Supplementary Information

3-Substituted 2-isocyanopyridines as versatile convertible isocyanides for peptidomimetic design

Charlie Hollanders, ${ }^{\dagger, \$, \ddagger}$ Mathias Elsocht, ${ }^{+, \ddagger}$ Olivier Van Der Poorten, ${ }^{+}$Mouhamad Jida, ${ }^{\dagger}$ Evelien Renders, ${ }^{\$}$ Bert U. W. Maes, ${ }^{\$^{*}}$ Steven Ballet ${ }^{+*}$
${ }^{\dagger}$ Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
\$Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
\ddagger These authors contributed equally.

E-mail: steven.ballet@vub.be

TABLE OF CONTENTS

General Considerations S3
Optimization Data of the Isocyanide Synthesis S4
Optimization Data of the Ugi Reaction S5
Optimization Data of the Transamidation S9
Overview of Synthetic Scope S11
General Procedures S14
Synthetic Procedures S16
Synthesis of Methyl 2-aminonicotinate S4 S16
Synthesis of 3-substituted-2-formamidopyridine 2 S16
Synthesis of the 2-isocyanopyridines $\mathbf{3}$ S17
Synthesis of the Ugi products 4-9 S18
Cleavage of the amide in the Ugi product 4-9 S25
On-resin Ugi reaction and transamidation 22 S29
Synthesis of the Ata-scaffold S30
Hydrolysis of the Ata-dipeptide $\mathbf{2 5}$ and the use in SPPS S31
Synthesis of the aminobenzotriazolodiazeocinone scaffold 27 and hydrolysis to the carboxylic acid $\mathbf{2 8}$ S33
Copies of the NMR Spectra S34
References S154

GENERAL CONSIDERATIONS

Unless stated otherwise, all commercial materials were used without further purification. Anhydrous tetrahydrofuran was obtained using a PureSolv Innovative Technology system. Anhydrous dichloromethane was obtained by storing under argon atmosphere on activated $4 \AA$ molecular sieves for 24 hours prior to use. Non-commercial starting materials were prepared based on literature procedures and are described below. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using different spectrometers. A Bruker Avance II 500 spectrometer was used at 500 $\mathrm{MHz}\left({ }^{1} \mathrm{H} N M R\right)$ and $126 \mathrm{MHz}\left({ }^{13} \mathrm{CNMR}\right)$ at ambient temperature. To obtain spectra at $250 \mathrm{MHz}\left({ }^{1} \mathrm{H} N M R\right)$ and $63 \mathrm{MHz}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$, the Bruker Avance DRX 250 was used. The chemical shifts were reported in delta (δ) units in parts per million (ppm) relative to the signal of the deuterated solvent. For the CDCl_{3}, the singlet in ${ }^{1} \mathrm{H}$ NMR was calibrated at 7.26 ppm and the ${ }^{13} \mathrm{C} N M R$ at the central line of the triplet at 77.0 ppm . When recording in MeOD or $\mathrm{DMSO}_{-} \mathrm{d}_{6}$, the calibration was performed at 3.31 ppm and 2.50 ppm for the ${ }^{1} \mathrm{H}$ NMR and 49.00 ppm and 39.50 ppm for the ${ }^{13} \mathrm{C}$ NMR, respectively. The assignments were made using one dimensional (1D) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra and two-dimensional (2D) HSQC, HMBC and COSY spectra. Multiplicities were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br) or a combination thereof. The corresponding coupling constants (J values) were reported in Hertz (Hz). Analytical RP-HPLC were performed on an VWR-Hitachi Chromaster HPLC with a Chromolith HighResolution RP-18C column from Merck (150 mm X $4.6 \mathrm{~mm}, 1.1 \mu \mathrm{~m}$, 150 Å) or a Chromolith HighResolution RP-18C column from Merck ($50 \mathrm{~mm} \mathrm{X} 4.6 \mathrm{~mm}, 1.1 \mu \mathrm{~m}, 150 \AA$ A). The analysis performed on the columns is specified as HPLC-1 and HPLC-2, respectively. The flow rate was $3 \mathrm{ml} / \mathrm{min}$ and the UV detection was done at 214 nm . The solvent system consisted of 0.1% TFA in ultrapure water (A) and 0.1% TFA in acetonitrile (B) with a gradient from 3% B to 100% B over a 4 minutes runtime for the column with a length of 50 mm and 5 min for the column with a length of 150 mm . Mass spectra were recorded with a LCMS triplequadrupole system. HPLC unit was a Waters 600 system combined to a Waters 2487 UV detector at 215 nm and as stationary phase a Vydac MS RP C18-column ($150 \mathrm{~mm} \times 2.1 \mathrm{~mm}, 3 \mu \mathrm{~m}, 300 \AA \AA$). The solvent system was 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) with a gradient going from 3% to 100% B over 20 minutes with a flow rate of $0.3 \mathrm{ml} / \mathrm{min}$. The MS unit, coupled to the HPLC system, was a Micromass QTOF-micro system. For the high-resolution mass spectroscopy (HRMS), the same MS system was used with reserpine $\left(2.10^{-3} \mathrm{mg} / \mathrm{ml}\right)$ solution in $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}(1: 1)$ as reference. Automated flash chromatography was performed using Grace ${ }^{\circ}$ Reveleris X2 system equipped with ELSD and UV detector (254 nm or 280 nm). The used normal phase column for the systems were Grace ${ }^{*}$ Silica Flash Cartridges of 40 g with a flow rate of $40 \mathrm{ml} / \mathrm{min}$ unless stated otherwise. Semi-preparative HPLC-purifications were done using a Gilson HPLC system with Gilson 322 pump equipped with a Grace ${ }^{\circ}$ Vydac 150 HC C 18 ($250 \mathrm{~mm} \times 22 \mathrm{~mm}, 10 \mu \mathrm{~m}$) column and Waters UV/VIS-156 detector at 214 nm . The same solvent system is used as for the analytical RP-HPLC with a flow rate of $20 \mathrm{ml} / \mathrm{min}$. Melting points were recorded on a Büchi B-540 and are uncorrected. The transamidations were performed in sealed microwave vials for a reaction volume of $0.5 \mathrm{ml}-2 \mathrm{ml}$ (Figure S1) equipped with a triangle stirring bar. Unless otherwise stated classical heating in an oil bath was performed.

Figure S1. Reaction vial ($0.5 \mathrm{ml}-2 \mathrm{ml}$) used for the transamidation reactions.

OPTIMIZATION DATA OF THE ISOCYANIDE SYNTHESIS

General Procedure for the synthesis with POCl_{3}

The reactions with POCl_{3} were performed according to a literature procedure. ${ }^{1}$ To a flame-dried round-bottom flask charged with 3 -substi-tuted-2-formamidopyridine $\mathbf{2}$ (1 equiv, 5 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}$ was added. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. POCl_{3} was added dropwise to the mixture and stirred continued at $-78^{\circ} \mathrm{C}$ for 1 h . Next, the mixture was allowed to warm up to $0{ }^{\circ} \mathrm{C}$ and stirred overnight. The reaction was quenched by adding it to a saturated NaHCO_{3} solution. The water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phases were combined, washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude mixture was purified by automated flash column chromatography.

General Procedure for the synthesis with $\mathrm{PhPO}_{2} \mathrm{Cl}_{2}$

To a flame-dried round-bottom flask charged with 3-substituted-2-formamidopyridine $\mathbf{2}$ (1 equiv, 5 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}$ (7.2 equiv, $35.9 \mathrm{mmol}, 5 \mathrm{ml}$) was added. The solution was cooled to $0^{\circ} \mathrm{C}$ followed by the dropwise addition of $\mathrm{PhPO}_{2} \mathrm{Cl}_{2}(1.2$ equiv, 6 mmol , 0.9 ml). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, allowed to warm up to room temperature and stirring for another 24 hours.

The reaction mixture was added to brine (300 ml) and extracted with EtOAc $(3 \times 200 \mathrm{ml})$. The combined organic layers were washed with $\mathrm{HCl}(1 \mathrm{M}, 200 \mathrm{ml}), \mathrm{NaHCO}_{3}$ solution (sat., 200 ml) and brine (200 ml). The organic layer was dried over MgSO_{4}, filtered and the solvent removed in vacuo. The crude mixture was purified by automated flash column chromatography.

Evaluation of the reaction parameters

The 3-substituted 2 -isocyanopyrdines $\mathbf{3}$ were synthesized by the dehydration of its corresponding formamide $\mathbf{2}$. Starting from the procedure described in literature for the 6-bromo-2-isocyanopyridine, ${ }^{1}$ the isolation of 3-bromo-2-isocyanopyridine 3a, 3-chloro-2-isocyanopyrinde 3b, and 2-isocyano-3-methoxypyridine $\mathbf{3 c}$ was possible, yet the purified yields (Table S1, Entry 1, 4 and 7) were very low. ${ }^{1} \mathrm{H}$ NMR analysis of the crude showed a significant amount of starting material, that could be recycled during the purification. In order to push the reaction towards full conversion, an increased amount of POCl_{3} and $\mathrm{Et}_{3} \mathrm{~N}$ was used (Table S1, Entry 2, 5 and 8). In case of the C3-ester substituent, full degradation was observed where neither starting material or product could be isolated (Table S1, Entry 10 and 11). Application of $\mathrm{PhPO}_{2} \mathrm{Cl}_{2}$ gave access to the four isocyanides of type $\mathbf{3}$ with a significant improvement in yield (Table S1, Entry 3, 6, 9 and 12).

Table S1. Synthesis of 3-substituted-2-isocyanopyridines: optimization

		2		3			
Entry	X	2	Reagent (\boldsymbol{X} equiv)	$\mathrm{Et}_{3} \mathrm{~N}$ (\boldsymbol{Y} equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	t (h)	Yield 3 (\%) ${ }^{\text {a }}$
1	Br	2a	POCl 3 (1.15 equiv)	6	-78 to 0	o.n.	5
2	Br	2a	POCl_{3} (2.3 equiv)	12	-78 to 0	o.n.	19
3	Br	2a	$\mathrm{PhPO}_{2} \mathrm{Cl}_{2}$ (1.2 equiv)	7.2	rt	24	53
4	Cl	2b	$\mathrm{POCl}_{3}(1.15$ equiv)	6	-78 to 0	o.n.	4
5	Cl	2b	POCl_{3} (2.3 equiv)	12	-78 to 0	o.n.	22
6	Cl	2b	$\mathrm{PhPO}_{2} \mathrm{Cl}_{2}$ (1.2 equiv)	7.2	rt	24	63
7	OMe	2c	POCl_{3} (1.15 equiv)	6	-78 to 0	o.n.	6
8	OMe	2c	POCl 3 (2.3 equiv)	12	-78 to 0	o.n.	9
9	OMe	2c	$\mathrm{PhPO}_{2} \mathrm{Cl}_{2}$ (1.2 equiv)	7.2	rt	24	61
10	COOMe	2d	POCl_{3} (1.15 equiv)	6	-78 to 0	o.n.	0
11	COOMe	2d	POCl_{3} (2.3 equiv)	12	-78 to 0	o.n.	0
12	COOMe	2d	$\mathrm{PhPO}_{2} \mathrm{Cl}_{2}$ (1.2 equiv)	7.2	rt	24	55

[a] Isolated yield on a 6 mmol scale.

OPTIMIZATION DATA OF THE UGI REACTION

General procedure for the optimization

To a microwave vial was added isovaleraldehyde, propylamine and a solvent. The mixture was stirred for two hours at room temperature. Then Boc-L-Phe-OH and 3-substituted 2-isocyanopyridine 3 (1 equiv, 1 mmol) were added. The vial was sealed with a crimp cap and stirred at the specified temperature and time. The mixture was then allowed to cool down to room temperature, decapped, and concentrated in vacuo. HPLC analysis of the crude was recorded and the signals of the isocyanide and Ugi product were integrated to determine the conversion. If the conversion was deemed significant, the crude was purified by automated flash column chromatography.

Initial evaluation of the Ugi reaction with 3-substituted 2-isocyanopyridine 3

The isocyanides 3 were first tested in an Ugi reaction with propylamine, isovaleraldehyde and Boc-L-Phe-OH in a 1:1:1:1 ratio of the different components in TFE at room temperature. For 3a-c, the desired Ugi product 4a-c was observed with a conversion of approximately 70% (Table S2, Entry 1-3). For the C^{3}-ester-substituted isocyanide 3d, no conversion to the desired Ugi product 4d was observed and degradation of the isocyanide was observed (Table S2, Entry 4), most likely due to the lack of compatibility with the fluorinated alcohol TFE.

Table S2. Evaluation of the 3-substituted 2-isocyanopyrdine $\mathbf{3}$ in the Ugi reaction

[a] Conversion determined by HPLC. [b] Isolated yield.

Optimization of the Ugi reaction with methyl 2-isocyanonicotinate 3d

As the methyl 2-isocyanonicotinate 3b lacked compatibility with TFE as a solvent, a solvent screening was carried out at a concentration of 0.25 M . Here, MeOH (Table S3, Entry 2), tBuOH (Table S3, Entry 3) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table S3, Entry 7) showed conversion towards the desired Ugi product 4d. MeOH showed the lowest amount of product lost during purification and was selected to further study of the reactant ratios (Table S4).

Table S3. Solvent screening

[a] Conversion of 3d to 4d determined by HPLC. [b] Isolated yield. ND = not determined

In an effort to improve the conversion and the isolated yield of the Ugi product 4d, the ratio of the reactants was evaluated (Table S4). By increasing the isovaleraldehyde and propylamine to 2 equivalents, the conversion towards the Ugi product $\mathbf{4 d}$ almost doubled. However only a small increase in isolated yield was observed (Table S4, Entry 1 vs. Entry 6).

Table S4. Evaluation of the reactant ratio

			Boc-L-Phe-OH (X equiv) Isovaleraldehyde (\boldsymbol{Y} equiv) Propylamine (\boldsymbol{Z} equiv) MeOH $\mathrm{rt}, 48 \mathrm{~h}$		OMe	
Entry	3d (W equiv)	Boc-Phe-OH (\boldsymbol{X} equiv)	Isovaleraldehyde (Y equiv)	Propylamine (Z equiv)	Conversion (\%) ${ }^{\text {a }}$	Yield 4d (\%) ${ }^{\text {b }}$
1	1	1	1	1	37	17
2	1.5	1	1	1	43	13
3	2	1	1	1	47	18
4	1.2	1.5	1	1	45	20
5	1	1	1.2	1.2	51	17
6	1	1	2	2	65	26
7	1	1	4	4	48	16

[a] Conversion determined by HPLC. [b] Isolated yield.

As the effect of the reactant ratios on the isolated yield remained limited, the temperature and heat source were evaluated. However, as MeOH is a nucleophilic solvent, the formed amide bond might be cleaved due to the heating. This compelled us to change to a non-nucleophilic solvent that performed well in the previous solvent screening, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table S3, Entry 7). Heating the reaction mixture to $110{ }^{\circ} \mathrm{C}$ for 30 minutes significantly increased the conversion toward the Ugi product 4d (Table S5, Entry 1 vs 2 and 3). Increasing the reaction time to 1 hour, did not significantly improve the conversion and showed no difference in conversion (Table S5, Entry 3 and 4). Comparison of microwave heating and classical heating revealed equal results (Table S5, Entry 2 and 3).

Table S5. Evaluation of effect of heating and the heat source

		$\mathrm{Me} \quad \begin{array}{r} \text { Boc-L- } \\ \text { Isovaler } \end{array}$			
Entry	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Heat source	t (h)	Conversion (\%) ${ }^{\text {a }}$	Yield 4d (\%) ${ }^{\text {b }}$
1	rt	-	48	37	17
2	110	MW	0.5	72	41
3	110	Oil bath	0.5	74	ND
4	110	Oil bath	1	78	40

[a] Conversion determined by HPLC. [b] Isolated yield. ND = not determined

The best conditions (Table S5, Entry 2), however, showed not to be transferable to other examples varying the different components in the Ugi reaction.

Optimization of the Ugi reaction with 3-bromo-2-isocyanopyridine 3a, 3-chloro-2-isocyanopyridine 3b and 3-methoxy-2-isocyanopyridine 3c.

From the optimization of the Ugi reaction with the methyl 2-isocyanonicotinate 3d, a few key conditions were selected in an effort to improve the Ugi reaction with the other three isocyanides 3a-c (Table S6, S7, and S8). First the ratios of aldehyde and amine to isocyanide and carboxylic acid were evaluated in TFE (Table S6, S7, and S8, Entry 1-3). Here, an increase of 1.2 equivalents of isovaleraldehyde and propylamine showed to significantly increase the conversion and improve the isolated yield to 68% of $\mathbf{4 a}$ (Table S6, Entry 2), $77 \% \mathbf{4 b}$ (Table S7, Entry 2) and 66\% 4c (Table S8, Entry 2). In parallel, a solvent screening (Table S6, S7, and S8, Entry 1, 4, and 5) and the effect of heating (Table S6, S7, and S8, Entry 6, and 7) were tested, however, these affected the conversion and yield negatively.

Table S6. Evaluation of the reaction conditions for the Ugi reaction with 3a

[a] Conversion determined by HPLC. [b] Isolated yield. ND = not determined

Table S7. Evaluation of the reaction conditions for the Ugi reaction with 3b

[a] Conversion determined by HPLC. [b] Isolated yield. ND = not determined

Table S8. Evaluation of the reaction conditions for the Ugi reaction with 3c

		\qquad 3c	he-OH (1 Idehyde (\boldsymbol{Y} amine (\boldsymbol{Z} eq Solvent T, t				
Entry	Isovaleraldehyde (\boldsymbol{Y} equiv)	Propylamine (Z equiv)	Solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	t (h)	Conversion (\%) ${ }^{\text {a }}$	Yield 4c (\%) ${ }^{\text {b }}$
1	1	1	TFE	rt	48	73	38
2	1.2	1.2	TFE	rt	48	91	66
3	2	2	TFE	rt	48	83	64
4	1	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	48	56	34
5	1	1	$t \mathrm{BuOH}$	rt	48	44	23
6	1	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100 (MW)	0.5	88	56
7	1	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100 (oil bath)	2	85	45

[a] Conversion determined by HPLC. [b] Isolated yield.

OPTIMIZATION DATA OF THE TRANSAMIDATION

General procedure for the optimization

To a microwave vial was added the Ugi product 4a-c (1 equiv, 0.25 mmol), H-L-Phe-OMe. HCl (3 equiv, $0.75 \mathrm{mmol}, 162 \mathrm{mg}$), $\mathrm{NaOAc}(3$ equiv, $0.75 \mathrm{mmol}, 62 \mathrm{mg}$), and solvent. The vial was sealed with a crimp cap, and stirred at the specified temperature and time. The mixture was then allowed to cool down to room temperature, decapped, and concentrated in vacuo. A known amount of 1,3,5-trimethoxybenzene, between 10-15 mg, was added to the crude mixture, which was then dissolved in MeOD. Potential precipitating salts were removed by centrifugation. $\mathrm{A}^{1} \mathrm{H}$ NMR of the crude was recorded and signals were integrated in comparison to the internal standard. The mass balance was calculated considering product 9, the remaining starting material 4a-c and 3-substituted 2-aminopyridine by-product of the transamidation. Considering experimental and instrumental errors, a total measured mass balance in the 95-105\% range was deemed as a successful experiment. Reported values were subsequently recalculated to 100%. HPLC and LC/MS of the sample were subsequently recorded to confirm the formation of the desired peptide compound.

Evaluation of the reaction parameters

As a starting point, the reaction conditions of the transamidation previously developed in our laboratories for nicotinates were evaluated for the 3 pyridine directing groups in $\mathbf{4 a - c}\left(20 \mathrm{~mol} \% \mathrm{Zn}(\mathrm{OAc})_{2}, 3\right.$ equiv $\mathrm{H}-\mathrm{L}-\mathrm{Phe}-\mathrm{OMe} . \mathrm{HCl}, 3$ equiv NaOAc in $\left.\mathrm{THF}, 70{ }^{\circ} \mathrm{C}\right) .{ }^{2} \mathrm{Here}$, a very similar NMR yield was observed for all three substituents X (Table S9). Optimization of the transamidation on the Ugi products was carried out on 4b.

Table S9. Evaluation of the transamidation on the Ugi reaction 4a-c
Entry
[a] ${ }^{1} \mathrm{H}$ NMR yield using 1,3,5-trimethoxybenzene as internal standard.

For the optimization of the transamidation, the solvent was evaluated alongside the temperature (Table S10). As alternative solvent for THF, t BuOAc was selected as it was already previously used in the alcoholysis. ${ }^{3}$ tBuOAc as a solvent resulted in a slightly higher yield (55%) (Table S10, Entry 4).

Table S10. Screening of the solvent for the transamidation of Ugi product 4b
Entry
[a] ${ }^{1} \mathrm{H}$ NMR yield using 1,3,5-trimethoxybenzene as internal standard.

Finally, the temperature at which the transamidation was carried out was evaluated alongside the reaction time. Here, $85^{\circ} \mathrm{C}$ for 48 hours showed an excellent NMR yield of 91\% (Table S11, Entry 4).

Table S11. Evaluation of the temperature and reaction time for the transamidation of Ugi product 4b
Entry
[a] ${ }^{1} \mathrm{H}$ NMR yield using 1,3,5-trimethoxybenzene as internal standard.

Under the optimized conditions, the three substituents X were compared (Table S12). The bromo 4a, chloro 4b, and methoxy 4c showed a similar NMR yield. However, a significant better isolated yield was observed for 9 from the chloro 4b(Table S12, Entry 2).

Table S12. Comparison of the different substituents under the optimized conditions for transamidation

[a] ${ }^{1} \mathrm{H}$ NMR yield using 1,3,5-trimethoxybenzene as internal standard. [b] Isolated yield after column chromatography.

As a proof-of-concept, the 6-bromo-2-isocyanopyridine $\mathbf{S 2}$ previously published by Orru and co-workers ${ }^{1}$ was evaluated under the optimized conditions. First, the isocyanide $\mathbf{S 2}$ was obtained in a similar fashion to the 3 -substituted 2 -isocyanopyridine $\mathbf{3}$ and subsequently implemented in the Ugi reaction in TFE (Scheme S1a). Next, the Ugi product S3 was used in a transamidation with H-L-Phe-OMe (3 equiv) as optimized for $\mathbf{4 b}$. However, after stirring for 48 hours at $85^{\circ} \mathrm{C}$, no conversion of the starting material $\mathbf{S 3}$ was observed and $\mathbf{S 3}$ remained intact (Scheme S1b).
a. Synthesis and Ugi reaction of 6-bromo-2-isocyanopyridine $\mathbf{S 2}$

Scheme S1. Evaluation of 6-bromo-2-isocyanopyridine S2 in an Ugi reaction and subsequent transamidation with the Ugi product S3. [a] ${ }^{1} \mathrm{H}$ NMR yield using 1,3,5-trimethoxybenzene as internal standard.

OVERVIEW OF THE SYNTHETIC SCOPE

Scheme S2. Use of the isocyanides 3a-d in the Ugi-4CR. [a] $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent at $110{ }^{\circ} \mathrm{C}(\mu \mathrm{W})$ for 0.5 h . [b] 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (1.5 equiv)

 $\begin{array}{lll}\mathrm{Cl} & 10 & 85 \%(91 \%)^{\mathrm{a}}\end{array}$
$\mathrm{X}=\mathrm{Cl} \quad 1172 \%(78 \%)^{\mathrm{a}}$
$\mathrm{X}=\mathrm{Cl}$
$1277 \%(100 \%)^{a}$ OMe 10 68\% (90\%) ${ }^{\text {a }}$

$\mathrm{X}=\mathrm{Cl} \quad 1372 \%(89 \%)^{\mathrm{a}}$
$X=\mathrm{Cl} \quad 1461 \%(81 \%)^{a}$
$\mathrm{X}=\mathrm{Cl}$
$1573 \%(85 \%)^{a}$

$X=\mathrm{Cl} \quad 1680 \%(100 \%)^{a}$
$\mathrm{X}=\mathrm{Cl}$
$1755 \%(80 \%)^{a}$

Scheme S3. Amide cleavage in Ugi products 4-9. Isolated yield with a 1:1 diastereomeric ratio on 0.25 mmol scale is reported, ${ }^{1} \mathrm{H}$ NMR yield determined with internal standard between brackets. Examples of amide hydrolysis and esterification framed in blue and green, respectively.
[a] NaOAc for in situ release of amine from the ammonium salt. [b] no NaOAc used.

b. Synthesis of the 3-chloropyridin-2-yl activated Ata dipeptide and build-in on SP

$\begin{array}{ccc}\mathrm{R}=\begin{array}{l}\text { phenyl } \\ \text { isobutyl }\end{array} & \mathbf{2 5 a} & 42 \% \\ & \text { 25b } & 52 \%\end{array}$

| $\mathrm{H}_{2} \mathrm{O}_{(20}\left(2 \mathrm{e}_{\text {equiv }}\right)$ |
| :---: | :--- |
| $\mathrm{Zn}(\mathrm{OAc}) 2$ |\(| \begin{aligned} \& tBuOAc

\& 85^{\circ} \mathrm{C}, 48 \mathrm{~h}\end{aligned}\)

Scheme S4. Synthesis of the Ata-scaffold. (a) synthesis of Ata dipeptide ester S4 in a 1:1 diastereomeric ratio. (b) Application of 3-chloro-2-isocyanopyridine 3 b in the synthesis of scaffold 25 , in a 1:0.7 and 1:1 diastereomeric ratio for 25a and 25b, respectively, via a Ugi-4CR-Huisgen one-pot reaction, followed by amide hydrolysis and its application in SPPS with reported, combined isolated yield for the separated diastereomers.

Scheme S5. Application of 3-chloro-2-isocyanopyridine 3b in the synthesis of scaffold 27 in a 1:1 diastereomeric ratio via a Ugi-4CR-Huisgen one-pot reaction, followed by amide hydrolysis to give the building block 28.

