lined stainless steel autoclave, which was heated at 180 °C for 12 h in an electric oven, and then cooled down naturally. Next, the yielded precipitates were collected after being centrifuged along with absolute alcohol washing for several times. Finally, the precipitates were dried overnight at 95 °C to obtain the products. The synthesis procedure of KNMF@rGO(Ni: Mn=1: 1), KCMF@rGO(Co:Mn=1:1), KNCF@rGO(Ni:Co =1:1), KNiF@rGO, KCoF@rGO and KMnF@rGO are the same as KNCMF@rGO(Ni:Co:Mn=1:1:1) except for the molar ratio of Ni, Co, and Mn slats.

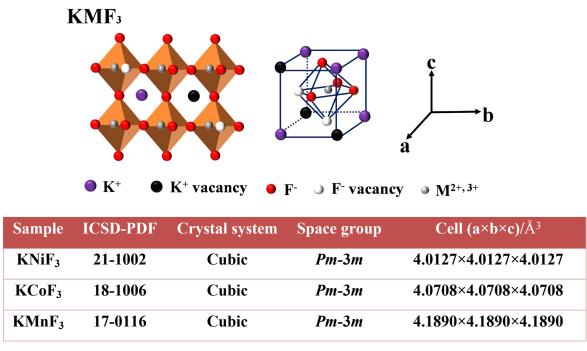
Characterizations

The phases and crystallinity properties were determined by X-ray diffraction (XRD). The morphology and size of particles were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystalline microstructures were resolved by the high-resolution TEM (HRTEM) and selected area electron diffraction (SAED). The element composition and distribution were measured by the X-ray energy dispersive spectra (EDS), inductively coupled plasma-optical emission spectrometer (ICP-OES) and mapping. The surface chemical compositions and electronic structures were checked by X-ray photoelectron spectra (XPS). The specific surface area, pore volume and size distribution were examined by nitrogen isothermal sorptions with Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. The existence and content of reduction graphene oxide were analyzed by

Thermogravimetric analysis (TG) and di erential Thermogravimetric (DTG).

Electrochemical measurements

The electrodes were prepared by the following two steps: firstly, a well-dispersed mixture of 70 wt% active materials, 10 wt% acetylene black (AB) conductive agent/10 wt% superconductive carbon black (for KNCMF@rGO electrode while 20 wt% superconductive carbon for KS6 electrode, respectively), and 10 wt% polyvinylidene fluoride binder (PVDF, which was dissolved in N-methyl-2-pyrrolidone (NMP)). The KNCMF@rGO and KS6 paste was respectively cast onto the current collectors of Cu foil as the anode and carboncoated Al foil as the cathode, followed by drying in a vacuum oven at 110 °C for 12 h; secondly, the electrodes were punched into disks with a diameter of 12 mm, and the mass loading of active materials was about 1-2 mg cm⁻². The electrolytes used for KNCMF@rGO, KS6 electrodes, and Na-DIBs were 0.85 M NaPF₆ dissolved in the mixed solvents of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) (1 : 1 : 1 involume) with 5 % fluoroethylene carbonate (FEC) additive (Na206-181224, MJS); all cell assemblies were performed in a high pure Ar-filled dry glovebox (MIKROUNA, O₂ and H₂O < 0.1 ppm) and all tests were carried out at room temperature (about 25 °C) except the assigned tests at high (40 °C) and low (-20 °C) temperatures (more detailed information about the above mentioned chemicals, agents, and materials can be seen in Table S1.). We used the same cell to test the specific capacity at 0.02-1-0.02 A g⁻¹ and cycling at 0.3 A g⁻¹ for 500 cycles (before testing the cycling the cell was laid aside for 3 hours) of KNCMF@rGO electrode. Furthermore, we used a new cell to test the cycling (0.5 A $g^{-1}/500$ cycles) of the KNCMF@rGO, KNMF@rGO, KNCF@rGO, KCMF@rGO, KNF@rGO, KCF@rGO and KMF@rGO electrodes.