GENERAL PROCEDURES

General Procedure A: Synthesis of 3-Substituted-2-Formamidopyridine 2

Unless stated otherwise, formic acid (2.05 equiv, $41 \mathrm{mmol}, 1.6 \mathrm{ml}$) was added dropwise to a flame-dried microwave vial charged with acetic anhydride (2 equiv, $40 \mathrm{mmol}, 3.8 \mathrm{ml}$). The vial was sealed and the mixture was refluxed for 2 hours at $60^{\circ} \mathrm{C}$ under argon atmosphere. Into a flame dried 100 ml round-bottom flask, the 2-amino-3-substituted pyridine 1 (1 equiv, 20 mmol) was dissolved in anhydrous THF (50 ml) and cooled to $0^{\circ} \mathrm{C}$. Then the refluxed mixture was allowed to cool down to room temperature and was added dropwise to the 2-amino-3substituted pyridine solution. The mixture was stirred overnight at room temperature under argon atmosphere. The solvent was removed in vacuo.

General Procedure B: Synthesis of 3-Substituted-2-Isocyanopyridine 3

To a flame-dried round-bottom flask charged with 3-substituted-2-formamidopyridine $\mathbf{2}$ (1 equiv, 5 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}$ (7.2 equiv, $35.9 \mathrm{mmol}, 5 \mathrm{ml}$) was added. The solution was cooled to $0^{\circ} \mathrm{C}$ followed by the dropwise addition of $\mathrm{PhPO}_{2} \mathrm{Cl}_{2}(1.2$ equiv, 6 mmol , 0.9 ml). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, allowed to warm up to room temperature and continued to stir for another 24 hours.
The reaction mixture was added to brine (300 ml) and extracted with EtOAc ($3 \times 200 \mathrm{ml}$). The combined organic layers were washed with $\mathrm{HCl}(1 \mathrm{M}, 200 \mathrm{ml}), \mathrm{NaHCO}_{3}$ solution (sat., 200 ml) and brine (200 ml). The organic layer was dried over MgSO_{4}, filtered and the solvent removed in vacuo. The crude mixture was purified by automated flash column chromatography.

General Procedure C: Synthesis of Ugi Product 4-9

Unless stated otherwise, a microwave vial was charged with an aldehyde (1.2 equiv, 1.2 mmol), an amine ($1.2 \mathrm{mmol}, 1.2$ equiv), and trifluoroethanol (4 ml). The mixture was stirred for two hours at room temperature. Then a N-protected amino acid (1 equiv, 1 mmol) and 3 -substituted- 2 isocyanopyridine $\mathbf{3}$ (1 equiv, 1 mmol) were added. The mixture was stirred for 48 hours at room temperature. The solvent was removed in vacuo and the crude was purified by automated flash column chromatography.

General Procedure D: Cleavage of the Amide 4-9

Unless stated otherwise, a microwave vial was charged with $\mathrm{Zn}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%, 0.05 \mathrm{mmol}, 9 \mathrm{mg})$, Ugi product 4-9 (1 equiv, 0.25 mmol), nucleophile (3 equiv, 0.75 mmol), NaOAc (3 equiv, $0.75 \mathrm{mmol}, 62 \mathrm{mg}$) and dissolved in $t \mathrm{BuOAc}(0.5 \mathrm{ml}$). The vial was sealed and stirred at $85^{\circ} \mathrm{C}$ for 48 hours. Subsequently, the mixture was concentrated, coated on silica and purified using automated normal phase flash chromatography.

General Procedure E: Synthesis of the Ata Scaffold 25

2) $\mathrm{THF}, 70^{\circ} \mathrm{C}, 24 \mathrm{~h}$

3b

25

Into a microwave vial, propargylamine ($0.064 \mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) and aldehyde ($1 \mathrm{mmol}, 1$ equiv) were dissolved in TFE (4 ml). The mixture was stirred for 2 hours at room temperature. Then Boc-L-Ala($\beta-\mathrm{N}_{3}$)-OH ($1.2 \mathrm{mmol}, 1.2$ equiv) and 3 -chloro-2-isocyanopyridine $\mathbf{3 b}$ (1 mmol , 1 equiv) were added to the mixture. The resulting mixture was stirred for 48 hours at room temperature. Subsequently the solvent was removed in vacuo and the crude reaction mixture was redissolved in THF (4 ml). The mixture was heated at $70^{\circ} \mathrm{C}$ and stirred for another 24 hours. The solvent was removed in vacuo and the crude was purified by automated flash column chromatography.

General Procedure F: Solid-Phase Peptide Synthesis

Into an SPPS reactor, the rink amide resin was weighted and swollen in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for twenty minutes under constant shaking. The solvent was removed by filtration and the deprotection of the Fmoc protecting group was achieved by treatment of the resin with a solution of 4methylpiperidine (20%) in DMF (5 and 15 minutes of shaking). In the meantime, a mixture of Fmoc-AA-OH ($0.20 \mathrm{mmol}, 2.0$ equiv), HBTU ($0.20 \mathrm{mmol}, 2.0$ equiv, 0.076 g) and DIPEA ($0.30 \mathrm{mmol}, 3.0$ equiv, 0.052 ml) was stirred for 15 minutes in DMF (1 ml). The resin was washed with DMF (3x) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$ before the pre-stirred mixture was added. After one hour of shaking, the excess of reagents was removed by filtration and the resin was washed with $\operatorname{DMF}(3 x)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The Kaiser test was applied to determine if the peptide coupling was finished. The same deprotection and coupling strategy was applied for the coupling of the following amino acids.

Kaiser test:

For this test, some beats were transferred in a glass tube. Then two droplets of three different solutions were added: a) a solution containing 2.5 g ninhydrin in 50 ml ethanol, b) a solution of 40 g phenol in 10 ml ethanol and c) a solution containing 1 ml 0.001 M aqueous potassium cyanide (KCN) in 49 ml pyridine. The glass tube was heated at $110^{\circ} \mathrm{C}$ in a salt bath for approximately 5 min . A pale yellow colored mixture indicates less than 1% free amine present on the resin, while a dark blue color reveals that the coupling was incomplete. In that case, the coupling was repeated.

SYNTHETIC PROCEDURES

Synthesis of Methyl 2-aminonicotinate S5

S5
The titled compound was prepared using a slightly adapted literature procedure. ${ }^{4}$ A suspension of 2 -aminonicotinic acid ($500 \mathrm{mg}, 3.6 \mathrm{mmol}$, 1 equiv) in methanol (7 ml) in a microwave vial was cooled to $0^{\circ} \mathrm{C}$. To this, sulfuric acid ($95-98 \%, 3.6 \mathrm{ml}, 67 \mathrm{mmol}, 19$ equiv) was added dropwise. The vial was sealed and the suspension was heated to $60^{\circ} \mathrm{C}$ for 2 h . Following, the mixture was allowed to cooled down to room temperature and carefully added to a cold saturated solution of NaHCO_{3}, maintaining at a $\mathrm{pH}>8$. The aqueous layer was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. The titled compound was isolated as a white solid with $75 \%(415 \mathrm{mg}, 2.73 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{dd}, J=4.8,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.11(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.6$ (C), 159.6 (C), 153.8 (CH), $140.2(\mathrm{CH}), 112.8(\mathrm{CH}), 106.3(\mathrm{C}), 52.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HPLC $\mathrm{t}_{\text {R }- \text { HpLC-2 }}=1.12 \mathrm{~min}$. HRMS (ESI+) m/z calc. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 153.0649$, found 153.0659 . $\mathrm{m} . \mathrm{p} .: 85^{\circ} \mathrm{C}$. The spectroscopic data were in accordance with those previously reported. ${ }^{4}$

Synthesis of 3-Substituted-2-Formamidopyridine 2

3-Bromo-2-formamidopyridine 2a

The title compound was prepared following general procedure \mathbf{A} from formic acid ($1.57 \mathrm{ml}, 41 \mathrm{mmol}, 2.05$ equiv), acetic anhydride ($3.78 \mathrm{ml}, 40.0 \mathrm{mmol}, 2$ equiv) and 2 -amino-3-bromopyridine ($3.46 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv) in anhydrous THF (50 ml). This yielded, after evaporation, the desired compound as a white solid in quantitative yield ($4 \mathrm{~g}, \mathbf{2 0 m m o l}$). ${ }^{1} \mathrm{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.50(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{brs}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3(\mathrm{CH}), 148.2(\mathrm{C}), 147.2(\mathrm{CH}), 141.6(\mathrm{CH}), 120.8(\mathrm{CH}), 107.0(\mathrm{C}) \mathrm{ppm} . \mathrm{HPLC}_{\mathrm{R}-\mathrm{HPLC}-2}=1.39 \mathrm{~min}$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{OBr}\left[\mathrm{M}+\mathrm{H} ;{ }^{79} \mathrm{Br}\right]^{+}=200.6958,\left[\mathrm{M}+\mathrm{H} ;{ }^{81} \mathrm{Br}\right]^{+}=202.9638$ found 200.9654 and 202.9637 in the expected ratio 1:1. m. p.: $84^{\circ} \mathrm{C}$. The spectroscopic data were in accordance with those reported for compound with CAS: 1465456-59-0.

3-Chloro-2-formamidopyridine 2b

2b

The title compound was prepared following general procedure \mathbf{A} from formic acid ($1.57 \mathrm{ml}, 41 \mathrm{mmol}, 2.05$ equiv), acetic anhydride ($3.78 \mathrm{ml}, 40 \mathrm{mmol}$, 2 equiv) and 2 -amino-3-chloropyridine ($2.57 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv) in anhydrous THF (50 ml) and. This yielded, after evaporation, the desired compound as a pale-yellow solid in quantitative yield ($3.1 \mathrm{~g}, 20 \mathrm{mmol}$). ${ }^{1} \mathbf{H} \mathbf{N M R}(500$ $\left.\mathbf{M H z}, \mathrm{CDCl}_{3}\right) \delta 9.51(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 162.2(\mathrm{CH}), 147.4(\mathrm{C}), 146.6(\mathrm{CH}), 138.3(\mathrm{CH}), 120.4(\mathrm{CH}), 117.3(\mathrm{C}) \mathrm{ppm} . \mathrm{HPLC}_{\mathrm{R}-\mathrm{HPLC}-2}=1.34 \mathrm{~min}$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{OClNa}\left[\mathrm{M}+\mathrm{Na} ;{ }^{35} \mathrm{Cl}\right]^{+}=178.9983,\left[\mathrm{M}+\mathrm{Na} ;{ }^{37} \mathrm{Cl}\right]^{+}=180.9954$ found 178.9972 and 180.9911. In the expected ratio 3:1. m. p.: $107^{\circ} \mathrm{C}$. The spectroscopic data were in accordance with those reported for compound with CAS: 1700458-38-3

2-Formamido-3-methoxypyridine 2c

2c

The title compound was prepared following general procedure \mathbf{A} from formic acid ($1.57 \mathrm{ml}, 41 \mathrm{mmol}, 2.05$ equiv), acetic anhydride ($3.78 \mathrm{ml}, 40 \mathrm{mmol}, 2$ equiv) and 2 -amino-3-methoxypyridine ($2.48 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv) in anhydrous THF (50 ml). This yielded, after evaporation, the desired compound as a brown solid in quantitative yield ($3 \mathrm{~g}, 20 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.46(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=4.0,8.1 \mathrm{~Hz}$, 1H), 3.88 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 161.9$ (CH), 142.5 (C), 141.6 (C), 139.1 (CH), 119.6 (CH), 117.6 (CH), 55.9 $\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{HPLC} \mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=0.78 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=153.0659$, found 153.0643. m. p.: $97^{\circ} \mathrm{C}$. No spectroscopic data are reported in literature.

Methyl 2-formamidonicotinate 2d

2d

The title compound was prepared following general procedure \mathbf{A}, from formic acid ($1.57 \mathrm{ml}, 41.0 \mathrm{mmol}, 2.05$ equiv), acetic anhydride ($3.78 \mathrm{ml}, 40.0 \mathrm{mmol}, 2$ equiv) and methyl 2 -aminonicotinate $\mathbf{S 5}$ ($3.04 \mathrm{~g}, 20.0 \mathrm{mmol}, 1$ equiv) in anhydrous THF $(50 \mathrm{ml})$. This yielded, after evaporation, the desired compound as a white solid in quantitative yield ($3.6 \mathrm{~g}, 20 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 10.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.59(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.02 (dd, J = 8.0, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4$ (C), 162.4 (CH), $153.0(\mathrm{CH}), 152.3(\mathrm{C})$, $140.6(\mathrm{CH}), 118.9(\mathrm{CH}), 109.2(\mathrm{C}), 52.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{HPLC} \mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=1.65 \mathrm{~min} . \mathrm{HRMS}(E S I+) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}=203.0427$, found $203.0413 . \mathrm{m} . \mathrm{p} .: 77{ }^{\circ} \mathrm{C}$. The spectroscopic data were in accordance with those reported for compound with CAS: 338990-71-9.

6-Bromo-2-formamidopyridine S1

The title compound was prepared following general procedure \mathbf{A} from formic acid ($0.32 \mathrm{ml}, 8.2 \mathrm{mmol}, 2.05$ equiv), acetic anhydride ($0.75 \mathrm{ml}, 8 \mathrm{mmol}, 2$ equiv) and 2 -amino- 6 -bromopyridine ($865 \mathrm{mg}, 5 \mathrm{mmol}, 1$ equiv) in anhydrous THF (50 ml). This yielded, after evaporation, the desired compound as a white solid in 98% ($983 \mathrm{mg}, 4.88 \mathrm{mmol}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R} \mathbf{(5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}, \mathbf{m i x t u r e ~ o f ~}^{\mathbf{~ m}}$ rotamers in 1:0.5 ratio) $\delta 9.32(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.70(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 8.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1.5 \mathrm{H}), 6.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR
($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers) $\delta 162.6(\mathrm{CH}), 159.5(\mathrm{CH}), 150.8(\mathrm{C}), 141.1(\mathrm{CH}), 140.8(\mathrm{C}), 140.7(\mathrm{CH}), 139.5(\mathrm{C}), 124.4$ (CH), $123.9(\mathrm{CH}), 113.5(\mathrm{CH}), 109.4(\mathrm{CH}) \mathrm{ppm}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{OBr}\left[\mathrm{M}+\mathrm{H} ;{ }^{79} \mathrm{Br}\right]^{+}=200.9658,\left[\mathrm{M}+\mathrm{H} ;{ }^{81} \mathrm{Br}\right]^{+}=202.9638 \mathrm{found}$ 200.9660 and 202.9584 in the expected ratio $1: 1$. m. p.: $143^{\circ} \mathrm{C}$. The spectroscopic data were in accordance with those previously reported. ${ }^{1}$

Synthesis of the 2-Isocyanopyredines 3

3-Bromo-2-isocyanopyridine 3a

The title compound was prepared following general procedure \mathbf{B} from 3-bromo-2-formamidopyridine $\mathbf{2 a}$ ($2.02 \mathrm{~g}, 510 \mathrm{mmol}, 1$ equiv), $\mathrm{Et}_{3} \mathrm{~N}$ ($10 \mathrm{ml}, 72 \mathrm{mmol}, 7.2$ equiv) and $\mathrm{PhPO}_{2} \mathrm{Cl}_{2}\left(1.8 \mathrm{ml}, 12 \mathrm{mmol}, 1.2\right.$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography ($\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $1: 3$ to $0: 1$), the desired compound
3a as a white solid with $71 \%(1.3 \mathrm{~g}, 7.1 \mathrm{mmol})$ yield. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37$ (dd, $\left.J=4.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.00(\mathrm{dd}, J=8.1,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, \mathrm{J}=8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2(\mathrm{C}), 148.0(\mathrm{CH}), 142.1(\mathrm{CH}), 139.6(\mathrm{C}), 125.7(\mathrm{CH})$, 117.1 (C) ppm. HPLC $t_{R-H P L C-2}=1.96 \mathrm{~min}$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{Br}\left[\mathrm{M}+\mathrm{H} ;{ }^{79} \mathrm{Br}\right]^{+}=182.9552,\left[\mathrm{M}+\mathrm{H} ;{ }^{81} \mathrm{Br}\right]^{+}=184.9532 \mathrm{found}$ 182.9516 and 184.9534 in the expected ratio 1:1. Degradation point: $85^{\circ} \mathrm{C}$. The spectroscopic data were in accordance with those previously reported. ${ }^{1}$

3-Chloro-2-isocyanopyridine 3b

3b

The title compound was prepared following general procedure \mathbf{B} from 3-chloro-2-formamidopyridine $\mathbf{2 b}$ ($1.56 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv), $\mathrm{Et}_{3} \mathrm{~N}$ ($10 \mathrm{ml}, 72 \mathrm{mmol}, 7.2$ equiv) and $\mathrm{PhPO}_{2} \mathrm{Cl}_{2}\left(1.8 \mathrm{ml}, 12 \mathrm{mmol}, 1.2\right.$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ from $100: 0$ to $\left.97: 3\right)$, the desired compound as a pale-yellow solid with $75 \%(1.03 \mathrm{~g}, 7.5 \mathrm{mmol})$ yield. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.43(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (dd, $J=8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0(\mathrm{C}), 147.5(\mathrm{CH}), 138.9$ (CH), 138.5 (C), $128.2(\mathrm{C}), 125.6(\mathrm{CH})$ ppm. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=1.78 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{Cl}\left[\mathrm{M}+\mathrm{H} ;{ }^{35} \mathrm{Cl}\right]^{+}=39.0058,\left[\mathrm{M}+\mathrm{H} ;{ }^{37} \mathrm{Cl}\right]^{+}=141.0029$ found 139.0063 and 141.0031 in the expected ratio $3: 1$. Degradation point: $75^{\circ} \mathrm{C}$. No spectroscopic data are reported in literature.

2-Isocyano-3-methoxypyridine 3c

3c

The title compound was prepared following general procedure \mathbf{B} from 3-methoxy-2-formamidopyridine $\mathbf{2 c}(1.52 \mathrm{~g}, 10 \mathrm{mmol}$, 1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ ($10 \mathrm{ml}, 72 \mathrm{mmol}, 7.2$ equiv) and $\mathrm{PhPO}_{2} \mathrm{Cl}_{2}\left(1.8 \mathrm{ml}, 12 \mathrm{mmol}, 1.2\right.$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml). This yielded, after Grace Reveleris ${ }^{\circledR} \mathrm{X} 2$ Normal Phase silicagel flash chromatography ($\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $1: 1$ to $0: 1$), the desired compound as white solid with 74% ($994 \mathrm{mg}, 7.4 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{2 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \delta 8.04$ (dd, J=4.0, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.46-7.40(\mathrm{~m}, 2 \mathrm{H})$, 4.00 (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathbf{C D C l} 3$) $\delta 167.3$ (C), 150.9 (C), 139.9 (CH), 129.9 (C), 125.7 (CH), 119.9 (CH), $56.0(\mathrm{CH} 3)$ ppm. HPLC $t_{R-H P L C-2}=1.64 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=135.0553$, found 135.0542. Degradation point: $95{ }^{\circ} \mathrm{C}$. No spectroscopic data are reported in literature.

Methyl 2-isocyanonicotinate 3d

3d

The title compound was prepared following general procedure \mathbf{B} from methyl 2 -formamidonicotinate $\mathbf{2 d}(0.9 \mathrm{~g}, 5 \mathrm{mmol}$, 1 equiv), $\mathrm{Et}_{3} \mathrm{~N}\left(5 \mathrm{ml}, 35.9 \mathrm{mmol}, 7.2\right.$ equiv) and $\mathrm{PhPO}_{2} \mathrm{Cl}_{2}$ ($0.9 \mathrm{ml}, 6 \mathrm{mmol}, 1.2$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml). This yielded, after Grace Reveleris ${ }^{\circledR} \times 2$ Normal Phase silicagel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$ from 1:0 to 4:1), the desired compound as yellow solid with $55 \%(447 \mathrm{mg}, 2.76 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56$ (dd, $\left.J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.32(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathbf{N M R}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6$ (C), 162.8 (C), 152.4 (CH), 151.7 (C), $140.2(\mathrm{CH}), 124.6(\mathrm{CH}), 122.5(\mathrm{C}), 52.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. $\mathrm{HPLC} \mathrm{t}_{\text {R }- \text { HPLC-2 }}=1.75 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}=163.0502$, found 163.0479 . Degradation point: $80^{\circ} \mathrm{C}$. No spectroscopic data are available in literature.

6-Bromo-2-isocyanopyridine S2

The title compound was prepared following general procedure \mathbf{B} from 6-bromo-2-formamidopyridine $\mathbf{S 1}$ ($2.02 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv), $\mathrm{Et}_{3} \mathrm{~N}\left(10 \mathrm{ml}, 35.9 \mathrm{mmol}, 7.2\right.$ equiv) and $\mathrm{PhPO}_{2} \mathrm{Cl}_{2}\left(1.8 \mathrm{ml}, 12 \mathrm{mmol}, 1.2\right.$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the desired compound as a white solid with $60 \%(1.1 \mathrm{~g}, 6 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=8.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4$ (C), 141.4 (C), 140.7 (CH), 139.5 (C), 129.7 (CH), 120.3 (CH) ppm. Degradation point: $86^{\circ} \mathrm{C}$. The spectroscopic data were in accordance with those previously reported. ${ }^{1}$

Synthesis of the Ugi products 4-9

tert-Butyl ((2S)-1-((1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4a

The title compound was prepared following general procedure C from 3-bromo-2-isocyanopyridine 3a (183 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Phe-OH ($265 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), propylamine ($0.099 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.129 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet Ether/EtOAc from 1:1 to 3:7), the desired compound as a yellow oil with $68 \%(392 \mathrm{mg}, 0.68 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 9.50(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}), 9.13(\mathrm{br} \mathrm{s}, 0.8 \mathrm{H}), 9.01(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 8.45(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 0.8 \mathrm{H}), 8.43$ $(\mathrm{d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=4.7,1.6 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.91-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.16(\mathrm{~m}$, $8 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 0.2 \mathrm{H}), 7.00(\mathrm{dd}, J=7.9,4.7 \mathrm{~Hz}, 0.8 \mathrm{H}), 6.97(\mathrm{dd}, J=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.17-5.08(\mathrm{~m}, 1.2 \mathrm{H}), 4.99-4.92(\mathrm{~m}, 0.8 \mathrm{H}), 4.98-4.78(\mathrm{~m}, 2.2 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 0.2 \mathrm{H}), 3.31-2.91(\mathrm{~m}, 7.8 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 3 \mathrm{H})$, $1.73-1.42(\mathrm{~m}, 6.2 \mathrm{H}), 1.39(\mathrm{~s}, 7.2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 1.8 \mathrm{H}), 1.18-1.09(\mathrm{~m}, 0.8 \mathrm{H}), 0.96-0.88(\mathrm{~m}, 12 \mathrm{H}), 0.84-0.76(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 $\mathbf{M H z}$, CDCl $_{3}$, mixture of diastereomers and rotamers) $\boldsymbol{\delta} 174.6$ (C), 174.2 (C), 171.8 (C), 169.3 (C), 169.0 (C), 167.6 (C), 156.4 (C), 155.0 (C), 148.9 (C), 148.8 (C), 147.5 (CH), 141.8 (CH), 141.5 (CH), 141.4 (CH), 136.4 (C), 136.2 (C), 129.8 (CH), 129.5 (CH), 129.4 (CH), 128.9 (CH), 128.7 (CH), 128.7 (CH), 127.3 (CH), 127.2 (CH), 127.1 (CH), 122.6 (CH), 121.4 (CH), 121.3 (CH), 112.1 (C), 111.8 (C), 81.1 (C), 80.1 (C), 80.0 (C), 59.3 $(\mathrm{CH}), 58.2(\mathrm{CH}), 56.6(\mathrm{CH}), 54.0(\mathrm{CH}), 52.3(\mathrm{CH}), 51.2(\mathrm{CH}), 47.8\left(\mathrm{CH}_{2}\right), 46.9\left(\mathrm{CH}_{2}\right), 46.2\left(\mathrm{CH}_{2}\right), 40.4\left(\mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right)$, $36.6\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 24.8(\mathrm{CH}), 24.6(\mathrm{CH}), 23.4\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 11.8$ $\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 9.78-9.38(\mathrm{~m}, 1.6 \mathrm{H}), 8.44-8.39(\mathrm{~m}, 2 \mathrm{H}), 8.12-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.30-$ $7.04(\mathrm{~m}, 12 \mathrm{H}), 6.86(\mathrm{br} \mathrm{s}, 1.6 \mathrm{H}), 5.13-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.63-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.82(\mathrm{~m}$, 2 H), 1.86-1.35 (m, 10H), $1.29(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 12 \mathrm{H}), 0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=3.33 \mathrm{~min}$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{BrN}_{4} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H} ;{ }^{79} \mathrm{Br}\right]^{+}=575.2227,\left[\mathrm{M}+\mathrm{H} ;{ }^{81} \mathrm{Br}\right]^{+}=577.2212$, found 575.2244 and 577.2293 in the expected ratio 1:1. No spectroscopic data are available in literature.
tert-Butyl ((2S)-1-((1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate $\mathbf{4 b}$

The title compound was prepared following general procedure C from 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (139 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Phe-OH ($265 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), propylamine ($0.099 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.129 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 4:1 to 3:2), the desired compound as a yellow oil with $77 \%(411 \mathrm{mg}, 0.77 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 9.56$ (br s, 0.2 H), 9.24 (br s, 0.8 H), 9.09 (br s, 0.6 H), 8.41 (d, J = $4.5 \mathrm{~Hz}, 0.8 \mathrm{H}$), $8.39(\mathrm{dd}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=4.5,1.4 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.73(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 1.2 \mathrm{H}), 7.32-7.14(\mathrm{~m}, 8 \mathrm{H}), 7.10-7.02(\mathrm{~m}$, $4 \mathrm{H}), 5.33-5.26(\mathrm{~m}, 1.8 \mathrm{H}), 5.17-5.05(\mathrm{~m}, 1.2 \mathrm{H}), 5.00-4.93(\mathrm{~m}, 0.8 \mathrm{H}), 4.87-4.64(\mathrm{~m}, 2.2 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 0.2 \mathrm{H}), 3.32-2.91(\mathrm{~m}, 7.8 \mathrm{H}), 1.97-1.81$ $(\mathrm{m}, 3 \mathrm{H}), 1.73-1.42(\mathrm{~m}, 6.2 \mathrm{H}), 1.39(\mathrm{~s}, 7.2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 1.8 \mathrm{H}), 1.18-1.07(\mathrm{~m}, 0.8 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 12 \mathrm{H}), 0.86-0.76(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers) $\delta 174.7$ (C), 174.3 (C), 171.8 (C), 169.3 (C), 169.0 (C), 167.6 (C), 156.4 (C), 155.1 (C), 148.0 (C), 148.0 (C), 147.8 (C), 146.9 (CH), 138.5 (CH), 138.1 (CH), 138.0 (CH), 136.4 (C), 136.2 (C), 129.8 (CH), 129.4 (CH), 129.4
(CH), 128.9 (CH), 128.7 (CH), 128.6 (CH), 127.3 (CH), 127.2 (CH), 127.1 (CH), 122.3 (C), 122.2 (C), 122.0 (C), 121.0 (CH), 120.9 (CH), 81.2 (C), $80.1(\mathrm{C}), 80.0(\mathrm{C}), 59.3(\mathrm{CH}), 58.2(\mathrm{CH}), 56.9(\mathrm{CH}), 52.4(\mathrm{CH}), 52.3(\mathrm{CH}), 51.3(\mathrm{CH}), 47.7\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 39.9\left(\mathrm{CH}_{2}\right)$, $39.4\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 24.8(\mathrm{CH}), 24.6(\mathrm{CH}), 23.4\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.5$ $\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 11.8\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}, \mathbf{8 0}{ }^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 9.81-9.43(\mathrm{~m}, 1.6 \mathrm{H}), 8.40-$ $8.35(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.14(\mathrm{~m}, 12 \mathrm{H}), 6.88(\mathrm{br} \mathrm{s}, 1.6 \mathrm{H}), 5.13-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.12(\mathrm{~m}$, $2 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 12 \mathrm{H}), 0.80(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=3.34 \mathrm{~min}$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{CIN}_{4} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H} ;{ }^{35} \mathrm{Cl}\right]^{+}=531.2733,\left[\mathrm{M}+\mathrm{H} ;{ }^{37} \mathrm{Cl}\right]^{+}=533.2718$, found 531.2745 and 533.2802 in the expected ratio $3: 1$. No spectroscopic data are available in literature.
tert-Butyl ((2S)-1-((1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4c

The title compound was prepared following general procedure \mathbf{C} from 2-isocyano-3-methoxypyridine $\mathbf{3 c}$ (134 $\mathrm{mg}, 1 \mathrm{mmol}$, 1 equiv), Boc-L-Phe-OH ($265 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), propylamine ($0.099 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.129 \mathrm{ml}, 1.0 \mathrm{mmol}, 1.0$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 3:7 to 1:9), the desired compound as a colorless oil with $66 \%(347 \mathrm{mg}, 0.66 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 9.13-8.99(\mathrm{~m}, 1 \mathrm{H}), 8.88-8.75(\mathrm{~m}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 0.9 \mathrm{H}), 8.07-8.02$ $(\mathrm{m}, 1.1 \mathrm{H}), 7.31-6.98(\mathrm{~m}, 14 \mathrm{H}), 5.33(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 0.9 \mathrm{H}), 5.31-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 2.1 \mathrm{H}), 4.86-4.75(\mathrm{~m}$, $2 \mathrm{H}), 3.91(\mathrm{~s}, 2.7 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 0.3 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 0.1 \mathrm{H}), 3.28-3.18(\mathrm{~m}, 1.1 \mathrm{H}), 3.12-2.88(\mathrm{~m}, 6.8 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.44$ $(\mathrm{m}, 6.1 \mathrm{H}), 1.40(\mathrm{~s}, 8.1 \mathrm{H}), 1.37(\mathrm{~s}, 8.1 \mathrm{H}), 1.31(\mathrm{~s}, 0.9 \mathrm{H}), 1.29(\mathrm{~s}, 0.9 \mathrm{H}), 1.18-1.08(\mathrm{~m}, 0.9 \mathrm{H}), 0.97-0.88(\mathrm{~m}, 12 \mathrm{H}), 0.86-0.74(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers) $\delta 174.2$ (C), 174.0 (C), 168.9 (C), 168.5 (C), 155.0 (C), 154.9 (C), 145.3 (C), 145.0 (C), 142.0 (C), 141.9 (C), 141.2 (C), 139.8 (CH), 139.7 (CH) 136.5 (C), 136.3 (C), 129.8 (CH), 129.5 (CH), 129.3 (CH), 128.6 (CH), 127.1 (CH), $121.4(\mathrm{CH}), 119.9(\mathrm{CH}), 119.8(\mathrm{CH}), 118.3(\mathrm{CH}), 117.4(\mathrm{CH}), 117.3(\mathrm{CH}), 79.9(\mathrm{C}), 59.4(\mathrm{CH}), 57.5(\mathrm{CH}), 56.7(\mathrm{CH}), 55.8(\mathrm{CH} 3), 53.9(\mathrm{CH})$, $52.5(\mathrm{CH}), 52.4(\mathrm{CH}), 51.4(\mathrm{CH}), 47.1\left(\mathrm{CH}_{2}\right), 46.7\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 40.5\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right), 36.6$ $\left(\mathrm{CH}_{2}\right)$, $36.3\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 24.8(\mathrm{CH}), 24.7(\mathrm{CH}), 23.4\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 11.8\left(\mathrm{CH}_{3}\right)$, $11.5\left(\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 9.26-8.86(\mathrm{~m}, 1.6 \mathrm{H}), 7.96-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H})$, 7.28$7.12(\mathrm{~m}, 12 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 1.6 \mathrm{H}), 5.09-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.51(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.09(\mathrm{~m}, 2 \mathrm{H})$, 3.01$2.92(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.34(\mathrm{~m}, 10 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 12 \mathrm{H}), 0.80(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}$ $=2.95 \mathrm{~min}$. $\mathrm{HRMS}(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}=527.3228$, found 527.3202 . No spectroscopic data are available in literature.

Methyl 2-(2-((S)-2-((tert-butoxycarbonyl)amino)-3-phenyl- N-propylpropanamido)-4-methylpentanamido)nicotinate 4d

4d

The title compound was prepared from methyl 2-isocyanonicotinate 3d ($162 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Phe-OH ($265 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), propylamine ($0.082 \mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) and isovaleraldehyde (0.107 $\mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) in dichloromethane (4 ml). The mixture was heated at $110^{\circ} \mathrm{C}$ for 0.5 hours by microwave irradiation. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAC from 1:0 to 13:7) as a pale-yellow oil with 41% ($228 \mathrm{mg}, 0.41 \mathrm{mmol}$) yield. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, CDCl_{3}, mixture of diastereomers in a $1: 1$ ratio and rotamers) $\delta 10.94-10.80(\mathrm{~m}, 2 \mathrm{H}), 8.65(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.63(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 8.59(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 0.2 \mathrm{H}), 8.33-8.27(\mathrm{~m}, 1.8 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 4 \mathrm{H})$, $5.63(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.47-5.29(\mathrm{~m}, 2.2 \mathrm{H}), 5.21-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.75(\mathrm{~m}, 1.8 \mathrm{H}), 4.68-4.62(\mathrm{~m}, 0.2 \mathrm{H}), 3.97(\mathrm{~s}, 2.4 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.93$ $(\mathrm{s}, 0.6 \mathrm{H}), 3.33-2.88(\mathrm{~m}, 8 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 1.8 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.37(\mathrm{~s}, 7.2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 2.2 \mathrm{H}), 1.21$ $(\mathrm{s}, 1.8 \mathrm{H}), 0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }^{2}$, mixture of diastereomers and rotamers) $\delta 173.3$ (C), 172.9 (C), 171.6 (C), 169.2 (C), 169.0 (C), 168.2 (C), 167.0 (C), 155.1 (C), 155.0 (C), 153.2 (CH), 153.2 (CH), 152.8 (CH), 152.3 (C), 152.2 (C), 139.9 (CH), 139.7 (CH), 136.9 (C), 136.9 (C), 129.9 (CH), 129.6 (CH), 129.5 (CH), 128.5 (CH), 126.8 (CH), $119.0(\mathrm{CH}), 118.7(\mathrm{CH}), 118.6(\mathrm{CH}), 112.6(\mathrm{C}), 112.3(\mathrm{C}), 80.2(\mathrm{C}), 79.7(\mathrm{C}), 79.7(\mathrm{C}), 60.5(\mathrm{CH}), 58.1(\mathrm{CH}), 56.5(\mathrm{CH}), 56.1$ $(\mathrm{CH}), 54.3(\mathrm{CH}), 53.0\left(\mathrm{CH}_{3}\right), 53.0\left(\mathrm{CH}_{3}\right), 52.8(\mathrm{CH}), 52.4(\mathrm{CH}), 51.8(\mathrm{CH}), 47.6\left(\mathrm{CH}_{2}\right), 47.1\left(\mathrm{CH}_{2}\right), 46.5\left(\mathrm{CH}_{2}\right), 46.2\left(\mathrm{CH}_{2}\right), 41.0\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right)$, $39.8\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 24.9(\mathrm{CH}), 24.5(\mathrm{CH}), 23.6\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{3}\right), 23.0$ $\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{6}, \mathbf{8 0}^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) δ 10.31$10.05(\mathrm{~m}, 1.6 \mathrm{H}), 8.58-8.49(\mathrm{~m}, 2 \mathrm{H}), 8.19-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.12(\mathrm{~m}, 12 \mathrm{H}), 6.85(\mathrm{br} \mathrm{s}, 1.6 \mathrm{H}), 5.11-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.81(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.35(\mathrm{~m}, 8 \mathrm{H}), 1.29(\mathrm{~s}$, $18 \mathrm{H}), 0.94-0.87(\mathrm{~m}, 12 \mathrm{H}), 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$ HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{Hplc}-2}=3.29 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=$ 577.2997, found 577.0303. No spectroscopic data are available in literature.
tert-Butyl ((2S)-1-((1-((6-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate S3
 The title compound was prepared following general procedure \mathbf{C} from 6-bromo-2-isocyanopyridine $\mathbf{S 4}$ (329 $\mathrm{mg}, 1.8 \mathrm{mmol}, 1$ equiv), Boc-L-Phe-OH ($478 \mathrm{mg}, 1.8 \mathrm{mmol}, 1$ equiv), propylamine ($0.18 \mathrm{ml}, 2.16 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.23 \mathrm{ml}, 2.16 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (7 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet Ether/EtOAc from 1:1 to 3:7), the desired compound as a yellow oil with $65 \%(678 \mathrm{mg}, 1.18 \mathrm{mmol})$ yield. ${ }^{\mathbf{1}} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\boldsymbol{d}_{6}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 11.24(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}), 10.66(\mathrm{br} \mathrm{s}, 0.1 \mathrm{H}), 10.55(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}), 10.48(\mathrm{br} \mathrm{s}, 0.3 \mathrm{H}), 10.34$ (br s, 0.5H), 10.13 (br s, 0.7H), 9.07-7.96 (m, 2H), 7.75-7.69 (m, 2H), 7.39-7.17 (m, 12H), 7.17-7.09 (m, 2H), 5.10-4.98 (m, 1.4H), 4.92-4.79 $(\mathrm{m}, 0.6 \mathrm{H}), 4.68-4.58(\mathrm{~m}, 0.5 \mathrm{H}), 4.53-4.37(\mathrm{~m}, 1.5 \mathrm{H}), 3.55-3.44(\mathrm{~m}, 0.5 \mathrm{H}), 3.42-3.25(\mathrm{~m}, 1.5 \mathrm{H}$ overlap with HDO$), 3.18-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.74$ $(\mathrm{m}, 4 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 0.5 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2.5 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 7 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 0.94-0.67(\mathrm{~m}, 20 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}(126$ $\mathrm{MHz}, \mathrm{DMSO}_{6}$, mixture of diastereomers and rotamers) $\delta 173.5$ (C), 173.3 (C), 172.7 (C), 172.1 (C), 171.7 (C), 170.6 (C), 170.6 (C), 168.8 (C), 155.8 (C), 155.3 (C), 155.2 (C), 154.9 (C), 151.8 (C), 151.8 (C), 151.7 (C), 151.5 (C), 141.4 (CH), 141.3 (CH), 141.3 (CH), 138.8 (C), 138.8 (C), 137.6 (C), 137.4 (C), 137.1 (C), 129.6 (CH), $129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 128.1(\mathrm{CH}), 127.7(\mathrm{CH}), 126.5(\mathrm{CH}), 126.4(\mathrm{CH})$, $126.3(\mathrm{CH}), 126.0(\mathrm{CH}), 123.5(\mathrm{CH}), 123.3(\mathrm{CH}), 123.2(\mathrm{CH}), 123.1(\mathrm{CH}), 112.8(\mathrm{CH}), 112.6(\mathrm{CH}), 112.5(\mathrm{CH}), 112.3(\mathrm{CH}), 79.2(\mathrm{C}), 78.2(\mathrm{C}), 78.1$ $(\mathrm{C}), 58.2(\mathrm{CH}), 56.2(\mathrm{CH}), 56.1(\mathrm{CH}), 56.0(\mathrm{CH}), 52.6(\mathrm{CH}), 52.4(\mathrm{CH}), 51.6(\mathrm{CH}), 51.5(\mathrm{CH}), 46.3\left(\mathrm{CH}_{2}\right), 46.0\left(\mathrm{CH}_{2}\right), 45.1\left(\mathrm{CH}_{2}\right), 44.8\left(\mathrm{CH}_{2}\right), 37.9$ $\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3}\right), 22.9$ $\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 22.2(\mathrm{CH}), 22.0(\mathrm{CH}), 22.0(\mathrm{CH}), 21.8\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right)$, $11.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=3.81 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{BrN}_{4} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na} ;{ }^{79} \mathrm{Br}\right]^{+}=597.2047,\left[\mathrm{M}+\mathrm{Na} ;{ }^{81} \mathrm{Br}\right]^{+}=599.2031$, found 597.2029 and 599.2009 in the expected ratio 1:1. No spectroscopic data are available in literature.
tert-Butyl
((2S)-1-((1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-3-(tert-butoxy)-1-oxopropan-2yl)carbamate 5a

The title compound was prepared following general procedure \mathbf{C} from 3-bromo-2-isocyanopyridine 3 a (183 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Ser $(t \mathrm{Bu})-\mathrm{OH}(261 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), propylamine ($0.099 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.129 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet Ether/EtOAc from 4:1 to 3:2), the desired compound as a yellow oil with $70 \%(398 \mathrm{mg}, 0.70 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 9.17-9.03(\mathrm{~m}, 1.6 \mathrm{H}), 8.46-8.41(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 1 \mathrm{H}), 6.97$ (dd, J = 8.1, 4.7 Hz, 2H), $5.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.21(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.84-4.73(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.45(\mathrm{~m}, 6 \mathrm{H}), 3.36-3.24(\mathrm{~m}$, $2 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.57(\mathrm{~m}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 8.1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 0.9 \mathrm{H}), 1.18(\mathrm{~s}, 0.9 \mathrm{H}), 1.14(\mathrm{~s}, 8.1 \mathrm{H}), 1.08(\mathrm{~s}, 0.9 \mathrm{H}), 1.01(\mathrm{~s}, 8.1 \mathrm{H})$, 0.99-0.86 (m, 18H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta 174.3(\mathrm{C}), 173.9(\mathrm{C}), 169.7(\mathrm{C}), 169.5(\mathrm{C}), 155.2(\mathrm{C}), 149.1$ $(\mathrm{C}), 148.9(\mathrm{C}), 147.5(\mathrm{CH}), 141.4(\mathrm{CH}), 121.3(\mathrm{CH}), 112.5(\mathrm{C}), 80.1(\mathrm{C}), 73.8(\mathrm{C}), 73.6(\mathrm{C}), 63.6\left(\mathrm{CH}_{2}\right), 63.5(\mathrm{CH}), 59.6(\mathrm{CH}), 56.5(\mathrm{CH}), 51.1(\mathrm{CH})$, $48.7\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 24.8(\mathrm{CH}), 24.4(\mathrm{CH}), 23.5\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right), 23.3$ $\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ D M S O - d} \mathbf{6}, \mathbf{8 0}{ }^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 9.51-9.36(\mathrm{~m}, 1.6 \mathrm{H}), 8.43-8.38(\mathrm{~m}$, $2 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{br} \mathrm{s}, 1.6 \mathrm{H}), 5.20-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.45(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.29(\mathrm{~m}, 8 \mathrm{H})$, 1.87-1.58 (m, 10H), $1.36(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.98-0.84(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}}-\mathrm{HPLc}-2=3.41 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{BrN}_{4} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H} ;{ }^{79} \mathrm{Br}\right]^{+}=571.2490,\left[\mathrm{M}+\mathrm{H} ;{ }^{81} \mathrm{Br}\right]^{+}=573.2474$, found 571.2503 and 573.2474 in the expected ratio 1:1. No spectroscopic data are available in literature.
tert-Butyl ((2S)-3-(tert-butoxy)-1-((1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxopropan-2-yl)carbamate 5b

The title compound was prepared following general procedure \mathbf{C} from 3 -chloro-2-isocyanopyridine $\mathbf{3 b}$ (139 mg , $1 \mathrm{mmol}, 1$ equiv), Boc-L-Ser($t \mathrm{Bu}$)- OH ($261 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), propylamine ($0.099 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.129 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/ EtOAc from 4:1 to 13:7), the desired compound as a yellow oil with 73% ($387 \mathrm{mg}, 0.73 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 9.30(\mathrm{br} \mathrm{s}, 1.6 \mathrm{H}), 8.44-8.39(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.10$ (dd, J = 8.1, $4.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.71(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.55$ $(\mathrm{m}, 3 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.56(\mathrm{~m}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 7.8 \mathrm{H}), 1.32(\mathrm{~s}, 1.2 \mathrm{H}), 1.18(\mathrm{~s}, 1.2 \mathrm{H})$, $1.14(\mathrm{~s}, 7.8 \mathrm{H}), 1.05(\mathrm{~s}, 0.3 \mathrm{H}), 1.02(\mathrm{~s}, 8.7 \mathrm{H}), 0.99-0.85(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathbf{~ N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers and rotamers) δ $174.6(\mathrm{C}), 174.2(\mathrm{C}), 169.8(\mathrm{C}), 169.7(\mathrm{C}), 155.4(\mathrm{C}), 155.2(\mathrm{C}), 147.8(\mathrm{C}), 147.7(\mathrm{C}), 146.3(\mathrm{CH}), 139.2(\mathrm{CH}), 138.6(\mathrm{CH}), 122.9(\mathrm{C}), 121.2(\mathrm{CH})$, $80.2(\mathrm{C}), 73.8(\mathrm{C}), 73.7(\mathrm{C}), 63.4\left(\mathrm{CH}_{2}\right), 63.3\left(\mathrm{CH}_{2}\right), 62.4\left(\mathrm{CH}_{2}\right), 59.7(\mathrm{CH}), 57.1(\mathrm{CH}), 51.2(\mathrm{CH}), 51.1(\mathrm{CH}), 50.3(\mathrm{CH}), 48.9\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{CH}_{2}\right), 46.5$ $\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 24.8(\mathrm{CH}), 24.5(\mathrm{CH}), 23.4(\mathrm{CH})$, $23.3\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{M H z}, \mathrm{DMSO}-\boldsymbol{d}_{6}, \mathbf{8 0}{ }^{\circ} \mathrm{C}\right.$, mixture of diastereomer in $\mathbf{1 : 1}$ ratio)
$\delta 9.46$ (br s, 1.6H), 8.38-8.35 (m, 2H), $7.94(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{br} \mathrm{s}, 1.6 \mathrm{H}), 5.20-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.54-$ $4.44(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.38(\mathrm{~m}, 8 \mathrm{H}), 1.87-1.57(\mathrm{~m}, 10 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.98-0.83(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} . \mathrm{HPLC} \mathrm{t}_{\mathrm{R}}=$ 3.39 min . HRMS (ESI+) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{ClN}_{4} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H} ;{ }^{35} \mathrm{Cl}\right]^{+}=527.2995,\left[\mathrm{M}+\mathrm{H} ;{ }^{37} \mathrm{Cl}\right]^{+}=529.2979$, found 527.2985 and 529.3007 in the expected ratio 3:1. No spectroscopic data are available in literature.
tert-Butyl ((2S)-3-(tert-butoxy)-1-((1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxopropan-2-yl)carbamate 5c

The title compound was prepared following general procedure \mathbf{C} from 2-isocyano-3-methoxypyridine $\mathbf{3 c}$ (134 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Ser(tBu)-OH ($261 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), propylamine ($0.099 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.129 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. ether/ EtOAc from 4:1 to 13:7), the desired compound as a pale orange oil with $63 \%(330 \mathrm{mg}, 0.63 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 9.04-8.86(\mathrm{~m}, 2 \mathrm{H}), 8.08-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.71(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H})$, 3.64-3.44 (m, 6H), 3.35-3.22 (m, 2H), 1.99-1.91 (m, 1H), 1.91-1.50 (m, 9H), 1.43 ($\mathrm{s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 8.1 \mathrm{H}), 1.33(\mathrm{~s}, 0.9 \mathrm{H}), 1.17(\mathrm{~s}, 0.9 \mathrm{H}), 1.14(\mathrm{~s}$, $8.1 \mathrm{H}), 1.07(\mathrm{~s}, 0.9 \mathrm{H}), 0.99(\mathrm{~s}, 8.1 \mathrm{H}), 0.98-0.84(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathbf{~ N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers and rotamers) $\delta 174.0$ (C), 173.6 (C), 169.2 (C), 169.1 (C), 155.1 (C), 145.5 (C), 142.0 (C), 142.0 (C), 139.7 (CH), 121.3 (C), 119.9 (CH), 117.4 (CH), 79.9 (C), 73.6 (C), $63.6\left(\mathrm{CH}_{2}\right), 58.9(\mathrm{CH}), 56.5(\mathrm{CH}), 55.8\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 51.2(\mathrm{CH}), 51.1(\mathrm{CH}), 48.2\left(\mathrm{CH}_{2}\right), 46.7\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3$ $\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 24.8(\mathrm{CH}), 24.4(\mathrm{CH}), 23.5\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right)$, $11.5\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 9.02-8.87(\mathrm{~m}, 1.6 \mathrm{H}), 7.95-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.22-7.14 (m, 2 H), $6.56(\mathrm{br} \mathrm{s}, 1.6 \mathrm{H}), 5.17-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.45(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.56-3.29(\mathrm{~m}, 8 \mathrm{H}), 1.83-1.55(\mathrm{~m}$, $10 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.96-0.83(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=3.01 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}=523.3490$, found 523,3474 . No spectroscopic data are available in literature.
tert-Butyl ((2S)-1-(benzyl(1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate 6a

6a

The title compound was prepared following general procedure C from 3-bromo-2-isocyanopyridine 3a (183 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Trp-OH ($304 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), benzylamine ($0.131 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.129 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 11:9 to 7:13), the desired compound as a pale-yellow solid with 71% ($470 \mathrm{mg}, 0.71 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 9.61$ (br s, 0.2 H), $9.30(\mathrm{br} \mathrm{s}, 0.8 \mathrm{H}), 9.16$ (br s, 0.2 H), 8.93 (br s, $0.8 \mathrm{H}), 8.51-8.44(\mathrm{~m}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 8.36(\mathrm{dd}, J=4.8,1.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 8.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.24-8.19$ $(\mathrm{m}, 1 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 1.2 \mathrm{H}), 7.26-6.95(\mathrm{~m}, 17.8 \mathrm{H})$ $6.88-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 0.8 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 0.2 \mathrm{H}), 5.43(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-$ $5.12(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.95(\mathrm{~m}, 1.2 \mathrm{H}), 4.94-4.90(\mathrm{~m}, 0.2 \mathrm{H}), 4.86(\mathrm{q}, J=7.5 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.80(\mathrm{q}, J=7.5 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.73-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.35(\mathrm{~m}$, $2 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 0.8 \mathrm{H}), 3.96-3.88(\mathrm{~m}, 0.2 \mathrm{H}), 3.19-3.06(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 7.2 \mathrm{H}), 1.32$ $(\mathrm{s}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 5.8 \mathrm{H}), 1.07(\mathrm{~s}, 1.8 \mathrm{H}), 1.00(\mathrm{~s}, 1.2 \mathrm{H}) 0.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 5.2 \mathrm{H}), 0.81(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 5.2 \mathrm{H}), 0.57(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 0.8 \mathrm{H}), 0.43(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 0.8) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers) $\delta 175.9$ (C), 175.4 (C), 173.4 (C), 168.7 (C), 168.5 (C), 167.6 (C), 156.4 (C), 155.2 (C), 154.9 (C), 154.3 (C), 148.9 (C), 148.8 (C), 147.5 (CH), 147.4 (CH), 141.7 (CH), 141.5 (CH), 138.2 (C), 136.9 (C), 136.3 (C), 136.2 (C), 128.8 (CH), 128.1 (CH), 128.1 (CH), 127.6 (CH), 127.5 (CH), 127.4 (CH), 126.7 (CH), 126.5 (CH), 126.0 (CH), 125.7 (CH), 123.6 (CH), 123.3 (CH), 123.2 (CH), 122.5 (CH), 122.4 (CH), 122.2 (CH), 121.9 (CH), 121.8 (CH), 121.6 (CH), 120.0 (CH), 119.8 (CH), 119.6 (CH), $118.8(\mathrm{CH}), 118.6(\mathrm{CH}), 118.4(\mathrm{CH}), 118.1(\mathrm{CH}), 112.9(\mathrm{CH}), 111.7(\mathrm{CH}), 111.5(\mathrm{CH}), 111.3(\mathrm{CH}), 110.3(\mathrm{C}), 109.9(\mathrm{C}), 81.1$ (C), $80.1(\mathrm{C}), 79.8(\mathrm{C}), 59.8(\mathrm{CH}), 58.3(\mathrm{CH}), 57.2(\mathrm{CH}), 53.1(\mathrm{CH}), 52.9(\mathrm{CH}), 52.0(\mathrm{CH}), 51.8(\mathrm{CH}), 50.5(\mathrm{CH}), 49.5\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 48.2\left(\mathrm{CH}_{2}\right)$, $47.5\left(\mathrm{CH}_{2}\right), 38.9\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right) 25.3$ (CH), $25.2(\mathrm{CH}), 25.1(\mathrm{CH}), 24.4\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right) 21.4\left(\mathrm{CH}_{3}\right)$ ppm. NMRdata was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{DMSO}-\mathbf{d}_{6}, 80^{\circ} \mathrm{C}\right.$, mixture of diastereomer in 1:1 ratio) $\delta 10.75-10.52(\mathrm{~m}, 2 \mathrm{H}), 9.99-9.56(\mathrm{~m}, 2 \mathrm{H}), 8.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-6.96(\mathrm{~m}, 2 \mathrm{H})$, $6.90(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.02-4.70(\mathrm{~m}, 5 \mathrm{H}), 4.66-4.28(\mathrm{~m}, 3 \mathrm{H}), 3.32-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.89(\mathrm{~m}, 3 \mathrm{H}), 1.83-$ $1.49(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.16(\mathrm{~m}, 18 \mathrm{H}), 0.90-0.61(\mathrm{~m}, 13 \mathrm{H}), 0.50(\mathrm{brs}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 80{ }^{\circ} \mathrm{C}$, mixture of diastereomers) $\delta 173.8$ (C), 168.9 (C), 168.7 (C), 154.7 (C), 148.6 (C), 147.0 (CH), 141.4 (CH), 137.8 (C), 137.4 (C), 135.9 (C), 127.9 (CH), 127.8 (CH), 127.4 (CH), 127.0 (CH), 126.4 (CH), 125.9 (CH), 123.6 (CH), 122.7 (CH), 120.4 (CH), 117.9 (CH), 116.0 (CH), 110.8 (CH), 109.4 (C), 78.0 (C), 77.9 (C), $58.4(\mathrm{CH}), 56.1(\mathrm{CH}), 51.7(\mathrm{CH}), 47.8\left(\mathrm{CH}_{2}\right), 46.5\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right)$, $27.6\left(\mathrm{CH}_{3}\right), 24.1(\mathrm{CH}), 21.9\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$ ppm. HPLC tr- $\mathrm{HPLC}-2$ $=3.27$ and 3.31 min . HRMS (ESI+) m/z calcd. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{BrN}_{5} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na} ;{ }^{79} \mathrm{Br}\right]^{+}=684.2156,\left[\mathrm{M}+\mathrm{Na} ;{ }^{81} \mathrm{Br}\right]^{+}=686.2142$, found 684.2153 and 686.2118 in the expected ratio 1:1. No spectroscopic data are available in literature.
tert-Butyl ((2S)-1-(benzyl(1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate 6b