Calculations for $C_{\rm m}, E_{\rm m}, P_{\rm m}$

The specific capacity ($C_{\rm m}$, mAh g⁻¹), energy density ($E_{\rm m}$, Wh kg⁻¹), and power density ($P_{\rm m}$, kW kg⁻¹) for Na-DIBs were calculated according to the **Equations S(1)-S(3)**. $C_{\rm m} = Q_{\rm m}/3.6$ S(1)

$$E_{\rm m} = \int_{0}^{C_{\rm m}} V dC_{\rm m}$$
 S(2)

$$P_{\rm m} = 3.6 E_{\rm m} / t_{\rm d}$$
 S(3)

Where m, Q_m , V and t_d refer to the mass of active materials (mg, for half cells, it means the mass of active materials of anode or cathode; for Na-DIBs full cells, it means the total mass of active materials of anode and cathode), specific charge or discharge quantity (C g⁻¹, for anode, it means the charge quantity; for cathode and full cells, it refers to the discharging quantity), Voltage (V), and discharging time (s), respectively.

Figure S1. The crystal structures of perovskite KMF₃ and detailed crystalline parameters for KNiF₃, KCoF₃, and KMnF₃.

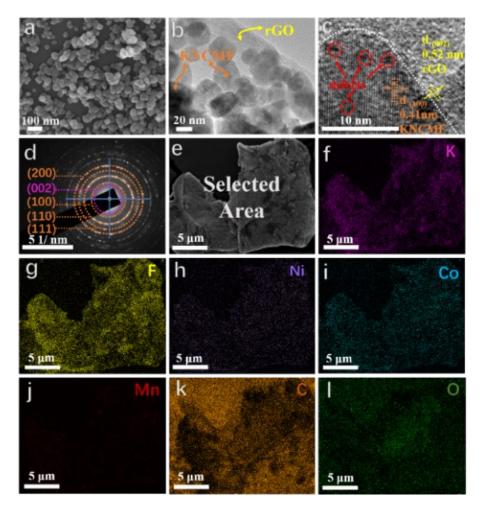


Figure S2. SEM (a), TEM (b), HRTEM (c), SAED(d), mapping (e-l) of the KNCMF@rGO candidate.

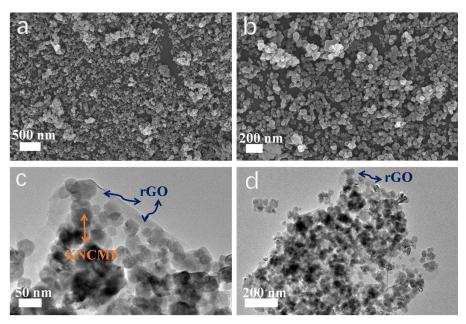


Figure S3. SEM and TEM images of the KNCMF@rGO Sample.

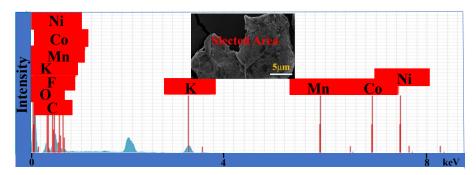


Figure S4. EDS of the KNCMF@rGO Sample.

Result from ICP-OES				
Element Wt.%				
K	21.79			
Ni	10.36			
Со	14.87			
Mn	15.27			
Formula	$K_{0.79}Ni_{0.25}Co_{0.36}Mn_{0.39}F_{2.83}$			

Figure S5. ICP of the KNCMF@rGO Sample.

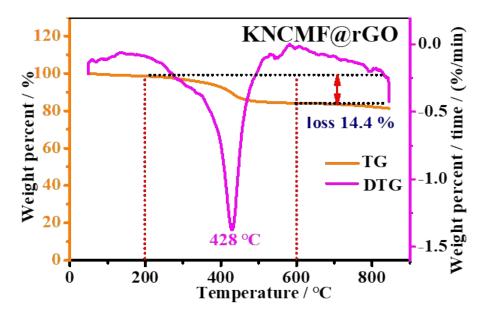
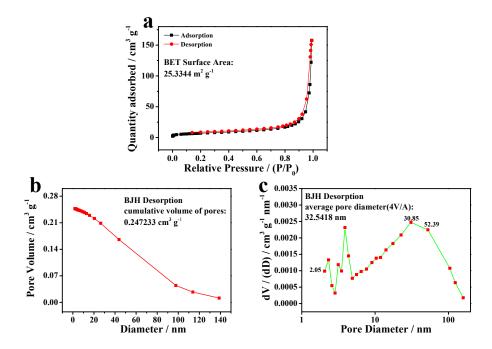
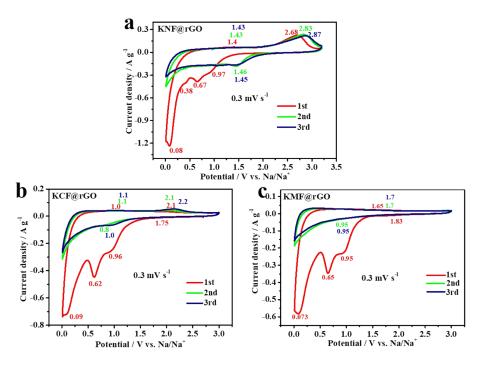




Figure S6. TG/DTG curves of the KNCMF@rGO Sample.

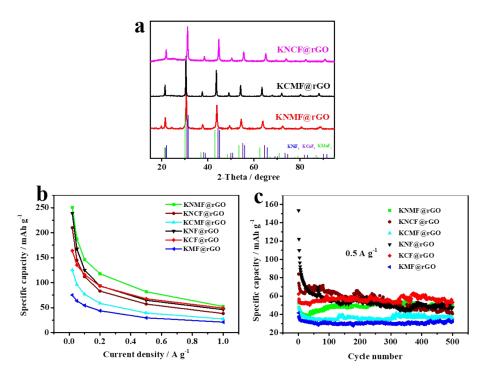

Figure S7. N₂ isothermal sorptions (a), pore volumes (b), and pore size distributions (c) of the KNCMF@rGO Sample.

Figure S8. CV plots for the first three cycles at 0.3 mV s⁻¹ of KNF@rGO electrode (a); KCF@rGO electrode (b); and KMF@rGO electrode (c).

Figure S9. Specific capacity (a) and cycling stability (b) of KNF@rGO, KCF@rGO, KMF@rGO, and KNCMF@rGO electrode.

Figure S10. XRD patterns of KNCF@rGO, KCMF@rGO and KNMF@rGO samples (a), specific capacity (b) and cycling stability (c) of KNMF@rGO, KNCF@rGO, KCF@rGO and KMF@rGO electrodes.