The title compound was prepared following general procedure C from 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (139 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Trp-OH ($304 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), benzylamine ($0.131 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.129 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 7:13 to 9:11), the desired compound as a pale-yellow solid with $66 \%(410 \mathrm{mg}, 0.66 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in 1:1 ratio and rotamers) $\delta 9.61$ (br s, 0.2 H), $9.38(\mathrm{br} \mathrm{s}, 0.8 \mathrm{H}), 9.26(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}), 8.99$ (br s, $0.8 \mathrm{H}), 8.47-8.40(\mathrm{~m}, 0.8 \mathrm{H}), 8.37(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.32-8.28(\mathrm{~m}, 1.2 \mathrm{H}), 8.26-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $0.8 \mathrm{H}), 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 0.2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.4 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 1.4 \mathrm{H}), 7.27-6.91(\mathrm{~m}$, $18.2 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 1.8 \mathrm{H}), 6.77(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}), 5.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.12(\mathrm{~m}, 1 \mathrm{H})$, 5.05-4.97 (m, 1H), 4.90-4.83 (m, 0.8H), 4.78 ($\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.60(\mathrm{~m}, 0.2 \mathrm{H}), 4.45-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.16(\mathrm{~m}, 0.8 \mathrm{H})$, 3.97-3.89 ($\mathrm{m}, 0.2 \mathrm{H}$), 3.38-3.31 ($\mathrm{m}, ~ 0.2 \mathrm{H}$), 3.20-3.05 ($\mathrm{m}, 3.8 \mathrm{H}$), 2.02-1.96 (m, 1.2H), 1.95-1.87 (m, 1.8H), 1.54-1.41 (m, 3H), 1.40-1.33 (m, $7.2 \mathrm{H}), 1.28(\mathrm{~s}, 7.2 \mathrm{H}), 1.07(\mathrm{~s}, 1.8 \mathrm{H}), 1.00(\mathrm{~s}, 1.8 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 4.8 \mathrm{H}), 0.83-0.76(\mathrm{~m}, 6 \mathrm{H}), 0.56(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 0.44(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, $0.6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta 176.0$ (C), 175.5 (C), 173.4 (C), 168.6 (C), 168.5 (C), 167.5 (C), 156.5 (C), 155.3 (C), 154.9 (C), 154.3 (C), 148.0 (C), 147.9 (C), 146.8 (CH), 146.8 (CH), 146.7 (CH), 138.3 (CH), 138.1 (CH), 136.9 (C), 136.3 (C), 136.2 (C), 128.8 (CH), 128.1 (CH), 128.1 (CH), 127.6 (CH), 127.5 (CH), 127.4 (CH), 126.7 (CH), 126.5 (CH), 126.0 (CH), 125.7 (CH), 123.6 (CH), 123.3 $(\mathrm{CH}), 123.2(\mathrm{CH}), 122.4(\mathrm{CH}), 122.3(\mathrm{CH}), 121.4(\mathrm{CH}), 121.2(\mathrm{CH}), 120.0(\mathrm{CH}), 119.8(\mathrm{CH}), 118.8(\mathrm{CH}), 118.6,(\mathrm{CH}), 111.5(\mathrm{CH}), 111.3(\mathrm{CH})$, 110.3 (C), $109.9(\mathrm{C}), 81.1(\mathrm{C}), 80.1(\mathrm{C}), 79.8(\mathrm{C}), 59.7(\mathrm{CH}), 58.3(\mathrm{CH}), 53.1(\mathrm{CH}), 53.0(\mathrm{CH}), 52.0(\mathrm{CH}), 51.8(\mathrm{CH}), 50.6(\mathrm{CH}), 49.5\left(\mathrm{CH}_{2}\right), 48.9$ $\left(\mathrm{CH}_{2}\right), 48.2\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{CH}_{2}\right), 38.9\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3$ $\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right), 25.2(\mathrm{CH}), 25.1(\mathrm{CH}), 24.4(\mathrm{CH}), 23.0\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{DMSO}-d_{6}, 80^{\circ} \mathrm{C}\right.$, mixture of diastereomer in 1:1 ratio) 10.76-10.52 (m, 2H), 10.10-9.68 (m, 2H), $8.39(\mathrm{~s}, 2 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-6.96(\mathrm{~m}, 20 \mathrm{H}), 6.90(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.04-4.69(\mathrm{~m}, 5 \mathrm{H}), 4.67-4.28(\mathrm{~m}, 3 \mathrm{H}), 3.32-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.90(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.51(\mathrm{~m}, 6 \mathrm{H})$, 1.42-1.19 ($\mathrm{m}, 18 \mathrm{H}$), 0.90-0.78 ($\mathrm{m}, 7 \mathrm{H}$), 0.74-0.47 (m,5H) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d ${ }_{6}, \mathbf{8 0}{ }^{\circ} \mathrm{C}$, mixture of diastereomers) $\delta 173.8(\mathrm{C})$, 173.5 (C), 168.9 (C), 168.7 (C), 154.7 (C), 147.5 (C), 146.4 (CH), 138.1 (CH), 137.8 (C), 137.4 (C), 135.9 (C), 127.8 (CH), 127.4 (CH), 127.0 (CH), 126.4 (CH), 125.9 (CH), 125.8 (CH), 123.6 (CH), $122.5(\mathrm{CH}), 120.4(\mathrm{CH}), 117.9(\mathrm{CH}), 110.8(\mathrm{CH}), 109.3(\mathrm{C}), 78.0(\mathrm{C}), 58.4(\mathrm{CH}), 56.1(\mathrm{CH}), 51.7$ (CH), $47.7\left(\mathrm{CH}_{2}\right), 46.3\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 24.1(\mathrm{CH}), 21.9\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{HPLC} \mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=3.27$ and 3.30 min . HRMS (ESI+) m/z calcd. for $\left[\mathrm{M}+\mathrm{H} ;{ }^{35} \mathrm{Cl}\right]^{+}=618.2842,\left[\mathrm{M}+\mathrm{H} ;{ }^{37} \mathrm{CI}\right]^{+}=620.2831$, found 618.2838 and 620.2830 in the expected 3:1 ratio. No spectroscopic data are available in literature.
tert-Butyl ((2S)-1-(benzyl(1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate 6c

The title compound was prepared following general procedure C from 2-isocyano-3-methoxypyridine $\mathbf{6 c}$ (134 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Trp-OH ($304 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), benzylamine ($0.131 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and isovaleraldehyde ($0.129 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (40 g column, Pet. Ether/EtOAc from 9:11 to 1:3), the desired compound as a pale-yellow solid with 72% ($445 \mathrm{mg}, 0.72 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 9.10(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 9.00(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}), 8.69-8.62(\mathrm{~m}$, $0.8 \mathrm{H}), 8.42-8.23(\mathrm{~m}, 2 \mathrm{H}), 8.15-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.06-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H})$, 7.28-6.90 (m, 19.4H), 6.89-6.85 (m, 1H), $6.80(\mathrm{~s}, 0.2 \mathrm{H}), 6.76(\mathrm{~s}, 0.8 \mathrm{H}), 5.37(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.33-5.26(\mathrm{~m}$, $0.4 \mathrm{H}), 5.25-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.10-4.98(\mathrm{~m}, 1.2 \mathrm{H}), 4.89-4.76(\mathrm{~m}, 1.6 \mathrm{H}), 4.72-4.62(\mathrm{~m}, 0.2 \mathrm{H}), 4.61-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=17.8$ $\mathrm{Hz}, 0.2 \mathrm{H}), 4.04(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 5.4 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 0.6 \mathrm{H}), 3.20-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.0(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 0.8 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 7.2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 9.4 \mathrm{H}), 1.09(\mathrm{~s}, 1.8 \mathrm{H}), 1.01(\mathrm{~s}, 1.8 \mathrm{H}), 0.87-0.72(\mathrm{~m}$, $10.8 \mathrm{H}), 0.58(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 0.45(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 0.6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta 175.6$ (C), 175.3 (C), 175.0 (C), 168.3 (C), 168.1 (C), 168.0 (C), 155.0 (C), 154.8 (C), 154.3 (C), 145.9 (C), 145.7 (C), 145.2 (C), 141.8 (C), 141.7 (C), 139.6 (CH), 137.2 (C), 136.9 (C), 136.3 (C), 136.2 (C), 128.7 (CH), 128.6 (CH), 128.2 (CH), 128.0 (CH), 127.6 (CH), 127.4 (CH), 127.4 (CH), 126.6 (CH), 126.3 (CH), 125.9 (CH), 125.6 (CH), 123.6 (CH), 123.3 (CH), 123.2 (CH), 122.2 (CH), 120.5 (CH), 120.1 (CH), 119.8 (CH), 119.6 (CH), 118.8 (CH), 118.7 (CH), 118.4 (CH), 118.0 (CH), 117.8 (CH), 117.5 (CH), 111.8 (CH), 111.4 (CH), 111.3 (CH), 110.4 (C), 110.2 (C) 80.0 (C), 79.8 (C), 79.7 (C), 58.5 (CH), $57.5(\mathrm{CH}), 57.0(\mathrm{CH}), 55.9\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 53.2(\mathrm{CH}), 53.0(\mathrm{CH}), 52.1(\mathrm{CH}), 50.8(\mathrm{CH}), 49.2\left(\mathrm{CH}_{2}\right), 48.0\left(\mathrm{CH}_{2}\right), 47.1\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right), 37.1$ $\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right) 27.8\left(\mathrm{CH}_{3}\right) 25.3(\mathrm{CH})$, $25.1(\mathrm{CH}), 24.5(\mathrm{CH}), 22.9\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\boldsymbol{d}_{6}, \mathbf{8 0}^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) δ 10.71-10.49 $(\mathrm{m}, 2 \mathrm{H}), 9.44-9.09(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-6.94(\mathrm{~m}, 20 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 1 \mathrm{H}), 5.24-$ $4.51(\mathrm{~m}, 8 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.66(\mathrm{~m}, 7 \mathrm{H}), 3.37-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.85(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.05(\mathrm{~m}, 18 \mathrm{H}), 0.89-$ $0.75(\mathrm{~m}, 8 \mathrm{H}), 0.73-0.57(\mathrm{~m}, 5 \mathrm{H}), 0.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers) $\delta 173.8$ (C), 173.5 (C), 168.5 (C), 168.2 (C), 154.7 (C), 148.0 (C), 140.9 (C), 138.6 (CH), 137.9 (C), 137.4 (C), 135.9 (C), 127.9 (CH), $127.7(\mathrm{CH}), 127.3$ (CH), 127.0 (CH),
$126.4(\mathrm{CH}), 126.3(\mathrm{CH}), 126.0(\mathrm{CH}), 123.6(\mathrm{CH}), 121.3(\mathrm{CH}), 121.2(\mathrm{CH}), 120.4(\mathrm{CH}), 119.1(\mathrm{CH}), 117.9(\mathrm{CH}), 110.8(\mathrm{CH}), 109.4(\mathrm{C}), 78.0(\mathrm{C})$, $58.5(\mathrm{CH}), 56.6(\mathrm{CH}), 56.1(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 51.7(\mathrm{CH}), 51.0(\mathrm{CH}), 47.8\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{CH}_{2}\right), 46.2\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 27.6$ $\left(\mathrm{CH}_{3}\right), 24.1(\mathrm{CH}), 21.9\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=2.96 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}=614.3337$, found 614.3344. No spectroscopic data are available in literature.
tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-bromopyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate 7a

7a

The title compound was prepared following general procedure C from 3-bromo-2-isocyanopyridine 3a (183 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Val-OH ($217 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), benzylamine ($0.131 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and 4-bromobenzaldehyde ($222 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 1:5 to 7:13), the desired compound as a yellow-brown solid with 51% ($343 \mathrm{mg}, 0.51 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 8.40(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 7.85-7.82 (m, 0.1H), 7.81-7.77 (m, 1.9H), 7.50-7.45 (m, 2H), 7.37-7.15 (m, 14H), 7.06-7.02 (m, 1.9H), 6.94-6.89 $(\mathrm{m}, 2 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 0.1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J$ $=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.48(\mathrm{~m}, 3 \mathrm{H}), 4.41(\mathrm{dd}, J=9.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 8.6 \mathrm{H}), 1.41(\mathrm{~s}, 8.1 \mathrm{H}), 1.26(\mathrm{~s}, 0.4 \mathrm{H}), 1.21(\mathrm{~s}, 0.9 \mathrm{H}), 0.95-0.88(\mathrm{~m}, 9.3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2.7 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 $\mathbf{M H z}$, CDCl $_{3}$, mixture of diastereomers and rotamers) $\boldsymbol{\delta} 174.7$ (C), 174.3 (C), 167.7 (C), 166.2 (C), 156.2 (C), 155.4 (C), 148.4 (C), 148.1 (C), 147.5 (CH), 147.3 (CH), 141.4 (CH), 141.2 (CH), 136.4 (C), 136.2 (C), 133.6 (C), 132.7 (C), 132.3 (CH), 132.0 (CH), 131.8 (CH), 131.6 (CH), 131.5 (CH), 128.9 (CH), 128.6 (CH), 127.9 (CH), 127.7 (CH), 127.5 (CH), 127.2 (CH), 127.0 (CH), 126.1 (CH), 123.3 (C), 121.2 (CH), 111.2 (C), 110.9 (C), $79.9(\mathrm{C}), 79.6(\mathrm{C}), 66.0(\mathrm{CH}), 63.9(\mathrm{CH}), 56.2(\mathrm{CH}), 56.0(\mathrm{CH}), 51.7\left(\mathrm{CH}_{2}\right), 50.7\left(\mathrm{CH}_{2}\right), 32.3(\mathrm{CH}), 31.3(\mathrm{CH}), 28.4\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 19.9$ $\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 10.50-9.75(\mathrm{~m}, 2 \mathrm{H}), 8.41(\mathrm{~d}, \mathrm{~J}=3.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-6.93(\mathrm{~m}, 20 \mathrm{H}), 6.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.34-6.17(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-$ $4.58(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.26(\mathrm{~m}, 18 \mathrm{H}), 0.99-0.61(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=3.36 \mathrm{~min}$. HRMS (ESI +) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na} ;{ }^{79} \mathrm{Br},{ }^{79} \mathrm{Br}\right]^{+}=695.0839,\left[\mathrm{M}+\mathrm{Na} ;{ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}\right]^{+}=697.0822$ and $\left[\mathrm{M}+\mathrm{Na} ;{ }^{81} \mathrm{Br},{ }^{81} \mathrm{Br}\right]^{+}=699.0808$, found 695.0828, 697.0778 and 699.0828 in the expected 1:2:1 ratio. No spectroscopic data are available in literature.
tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-chloropyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate 7b

The title compound was prepared following general procedure \mathbf{C} from 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (139 mg , $1 \mathrm{mmol}, 1$ equiv), Boc-L-Val-OH ($217 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), benzylamine ($0.131 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and $4-$ bromobenzaldehyde ($222 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. ETher/EtOAc from 1:5 to 7:13), the desired compound as a yellow-brown solid with $48 \%(300 \mathrm{mg}, 0.48 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 8.41-8.37(\mathrm{~m}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.69(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 0.1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 1.9 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.14(\mathrm{~m}, 14 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 3.9 \mathrm{H}), 6.80-$ $6.77(\mathrm{~m}, 0.1 \mathrm{H}), 6.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.38-5.32(\mathrm{~m}, 1.1 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 0.9 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}$, 1 H), $4.90(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.41(\mathrm{dd}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}$, $1 \mathrm{H}), 1.45(\mathrm{~s}, 8.1 \mathrm{H}), 1.43(\mathrm{~s}, 0.9 \mathrm{H}), 1.41(\mathrm{~s}, 8.1 \mathrm{H}), 1.21(\mathrm{brs}, 0.9 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 9 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(126} \mathrm{MHz}$,CDCl 3 , mixture of diastereomers and rotamers) $\delta 174.8$ (C), 174.4 (C), 167.8 (C), 166.4 (C), 156.2 (C), 155.5 (C), 147.5 (C), 147.3 (C), 146.8 (CH), 146.6 (CH), 138.6 (C), 138.1 (CH), 137.9 (CH), 136.5 (CH), 136.2 (CH), 133.6 (C), 132.6 (C), 132.3 (CH), 132.0 (CH), 131.8 (CH), 131.6 (CH), 131.4 (CH), 128.9 (CH), 128.6 (CH), 127.9 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 127.2 (CH), 127.0 (CH), 123.2 (C), 120.9 (CH), 120.9 (CH), $79.9(\mathrm{C}), 79.6(\mathrm{C}), 65.9(\mathrm{CH}), 63.8(\mathrm{CH}), 56.3(\mathrm{CH}), 56.1(\mathrm{CH}), 51.7\left(\mathrm{CH}_{2}\right), 50.6\left(\mathrm{CH}_{2}\right), 32.3(\mathrm{CH}), 31.3(\mathrm{CH}), 28.4\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right)$, $19.7\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 10.57-9.84(\mathrm{~m}, 2 \mathrm{H}), 8.37(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.18-6.93(\mathrm{~m}, 10 \mathrm{H}), 6.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.34-6.18(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.69-4.53 ($\mathrm{m}, 2 \mathrm{H}$), 4.30-4.06 ($\mathrm{m}, 2 \mathrm{H}$), 2.12-1.92 ($\mathrm{m}, 2 \mathrm{H}$), 1.53-1.25 ($\mathrm{m}, 18 \mathrm{H}$), 1.00-0.61 ($\mathrm{m}, 12 \mathrm{H}$) ppm. HPLC $\mathrm{t}_{\text {R }- \text { HPLC-2 }}=3.34 \mathrm{~min}$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{BrClN} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na} ;{ }^{79} \mathrm{Br},{ }^{35} \mathrm{Cl}\right]^{+}=651.1344,\left[\mathrm{M}+\mathrm{Na} ;{ }^{79} \mathrm{Br},{ }^{37} \mathrm{Cl} \text { or }{ }^{81} \mathrm{Br},{ }^{35} \mathrm{Cl}\right]^{+}=653.1326$ and $\left[\mathrm{M}+\mathrm{Na} ;{ }^{81} \mathrm{Br},{ }^{37} \mathrm{Cl}\right]^{+}=655.1314$, found $651.1354,653.1277$ and 655.1340 in the 3:4:1 ratio. No spectroscopic data are available in literature.
tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-methoxypyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate 7c

7c

The title compound was prepared following general procedure \mathbf{C} from 2-isocyano-3-methoxypyridine $\mathbf{3 c}$ (134 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Val-OH ($217 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), benzylamine ($0.131 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) and 4-bromobenzaldehyde ($222 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from $13: 7$ to 11:9), the desired compound as a brown solid with $51 \%(319 \mathrm{mg}, 0.51 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers, in a 1:1 ratio and rotamers) $\delta 8.34-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.02-7.98(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 1 \mathrm{H})$, 7.46-7.42 (m, 2H), 7.32-7.17 (m, 12H), 7.14-7.11 (m, 4H), 7.05-6.92 (m, 4H), $6.87(\mathrm{~s}, 0.2 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 0.2 \mathrm{H})$, 6.55 (br s, 0.8 H), $5.70(\mathrm{br} \mathrm{s}, 0.8 \mathrm{H}), 5.36-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.09(\mathrm{~m}, 1.2 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}$ $=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.41(\mathrm{dd}, J=9.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 0.6 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 2.4 \mathrm{H})$, 2.10-2.03 (m, 1H), 1.97-1.91 (m, 1H), 1.45 (s, 9H), 1.41 (s, 7.4H), 1.21 ($\mathrm{s}, 1.6 \mathrm{H}), 0.98-0.86(\mathrm{~m}, 9.6 \mathrm{H}), 0.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2.4 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers) $\delta 174.7$ (C), 174.4 (C), 174.0 (C), 168.2 (C), 166.4 (C), 156.0 (C), 155.4 (C), 144.6 (C), 144.2 (C), 141.6 (C), 141.4 (C), 139.5 (CH), 139.2 (CH), 136.9 (C), 136.6 (C), 133.8 (C), 133.3 (C), 132.7 (C), 132.3 (CH), 132.0 (CH), 131.8 (CH), 131.6 (CH), 131.5 (CH), 128.8 (CH), 128.4 (CH), 127.8 (CH), 127.7 (CH), 127.5 (CH), 127.2 (CH), 126.7 (CH), 126.0 (CH), 122.9 (C), 119.7 $(\mathrm{CH}), 119.6(\mathrm{CH}), 117.2(\mathrm{CH}), 79.8(\mathrm{C}), 79.4(\mathrm{C}), 65.7(\mathrm{CH}), 63.2(\mathrm{CH}), 62.4(\mathrm{CH}), 57.3(\mathrm{CH}), 56.3(\mathrm{CH}), 56.1(\mathrm{CH}), 55.7\left(\mathrm{CH}_{3}\right), 51.4\left(\mathrm{CH}_{2}\right), 50.1$ $\left(\mathrm{CH}_{2}\right), 49.1\left(\mathrm{CH}_{2}\right), 32.9(\mathrm{CH}), 32.4(\mathrm{CH}), 31.5(\mathrm{CH}), 31.1(\mathrm{CH}), 28.4\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right)$ ppm . NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathbf{M H z}$, DMSO$d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 10.07-9.31(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.50-6.94(\mathrm{~m}, 22 \mathrm{H}), 6.89-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.42-6.18$ $(\mathrm{m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 2.09-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.25$ $(\mathrm{m}, 18 \mathrm{H}), 0.98-0.61(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=3.02 \mathrm{~min}$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{BrN}_{4} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na} ;{ }^{79} \mathrm{Br}\right]^{+}=647.1840$ and $\left[\mathrm{M}+\mathrm{Na} ;{ }^{81} \mathrm{Br}\right]^{+}=649.1825$, found 647.1849 and 649.1851 in the expected 1:1 ratio. No spectroscopic data are available in literature.