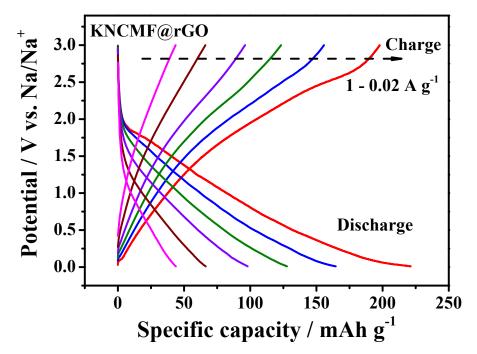
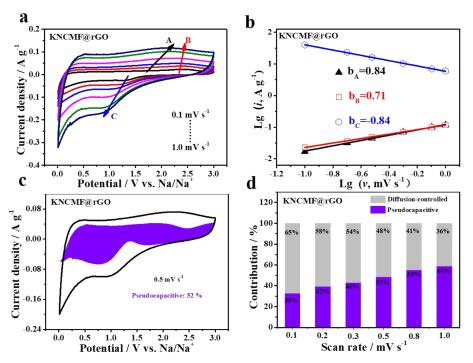
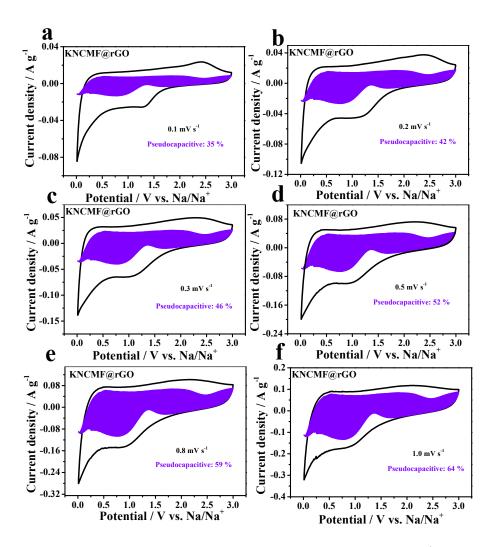
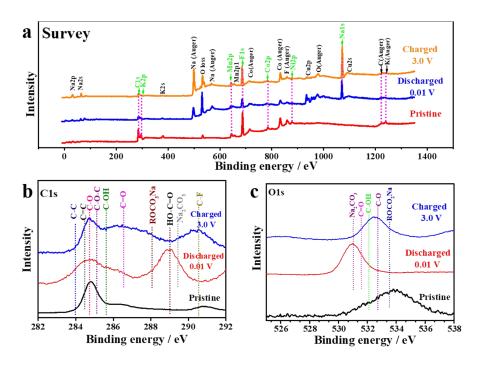
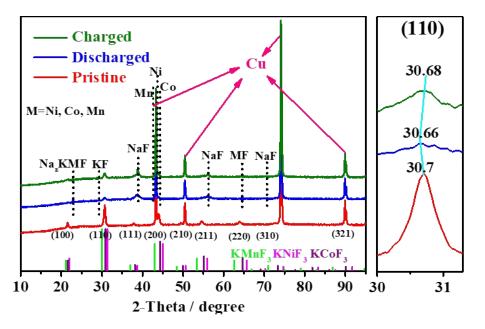



Figure S11. GCD curves of the KNCMF@rGO electrode.

Figure S12. CV plots at 0.1-1.0 mV s⁻¹(a); plots of lg*i* vs.lg*v* (b); the pseudocapacitive contribution at a scan rate of 0.5 mV s⁻¹ (c); and charge contributions by the diffusion-controlled and pseuodcapacitive contribution at different scan rates (d) of the KNCMF@rGO electrode.

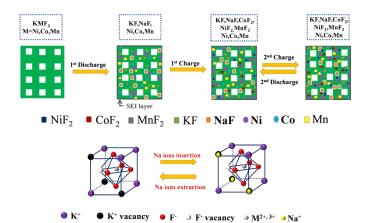
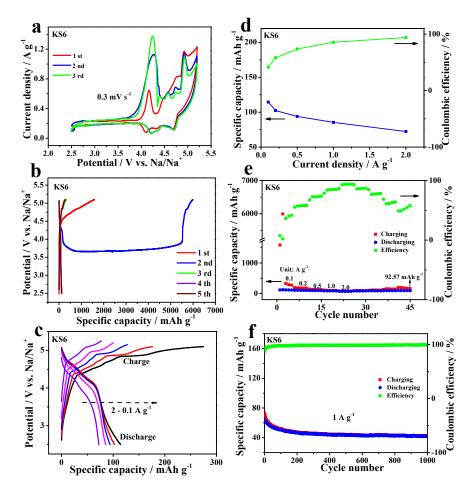

Figure S13. Pseudocapacitive contribution map at 0.1-1.0 mV s⁻¹ (a)-(f).

Figure S14. Ex-situ XPS spectra of the KNCMF@rGO electrode in pristine, discharged-0.01 V and charged-3.0 V states during the first discharged/charged cycle at 0.02 A g⁻¹: survey (a), C1s (b) and O1s (c).

Figure S15. Ex-situ XRD in pristine and first fully discharged/charged states of the KNCMF@rGO electrode.