Allyl (3S)-3-((tert-butoxycarbonyl)amino)-4-((4-chlorophenethyl)(1-((3-chloropyridin-2-yl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate 8

The title compound was prepared following general procedure \mathbf{C} from 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (139 $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), Boc-L-Asp(All)-OH ($273 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), 2-(4-chlorophenyl)ethylamine (0.168 ml , $1.2 \mathrm{mmol}, 1.2$ equiv) and acetaldehyde ($0.067 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 4:1 to 3:7 over 20 CV), the desired compound as a yellow solid with 48% ($283 \mathrm{mg}, 0.48 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO$\boldsymbol{d}_{6}$, mixture of diastereomers in a $1: 1$ ratio and rotamers) $\delta 10.42(\mathrm{~s}, 0.4 \mathrm{H}), 10.00(\mathrm{~s}, 0.2 \mathrm{H}), 9.94(\mathrm{~s}, 0.8 \mathrm{H}), 9.79$ $(\mathrm{s}, 0.6 \mathrm{H}), 8.42(\mathrm{dd}, J=4.7,1.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.40-8.37(\mathrm{~m}, 1.6 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-$ $7.29(\mathrm{~m}, 9 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.95-5.83(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.86(\mathrm{~m}, 4 \mathrm{H})$, 4.58-4.51 (m, 4H), 3.79-3.47 (m, 4H), 3.26-3.02 (m, 2H), 3.00-2.59 (m, 6H), 1.47-1.43 (m, 5.4 H), 1.40 ($\mathrm{s}, 3.6 \mathrm{H}$), 1.35 ($\mathrm{s}, 7.2 \mathrm{H}), 1.33-1.30(\mathrm{~m}$, $7.2 \mathrm{H}), 1.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 0.6 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}$, mixture of diastereomers and rotamers) $\delta 171.3$ (C), 170.9 (C), 170.6 (C), 170.4 (C), 170.2 (C), 170.0 (C), 169.9 (C), 169.9 (C), 169.5 (C), 168.9 (C), 155.3 (C), 155.2 (C), 154.8 (C), 147.9 (C), 147.8 (C), 147.7 (C), 147.0 (CH), 146.9 (CH), 146.8 (CH), 138.9 (CH), 138.8 (CH), 138.6 (CH), 138.6 (C), 137.4 (C), 137.4 (C), 132.6 (CH), 132.5 (CH), 132.5 (CH), 132.4 (CH), 131.2 (C), 130.8 (C), 130.8 (C), 130.6 (CH), 130.4 (CH), 128.4 (CH), 128.4 (CH), 128.3 (CH), 127.3 (C), 126.6 (C), 126.4 (C), 123.6 $(\mathrm{CH}), 123.3(\mathrm{CH}), 123.1(\mathrm{CH}), 123.0(\mathrm{CH}), 117.7\left(\mathrm{CH}_{2}\right), 117.7\left(\mathrm{CH}_{2}\right), 117.6\left(\mathrm{CH}_{2}\right), 79.1(\mathrm{C}), 78.7(\mathrm{C}), 78.6(\mathrm{C}), 78.6(\mathrm{C}), 64.7\left(\mathrm{CH}_{2}\right), 64.6\left(\mathrm{CH}_{2}\right)$, $64.6\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{CH}_{2}\right), 55.6(\mathrm{CH}), 55.4(\mathrm{CH}), 54.1(\mathrm{CH}), 48.0(\mathrm{CH}), 47.7(\mathrm{CH}), 47.6(\mathrm{CH}), 47.0\left(\mathrm{CH}_{2}\right), 46.6\left(\mathrm{CH}_{2}\right), 46.0\left(\mathrm{CH}_{2}\right), 45.8\left(\mathrm{CH}_{2}\right), 36.6$ $\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right), 15.8\left(\mathrm{CH}_{3}\right), 15.0$ $\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 10.16-9.40(\mathrm{~m}, 2 \mathrm{H}), 8.41-8.35(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.22$ (m, 10H), $7.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.95-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.33-5.26(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.05-4.88(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.83-3.50$ $(\mathrm{m}, 4 \mathrm{H}), 3.03-2.75(\mathrm{~m}, 6 \mathrm{H}), 2.71-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} . \mathrm{HPLC}_{\mathrm{R}}$-HPLC-2$=2.79 \mathrm{~min}$. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{Na} ;{ }^{35} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]^{+}=593.1934,\left[\mathrm{M}+\mathrm{Na} ;{ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl} \text { or }{ }^{37} \mathrm{Cl},{ }^{35} \mathrm{Cl}\right]^{+}=595.1912$ and $\left[\mathrm{M}+\mathrm{Na} ;{ }^{37} \mathrm{Cl},{ }^{37} \mathrm{Cl}\right]^{+}=597.1901$, found $593.1892,595.2186$ and 597.1978 in the expected 9:6:1 ratio. No spectroscopic data are available in literature.
(9H-Fluoren-9-yl)methyl (S)-(1-((2-((3-chloropyridin-2-yl)amino)-2-oxoethyl)(cyclopropyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 9
 The title compound was prepared following general procedure \mathbf{C} from 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (208 $\mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv), Fmoc-L-Phe-OH ($387 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), cyclopropylamine ($0.083 \mathrm{ml}, 1.2 \mathrm{mmol}$, 1.2 equiv) formaldehyde ($0.089 \mathrm{ml}, 1.2 \mathrm{mmol}, 1.2$ equiv, $37 \mathrm{wt} . \%$ in $\mathrm{H}_{2} \mathrm{O}$) in trifluoroethanol (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 4:1 to 1:1 over 15 CV), the desired compound as a colorless oil with 46% ($271 \mathrm{mg}, 0.46 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}, mixture of rotamers) $\delta 10.30(\mathrm{~s}, 0.1 \mathrm{H}), 10.25(\mathrm{~s}, 0.9 \mathrm{H}), 8.38(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{dd}, J=7.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.19-5.12(\mathrm{~m}, 0.9 \mathrm{H}), 5.00-4.94(\mathrm{~m}, 0.1 \mathrm{H}), 4.44(\mathrm{~d}, J$
$=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 0.9 \mathrm{H}), 3.96(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 0.1 \mathrm{H}), 3.10(\mathrm{dd}, J=14.1,3.3 \mathrm{~Hz}, 0.9 \mathrm{H}), 3.04-2.92(\mathrm{~m}, 1.1 \mathrm{H})$, $2.80(\mathrm{dd}, J=14.1,10.6 \mathrm{~Hz}, 0.9 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 0.1 \mathrm{H}), 1.09-0.95(\mathrm{~m}, 1.8 \mathrm{H}), 0.86-0.77(\mathrm{~m}, 2 \mathrm{H}), 0.73-0.63(\mathrm{~m}, 0.2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, DMSO- \boldsymbol{d}_{6}) $\delta 175.0(\mathrm{C}), 167.7(\mathrm{C}), 156.0(\mathrm{C}), 147.8(\mathrm{C}), 146.8(\mathrm{CH}), 143.75$ (C), 143.72 (C), 140.64 (C), 140.63 (C), 138.8 (CH), 138.2 (C), 129.2 $(\mathrm{CH}), 128.2(\mathrm{CH}), 127.6(\mathrm{CH}), 127.0(\mathrm{CH}), 126.4(\mathrm{CH}), 126.0(\mathrm{C}), 125.34(\mathrm{CH}), 125.30(\mathrm{CH}), 122.9(\mathrm{CH}), 120.1(\mathrm{CH}), 65.7(\mathrm{CH}), 53.6(\mathrm{CH}), 50.2$ $\left(\mathrm{CH}_{2}\right), 46.5(\mathrm{CH}), 36.5\left(\mathrm{CH}_{2}\right), 30.3(\mathrm{CH}), 10.0\left(\mathrm{CH}_{2}\right), 8.0\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.15(\mathrm{~m}, 8 \mathrm{H}), 5.31-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.03(\mathrm{~m}, 4 \mathrm{H})$, 3.10-3.01 ($\mathrm{m}, 1 \mathrm{H}$), 2.93-2.75 ($\mathrm{m}, 2 \mathrm{H}$), 1.10-0.62 ($\mathrm{m}, 4 \mathrm{H}$) ppm. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=2.68 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{ClN} \mathrm{N}_{4} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H} ;{ }^{35} \mathrm{Cl}\right]^{+}$ $=595.2112,\left[\mathrm{M}+\mathrm{H} ;{ }^{37} \mathrm{Cl}\right]^{+}=597.2101$, found 595.2127 and 597.2191 in the expected 3:1 ratio. No spectroscopic data are available in literature.

Cleavage of the amide in the Ugi product 4-9

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)- N-propylleucyl-L-phenylalaninate 10

The title compound was prepared using general procedure \mathbf{D} from Ugi product $\mathbf{4 b}$ ($133 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), H-L-Phe-OMe hydrochloric acid salt ($162 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv), $\mathrm{NaOAc}(62 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR} \mathrm{X} 2$ Normal Phase silicagel flash chromatography (Pet. Ether:EtOAc, 100:0 to 50:50 over 15 CV), the desired compound as a white powder in $85 \%(124 \mathrm{mg}, 0.213 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{6}$, mixture of diastereomers and rotamers) $\delta 8.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.2 \mathrm{H}), 8.45-8.34(\mathrm{~m}, 0.2 \mathrm{H}), 8.30-8.19(\mathrm{~m}, 0.8 \mathrm{H}), 8.12(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.79-7.71(\mathrm{~m}, 0.2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 0.2 \mathrm{H}), 7.31-7.10(\mathrm{~m}, 21.4 \mathrm{H}), 6.83-6.75(\mathrm{~m}, 0.2 \mathrm{H}), 6.67$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.03-4.83(\mathrm{~m}, 1.5 \mathrm{H}), 4.67-4.41(\mathrm{~m}, 3.5 \mathrm{H}), 4.38-4.30(\mathrm{~m}, 0.5 \mathrm{H}), 4.29-4.19(\mathrm{~m}, 0.5 \mathrm{H}), 3.64-3.52$ $(\mathrm{m}, 6 \mathrm{H}), 3.26-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.01(\mathrm{~m}, 3 \mathrm{H}), 2.96-2.76(\mathrm{~m}, 7 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.30-$ $1.24(\mathrm{~m}, 9 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.87-0.79(\mathrm{~m}, 5 \mathrm{H}), 0.79-0.68(\mathrm{~m}, 11 \mathrm{H}), 0.67-0.60(\mathrm{~m}, 2 \mathrm{H}), 0.58-0.53(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- \boldsymbol{d}_{6}, mixture of diastereomers and rotamers) $\delta 172.4$ (C), 172.3 (C), 171.8 (C), 171.6 (C), 171.5 (C), 170.1 (C), 155.4 (C), $155.2(\mathrm{C}), 138.1(\mathrm{C}), 137.9(\mathrm{C}), 137.4(\mathrm{C}), 137.1(\mathrm{C}), 136.9(\mathrm{C}), 129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 129.3(\mathrm{CH}), 129.2(\mathrm{CH}), 129.0(\mathrm{CH}), 129.0(\mathrm{CH})$, $128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 126.4(\mathrm{CH}), 126.3(\mathrm{CH}), 78.2(\mathrm{C}), 78.0(\mathrm{C}), 54.4(\mathrm{CH}), 54.3(\mathrm{CH}), 53.6(\mathrm{CH}), 53.4(\mathrm{CH}), 53.3(\mathrm{CH}), 53.1(\mathrm{CH}), 52.5(\mathrm{CH})$, $52.3(\mathrm{CH}), 52.5(\mathrm{CH}), 52.3(\mathrm{CH}), 51.8\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{3}\right), 51.4\left(\mathrm{CH}_{3}\right), 46.2\left(\mathrm{CH}_{2}\right), 45.7\left(\mathrm{CH}_{2}\right), 45.3\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 37.1$ $\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{3}\right), 24.2(\mathrm{CH}), 24.2(\mathrm{CH}), 23.9(\mathrm{CH}), 23.8(\mathrm{CH}), 23.0\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{2}\right)$, $22.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O} \mathbf{- d} \mathbf{d}, \mathbf{8 0}$ ${ }^{\circ} \mathrm{C}$, mixture of diastereomer in $1: 1$ ratio) $\delta 8.07-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.94-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.37(\mathrm{~m}, 5 \mathrm{H}), 3.61$ $(\mathrm{s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 3 \mathrm{H}$ overlap with HDO), 3.02-2.78(m,8H), 1.66-1.49(m,1H), 1.44-1.20(m,25H),1.20$1.11(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.62(\mathrm{~m}, 18 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers) $\delta 172.0(\mathrm{C}), 172.0(\mathrm{C}), 171.1(\mathrm{C})$, 171.0 (C), 170.0 (C), 169.8 (C), 154,7 (C), 154.5 (C), 137.5 (C), 137.1 (C), 136.8 (C), 136.7 (C), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), $127.7(\mathrm{CH}), 126.0(\mathrm{CH}), 125.9(\mathrm{CH}), 78.0(\mathrm{C}), 77.9(\mathrm{C}), 55.2(\mathrm{CH}), 54.8(\mathrm{CH}), 53.2(\mathrm{CH}), 52.9(\mathrm{CH}), 51.3(\mathrm{CH}), 51.2(\mathrm{CH}), 51.3\left(\mathrm{CH}_{3}\right), 51.2\left(\mathrm{CH}_{3}\right)$, $45.7\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{3}\right), 23.9(\mathrm{CH}), 23.7(\mathrm{CH}), 22.6\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3}\right), 21.7$ $\left(\mathrm{CH}_{3}\right), 10.6\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 604.3357 found 604.3349. No spectroscopic data are available in literature.

Methyl N-(N-(tert-butoxycarbonyl)-O-(tert-butyl)-L-seryl)- N-propylleucyl-L-phenylalaninate 11

The title compound was prepared using general procedure \mathbf{D} from Ugi product $5 \mathbf{b}$ ($132 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), H-L-Phe-OMe hydrochloric acid salt ($162 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv), NaOAc ($62 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR} \mathrm{X} 2$ Normal Phase silicagel flash chromatography (Pet. Ether:EtOAc, 100:0 to 50:50 over 15 CV), the desired compound as a white powder in 72% ($104 \mathrm{mg}, 0.181 \mathrm{mmol}$) yield. ${ }^{\mathbf{1}} \mathrm{H} \mathbf{~ N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{6}\right.$, mixture of diastereomers in 1:1 ratio and rotamers) $\delta 8.345-8.22(\mathrm{~m}, 0.5 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 0.7 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 10.5 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 0.5 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.03-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.90-4.78(\mathrm{~m}, 1 \mathrm{H})$, 4.64-4.56 (m, 0.5H), 4.56-4.43 (m, 2H), 4.42-4.34 (m, 1H), 4.31-4.24 (m, 0.5H), 3.60-3.56 (m, 6H), 3.47-3.40 (m, 2H), 3.39-3.33 (m, 2H), 3.15$2.98(\mathrm{~m}, 5 \mathrm{H}), 2.95(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.37(\mathrm{~s}, 9.5 \mathrm{H}), 1.36(\mathrm{~s}, 8.5 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$, $1.07(\mathrm{~s}, 9 \mathrm{H}), 0.88-0.72(\mathrm{~m}, 16 \mathrm{H}), 0.70-0.62(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$, mixture of diastereomers and rotamers) $\boldsymbol{\delta} 171.9$ (C), 171.7 (C), 171.5 (C), 171.4 (C), $170.5(\mathrm{C}), 170.2(\mathrm{C}), 155.3(\mathrm{C}), 155.2(\mathrm{C}), 137.3(\mathrm{C}), 137.2(\mathrm{C}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.9$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 126.5(\mathrm{CH}), 126.4(\mathrm{CH}), 78.4(\mathrm{C}), 78.1(\mathrm{C}), 72.7(\mathrm{C}), 72.7(\mathrm{C}), 62.4\left(\mathrm{CH}_{2}\right), 62.1\left(\mathrm{CH}_{2}\right), 61.9\left(\mathrm{CH}_{2}\right), 57.6$ $(\mathrm{CH}), 54.8(\mathrm{CH}), 54.2(\mathrm{CH}), 53.6(\mathrm{CH}), 53.5(\mathrm{CH}), 53.3(\mathrm{CH}), 53.1(\mathrm{CH}), 51.8\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{3}\right), 45.8\left(\mathrm{CH}_{2}\right), 45.7\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right)$, $38.1\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 26.9(\mathrm{CH}), 24.3(\mathrm{CH}), 24.2(\mathrm{CH}), 23.8$ $(\mathrm{CH}), 23.6(\mathrm{CH}), 23.2\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right) 22.8\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right)$ ppm. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathbf{M H z}, \mathbf{D M S O}-$
$\boldsymbol{d}_{6}, 8{ }^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 7.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.97-4.4 .86(\mathrm{~m}, 1 \mathrm{H})$, 4.75-4.33 (m, 5H), 3.60 ($\mathrm{s}, 6 \mathrm{H}$), 3.52-3.43 (m, 2 H), 3.40 (dd, $J=8.3,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 3 \mathrm{H}$ overlap with HDO), $2.94(\mathrm{dd}, J=14.1,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.13-1.09(\mathrm{~m}, 18 \mathrm{H}), 0.91-0.73(\mathrm{~m}, 18 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- $_{6}, \mathbf{8 0}{ }^{\circ} \mathrm{C}$, mixture of diastereomers) $\boldsymbol{\delta} 171.5$ (C), 171.5 (C), 171.0 (C), 170.9 (C), 169.8 (C), 154.5 (C), 136.7 (C), $128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 126.0(\mathrm{CH}), 78.2(\mathrm{C}), 72.4(\mathrm{C}), 62.3\left(\mathrm{CH}_{2}\right), 62.1\left(\mathrm{CH}_{2}\right), 56.1(\mathrm{CH}), 54.5(\mathrm{CH}), 53.2(\mathrm{CH}), 52.9$ (CH), $52.9(\mathrm{CH}), 51.2\left(\mathrm{CH}_{3}\right), 50.7\left(\mathrm{CH}_{3}\right), 45.6\left(\mathrm{CH}_{2}\right), 45.5\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{3}\right) 26.8\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right)$, $23.9(\mathrm{CH}), 23.5(\mathrm{CH}), 22.4\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 10.7\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 600.3619$ found 604.3621. No spectroscopic data are available in literature.

Methyl N-benzyl- N-((tert-butoxycarbonyl)-L-tryptophyl)leucyl-L-phenylalaninate 12

The title compound was prepared using general procedure \mathbf{D} from Ugi product $\mathbf{6 b}$ ($155 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), H-L-Phe-OMe hydrochloric acid salt ($162 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv), $\mathrm{NaOAc}(62 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}\left(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$) in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether:EtOAc, 100:0 to 50:50 over 15 CV), the desired compound as a white powder in $77 \%(120 \mathrm{mg}, 0.193 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}, mixture of diastereomers in 1:1 ratio and rotamers) $\delta 10.95-10.84(\mathrm{~m}, 0.4 \mathrm{H}), 10.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.72-10.62(\mathrm{~m}$, 0.6 H), $8.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.2 \mathrm{H}), 8.76-8.68(\mathrm{~m}, 0.3 \mathrm{H}), 8.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.1 \mathrm{H}), 8.44-8.37(\mathrm{~m}, 0.4 \mathrm{H}), 8.25(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 0.3 \mathrm{H}), 8.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 0.1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.1 \mathrm{H}), 7.78-7.67(\mathrm{~m}, 0.3 \mathrm{H})$, $7.61-7.52(\mathrm{~m}, 0.5 \mathrm{H}), 7.36-7.09(\mathrm{~m}, 19.5 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2.5 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 2.5), 6.76-6.66(\mathrm{~m}, 0.9 \mathrm{H})$, $6.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.41-6.32(\mathrm{~m}, 0.3 \mathrm{H}), 6.08(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 0.1 \mathrm{H}), 5.43-5.15(\mathrm{~m}$, $0.7 \mathrm{H}), 5.12-4.98(\mathrm{~m}, 0.7 \mathrm{H}), 4.95-4.84(\mathrm{~m}, 1.1 \mathrm{H}), 4.84-4.57(\mathrm{~m}, 2.7 \mathrm{H}), 4.56-4.26(\mathrm{~m}, 3.1 \mathrm{H}), 4.26-4.15(\mathrm{~m}, 1.1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 0.5 \mathrm{H}), 4.05-3.98$ $(\mathrm{m}, 0.1 \mathrm{H}), 3.65(\mathrm{~s}, 0.7 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 2.2 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 0.5 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 0.6 \mathrm{H}), 3.23-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.97-2.79(\mathrm{~m}$, $3 \mathrm{H}), 2.73-2.54(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 2.6 \mathrm{H}), 1.38(\mathrm{~s}, 1.4 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 14 \mathrm{H}), 1.18-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.78(\mathrm{~m}, 6 \mathrm{H}), 0.77-0.63(\mathrm{~m}, 6 \mathrm{H}), 0.53-$ $0.51(\mathrm{~m}, 1.6 \mathrm{H}), 0.48-0.45(\mathrm{~m}, 0.8 \mathrm{H}), 0.42-0.40(\mathrm{~m}, 0.8 \mathrm{H}), 0.37-0.34(\mathrm{~m}, 0.8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of diastereomers and rotamers) $\delta 174.2$ (C), 173.3 (C), 173.0 (C), 171.7 (C), 171.6 (C), 170.2 (C), 169.9 (C), 155.4 (C), 154.9 (C), 147.0 (CH), 139.4 (C), 138.1 (C), 137.4 (C), 137.4 (C), 137.2 (C), 136.0 (C), 135.8 (C), 129.1 (CH), 128.8 (CH), 128.3 (CH), 128.3 (CH), 128.1 (CH), 127.7 (CH), 127.6 (CH), 127.2 (CH), 127.0 (CH), 126.8 (CH), 126.6 (CH), $126.4(\mathrm{CH}), 126.0(\mathrm{CH}), 125.8(\mathrm{CH}), 124.2(\mathrm{CH}), 124.0(\mathrm{CH}), 121.0(\mathrm{CH}), 120.8(\mathrm{CH}), 120.5(\mathrm{CH})$, 118.6 (CH), 118.3 (CH), 118.0 (CH), 111.4 (CH), 111.2 (CH), 111.0 (CH), 110.3 (C), 109.7 (C), 109.6 (C), 78.1 (C), 78.1 (C), 58.1 (CH), 55.2 (CH), $54.2(\mathrm{CH}), 53.8(\mathrm{CH}), 53.3(\mathrm{CH}), 53.2(\mathrm{CH}), 52.9(\mathrm{CH}), 51.9\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{3}\right), 51.6\left(\mathrm{CH}_{3}\right), 51.3(\mathrm{CH}), 51.0(\mathrm{CH}), 47.4\left(\mathrm{CH}_{2}\right), 46.7$ $\left(\mathrm{CH}_{2}\right), 46.3\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 27.3$ $\left(\mathrm{CH}_{2}\right)$, $27.2\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.2(\mathrm{CH}), 22.1\left(\mathrm{CH}_{3}\right), 22.0$ $\left(\mathrm{CH}_{3}\right), 22.0(\mathrm{CH}), 20.9(\mathrm{CH}) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 10.74-10.47(\mathrm{~m}, 2 \mathrm{H}), 8.43-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.07-7.77(\mathrm{~m}, 2 \mathrm{H})$, 7.65-7.46 (m, 1H), 7.36-6.75 (m, 30H), 5.22-4.90 (m, 1H), 4.88-4.40 (m, 7H), 4.38-4.04 (m, 2H), 3.69-3.44 (m, 6H), 3.06-2.83 (m, 8H overlap with HDO), 1.49-1.17 ($\mathrm{m}, 18 \mathrm{H}$), 1.12-1.02 ($\mathrm{m}, 4 \mathrm{H}$), 0.89-0.74 ($\mathrm{m}, 4 \mathrm{H}$), 0.0.73-0.67 ($\mathrm{m}, 4 \mathrm{H}$), 0.65-0.37 (m, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO$d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers) $\delta 173.4$ (C), 173.0 (C), 171.1 (C), 171.0 (C), 169.7 (C), 169.5 (C), 154.7 (C), 154.3 (C), 146.3 (CH), 139.1 (C), 138.2 (CH), 138.1 (CH), 137.6 (C), 137.5 (C), 136.8 (C), 136.7 (C), 135.9 (C), 135.8 (C), 128.6 (CH), 127.8 (CH), 127.7 (CH), 127.0 (CH), 126.7 (CH), 126.2 (CH), 126.1 (CH), 129.0 (CH), 125.8 (CH), 123.5 (CH), 123.5 (CH), 120.4 (CH), 120.3 (CH), 117.8 (CH), 117.7 (CH), 110.8 (CH), 110.7 (CH), 109.4 (C), 109.3 (C), $78.0(\mathrm{C}), 77.9(\mathrm{C}), 55.6(\mathrm{CH}), 55.1(\mathrm{CH}), 53.4(\mathrm{CH}), 53.2(\mathrm{CH}), 52.8(\mathrm{CH}), 52.7(\mathrm{CH}), 51.9(\mathrm{CH}), 51.7(\mathrm{CH}), 51.3$ $\left(\mathrm{CH}_{3}\right)$, $51.1\left(\mathrm{CH}_{3}\right), 47.3\left(\mathrm{CH}_{2}\right), 46.9\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{3}\right), 22.0$ $\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 21.8(\mathrm{CH}), 21.6(\mathrm{CH})$ ppm. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 691.3466 found 691.3470 . No spectroscopic data are available in literature.

Methyl (2-((S)-N-benzyl-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-2-(4-bromophenyl)acetyl)-L-phenylalaninate 13

The title compound was prepared using general procedure \mathbf{D} from Ugi product $\mathbf{7 b}$ ($132 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), $\mathrm{H}-\mathrm{L}-\mathrm{Phe}-\mathrm{OMe}$ hydrochloric acid salt ($162 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv), $\mathrm{NaOAc}(62 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether:EtOAc, 100:0 to 50:50 over 14 CV), the desired compound as a white powder in 72% ($104 \mathrm{mg}, 0.179 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of diastereomers in 1:1 ratio and rotamers) δ 9.12-8.91 ($\mathrm{m}, 1.4 \mathrm{H}$), 8.70-8.52 ($\mathrm{m}, 0.2 \mathrm{H}$), 8.47-8.34 ($\mathrm{m}, 0.1 \mathrm{H}$), 8.28-8.06 $(\mathrm{m}, 0.2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.01(\mathrm{~m}, 11 \mathrm{H}), 6.98-6.86(\mathrm{~m}, 7 \mathrm{H}), 6.79(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H}), 6.72-$ $6.65(\mathrm{~m}, 1.6 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 0.5 \mathrm{H}), 6.33(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}), 6.25(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 6.20-6.13(\mathrm{~m}, 0.4 \mathrm{H}), 5.92(\mathrm{br} \mathrm{s}, 0.1 \mathrm{H})$, 4.96-4.69 (m, 3H), 4.67-4.57 (m, 0.5H), 4.59-4.46 (m, 1H), 4.46-4.36 (m, 1H), 4.35-4.25 (m, 0.7H), 4.24-4.18 $(\mathrm{m}, 0.2 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 0.2 \mathrm{H}), 4.06-3.91(\mathrm{~m}, 1.4 \mathrm{H}), 3.67(\mathrm{~s}, 0.7 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 0.7 \mathrm{H}), 3.58(\mathrm{~s}, 1.9 \mathrm{H}), 3.54(\mathrm{~s}, 0.3 \mathrm{H}), 3.52(\mathrm{~s}, 0.4 \mathrm{H})$, $3.13-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 5 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 9 \mathrm{H}), 1.15-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 2 \mathrm{H}), 0.86-0.80(\mathrm{~m}, 1 \mathrm{H})$, $0.78-0.65(\mathrm{~m}, 6 \mathrm{H}), 0.61-0.55(\mathrm{~m}, 0.8 \mathrm{H}), 0.52-0.45(\mathrm{~m}, 2.2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}\right.$, DMSO- \boldsymbol{d}_{6}, mixture of diastereomers and rotamers) δ
173.9 (C), 173.6 (C), 171.5 (C), 171.5 (C), 169.2 (C), 156.1 (C), 155.5 (C), 138.9 (C), 138.5 (C), 137.1 (C), 137.1 (C), 136.8 (C), 135.2 (C), 134.3 (C), 131.6 (CH), 131.4 (CH), 131.0 (CH), 130.9 (CH), 130.7 (CH), 130.6 (CH), 130.5 (CH), 130.4 (CH), 129.9 (CH), 129.2 (CH), 129.0 (CH), 128.9 (CH), 128.2 (CH), 128.2 (CH), 127.8 (CH), 127.7 (CH), $127.4(\mathrm{CH}), 126.9(\mathrm{CH}), 126.6(\mathrm{CH}), 126.4(\mathrm{CH}), 126.3(\mathrm{CH}), 125.4(\mathrm{CH}), 121.0(\mathrm{C}), 120.9$ (C), $78.3(\mathrm{C}), 78.2(\mathrm{C}), 61.4(\mathrm{CH}), 59.2(\mathrm{CH}), 56.3(\mathrm{CH}), 56.0(\mathrm{CH}), 55.8(\mathrm{CH}), 54.1(\mathrm{CH}), 52.9\left(\mathrm{CH}_{3}\right), 52.0(\mathrm{CH}), 51.8(\mathrm{CH}), 48.1\left(\mathrm{CH}_{2}\right), 48.0\left(\mathrm{CH}_{2}\right)$, $47.7\left(\mathrm{CH}_{2}\right)$, $36.9\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 30.2(\mathrm{CH}), 30.1(\mathrm{CH}), 29.4(\mathrm{CH}), 28.2\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 19.4(\mathrm{CH}), 19.2$ $\left(\mathrm{CH}_{3}\right)$, $19.1\left(\mathrm{CH}_{3}\right), 18.8\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 8.73$ (br s, 1H), $8.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.17(\mathrm{~m}, 10 \mathrm{H}), 7.17-7.06(\mathrm{~m}, 8 \mathrm{H}), 7.06(\mathrm{~m}, 8 \mathrm{H}), 6.46-6.20(\mathrm{~m}, 1 \mathrm{H}), 6.19-609(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.71(\mathrm{~m}$, $2 \mathrm{H}), 4.68-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{dd}, J=14.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.56(\mathrm{~m}, 6 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 2 \mathrm{H}$ overlap with HDO), 3.00-2.84 (m, 2H), 2.09-1.86 (m, 2H), 1.49-1.31 (m, 18H), 0.95-0.57 (m, 12H) ppm. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers) $\delta 172.9$ (C), 172.9 (C), 170.9 (C), 168.6 (C), 154.9 (C), 138.0 (C), 136.7 (C), 136.5 (C), 134.6 (C), 131.0 (CH), 130.7 (CH), 130.4 (CH), $128.5(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 126.2(\mathrm{CH}), 126.0(\mathrm{CH}), 120.7(\mathrm{C}), 78.0(\mathrm{C}), 61.3(\mathrm{CH}), 61.2(\mathrm{CH}), 55.9(\mathrm{CH}), 55.5(\mathrm{CH})$, $53.4(\mathrm{CH}), 53.0(\mathrm{CH}), 51.4(\mathrm{CH}), 51.2(\mathrm{CH}), 48.1\left(\mathrm{CH}_{2}\right), 47.4\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 30.1(\mathrm{CH}), 29.3(\mathrm{CH}), 27.8\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{3}\right), 26.8$ $\left(\mathrm{CH}_{2}\right)$, $26.7\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{3}\right), 18.7(\mathrm{CH}), 18.8\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{BrN}_{3} \mathrm{O}_{6} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na} ;{ }^{79} \mathrm{Br}\right]^{+}=702.2149,\left[\mathrm{M}+\mathrm{Na} ;{ }^{81} \mathrm{Br}\right]^{+}=704.2136$, found 702.2141 and 704.2127 in the expected ratio 1:1. No spectroscopic data are available in literature.

Methyl (6S,12S)-6-(2-(allyloxy)-2-oxoethyl)-12-benzyl-8-(4-chlorophenethyl)-2,2,9-trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13oate 14

The title compound was prepared using general procedure \mathbf{D} from Ugi product $8(148 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), $\mathrm{H}-\mathrm{L}-\mathrm{Phe}-\mathrm{OMe}$ hydrochloric acid salt ($162 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv), $\mathrm{NaOAc}(62 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}\left(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$) in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\ominus}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether:EtOAc, 7:3 to 1:3 over 15 CV), the desired compound as a white powder in 61% ($98 \mathrm{mg}, 0.152 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 8.35-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=18.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.31$ $(\mathrm{m}, 5 \mathrm{H}), 7.29-6.95(\mathrm{~m}, 15 \mathrm{H}), 5.96-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.36-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.24-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.91-4.47(\mathrm{~m}, 10 \mathrm{H})$, $3.62-3.58(\mathrm{~m}, 2.4 \mathrm{H}), 3.56(\mathrm{~s}, 0.6 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.01(\mathrm{~m}, 3 \mathrm{H}), 2.99-2.54(\mathrm{~m}, 11 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 18 \mathrm{H})$, 1.25-1.06 (m, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- \boldsymbol{d}_{6}, mixture of diastereomers and rotamers) $\delta 171.8$ (C), 171.7 (C), 171.6 (C), 170.9 (C), 170.7 (C), 170.6 (C), 170.6 (C), 170.5 (C), 170.4 (C), 170.2 (C), 170.1 (C), 170.1 (C), 170.0 (C), 155.3 (C), 155.2 (C), 154.7 (C), 138.6 (C), 137.5 (C), 137.3 (C), 137.2 (C), 137.1 (C), 132.6 (CH), 132.5 (CH), 131.1 (C), 130.7 (C), 130.6 (CH), 130.5 (CH), 130.4 (CH), 129.1 (CH), 129.0 (CH), 128.9 (CH), 128.8 (CH), 128.4 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 126.5 (CH), 126.5 (CH), 126.4 (CH), $117.8\left(\mathrm{CH}_{2}\right), 117.8\left(\mathrm{CH}_{2}\right), 117.7\left(\mathrm{CH}_{2}\right) 117.6\left(\mathrm{CH}_{2}\right), 117.6\left(\mathrm{CH}_{2}\right), 79.0(\mathrm{C}), 78.8(\mathrm{C}), 78.6(\mathrm{C}), 78.6(\mathrm{C}), 78.5(\mathrm{C}), 64.8\left(\mathrm{CH}_{2}\right), 64.7\left(\mathrm{CH}_{2}\right), 64.6\left(\mathrm{CH}_{2}\right)$, $64.6\left(\mathrm{CH}_{2}\right), 54.9(\mathrm{CH}), 53.6(\mathrm{CH}), 53.4(\mathrm{CH}), 53.1(\mathrm{CH}), 52.8(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{CH}_{3}\right), 47.8(\mathrm{CH}), 47.7(\mathrm{CH}), 47.6(\mathrm{CH})$, $47.3(\mathrm{CH}), 47.1(\mathrm{CH}), 46.5\left(\mathrm{CH}_{2}\right), 45.9\left(\mathrm{CH}_{2}\right), 45.6\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 15.8\left(\mathrm{CH}_{3}\right), 15.3\left(\mathrm{CH}_{3}\right), 15.2$ $\left(\mathrm{CH}_{3}\right), 15.0\left(\mathrm{CH}_{3}\right)$ ppm. NMR-data was acquired at elevated temperature so that most peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\boldsymbol{\delta} 8.01-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.14(\mathrm{~m}, 14 \mathrm{H}), 7.10-$ $6.98(\mathrm{~m}, 2 \mathrm{H}), 5.96-5.85(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.88-4.74(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-$ $4.53(\mathrm{~m}, 6 \mathrm{H}), 3.61(\mathrm{~s}, 0.9 \mathrm{H}), 3.60(\mathrm{~s}, 2.1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.57(\mathrm{~m}, 14 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}), 1.29-1.17(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers) $\delta 171.0$ (C), 170.3 (C), 170.2 (C), 170.1 (C), 154.9 (C), 136.7 (C), 132.2 (CH), 132.1 $(\mathrm{CH}), 130.8(\mathrm{C}), 130.0(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 126.1(\mathrm{CH}), 126.1(\mathrm{CH}), 126.0(\mathrm{CH}), 126.0(\mathrm{CH}), 117.3\left(\mathrm{CH}_{2}\right), 117.3$ $\left(\mathrm{CH}_{2}\right), 78.4(\mathrm{C}), 64.3\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2}\right), 64.2\left(\mathrm{CH}_{2}\right), 53.3(\mathrm{CH}), 53.1(\mathrm{CH}), 51.3(\mathrm{CH}), 51.3(\mathrm{CH}), 47.6(\mathrm{CH}), 46.2\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 34.9$ $\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right)$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=3.01 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{ClN}_{3} \mathrm{O}_{8} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na} ;{ }^{35} \mathrm{Cl}\right]^{+}=666.2558$ and $[\mathrm{M}+\mathrm{Na}$; $\left.{ }^{37} \mathrm{Cl}\right]^{+}=667.2590$, found 666.2590 and 668.2719 in the expected $3: 1$ ratio. No spectroscopic data are available in literature.

Methyl N -((((9H-fluoren-9-yl)methoxy)carbonyl)-L-phenylalanyl)-N-cyclopropylglycyl-L-phenylalaninate 15

The title compound was prepared using general procedure \mathbf{D} from Ugi product 9 ($149 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), H-L-Phe-OMe hydrochloric acid salt ($162 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv), $\mathrm{NaOAc}(62 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}\left(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$) in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether:EtOAc, 7:3 to 1:4 over 20 CV), the desired compound as a white powder in $73 \%(118 \mathrm{mg}, 0.183 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- \boldsymbol{d}_{6}, mixture of rotamers) $\delta 8.37$ (d, $J=7.6 \mathrm{~Hz}, 0.1 \mathrm{H}$), 8.25 (d, $J=7.6 \mathrm{~Hz}, 0.9 \mathrm{H}), 7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, \mathrm{J}=7.6,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.18(\mathrm{~m}, 12 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 0.9 \mathrm{H}), 4.96-4.90(\mathrm{~m}, 0.1 \mathrm{H}), 4.52-4.45(\mathrm{~m}, 1 \mathrm{H})$, $4.17-4.08(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=13.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.73$ $(\mathrm{m}, 2 \mathrm{H}), 0.97-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.75-0.62(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 174.7$ (C), 171.8 (C), 168.4 (C), $156.0(\mathrm{C}), 143.7(\mathrm{C})$, 140.65 (C), 140.63 (C), 138.1 (C), 137.0 (C), 129.2 (CH), 129.1 (CH), 128.3 (CH), 128.2 (CH), 127.6 (CH), 127.0 (CH), 126.6 (CH), 126.4 (CH), $125.34(\mathrm{CH}), 125.28(\mathrm{CH}), 120.1(\mathrm{CH}), 65.7\left(\mathrm{CH}_{2}\right), 53.6(\mathrm{CH}), 53.5(\mathrm{CH}), 51.9\left(\mathrm{CH}_{3}\right), 49.4\left(\mathrm{CH}_{2}\right), 46.5(\mathrm{CH}), 36.8\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 30.1(\mathrm{CH}), 9.8$
$\left(\mathrm{CH}_{2}\right)$, $7.7\left(\mathrm{CH}_{2}\right)$ ppm. NMR-data was acquired at elevated temperature so that most peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$
 $(\mathrm{m}, 4 \mathrm{H}), 5.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.58-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.12(\mathrm{~m}, 3 \mathrm{H}), 4.03-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.09-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{dd}, \mathrm{J}=13.9,8.5 \mathrm{~Hz}$, 1 H), 2.88-2.63 ($\mathrm{m}, 2 \mathrm{H}$), 0.99-0.52 ($\mathrm{m}, 4 \mathrm{H}$) ppm. HPLC $\mathrm{t}_{\text {R }-\mathrm{HpLC}-2}=2.86 \mathrm{~min}$. HRMS (ESI+) m/z calcd. for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=668.2737$, found 668.2720 . No spectroscopic data are available in literature.
tert-Butyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-N-propylleucyl-L-valinate 16

16

The title compound was prepared using general procedure \mathbf{D} from Ugi product $\mathbf{4 b}$ ($148 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), H-L-Val-OtBu hydrochloric acid salt ($157 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv), $\mathrm{NaOAc}(62 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}\left(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$) in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR} \mathrm{X} 2$ Normal Phase silicagel flash chromatography (Pet. Ether:EtOAc, 7:3 to 1:3 over 15 CV), the desired compound as a colorless oil in 80% ($115 \mathrm{mg}, 0.2 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 8.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.1 \mathrm{H}), 8.02(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 0.1 \mathrm{H}), 7.87-$ $7.80(\mathrm{~m}, 1.7 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 0.2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=\mathrm{Hz}, 0.3 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 10.7 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-$ $4.84(\mathrm{~m}, 1.5 \mathrm{H}), 4.82-4.73(\mathrm{~m}, 0.2 \mathrm{H}), 4.67-4.55(\mathrm{~m}, 0.7 \mathrm{H}), 4.54-4.45(\mathrm{~m}, 0.8 \mathrm{H}), 4.44-4.33(\mathrm{~m}, 0.8 \mathrm{H}), 4.13-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.35-$ $3.27(\mathrm{~m}, 4 \mathrm{H}$ overlap with HDO peak), 3.22-2.95 (m, 2H), 2.99-2.78 (m, 4H), 2.02-1.94 (m, 2H), 1.65-1.53 (m, 2H), 1.53-1.42 (m, 2H), 1.39 (s, $7 \mathrm{H}), 1.38(\mathrm{~s}, 8 \mathrm{H}), 1.37(\mathrm{~s}, 8 \mathrm{H}), 1.31(\mathrm{~s}, 7 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.24-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.90-0.81(\mathrm{~m}, 22 \mathrm{H}), 0.81-0.70(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, DMSO- \boldsymbol{d}_{6}, mixture of diastereomers and rotamers) $\delta 172.7$ (C), 172.5 (C), 171.3 (C), 170.7 (C), 170.3 (C), 170.2 (C), 170.1 (C), 169.9 (C), 169.0 (C), 155.8 (C), 155.3 (C), 155.1 (C), $137.8(\mathrm{C}), 137.4(\mathrm{C}), 129.7(\mathrm{CH}), 129.6(\mathrm{CH}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.2128 .1(\mathrm{CH}), 126.4(\mathrm{CH})$, $126.3(\mathrm{CH}), 80.6(\mathrm{C}), 80.5(\mathrm{C}), 78.1(\mathrm{C}), 78.1(\mathrm{C}), 58.7(\mathrm{CH}), 58.4(\mathrm{CH}), 58.1(\mathrm{CH}), 55.1(\mathrm{CH}), 55.0(\mathrm{CH}), 52.5(\mathrm{CH}), 52.4(\mathrm{CH}), 45.9(\mathrm{CH}), 38.3$ $\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 29.8(\mathrm{CH}), 29.6(\mathrm{CH}), 29.5(\mathrm{CH}), 28.1\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{3}\right), 24.2(\mathrm{CH})$, $24.1(\mathrm{CH}), 23.3\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right), 18.8\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right), 18.2$ $\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that most peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ D M S O - ~} \boldsymbol{d}_{6}, \mathbf{8 0}{ }^{\circ} \mathrm{C}$, mixture of diastereomers in a $1: 1$ ratio) $\delta 7.47(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 10 \mathrm{H}), 6.62$ (br s, 2H), 4.89-4.80 (m, 1H), 4.78-4.66 (m, 1H), 4.63-4.50 (m, 2H), 4.13-4.00 (m, 1H), 4.01 (dd, J=9.0, 7.1 Hz, 1H), 3.47-3.35 (m, 1H), 3.34$3.26(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.01(\mathrm{~m}, 5 \mathrm{H}$ overlap with HDO peak), 2.98-2.80(m,5H), 2.05-1.95(m,2H), 1.80-1.65(m,2H),1.61-1.43(m,4H), 1.42(s, $9 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 18 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 24 \mathrm{H}), 0.80-0.75(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-1}=4.87$ and 4.95 min . HRMS (ESI+) m/z calcd. for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}=, 589.3832$ found 598.3814 . No spectroscopic data are available in literature.

Methyl $N^{6}-\left((\right.$ benzyloxy $)$ carbonyl)- N^{2}-(N-((tert-butoxycarbonyl)- L -phenylalanyl)- N-propylleucyl)-L-lysinate 17

The title compound was prepared using general procedure \mathbf{D} from Ugi product 4b ($148 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), H-L-Lys(Cbz)-OMe hydrochloric acid salt ($248 \mathrm{mg}, 0.75 \mathrm{mmol}, 3$ equiv), $\mathrm{NaOAc}(62 \mathrm{mg}, 0.75 \mathrm{mmol}$, 3 equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}\left(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%\right.$) in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}$, 9:1 to 1:1 over 30 CV), the desired compound as a colorless oil in 55% ($95 \mathrm{mg}, 0.138 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}, mixture of diastereomers in a 1:1 ratio and rotamers) $\delta 8.56-8.44(\mathrm{~m}, 0.1 \mathrm{H}), 8.35-8.27(\mathrm{~m}, 0.2 \mathrm{H}), 8.26-8.15(\mathrm{~m}, 0.6 \mathrm{H})$, $8.15-8.08(\mathrm{~m}, 0.2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.1 \mathrm{H}), 7.69(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 0.1 \mathrm{H}), 7.57(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 0.1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 13 \mathrm{H}), 5.08-4.94(\mathrm{~m}, 5.5 \mathrm{H}), 4.78-4.67(\mathrm{~m}, 0.1 \mathrm{H}), 4.66-4.52$ $(\mathrm{m}, 0.8 \mathrm{H}), 4.51-4.42(\mathrm{~m}, 0.8 \mathrm{H}), 4.41-4.32(\mathrm{~m}, 0.8 \mathrm{H}), 4.27-4.16(\mathrm{~m}, 1.4 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 0.6 \mathrm{H}), 3.67(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.61(\mathrm{~s}, 1.6 \mathrm{H}), 3.59(\mathrm{~s}, 1.4 \mathrm{H})$, $3.58(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 0.6 \mathrm{H}), 3.51(\mathrm{~s}, 0.4 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.03(\mathrm{~m}, 1.5 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 4.5 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 4 \mathrm{H})$, 1.72-1.51 (m, 7H), 1.46-1.36 (m, 7H), 1.35 (s, 3H), 1.34-1.32 (m, 2H), $1.31(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 7 \mathrm{H}), 1.27(\mathrm{~s}, 2 \mathrm{H}), 1.26-1.17(\mathrm{~m}, 6 \mathrm{H}), 0.93-0.85(\mathrm{~m}$, $4 \mathrm{H}), 0.85-0.80(\mathrm{~m}, 7 \mathrm{H}), 0.79-0.69(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- \boldsymbol{d}_{6}, mixture of diastereomers and rotamers) $\delta 172.7(\mathrm{C}), 172.6$ (C), 172.4 (C), 172.3 (C), 172.3 (C), 172.2 (C), 172.1 (C), 172.0 (C), 156.0 (C), 156.0 (C), 155.3 (C), 155.3 (C), 137.9 (C), 137.4 (C), 137.2 (C), $137.0(\mathrm{C}), 129.6(\mathrm{CH}), 129.6(\mathrm{CH}), 129.3(\mathrm{CH}), 129.1(\mathrm{CH}), 129.1(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.7(\mathrm{CH}), 126.6(\mathrm{CH}), 126.4(\mathrm{CH})$, $126.3(\mathrm{CH}), 78.2(\mathrm{C}), 78.0(\mathrm{C}), 65.1\left(\mathrm{CH}_{2}\right), 54.5(\mathrm{CH}), 54.3(\mathrm{CH}), 52.1(\mathrm{CH}), 52.1(\mathrm{CH}), 51.9(\mathrm{CH}), 51.7\left(\mathrm{CH}_{3}\right), 51.6\left(\mathrm{CH}_{3}\right), 45.9\left(\mathrm{CH}_{2}\right), 45.4\left(\mathrm{CH}_{2}\right)$, $38.0\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 24.0(\mathrm{CH}), 24.0$ $(\mathrm{CH}), 22.8\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 11.2\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that most peaks arising from hindered rotation coalesced. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O} \boldsymbol{d}_{6}, \mathbf{8 0}{ }^{\circ} \mathrm{C}\right.$, mixture of diastereomer in $\mathbf{1 : 1} \mathbf{~ r a t i o) ~} \boldsymbol{\delta}$ $7.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.38-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.72(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.05-5.00(\mathrm{~m}, 5 \mathrm{H}), 4.94-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.49(\mathrm{~m}, 3 \mathrm{H})$, 4.28-4.17 (m, 2H), 3.63 ($\mathrm{s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 6 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 10 \mathrm{H})$, 1.48-1.39 (m, 10H), 1.34-1.31 (m, 18H), 0.90-0.83 (m, 10H), 0.81-0.75 (m, 8H) ppm. HPLC $t_{R-H P L C-1}=4.53 \mathrm{~min}$. HRMS (ESI+) $\mathrm{m} / \mathrm{z} \mathrm{calcd}$. $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=719.3996$, found 719.3928 . No spectroscopic data are available in literature.

The title compound was prepared using general procedure D from Ugi product $\mathbf{4 b}$ ($133 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), $\mathrm{H}_{2} \mathrm{O}\left(13.5 \mu \mathrm{l}, 0.75 \mathrm{mmol}, 3\right.$ equiv), and $\mathrm{Zn}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether:EtOAc, 100:0 to 50:50 over 14 CV), the desired compound as a white powder in 94% ($99 \mathrm{mg}, 0.24 \mathrm{mmol}$) yield. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$, mixture of diastereomers in 1:1 ratio and rotamers) $\delta 9.17(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.88-5.80(\mathrm{~m}, 0.2 \mathrm{H}), 5.77-5.69(\mathrm{~m}, 0.2 \mathrm{H})$, $5.53(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.83-4.71(\mathrm{~m}, 1.6 \mathrm{H}), 4.68-4.53(\mathrm{~m}, 0.6 \mathrm{H}), 4.46-4.31(\mathrm{~m}, 1.8 \mathrm{H})$, 3.41-3.21 (m, 1H), 3.24-3.13 ($\mathrm{m}, 1 \mathrm{H}$), 3.10-2.84 (m, 6H), 1.97-1.86 (m, 2H), 1.70-1.41 (m, 8H), 1.40-1.23 (m, 18H), 0.94-0.79 (m, 18H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers) $\boldsymbol{\delta} 175.1$ (C), 174.7 (C), 174.1 (C), 173.4 (C), 172.6 (C), 172.3 (C), 156.4 (C), 155.5 (C), 155.3 (C), 137.0 (C), 136.4 (C), 136.1 (C), 129.8 (CH), 129.6 (CH), 128.7 (CH), 128.6 (CH), 128.4 (CH), 127.2 (CH), 127.1 (CH), $127.0(\mathrm{CH}), 126.8(\mathrm{CH}), 81.3(\mathrm{C}), 81.1(\mathrm{C}), 80.2(\mathrm{C}), 80.0(\mathrm{C}), 59.0(\mathrm{CH}), 58.8(\mathrm{CH}), 58.6(\mathrm{CH}), 58.2(\mathrm{CH}), 57.7(\mathrm{CH}), 54.0(\mathrm{CH}), 52.4(\mathrm{CH}), 52.2$ $(\mathrm{CH}), 51.9(\mathrm{CH}), 51.7(\mathrm{CH}), 50.4\left(\mathrm{CH}_{2}\right), 49.9\left(\mathrm{CH}_{2}\right), 49.1\left(\mathrm{CH}_{2}\right), 46.7\left(\mathrm{CH}_{2}\right), 40.5\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 38.6\left(\mathrm{CH}_{2}\right)$, $38.0\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 24.9(\mathrm{CH}), 24.6(\mathrm{CH}), 23.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right), 11.7$ $\left(\mathrm{CH}_{3}\right), 11.6\left(\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomer in 1:1 ratio) $\delta 7.30-7.16(\mathrm{~m}, 10 \mathrm{H}), 6.84-6.39(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.42(\mathrm{~m}, 4 \mathrm{H}), 3.50-$ $3.35(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.39(\mathrm{~m}, 8 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H})$, $0.91-0.80(\mathrm{~m}, 18 \mathrm{H})$ ppm HRMS (ESI+) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=443.2516$, found 443.2522 . No spectroscopic data are available in literature.

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)-N-propylleucinate 19

The title compound was prepared using general procedure D from Ugi product 4b ($133 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), $\mathrm{MeOH}\left(30.4 \mu \mathrm{l}, 0.75 \mathrm{mmol}, 3\right.$ equiv), and $\mathrm{Zn}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether:EtOAc, 100:0 to 50:50 over 14 $\mathrm{CV})$, the desired compound as a white powder in $81 \%(88 \mathrm{mg}, \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in 1:1 ratio and rotamers) $\delta 7.29-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.27-5.19(\mathrm{~m}, 1.8 \mathrm{H}), 5.15-5.05(\mathrm{~m}, 0.2 \mathrm{H}), 4.90-4.82$ $(\mathrm{m}, 0.2 \mathrm{H}), 4.81-4.71(\mathrm{~m}, 1.8 \mathrm{H}), 4.70-4.64(\mathrm{~m}, 0.9 \mathrm{H}), 4.63-4.58(\mathrm{~m}, 0.9 \mathrm{H}), 4.57-4.50(\mathrm{~m}, 0.2 \mathrm{H}), 3.67(\mathrm{~s}, 5.4 \mathrm{H}), 3.63(\mathrm{~s}$, $0.6 \mathrm{H})$, , 3.31-3.22 (m, 0.9H), 3.17-2.95 (m, 4.1H), 2.94-2.79 (m, 3H), 1.88-1.77 (m, 2H), 1.64-1.42 (m, 6H), 1.40-1.33 (m, 18H), 1.29-1.21 (m, $2 \mathrm{H}), 0.95-0.80(\mathrm{~m}, 18 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers) $\delta 172.8$ (C), 172.5 (C), 172.3 (C), 172.1 (C), 171.9 (C), 171.6 (C), 171.4 (C), 155.2 (C), 155.1 (C), 155.0 (C), 154.9 (C), 137.0 (C), 136.8 (C), 136.6 (C), 129.8 (CH), 129.7 (CH), 129.6 (CH), 128.5 (CH), 128.4 (CH), 126.9 (CH), 126.8 (CH), 126.7 (CH), 80.4 (C), 80.3 (C), 79.8 (C), 79.7 (C), 58.4 (CH), 58.0 (CH), 56.8 (CH), 56.3 $(\mathrm{CH}), 53.8(\mathrm{CH}), 52.5(\mathrm{CH}), 52.2(\mathrm{CH}), 52.1(\mathrm{CH}), 52.1(\mathrm{CH}), 51.8(\mathrm{CH}), 51.6(\mathrm{CH}), 49.0\left(\mathrm{CH}_{2}\right), 48.3\left(\mathrm{CH}_{2}\right), 46.6\left(\mathrm{CH}_{2}\right), 46.2\left(\mathrm{CH}_{2}\right), 41.0\left(\mathrm{CH}_{2}\right), 40.1$ $\left(\mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 24.8(\mathrm{CH}), 24.6(\mathrm{CH}), 23.2\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right)$, $22.8\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{M H z}, \mathrm{DMSO}-d_{6}, 80^{\circ} \mathrm{C}\right.$, mixture of diastereomer in 1:1 ratio) $\delta 7.32-7.16(\mathrm{~m}, 10 \mathrm{H}), 6.90-6.45(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.37(\mathrm{~m}, 4 \mathrm{H}), 3.59(\mathrm{~s}, 6 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.15(\mathrm{~m}, 2 \mathrm{H})$, 3.10-3.00 ($\mathrm{m}, 1 \mathrm{H}$), 2.98-2.88 ($\mathrm{m}, 2 \mathrm{H}$), 2.86-2.74 ($\mathrm{m}, 2 \mathrm{H}$), 1.85-1.72 ($\mathrm{m}, 2 \mathrm{H}$), 1.64-1.40 ($\mathrm{m}, 8 \mathrm{H}$), 1.32 ($\mathrm{s}, 18 \mathrm{H}), 0.90-0.79(\mathrm{~m}, 18 \mathrm{H})$ ppm. HRMS (ESI+) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}=435.2853$, found 435.2858. No spectroscopic data are available in literature.