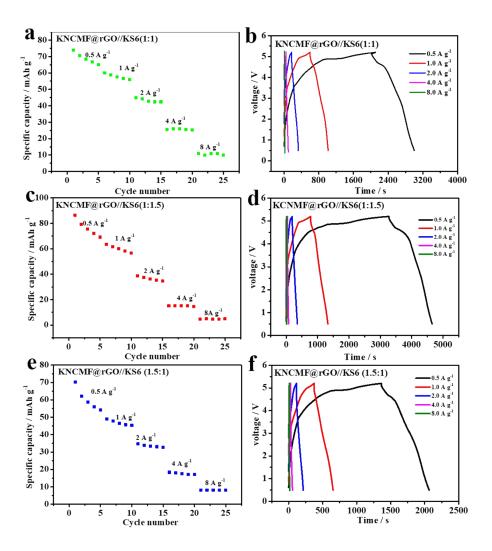
(b)

Phases	PDF Card	Crystal system	Space group	Cell (a×b×c)/Å ³
Ni	45-1027	Hexagonal	P63/mmc	2.6515×2.6515×4.343
Со	05-0727	Hexagonal	P63/mmc	2.5031×2.5031×4.0605
Mn	17-0910	Tetragonal	I4/mmm	2.672×2.672×3.55
NiF ₂	22-0749	Orthorhombic	P42/mnm	4.56×4.77×3.065
CoF ₂	38-0883	Cubic	Pa-3	4.958×4.958×4.958
MnF_2	34-1326	Tetragonal	P-42m	5.112×5.112×5.256
NaF	36-1455	Cubic	Fm-3m	4.63329×4.63329×4.63329
KF	36-1458	Cubic	Fm-3m	5.34758×5.34758×5.34758
Na ₂ CO ₃	25-0815	Hexagonal	P63/mc	5.215×5.215×6.584


(c)

$xK_{0.79}MF_{2.83} + 2.04xNa^+ + 2.04xe^- \rightarrow xM + 0.79xKF + 2.04xNaF$	1
$yM + 2yNaF \leftrightarrow yMF_2 + 2yNa^+ + 2ye^-$	2
$K_{0.79}M(11)_{0.96}M(111)_{0.04}F_{2.83} + zNa^{+} + ze^{-} \leftrightarrow Na_{z}K_{0.79}M(111)_{0.96+z}M(111)_{0.04-z}F_{2.83}$	3
$qNa^++qe^-+xM/2.04xNaF \leftrightarrow xM/qNa/2.04xNaF$	4
$rNa^++re^-+xM/2.04xNaF \leftrightarrow rNa/xM/2.04xNaF$	5
$nC + mNa^{+} + me^{-} \leftrightarrow Na_mC_n$	6
$Na^+ + electrolytes + e^- \leftrightarrow SEI films$	7
Where $M = Ni$. Co. Mn $0 < x < 1$: $0 < z < 0$ $0 < 1$: $0 < y < z < x < 0 < n < 6$: $0 < m < 1$	

Where M=Ni; Co; Mn. 0<*x*<1; 0<*z*<0.04; 0<*y*, *q*, *r*<*x*; 0<n<6; 0<m<1.


Figure S16. Schematics of reaction mechanisms for the KNCMF@rGO electrode during the discharging/charging processes under the first two cycles (a); Crystalline structure information of Ni, Co, Mn, NiF₂, CoF₂, MnF₂, NaF, KF, and Na₂CO₃ phases (b), and reaction equation 1-7 (c).

(a)

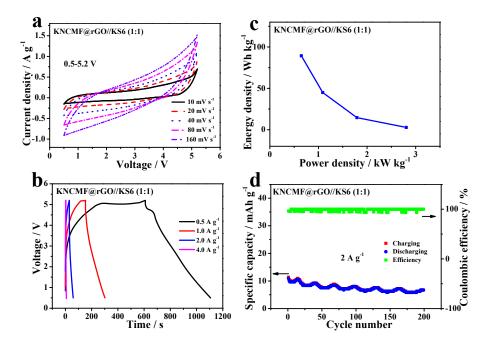


Figure S17. Performance of the KS6 electrode: CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves for the first five cycles at 0.1 A g⁻¹ (b), GCD curves at 0.1-2.0 A g⁻¹ (c), specific capacity/rate capability and coulombic efficiency at 0.1-2.0 A g⁻¹ (d)(e) and cycling behavior at 1 A g⁻¹ (f).

Figure S17a-f illustrate the performance of the KS6 electrode. **Figure S17**a-c show the CV plots for the first three cycles at 0.3 mV s⁻¹ (a), GCD curves for the first five cycles at 0.1 A g⁻¹(b) and GCD curves for the 5 th cycle at 0.1-2.0 A g⁻¹(c), which show more than three pairs of redox peaks and charging/discharging plateaus, indicating the multisteps co-insertions of PF_6^- anions and solvents in the graphite layers. **Figure S17**d-f show the specific capacity, rate capability and cycling behavior, which exhibit the specific capacity values of 114.4-72.3 mAh g⁻¹ at 0.1-2.0 A g⁻¹ and 66 % retention for 1000 cycles at 1 A g⁻¹ (**Table S4**). Such an excellent performance of KS6 can be a good positive electrode material used in Na-DIBs and will contribute to the advanced performance of the KNCMF@rGO//KS6 Na-DIBs.

Figure S18. Specific capacity at 0.5-8 A g⁻¹ (a) (c) (e), GCD curves at 0.5-8.0 A g⁻¹ (b) (d) (f) of the KNCMF@rGO//KS6(1:1/1:.5/1.5:1) Na-DIBs.

Figure S19. Performance of the Na-DIBs (KNCMF@rGO//KS6) under low (-20 °C) temperature: CV plots at 10-160 mV s⁻¹ (a), GCD curves at 0.5-4.0 A g⁻¹ (b), Ragone plots (c) and cycling behavior (d).

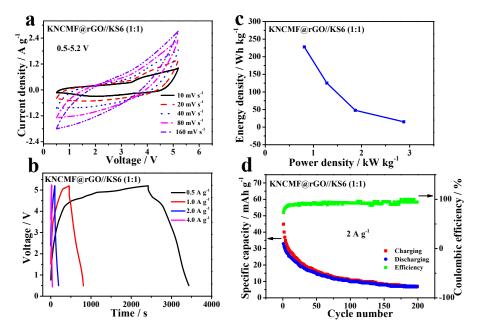


Figure S20. Performance of the Na-DIBs (KNCMF@rGO//KS6) under high (40 °C)temperature: CV plots at 10-160 mV s⁻¹ (a), GCD curves at 0.5-4.0 A g⁻¹ (b), Ragoneplots(c)andcyclingbehavior(d).

Materials, chemicals and reagents	Туре	Company	Characteristics	
NiCl ₂ •6H ₂ O	AR	SinoPharm	Purity≥98.0%	
CoCl ₂ •6H ₂ O	AR	SinoPharm	Purity≥99.0%	
MnCl ₂ •4H ₂ O	AR	SinoPharm	Purity≥99.0%	
KF•2H ₂ O	AR	SinoPharm	Purity≥99.0%	
PVP-K30	GR	SinoPharm	#	
EG	AR	SinoPharm	Purity≥99.0%	
Graphite	TiMCAL- KS6	TiMCAL	D90: 5.8-7.1 μm; Interlayer distance: 0.3354-0.3360 nm; SSA: 20 m ² g ⁻¹ ; Density-Scott: 0.07 g cm ⁻³ ;	
Graphene oxide (GO)	Power	ZhengZhou JingHong New Energy	3-10 floors Conductivity: 2.0*10 ⁵ S m ⁻¹ SSA: 150~200 m ² g ⁻¹	
Acetylene black	Battery grade	#	#	
Superconductive carbon black	ECP-600 JD	ShenZhen YuLong	Average Diameter: 34nm; SSA: 1400 m ² g ⁻¹	
NMP	AR	Kermel	Purity≥99.0%	
PVDF	Battery grade	#	#	
Electrolytes	Na206-181224	MJS	0.85 M NaPF ₆ /EC: EMC: DEC (1:1:1)/5% FEC	
Na tablets (Homemade)	Battery grade	#	#	
Cu foil	200*0.015	GuangZhou JiaYuan	Total thickness: 15 μm; Weight: 87 g m ⁻²	
Carbon coated-Al foil	222*0.015	GuagZhou NaNuo	Total thickness: 17 μm; Strength: 192 Mpa	
Glass microfiber filters	GF/D 2.7 μm 1823-025	Whatman	Diameter: 25 mm; Thickness: 675 μm; Weight: 121 g m ⁻²	
Cell components CR-2032		ShenZhen TianChenHe	#	

Table S1. Materials, chemicals, and reagents used in this study.