On-resin Ugi reaction and transamidation

N-(3-amino-3-oxopropyl)-N-((S)-3-phenyl-2-((2,2,2-trifluoroacetyl)- λ^{4}-azaneyl)propanoyl)leucyl-L-alanine 21

The title compound was formed on solid support. First, the resin was preloaded with Fmoc- $\beta \mathrm{Ala}-\mathrm{OH}$ (93 $\mathrm{mg}, 0.3 \mathrm{mmol}$, 3 equiv) following general procedure \mathbf{F} onto a Rink amide resin ($109 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv, $0.92 \mathrm{mmol} / \mathrm{g}$) using HBTU ($113 \mathrm{mg}, 0.3 \mathrm{mmol}, 3$ equiv) and DIPEA ($0.087 \mathrm{ml}, 0.5 \mathrm{mmol}, 5$ equiv) in DMF. Following Fmoc deprotection of the resin using solution of a 4-methylpiperidine (20\%) in DMF, the Ugi reaction was performed with Boc-L-Phe-OH ($106 \mathrm{mg}, 0.4 \mathrm{mmol}, 4$ equiv), 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ ($56 \mathrm{mg}, 0.4 \mathrm{mmol}, 4$ equiv) and isovaleraldehyde ($0.043 \mathrm{ml}, 0.4 \mathrm{mmol}, 4$ equiv) in $\mathrm{TFE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) in the SPPS reactor. The mixture was shaken for 48 hours at room temperature. The excess of reagents and solvent were removed by filtration and the resin was washed with DMF (3x) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. The resin was dried with diethyl ether and transferred in a microwave vial. The transamidation was performed using general procedure \mathbf{D} by addition of $\mathrm{H}-\mathrm{L}-\mathrm{Ala}-\mathrm{OtBu} . \mathrm{HCl}(91 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 5$ equiv), NaOAc ($41 \mathrm{mg}, 0.5 \mathrm{mmol}, 5$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in $\mathrm{THF}(0.5 \mathrm{ml})$. The mixture was stirred genteelly for 48 h at $90^{\circ} \mathrm{C}$. Subsequently, the mixture was transferred to the SPPS reactor with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the excess of reagents and solvent were removed by filtration and the resin was washed with DMF $(3 x)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. Then a mixture of TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}(95 / 2.5 / 2.5)$ was added and the SPOS reactor was shaken for 1 hour at room temperature to cleave the peptide from the resin. Subsequently the cleaved product was obtained via filtration and the TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}$ mixture was removed in vacuo. The obtained yellow oil was purified via preparative HPLC (AcN $+0.1 \%$ TFA $/ \mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA from $15: 85$ to $60: 40$ in 20 minutes) and the title compound was obtained with an overall yield of 22%
($11.5 \mathrm{mg}, 0.022 \mathrm{mmol}$). During purification, the two diastereomers were separated with a yield of $12 \%(6 \mathrm{mg}, 0.012 \mathrm{mmol}$) for number 1 (white powder) and 10% ($5.3 \mathrm{mg}, 0.01 \mathrm{mmol}$ for number 2 (colourless oil). ${ }^{1} \mathrm{H}$ ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}, diastereomer 1, mixture of rotamers) $\delta 8.62(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 8.30(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 8.25(\mathrm{br} \mathrm{s}, 0.8 \mathrm{H}), 8.18(\mathrm{br} \mathrm{s}, 1.2 \mathrm{H}), 7.44(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 0.8 \mathrm{H}), 7.34-7.28(\mathrm{~m}$, 3.8 H), $7.23(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 6.95(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 6.83(\mathrm{br} \mathrm{s}, 0.4 \mathrm{H}), 4.92-4.85(\mathrm{~m}, 0.4 \mathrm{H}), 4.80(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.55-4.48(\mathrm{~m}, 0.6 \mathrm{H}), 4.20$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 410(\mathrm{dd}, J=10.7,4.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 0.8 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 1.2 \mathrm{H}), 340-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 0.6 \mathrm{H})$, $3.01-2.95(\mathrm{~m}, 1.4 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 0.6 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 0.4 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 0.4 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 0.6 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 1 \mathrm{H})$, $1.32-1.28(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1.6 \mathrm{H}), 0.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1.6 \mathrm{H}), 0.83(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1.4 \mathrm{H}), 0.78(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1.4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- \boldsymbol{d}_{6}, diastereomer 1, mixture of rotamers) $\boldsymbol{\delta} 173.8$ (C), 173.7 (C), 172.1 (C), 172.0 (C), 169.2 (C), 168.8 (C), 168.5 (C), 168.3 (C), 134.4 (C), 133.8 (C), 129.8 (CH), 129.6 (CH), 128.8 (CH), 128.6 (CH), 127.4 (CH), 127.3 (CH), 57.0 (CH), 55.6 (CH), 51.1 (CH), 49.7 (CH), 47.7 $(\mathrm{CH}), 47.6(\mathrm{CH}), 40.8\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 24.3(\mathrm{CH}), 24.1(\mathrm{CH}), 23.3\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right)$, $21.6\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}\right.$, DMSO- $_{6}, 80^{\circ} \mathrm{C}$, diastereomer 1 , mixture of rotamers) $\delta 8.51-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.42-7.05(\mathrm{~m}, 5 \mathrm{H})$, $6.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.85-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.47(\mathrm{~m}, 0.7 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 0.3 \mathrm{H}), 3.66-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.36(\mathrm{~m}, 2 \mathrm{H}$, overlap with HDO), 3.15-2.96 ($\mathrm{m}, 2 \mathrm{H}$ overlap with HDO), 2.42-2.32 (m, 1H), 2.30-2.12 (m, 1H), 1.91-1.76 (m, 1H), 1.55-1.38 (m, 2 H), $1.30(\mathrm{~d}, \mathrm{~J}=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 3 \mathrm{H}), 0.89-0.80(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-1}=2.64 \mathrm{~min}$ HRMS (ESI+) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}=421.2451$, found 421.2424. m.p.: $125^{\circ} \mathrm{C}$ No spectroscopic data are available in literature. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$, diastereomer 2, mixture of rotamers) $\delta 8.60-8.56(\mathrm{~m}, 0.3 \mathrm{H}), 8.25(\mathrm{br} \mathrm{s}, 1.7 \mathrm{H}), 8.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 4.3), 7.26-7.20(\mathrm{~m}, 0.7 \mathrm{H}), 6.95(\mathrm{br} \mathrm{s}$, 0.7), $6.80(\mathrm{br} \mathrm{s}, 0.3 \mathrm{H}), 4.90(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.64(\mathrm{~m}, 0.7 \mathrm{H}), 4.55-4.49(\mathrm{~m}, 0.3 \mathrm{H}), 4.44-4.38(\mathrm{~m}, 0.3 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.56$ $(\mathrm{m}, 0.6 \mathrm{H}), 3.52-3.38(\mathrm{~m}, 2.4 \mathrm{H}$ overlap with HDO), 3.12-3.03 (m, 1H), 3.00-2.95(m, 1H), 2.45-2.37(m, 1H), 2.33-2.25(m, 1H), 1.67-1.63 (m, $0.3 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 0.7 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 0.3 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 0.7 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2.3 \mathrm{H}), 1.25-1.22(\mathrm{~m}, 0.3 \mathrm{H})$, 1.17-1.10 (m, 0.7H), 0.95-0.0.91 (m, 1.8H), $0.83(\mathrm{dd}, J=6.8,4.6 \mathrm{~Hz}, 4.2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO-d d_{6} diastereomer 2, mixture of rotamers) $\delta 173.8$ (C), 173.7 (C), 172.2 (C), 169.7 (C), 169.5 (C), 134.4 (C), 130.2 (C), 129.6 (C), 128.6 (C), 128.4 (C), 127.4 (C), 55.0 (CH), 51.0 $(\mathrm{CH}), 47.8(\mathrm{CH}), 47.6(\mathrm{CH}), 38.0(\mathrm{CH} 2), 37.2(\mathrm{CH} 2), 35.6\left(\mathrm{CH}_{2}\right), 24.1(\mathrm{CH}), 23.0\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right)$ ppm. NMR-data was acquired at elevated temperature so that peaks arising from hindered rotation coalesced. ${ }^{1} \mathrm{H}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{DMSO}-\boldsymbol{d}_{6}, \mathbf{8 0}\right.$ ${ }^{\circ} \mathrm{C}$, diastereomer 2, mixture of rotamers) $\delta 8.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.90(\mathrm{br} \mathrm{s}, 0.8 \mathrm{H}), 7.65(\mathrm{br} \mathrm{s}, 0.2 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.22-6.40(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{dd}$, $J=8.9,7.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.63(\mathrm{dd}, J=8.9,7.2 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.47-4.38(\mathrm{~m}, 0.4 \mathrm{H}), 4.33-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.00$ $\left(\mathrm{m}, 2 \mathrm{H}\right.$ overlap with HDO), $2.40-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.83(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-1}$ $=2.82 \mathrm{~min}$, HRMS (ESI +) m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}=421.2451$, found 421.2438. No spectroscopic data are available in literature.

Synthesis of the Ata-scaffold

2,2,2-Trifluoroethyl 2-((S)-7-((tert-butoxycarbonyl)amino)-6-oxo-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)-4-methylpentanoate S4

The title compound was prepared following general procedure \mathbf{E} from 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (139 mg , $1 \mathrm{mmol}, 1$ equiv), Boc-L-Ala($\left(\beta-\mathrm{N}_{3}\right)$ - OH ($276 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), propargylamine ($0.064 \mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) and isovaleraldehyde ($0.107 \mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) in trifluoroethanol (4 ml). Subsequent heating of the reaction mixture was performed in TFE (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 1:1 to 0:1), the titled compound as a yellow oil with 41% (190 $\mathrm{mg}, 0.41 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio) $\boldsymbol{\delta} 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.54$ $(\mathrm{s}, 1 \mathrm{H}), 5.96-5.92(\mathrm{~m}, 2 \mathrm{H}), 5.46-5.39(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.07-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-$ $4.38(\mathrm{~m}, 5 \mathrm{H}), 4.23-4.02(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.70$ (d, J = $6.3 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. . ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta 170.6$ (C), 170.4 (C), 169.9 (C), 169.3 (C), 154.9 (C), 131.6
 $\left.37.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CF}_{3}\right), 55.6(\mathrm{CH}), 54.9(\mathrm{CH}), 50.5\left(\mathrm{CH}_{2}\right), 50.2\left(\mathrm{CH}_{2}\right), 48.9(\mathrm{CH}), 38.2\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 25.1(\mathrm{CH})$, $25.1(\mathrm{CH}), 23.1\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=2.76 \mathrm{~min}$, HRMS (ESI+) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}=$ 464.2115, found 464.2119. No spectroscopic data are available in literature.
tert-Butyl (S)-(5-(2-((3-chloropyridin-2-yl)amino)-2-oxo-1-phenylethyl)-6-oxo-5,6,7,8-tetrahydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-7yl)carbamate 25a

25a

The title compound was prepared following general procedure \mathbf{E} from 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (139 mg , $1 \mathrm{mmol}, 1$ equiv), Boc-L-Ala($\beta-\mathrm{N}_{3}$)-OH ($276 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), propargylamine ($0.064 \mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) and benzaldehyde ($0.102 \mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) in trifluoroethanol (4 ml). Subsequent heating of the reaction mixture was performed in THF (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from $1: 1$ to $0: 1$), the desired compound as a brown solid with 42% $(215 \mathrm{mg}, 0.42 \mathrm{mmol})$ yield. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mixture of diastereomers in a 1:0.7 ratio) δ 8.26-8.19 $(\mathrm{m}, 2.7 \mathrm{H}), 8.11(\mathrm{br} \mathrm{s}, 0.7 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.7 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 4.4 \mathrm{H}), 7.34-7.25(\mathrm{~m}$, $4.1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2.4 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 1.7 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.03-6.00(\mathrm{~m}, 1.7 \mathrm{H}), 5.31-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.15(\mathrm{~m}, 0.7 \mathrm{H}), 4.99(\mathrm{dt}, \mathrm{J}=13.9$, $12.8 \mathrm{~Hz}, 1.7 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.53(\mathrm{~m}, 1.7 \mathrm{H}), 4.39(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.29(\mathrm{t}, J=12.8,0.7 \mathrm{H}), 4.19(\mathrm{t}, J=12.8,1 \mathrm{H}), 1.48(\mathrm{~s}$, $15.3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:0.7 ratio) $\boldsymbol{\delta} 170.8$ (C), 170.6 (C), 154.9 (C), 146.7 (C), 146.6 (CH), $138.3(\mathrm{CH}), 133.0(\mathrm{C}), 132.9(\mathrm{C}), 131.6(\mathrm{CH}), 131.4(\mathrm{C}), 130.6(\mathrm{CH}), 129.7(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4(\mathrm{CH}), 129.1(\mathrm{CH}), 121.3(\mathrm{CH}), 81.0(\mathrm{C}), 62.5$ $(\mathrm{CH}), 62.3(\mathrm{CH}), 50.3\left(\mathrm{CH}_{2}\right), 50.2\left(\mathrm{CH}_{2}\right), 49.1(\mathrm{CH}), 38.1\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{HPLC} \mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=2.35$ and 2.43 min . HRMS (ESI+) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClN}_{7} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H} ;{ }^{35} \mathrm{Cl}\right]^{+}=512.1808$ and $\left[\mathrm{M}+\mathrm{H} ;{ }^{37} \mathrm{Cl}\right]^{+}=514.1790$, found 512.1806 and 514.1816 in the expected 3:1 ratio. No spectroscopic data are available in literature.
tert-Butyl ((7S)-5-(1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)-6-oxo-5,6,7,8-tetrahydro-4H-[1,2,3]triazolo[1,5-a][1,4]diaz-epin-7-yl)carbamate 25b

The title compound was prepared following general procedure \mathbf{E} from 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (139 mg , $1 \mathrm{mmol}, 1$ equiv), Boc-L-Ala($\beta-\mathrm{N}_{3}$)-OH ($276 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), propargylamine ($0.064 \mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) and isovaleraldehyde ($0.107 \mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) in trifluoroethanol (4 ml). Subsequent heating of the reaction mixture was performed in THF (4 ml). This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from $1: 1$ to $0: 1$), the desired compound as a brown solid with 52% ($256 \mathrm{mg}, 0.52 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio) $\delta 8.69-8.54(\mathrm{~m}$, $1.6 \mathrm{H}), 8.36(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H})$, $7.14(\mathrm{dd}, \mathrm{J}=8.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.27-5.20(\mathrm{~m}, 2 \mathrm{H})$, 5.06-4.91 (m, 4H), $4.78(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.53(\mathrm{~m}$, $3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta 171.1$ (C), 170.8 (C), 169.4 (C), 168.2 (C), 155.0 (C), 154.9 (C), 147.1 (C), 146.8 (C), 146.7 (CH), $146.6(\mathrm{CH}), 138.6(\mathrm{CH}), 132.2(\mathrm{CH}), 131.8(\mathrm{C}), 131.0(\mathrm{CH}), 130.9(\mathrm{C}), 123.3(\mathrm{C}), 122.0(\mathrm{CH}), 81.0(\mathrm{C}), 55.9(\mathrm{CH}), 55.4(\mathrm{CH}), 50.3(\mathrm{CH}), 49.9$ $\left(\mathrm{CH}_{2}\right), 49.0(\mathrm{CH}), 48.9(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 25.1(\mathrm{CH}), 25.0(\mathrm{CH}), 23.1\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right)$, $21.7\left(\mathrm{CH}_{3}\right)$ ppm. HPLC $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=2.46$ and 2.50 min , HRMS (ESI+) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClN}_{7} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na} ;{ }^{35} \mathrm{Cl}\right]^{+}=514.1940 \mathrm{and}\left[\mathrm{M}+\mathrm{Na} ;{ }^{37} \mathrm{Cl}\right]^{+}$ $=516.1921$, found 514.1901 and 516.1900 in the expected $3: 1$ ratio. No spectroscopic data are available in literature.

Hydrolysis of the Ata-dipeptide 25 and use in SPPS

(S)-2-(2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)-2-phenylacetamido)-3phenylpropanamide 26a

The title compound was obtained by means of a two-step synthesis. The hydrolysis of the amide bond was performed following general procedure \mathbf{D} from $\mathbf{2 5 a}$ ($61 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv), $\mathrm{H}_{2} \mathrm{O}(6.5 \mu \mathrm{l}, 0.36 \mathrm{mmol}, 3$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.024 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in $t \mathrm{BuOAc}(0.24 \mathrm{ml})$. The mixture was heated at $85^{\circ} \mathrm{C}$ for 48 hours. The solvent was removed in vacuo and the crude was used without further purification in the subsequent step.
For the coupling of the Ata dipeptide on solid support, the resin was first preloaded with Fmoc-L-Phe-OH ($77 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv) following general procedure \mathbf{F} onto a Rink amide resin ($213 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv, $0.47 \mathrm{mmol} / \mathrm{g}$) using HBTU ($76 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv) and DIPEA ($0.052 \mathrm{ml}, 0.3 \mathrm{mmol}, 3$ equiv) in DMF. Following Fmoc deprotection of the resin using solution of 4-methylpiperidine (20%) in DMF, the crude N-Boc protected Ata scaffold (0.12 mmol, 1.2 equiv) was coupled to the resin as described in general procedure \mathbf{F} with $\mathrm{HBTU}(57 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv), DIPEA ($0.035 \mathrm{ml}, 0.2 \mathrm{mmol}, 2 \mathrm{equiv}$) in DMF. The excess of reagents and solvent were removed by filtration and the resin was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x). Then a mixture of TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}$ (95/2.5/2.5) was added and the spps reactor was shaken for 1 hour at room temperature to cleave the peptide from the resin. Subsequently the cleaved product was obtained via filtration and the TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}$ mixture was removed in vacuo. The obtained yellow oil was purified via preparative HPLC ($\mathrm{AcN}+0.1 \%$ TFA $/ \mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA from $3: 7$ to $7: 3$ in 20 minutes) and the title compound was obtained as a white solid with $20 \%(11.1 \mathrm{mg}, 0.020 \mathrm{mmol})$ yield. During purification, the two diastereomers were separated with a yield of 18% for number 1 and 2% for number $2 .{ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ D M S O - ~} \boldsymbol{d}_{6}$, diastereomer 1) $\delta 8.89-8.79(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$,
$6.80(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=12.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=12.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-$ $4.71(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=14.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}, diastereomer 1) $\delta 172.8$ (C), 168.0 (C), 137.8 (C), 134.2 (C), 132.4 (C), 130.4 (CH), 129.2 (CH), 128.3 (CH), 128.2 (CH), $128.0(\mathrm{CH}), 126.4(\mathrm{CH}), 59.8(\mathrm{CH}), 53.8(\mathrm{CH}), 47.4(\mathrm{CH}), 46.9\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right)$ ppm. HPLC (diastereomer 1) $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=1.86 \mathrm{~min}$. HRMS (ESI ${ }^{+}$) m/z: calc. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{7} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=470.1911$, found 470.1890 (diastereomer 1). m. p.: $178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}, diastereomer 2) $\delta 8.76(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.62(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H})$, 7.15-7.11 (m, 3H), 7.01 (br s, 1H), $6.35(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=12.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.34(\mathrm{~m}$, 2 H), 2.88 (dd, $J=13.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=13.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d $\mathrm{d}_{\text {, }}$, diastereomer 2) $\delta 172.4$ (C), 168.0 (C), 167.5 (C), 137.5 (C), 135.0 (C), 132.6 (C), 131.6 (CH), 129.0 (CH), 128.7 (CH), 128.4 (CH), 128.3 (CH), 127.9 (CH), 126.1 (CH), 59.4 (CH), 53.8 $(\mathrm{CH}), 47.4(\mathrm{CH}), 46.7\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. HPLC (diastereomer 2) $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=1.62 \mathrm{~min}$. HRMS (ESI ${ }^{+}$) m/z: calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{7} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}=448.2092$, found 448.2103 (diastereomer 2). m. p.: $165^{\circ} \mathrm{C}$. No spectroscopic data are available in literature.
N-((S)-1-amino-1-oxo-3-phenylpropan-2-yl)-4-methyl-2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5a] [1,4]diazepin-5(6H)-yl)pentanamide 26b

The title compound was obtained by means of a two-step synthesis. The hydrolysis of the amide bond was performed following general procedure \mathbf{D} from $\mathbf{2 5 b}\left(59 \mathrm{mg}, 0.12 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{H}_{2} \mathrm{O}(6.5 \mu \mathrm{l}, 0.36 \mathrm{mmol}$, 3 equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}(4.4 \mathrm{mg}, 0.024 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in $t \mathrm{BuOAc}(0.24 \mathrm{ml})$. The mixture was heated at 85 ${ }^{\circ} \mathrm{C}$ for 48 hours. The solvent was removed in vacuo and the crude was used without further purification in the subsequent step.
For the coupling of the Ata dipeptide on solid support, the resin was first preloaded with Fmoc-L-Phe-OH ($77 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv) following general procedure \mathbf{F} onto a Rink amide resin ($213 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv, $0.47 \mathrm{mmol} / \mathrm{g}$) using HBTU $(76 \mathrm{mg}, 0.2 \mathrm{mmol}$, 2 equiv) and DIPEA ($0.052 \mathrm{ml}, 0.3 \mathrm{mmol}, 3$ equiv) in DMF. Following Fmoc deprotection of the resin using solution of 4methylpiperidine (20%) in DMF, the crude N-Boc protected Ata scaffold ($0.12 \mathrm{mmol}, 1.2$ equiv) was coupled to the resin as described in general procedure \mathbf{F} with HBTU ($57 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv), DIPEA ($0.035 \mathrm{ml}, 0.2 \mathrm{mmol}, 2$ equiv) in DMF. The excess of reagents and solvent were removed by filtration and the resin was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. Then a mixture of $\mathrm{TFA} / \mathrm{TIS} / \mathrm{H}_{2} \mathrm{O}(95 / 2.5 / 2.5)$ was added and the spps reactor was shaken for 1 hour at room temperature to cleave the peptide from the resin. Subsequently the cleaved product was obtained via filtration and the TFA/TIS $/ \mathrm{H}_{2} \mathrm{O}$ mixture was removed in vacuo. The obtained yellow oil was purified via preparative HPLC (AcN $+0.1 \%$ TFA $/ \mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA from 3:7 to 7:3 in 20 minutes) and the title compound was obtained with 26% ($14.3 \mathrm{mg}, 0.026 \mathrm{mmol}$) yield. During purification, the two diastereomers were separated with a yield of 20% for number 1 (colourless oil) and 6% for number 2 (white powder). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}, diastereomer 1) δ 8.57-8.49 (m, 4H), $7.75(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H})$, $7.09(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=12.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=11.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.78(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{t}, J$ $=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.67(\mathrm{~d}, J=5.80 \mathrm{~Hz}, 3 \mathrm{H})$, $0.47-0.44$ (m, 3H), ${ }^{13}$ C NMR (126 MHz , DMSO- d_{6}, diastereomer 1) $\boldsymbol{\delta} 173.0$ (C), 170.1 (C), 168.4 (C), 138.0 (C), 133.1 (C), 131.3 (CH), 129.3 $(\mathrm{CH}), 128.0(\mathrm{CH}), 126.3(\mathrm{CH}), 54.6(\mathrm{CH}), 53.7(\mathrm{CH}), 47.3(\mathrm{CH}), 47.2\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right) 37.7\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 24.2(\mathrm{CH}), 22.4\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right)$. HPLC (diastereomer 1) $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=1.97 \mathrm{~min}$, HRMS (ESI+) m/z: calc. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=450.2224$, found 450.2202 (diastereomer 1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$, diastereomer 2) $\delta 8.69(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.02-$ $6.97(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=10.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J$ $=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.22(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=13.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.47-$ $1.40,0.93(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d ${ }_{6}$, diastereomer 2) $\delta 172.5$ (C), 169.1 (C), 167.7 (C), 137.5 (C), $132.6(\mathrm{C}), 131.5(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 126.1(\mathrm{CH}), 54.5(\mathrm{CH}), 53.5(\mathrm{CH}), 47.3(\mathrm{CH}), 46.7\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right) 37.1\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right)$, $24.3(\mathrm{CH})$, $23.1\left(\mathrm{CH}_{3}\right)$, $21.6\left(\mathrm{CH}_{3}\right)$. HPLC (diastereomer 2) $\mathrm{t}_{\mathrm{R}-\mathrm{HPLC}-2}=1.56 \mathrm{~min}$, HRMS (ESI+) m/z: calc. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}=428.2405$, found 428.2390 (diastereomer 2). m. p.: $138-140^{\circ} \mathrm{C}$. No spectroscopic data are available in literature.