Current density / (A g ⁻¹)	Specific capacity of KNCMF@rGO electrode (mAh g ⁻¹)
0.02	208.4
0.05	161.8
0.1	128.3
0.2	98.1
0.5	68.3
1.0	43.9
Cycling behavior Retention % / 0.3 A g ⁻¹ / 500 cycle	66%

Table S2. Specific capacity and cycling retention of the KNCMF@rGO electrode.

Table S3. Specific capacity, rate capability and cycling retention of KNCMF@rGO, KNMF@rGO, KNCF@rGO, KCMF@rGO, KNF@rGO, KCF@rGO and KMF@rGO electrodes.

Current density / (A g ⁻¹)	Specific capacity (mAh g ⁻¹)						
j·(g)	KNCMF@rGO	KNMF@rGO	KCMF@rGO	KNCF@rGO	KNF@rGO	KCF@rGO	KMF@rGO
0.02	208.4	250.6	125.3	209.8	238.7	164.0	75.2
0.05	161.8	187.5	95.8	144.7	167.3	135.1	63.5
0.1	128.3	146.1	76.9	112.0	125.0	116.0	54.4
0.2	98.1	117.9	58.6	83.1	93.7	93.1	43.7
0.5	68.3	81.9	39.3	57.2	64.8	67.8	29.6
1	43.9	52.4	27.4	38.2	45.9	49.1	21.0
Rate capability (%)	21.1	20.9	21.9	18.2	19.2	29.9	27.9
Cycling behavior Retention % / 0.5 A g ⁻¹ / 500 cycle	54.0	94.1	69.5	48.6	30.9	84.9	78.0

Current density / (A g ⁻¹)	Specific capacity of KS6 electrode (mAh g ⁻¹)
0.1 (2.5-5.1 V)	114.4
0.2 (2.5-5.1 V)	102.3
0.5 (2.5-5.15 V)	93.9
1.0 (2.5-5.2 V)	85.5
2.0 (2.5-5.25 V)	72.3
Cycling behavior Retention % / 1 A g ⁻¹ / 1000 cycle (2.5-5.2 V)	66%

Table S4. Specific capacity cycling retention of the KS6 electrode.

Pristine state	KNi _{0.1} Co _{0.9} F ₃	KC00.54Mn0.46F3	$K_{1.1}Zn_{0.17}Mn_{0.83}F_{3.03}$	K _{0.79} Ni _{0.25} Co _{0.36} Mn _{0.39} F _{2.83} @rGO
K2p3/2	292.8 eV	293.5 eV	293 eV	295.5 eV
K2p1/2	295.8 eV	296.3 eV	295.8 eV	298.2 eV
F1s	684.5 eV	684 eV	684.5 eV	687.58 eV
Refs.	1	2	3	This work

Table S5. Comparison of electron binding energy of K2p and F1s.

Na-DIBs	Working voltage / V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling behavior / retention %, repeated cycles, current density
KNCMF@rGO//KS6 (1:1)	0.5~5.2	229.64~184.31 114.69~54.22 16.96	$0.84 \sim 1.59$ $2.68 \sim 4.15$ 6.1	74%/50/2 A g ⁻¹ 60%/100/2 A g ⁻¹ 44%/200/2 A g ⁻¹ 30%/500/2 A g ⁻¹
KNCMF@rGO//KS6 (1:1.5)	0.5~5.2	262.18~177.86 88.67~29.38 7.03	0.68~1.17 1.95~3.08 4.78	50%/50/2 A g ⁻¹ 40%/100/2 A g ⁻¹ 33%/200/2 A g ⁻¹
KNCMF@rGO//KS6 (1.5:1)	0.5~5.2	190.16~ 130.83 80.72~33.72 12.53	$0.97 \sim 1.69$ $2.89 \sim 4.63$ 6.27	61%/50/2 A g ⁻¹ 47%/100/2 A g ⁻¹ 37%/200/2 A g ⁻¹

Table S6. Performance summary of the Na-DIBs in the study under room temperature (25 °C).

Na-DIBs	Working voltage / V	Temperature (°C)	Energy density/ Wh kg ⁻¹	Power density/ kW kg ⁻¹	Cycling behavior/ retention %, repeated cycles, current density
KNCMF@rGO //KS6(1:1)	0.5~5.2	-20 °C	89.38~44.93 14.62~2.81	0.65~1.09 1.79~2.81	69%/50/2 A g ⁻¹ 73%/100/2 A g ⁻¹ 62%/200/2 A g ⁻¹
KNCMF@rGO //KS6(1:1)	0.5~5.2	40 °C	227.81~125.08 47.81~15.18	0.81~1.28 1.87~2.88	45%/50/2 A g ⁻¹ 30%/100/2 A g ⁻¹ 20%/200/2 A g ⁻¹

Table S7. Performance summary of the Na-DIBs in the study under low (-20 °C) and high (40 °C) temperature.

Na (Li) -DIBs	Working voltage / V	Energy density / Wh kg ⁻¹	Capacity / mAh g ⁻¹	Power density/ kW kg ⁻¹	Cycling behavior/ retention%, repeated cycles, current density	Refs.
Sn//Graphite (Na-DIBs)	2.0-4.8	144-111	#	0.15-0.793	#	4
MoS ₂ //Carbon- Graphite (Na-DIBs)	1.0-4.0	#	65 (0.1 A g ⁻¹)	#	85%/200/0.1 A g ⁻¹	5
Si-compound //Graphite (Li- DIBs)	0-3.0	54	#	#	53%/100/0.1 A g ⁻¹	6
RGO//Graphite (Li-DIBs)	0-4.0	70	#	1.33	74%/50/1.33 A g ⁻¹	7
KNCMF@rGO// KS6 (Na-DIBs)	0.5-5.2	229.64~184.31 114.69~54.22 16.96	68.49~57.56 42.86~26.05 10.92 (0.5/1/2/4/8 A g ⁻¹)	0.84~1.59 2.68~4.15 6.1	74%/50/2 A g ⁻¹ 60%/100/2 A g ⁻¹	This Work

 Table S8. A comparison for the performance of the KNCMF@rGO//KS6 in the study

 with some reported Na (Li)-DIBs.

References

- Q. L. Xu, R. Ding, W. Shi, D. F. Ying, Y. F. Huang, T. Yan, P. Gao, X. J. Sun and E. H. Liu, *J. Mater. Chem. A*, 2019, 7, 8315-8326.
- D. F. Ying, R. Ding, Y. F. Huang, W. Shi, Q. L. Xu, C. N. Tan, X. J. Sun, P. Gao and E. H. Liu, *J. Mater. Chem. A*, 2019, 7, 18257-18266.
- D. F. Ying, Q. L. Xu, R. Ding, Y. F. Huang, T. Yan, Y. X. Huang, C. N. Tan, X. J. Sun, P. Gao and E. H. Liu, *Chem. Eng. J.*, 2020, 388, 124154.
- 4. M. H. Sheng, F. Zhang, B. F. Ji, X. F. Tong and Y. B. Tang, *Adv. Energy Mater.*, 2017, 7, 1601963.
- 5. H. L. Zhu, F. Zhang, J. R. Li and Y. B. Tang, Small, 2018, 14, 1703951.
- H. Nakano, Y. Sugiyama, T. Morishita, M. J. S. Spencer, I. K. Snook, Y. Kumai, H. Okamoto, J. Mater. Chem. A, 2014, 2, 7588-7592.
- 7. X. Y. Shi, W. Zhang, J. F. Wang, W. T. Zheng, K. K. Huang, H. B. Zhang, S. H. Feng, H. Chen, *Adv. Energy Mater.*, 2016, 6, 1601378.