Synthesis of the aminobenzotriazolodiazeocinone scaffold 27 and hydrolysis to the carboxylic acid 28

tert-Butyl ((5S)-7-(1-((3-chloropyridin-2-yl)amino)-1-oxopropan-2-yl)-6-oxo-4,5,6,7-tetrahydrobenzo[b][1,2,3]triazolo[1,5-d][1,4]diazocin-5-yl)carbamate 27

The title compound was prepared following general procedure \mathbf{E} from 3-chloro-2-isocyanopyridine $\mathbf{3 b}$ (139 mg , $1.5 \mathrm{mmol}, 1.5$ equiv), Boc-L-propargylglycine- OH ($213 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv), 2-azidoaniline ($134 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv) and acetaldehyde ($0.068 \mathrm{ml}, 1 \mathrm{mmol}, 1$ equiv) in trifluoroethanol (4 ml). Subsequent heating of the reaction mixture was performed in 1,4-dioxane (4 ml) at $100^{\circ} \mathrm{C}$. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 1:0 to 0:1), the desired compound as a brown solid with 55% ($281 \mathrm{mg}, 0.55 \mathrm{mmol}$) yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio) $\delta 8.42$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.11(\mathrm{~m}$, $2 \mathrm{H}), 6.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.67-5.59(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{brs}, 1 \mathrm{H}), 4.80-4.64(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{dd}, J=7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.339(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.05(\mathrm{~m}, 2 \mathrm{H})$, $1.38(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers) $\delta 171.5$ (C), 170.6 (C), 167.8 (C), 154.8 (C), 154.7 (C), 147.1 (C), 147.0 (C), 146.2 (CH), 145.5 (CH), 139.1 (CH), 138.7 (CH), 135.7 (C), 135.5 (C), 135.1 (C), 134.9 (C), 133.7 (CH), 133.5 (CH), 132.5 (CH), 132.2 (C), 132.1 (CH), 130.8 (CH), 130.5 (CH), 129.6 (CH), 129.0 (CH), 128.0 (CH), 127.8 (CH), $122.8(\mathrm{C}), 122.8(\mathrm{C}), 121.5(\mathrm{CH}), 121.4(\mathrm{CH}), 80.6(\mathrm{C}), 80.5(\mathrm{C}), 61.4(\mathrm{CH}), 55.0(\mathrm{CH}), 48.6(\mathrm{CH}), 48.3(\mathrm{CH}), 29.0\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.2$ $\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right)$ ppm. HRMS (ESI+) m/z: calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClN}_{7} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}=512.1813$, found 512.1840 . No spectroscopic data are reported in literature.

2-((S)-5-((tert-Butoxycarbonyl)amino)-6-oxo-5,6-dihydrobenzo[b][1,2,3]triazolo[1,5-d][1,4]diazocin-7(4H)-yl)propanoic acid 28

The title compound was prepared following general procedure \mathbf{D} from $\mathbf{2 7}\left(128 \mathrm{mg}, 0.25 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{l}$, $0.75 \mathrm{mmol}, 3$ equiv) and $\mathrm{Zn}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in $t \mathrm{BuOAc}(0.5 \mathrm{ml})$. The mixture was heated at $85^{\circ} \mathrm{C}$ for 24 hours. This yielded, after Grace Reveleris ${ }^{\circledR}$ X2 Normal Phase silicagel flash chromatography (Pet. Ether/EtOAc from 1:0 to $0: 1$ with $0.1 \% \mathrm{AcOH}$), the desired compound as a brown solid with $88 \%\left(89 \mathrm{mg}, 0.22 \mathrm{mmol}\right.$) yield. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio) $\delta 9.67$ (br s, 2 H), $7.83(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 -7.64 $(\mathrm{m}, 9 \mathrm{H}), 5.82-5.73(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.66-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.06(\mathrm{~m}$, $2 \mathrm{H}), 1.42(\mathrm{~s}, 18 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers) $\delta 174.7$ (C), 173.6 (C), 170.4 (C), 169.7 (C), 154.8 (C), 154.8 (C), 135.5 (C), 135.0 (C), 133.7 (C), 132.5 (CH), 132.3 (CH), 130.7 (CH), 130.5 (CH), 129.1 (CH), $128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 128.0(\mathrm{CH}), 80.6(\mathrm{C}), 80.6(\mathrm{C}), 59.1(\mathrm{CH}), 55.5(\mathrm{CH}), 48.4(\mathrm{CH}), 47.9(\mathrm{CH}), 29.1\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right)$, $13.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS (ESI+) m/z: calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}=424.1597$, found 424.1550 . No spectroscopic data are reported in literature.

COPIES OF THE NMR SPECTRA

Methyl 2-aminonicotinate $\mathbf{S 5 - 1} \mathbf{~ H ~ N M R ~ (5 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$)

Methyl 2-aminonicotinate S5- ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-Bromo-2-formamidopyridine $\mathbf{2 a}-{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

3-Bromo-2-formamidopyridine $\mathbf{2 a}-{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

3-Chloro-2-formamidopyridine $\mathbf{2 b}-{ }^{\mathbf{1}} \mathrm{H} \operatorname{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

3-Chloro-2-formamidopyridine $\mathbf{2 a}-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2-Formamido-3-methoxypyridine $\mathbf{2 c}-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2-Formamido-3-methoxypyridine $\mathbf{2 c}-{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

Methyl 2-formamidonicotinate $\mathbf{2 d}-{ }^{\mathbf{1}} \mathrm{H} \mathbf{N M R}\left(\mathbf{2 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

Methyl 2-formamidonicotinate 2d - ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6-Bromo-2-formamidopyridine $\mathrm{S} 1-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers in 1:0.5 ratio)

$\alpha \infty x \infty \infty$
 CH

x_{1}

6-Bromo-2-formamidopyridine $\mathrm{S} 1-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers)

$\begin{array}{lllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

3-Bromo-2-isocyanopyridine $\mathbf{3 a}-{ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$)
(10

3-Bromo-2-isocyanopyridine $3 \mathrm{a}-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-Chloro-2-isocyanopyridine $\mathbf{3 b}-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3-Chloro-2-isocyanopyridine $\mathbf{3 b}-{ }^{13} \mathbf{C}$ NMR ($\mathbf{(1 2 6 ~ M H z , ~} \mathrm{CDCl}_{3}$)

2-Isocyano-3-methoxypyridine $\mathbf{3 c} \mathbf{- 1}^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{2 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

2-Isocyano-3-methoxypyridine $\mathbf{3 c}-{ }^{13} \mathbf{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Methyl 2-isocyanonicotinate $\mathbf{3 d} \mathbf{~ - ~}^{\mathbf{1}} \mathrm{H} \mathbf{N M R}\left(\mathbf{2 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

Methyl 2-isocyanonicotinate $\mathbf{3 d} \mathbf{~ - ~}^{13} \mathbf{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

COOMe

6-Bromo-2-isocyanopyridine $\mathbf{S 2 - 1} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

6-Bromo-2-isocyanopyridine $\mathbf{S 2 - 1 3} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

[^0]tert-Butyl ((2S)-1-((1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4a ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-1-((1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4a ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-((1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4a ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a $1: 1$ ratio)

tert-Butyl ((2S)-1-((1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4b ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a $1: 1$ ratio and rotamers)

tert-Butyl ((2S)-1-((1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4b ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-((1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4b ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

tert-Butyl ((2S)-1-((1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4c $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-1-((1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4c $-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-((1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 4c $-{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a $1: 1$ ratio)

Methyl 2-(2-((S)-2-((tert-butoxycarbonyl)amino)-3-phenyl-N-propylpropanamido)-4-methylpentanamido)nicotinate 4d - ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a $1: 1$ ratio and rotamers)

Methyl 2-(2-((S)-2-((tert-butoxycarbonyl)amino)-3-phenyl-N-propylpropanamido)-4-methylpentanamido)nicotinate 4d - ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

Methyl 2-(2-((S)-2-((tert-butoxycarbonyl)amino)-3-phenyl-N-propylpropanamido)-4-methylpentanamido)nicotinate 4d - ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 MHz, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a $1: 1$ ratio)

tert-Butyl ((2S)-1-((1-((6-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate S3${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-1-((1-((6-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate S3${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-((1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-3-(tert-butoxy)-1-oxopropan-2-yl)carbamate $\mathbf{5 a - 1}{ }^{1} \mathrm{H}$ NR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-1-((1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-3-(tert-butoxy)-1-oxopropan-2-yl)carbamate $5 \mathrm{a}-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-((1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-3-(tert-butoxy)-1-oxopropan-2-yl)carbamate $\mathbf{5 a}-{ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

tert-Butyl ((2S)-3-(tert-butoxy)-1-((1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxopropan-2-yl)carbamate $\mathbf{5 b}-{ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-3-(tert-butoxy)-1-((1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxopropan-2-yl)carbamate $\mathbf{5 b}-{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$, mixture of diastereomers)

tert-Butyl ((2S)-3-(tert-butoxy)-1-((1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxopropan-2-yl)carbamate $\mathbf{5 b}-{ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}$, DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

tert-Butyl ((2S)-3-(tert-butoxy)-1-((1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxopropan-2-yl)carbamate $5 \mathrm{c}-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-3-(tert-butoxy)-1-((1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxopropan-2-yl)carbamate $\mathbf{5 c}-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers)

tert-Butyl ((2S)-3-(tert-butoxy)-1-((1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)(propyl)amino)-1-oxopropan-2-yl)carbamate $5 \mathrm{c}-{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a $1: 1$ ratio)
隹
tert-Butyl ((2S)-1-(benzyl(1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $6 \mathrm{a}-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a $1: 1$ ratio and rotamers)

tert-Butyl ((2S)-1-(benzyl(1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $\mathbf{6 a}-{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-(benzyl(1-((3-bromopyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $6 \mathrm{a}-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a $1: 1$ ratio)

tert－Butyl（（2S）－1－（benzyl（1－（（3－bromopyridin－2－yl）amino）－4－methyl－1－oxopentan－2－yl）amino）－3－（1H－indol－3－yl）－1－oxopropan－2－yl）carba－ mate $6 \mathrm{a}-{ }^{13} \mathrm{C}$ NMR（ $\mathbf{1 2 6} \mathrm{MHz}$ ，DMSO－$d_{6}, 80^{\circ} \mathrm{C}$ ，mixture of diastereomers）
$\varepsilon \cdot 60 I$
8 0 I I
$\left.\begin{array}{lll}\mathrm{I} & 9 \mathrm{II} \\ 6 & \mathrm{LII}\end{array}\right]$
－02I
L＇ZZIT）
9「とてI
6 〔ZI
－92I－
$0 \cdot L Z I-9$
$\rightarrow-L Z I$
8．LZI
$6 \cdot \angle Z \mathrm{I}$

8．LEI F

9.8 t －

L．89I－
6.891
$8^{\circ} \varepsilon L I$

tert-Butyl ((2S)-1-(benzyl(1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $\mathbf{6 b} \mathbf{- ~}^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-1-(benzyl(1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $\mathbf{6 b}-{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-(benzyl(1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $\mathbf{6 b}-{ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}$, DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

tert-Butyl ((2S)-1-(benzyl(1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $\mathbf{6 b}-{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathrm{MHz}$, DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers)

6	IZ
I	ャて
9	
ε	
I	8ε
S	6ε
ε	$9 \downarrow$
L	Lt
L	IS
I	95
	85

$0.8 L-$

tert-Butyl ((2S)-1-(benzyl(1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $\mathbf{6 c}-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-1-(benzyl(1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $\mathbf{6 c} \mathbf{- ~}^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-(benzyl(1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $6 \mathrm{c}-{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

tert-Butyl ((2S)-1-(benzyl(1-((3-methoxypyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-2-yl)carbamate $\mathbf{6 c}-{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers)

tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-bromopyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate 7a $\mathbf{- 1}^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-bromopyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate $7 \mathrm{a}-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-bromopyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate 7a - ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO $^{-1} \mathrm{~d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-chloropyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate 7b $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-chloropyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate 7b $-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-chloropyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate 7b $-{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a $1: 1$ ratio)

tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-methoxypyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate $7 \mathrm{c}-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-methoxypyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate $7 \mathrm{c}-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

tert-Butyl ((2S)-1-((1-(4-bromophenyl)-2-((3-methoxypyridin-2-yl)amino)-2-oxoethyl)(propyl)amino)-3-methyl-1-oxobutan-2-yl)carbamate $7 \mathrm{c}-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

Allyl (3S)-3-((tert-butoxycarbonyl)amino)-4-((4-chlorophenethyl)(1-((3-chloropyridin-2-yl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate $\mathbf{8 - 1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}$, DMSO- $_{6}$, mixture of diastereomers in a 1:1 ratio and rotamers)

Allyl (3S)-3-((tert-butoxycarbonyl)amino)-4-((4-chlorophenethyl)(1-((3-chloropyridin-2-yl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate $\mathbf{8}-{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- d_{6}, mixture of diastereomers and rotamers)

Allyl (3S)-3-((tert-butoxycarbonyl)amino)-4-((4-chlorophenethyl)(1-((3-chloropyridin-2-yl)amino)-1-oxopropan-2-yl)amino)-4-oxobutanoate $\mathbf{8 - 1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}$, DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

(9H-Fluoren-9-yl)methyl (S)-(1-((2-((3-chloropyridin-2-yl)amino)-2-oxoethyl)(cyclopropyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 9${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- \boldsymbol{d}_{6}, mixture of rotamers)

(9H-Fluoren-9-yl)methyl (S)-(1-((2-((3-chloropyridin-2-yl)amino)-2-oxoethyl)(cyclopropyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 9 ${ }^{13}$ C NMR (126 MHz , DMSO- d_{6})

(9H-Fluoren-9-yl)methyl (S)-(1-((2-((3-chloropyridin-2-yl)amino)-2-oxoethyl)(cyclopropyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate 9${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& 00 \cdot 0
\end{aligned}
$$

$05 \cdot Z$
$98 \cdot Z$
$98 \cdot Z$
$80 \cdot \varepsilon$
$Z I \cdot \varepsilon$
$98 \cdot 6$

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)- N-propylleucyl-L-phenylalaninate $10-{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers)

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)- N-propylleucyl-L-phenylalaninate $10-{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d ${ }_{6}$, mixture of diastereomers and rotamers)

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)- N-propylleucyl-L-phenylalaninate $\mathbf{1 0 - 1} \mathbf{~ H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{M H z}, \mathrm{DMSO}-\boldsymbol{d}_{\mathbf{6}}, \mathbf{8 0}{ }^{\circ} \mathbf{C}\right.$, mixture of diastereomers in a 1:1 ratio)

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)- N-propylleucyl-L-phenylalaninate $10-{ }^{13} \mathrm{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{DMSO}-\boldsymbol{d}_{6}, 80{ }^{\circ} \mathrm{C}\right.$, mixture of diastereomers)

Methyl N-(N-(tert-butoxycarbonyl)-O-(tert-butyl)-L-seryl)- N-propylleucyl-L-phenylalaninate $\mathbf{1 1} \mathbf{- 1} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{M H z}, \mathbf{D M S O}-\boldsymbol{d}_{6}, \mathbf{m i x t u r e}\right.$ of diastereomers in a 1:1 ratio and rotamers)

Methyl N-(N-(tert-butoxycarbonyl)-O-(tert-butyl)-L-seryl)-N-propylleucyl-L-phenylalaninate $\mathbf{1 1} \mathbf{- ~}^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- d_{6}, mixture of diastereomers and rotamers)

Methyl N-(N-(tert-butoxycarbonyl)-O-(tert-butyl)-L-seryl)- N-propylleucyl-L-phenylalaninate $\mathbf{1 1}-{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{D M S O}-\boldsymbol{d}_{6}, \mathbf{8 0}{ }^{\circ} \mathrm{C}, \mathbf{m i x}-\right.$ ture of diastereomers in a 1:1 ratio)

Methyl N-(N-(tert-butoxycarbonyl)-O-(tert-butyl)-L-seryl)- N-propylleucyl-L-phenylalaninate $\mathbf{1 1}-{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ ($\mathbf{1 2 6} \mathbf{M H z}, \mathbf{D M S O}-\boldsymbol{d}_{6}, \mathbf{8 0}{ }^{\circ} \mathrm{C}, \mathbf{m i x}-$ ture of diastereomers)

Methyl N-benzyl- N-((tert-butoxycarbonyl)-L-tryptophyl)leucyl-L-phenylalaninate $12-{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}, mixture of diastereomers in a 1:1 ratio and rotamers)

Methyl N-benzyl- N-((tert-butoxycarbonyl)-L-tryptophyl)leucyl-L-phenylalaninate $\mathbf{1 2 - 1 3} \mathbf{C}$ NMR (126 MHz, DMSO-d \mathbf{d}_{6}, mixture of diastereomers and rotamers)

Methyl N-benzyl- N-((tert-butoxycarbonyl)-L-tryptophyl)leucyl-L-phenylalaninate $12-{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 80{ }^{\circ} \mathrm{C}\right.$, mixture of diastereomers in a 1:1 ratio)

Methyl N-benzyl- N-((tert-butoxycarbonyl)-L-tryptophyl)leucyl-L-phenylalaninate $\mathbf{1 2 - 1 3} \mathbf{C}$ NMR (126 MHz, DMSO-d $\mathbf{D}_{6}, \mathbf{8 0}{ }^{\circ} \mathrm{C}$, mixture of diastereomers)

Methyl (2-((S)-N-benzyl-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-2-(4-bromophenyl)acetyl)-L-phenylalaninate $\mathbf{1 3} \mathbf{-}{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 MHz , DMSO- d_{6}, mixture of diastereomers in a 1:1 ratio and rotamers)

Methyl (2-((S)-N-benzyl-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-2-(4-bromophenyl)acetyl)-L-phenylalaninate $\mathbf{1 3}$ - ${ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}, mixture of diastereomers and rotamers)

Methyl (2-((S)-N-benzyl-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-2-(4-bromophenyl)acetyl)-L-phenylalaninate $\mathbf{1 3} \mathbf{-}{ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

Methyl (2-((S)-N-benzyl-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-2-(4-bromophenyl)acetyl)-L-phenylalaninate $\mathbf{1 3}-{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers and rotamers)

Methyl (6S,12S)-6-(2-(allyloxy)-2-oxoethyl)-12-benzyl-8-(4-chlorophenethyl)-2,2,9-trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13oate $14-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6} \boldsymbol{d}_{6}$, mixture of diastereomers in a 1:1 ratio and rotamers)

Methyl (6S,12S)-6-(2-(allyloxy)-2-oxoethyl)-12-benzyl-8-(4-chlorophenethyl)-2,2,9-trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13oate 14 - ${ }^{13}$ C NMR (126 MHz , DMSO- d_{6}, mixture of diastereomers and rotamers)

Methyl (6S,12S)-6-(2-(allyloxy)-2-oxoethyl)-12-benzyl-8-(4-chlorophenethyl)-2,2,9-trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13oate $14-{ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}$, DMSO- $\boldsymbol{d}_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a 1:1 ratio)

Methyl (6S,12S)-6-(2-(allyloxy)-2-oxoethyl)-12-benzyl-8-(4-chlorophenethyl)-2,2,9-trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13oate $14-{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathrm{MHz}$, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers)

Methyl N-(((9 H -fluoren-9-yl)methoxy)carbonyl)-L-phenylalanyl)-N-cyclopropylglycyl-L-phenylalaninate $\mathbf{1 5} \mathbf{- 1} \mathbf{H} \mathbf{N M R}$ (500 MHz, DMSO- \boldsymbol{d}_{6}, mixture of rotamers)

Methyl N-(((9 H -fluoren-9-yl)methoxy)carbonyl)-L-phenylalanyl)-N-cyclopropylglycyl-L-phenylalaninate 15 - ${ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- \boldsymbol{d}_{6})

Methyl N-(((9 -fluoren-9-yl)methoxy)carbonyl)-L-phenylalanyl)- N-cyclopropylglycyl-L-phenylalaninate $\mathbf{1 5}-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 MHz, DMSO-d \boldsymbol{d}_{6} $80^{\circ} \mathrm{C}$)

tert-Butyl N -((tert-butoxycarbonyl)-L-phenylalanyl)- N -propylleucyl-L-valinate $16-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, mixture of diastereomers in a 1:1 ratio and rotamers)

tert-Butyl N -((tert-butoxycarbonyl)-L-phenylalanyl)-N-propylleucyl-L-valinate $16-{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- d_{6}, mixture of diastereomers and rotamers)

tert-Butyl N-((tert-butoxycarbonyl)-L-phenylalanyl)- N-propylleucyl-L-valinate $16-{ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 80^{\circ} \mathrm{C}\right.$, mixture of diastereomers in a 1:1 ratio)

Methyl N^{6}-((benzyloxy)carbonyl)- N^{2}-(N-((tert-butoxycarbonyl)- L -phenylalanyl)- N-propylleucyl)-L-lysinate $\mathbf{1 7 - 1} \mathbf{~ H ~ N M R ~ (5 0 0 ~ M H z , ~ D M S O - ~}$ d_{6}, mixture of diastereomers in a 1:1 ratio and rotamers)

Methyl N^{6}-((benzyloxy)carbonyl)- N^{2}-(N-((tert-butoxycarbonyl)- L-phenylalanyl)- N-propylleucyl)-L-lysinate $\mathbf{1 7}$ - ${ }^{13}$ C NMR (126 MHz, DMSOd_{6}, mixture of diastereomers in a 1:1 ratio and rotamers)

Methyl N^{6}-((benzyloxy)carbonyl)- N^{2}-(N-((tert-butoxycarbonyl)- L-phenylalanyl)- N-propylleucyl)-L-lysinate $\mathbf{1 7 - 1} \mathbf{~ H ~ N M R ~ (5 0 0 ~ M H z , ~ D M S O - ~}$ $d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a $1: 1$ ratio)

N-((tert-Butoxycarbonyl)-L-phenylalanyl)-N-propylleucine $18-{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:1 ratio and rotamers)

N-((tert-Butoxycarbonyl)-L-phenylalanyl)-N-propylleucine $14-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers and rotamers)

N-((tert-Butoxycarbonyl)-L-phenylalanyl)- N-propylleucine $18-{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$, mixture of diastereomers in a $1: 1$ ratio)

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)- N-propylleucinate $19-{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a $1: 1$ ratio and rotamers)

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)- N-propylleucinate $19-{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers and rotamers)

Methyl N-((tert-butoxycarbonyl)-L-phenylalanyl)- N-propylleucinate $19-{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 80{ }^{\circ} \mathrm{C}\right.$, mixture of diastereomers in a 1:1 ratio)

N-(3-amino-3-oxopropyl)- N-((S)-3-phenyl-2-((2,2,2-trifluoroacetyl)- λ^{4}-azaneyl)propanoyl)leucyl-L-alanine $\mathbf{2 1} \mathbf{- 1}^{1} \mathbf{H}$ NMR (500 MHz, DMSOd_{6}, diastereomer 1, mixture of rotamers)

N-(3-amino-3-oxopropyl)- N-((S)-3-phenyl-2-((2,2,2-trifluoroacetyl)- λ^{4}-azaneyl)propanoyl)leucyl-L-alanine $\mathbf{2 1}$ - ${ }^{13}$ C NMR (126 MHz, DMSOd_{6}, diastereomer 1 , mixture of rotamers)

N-(3-amino-3-oxopropyl)- N-((S)-3-phenyl-2-((2,2,2-trifluoroacetyl)- λ^{4}-azaneyl)propanoyl)leucyl-L-alanine $\mathbf{2 1} \mathbf{- 1}^{1} \mathbf{H}$ NMR (500 MHz, DMSO$d_{6}, 80^{\circ} \mathrm{C}$, diastereomer 1 , mixture of rotamers)

N-(3-amino-3-oxopropyl)- N-((S)-3-phenyl-2-((2,2,2-trifluoroacetyl)- λ^{4}-azaneyl)propanoyl)leucyl-L-alanine $\mathbf{2 1} \mathbf{- ~}^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, DMSOd_{6}, diastereomer 2, mixture of rotamers)

N-(3-amino-3-oxopropyl)- N-((S)-3-phenyl-2-((2,2,2-trifluoroacetyl)- λ^{4}-azaneyl)propanoyl)leucyl-L-alanine $\mathbf{2 1}$ - ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSOd_{6}, diastereomer 2 , mixture of rotamers)
N-(3-amino-3-oxopropyl)- N-((S)-3-phenyl-2-((2,2,2-trifluoroacetyl)- λ^{4}-azaneyl)propanoyl)leucyl-L-alanine $\mathbf{2 1} \mathbf{- 1}^{1} \mathbf{H}$ NMR (500 MHz, DMSO$d_{6}, 80^{\circ} \mathrm{C}$, diastereomer 2)

2,2,2-Trifluoroethyl 2-((S)-7-((tert-butoxycarbonyl)amino)-6-oxo-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)-4-methylpentanoate $\mathbf{S 4}-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio)

2,2,2-Trifluoroethyl 2-((S)-7-((tert-butoxycarbonyl)amino)-6-oxo-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)-4-methylpentanoate S4- ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers)

tert-Butyl (S)-(5-(2-((3-chloropyridin-2-yl)amino)-2-oxo-1-phenylethyl)-6-oxo-5,6,7,8-tetrahydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-7$\mathrm{yl})$ carbamate $\mathbf{2 5 a}-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers in a 1:0.7 ratio)

tert-Butyl (S)-(5-(2-((3-chloropyridin-2-yl)amino)-2-oxo-1-phenylethyl)-6-oxo-5,6,7,8-tetrahydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-7yl)carbamate $\mathbf{2 5 a}-{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers)

tert-Butyl ((7S)-5-(1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)-6-oxo-5,6,7,8-tetrahydro-4H-[1,2,3]triazolo[1,5-a][1,4]diaz-epin-7-yl)carbamate $\mathbf{2 5 b} \mathbf{- 1}^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio)

tert-Butyl ((7S)-5-(1-((3-chloropyridin-2-yl)amino)-4-methyl-1-oxopentan-2-yl)-6-oxo-5,6,7,8-tetrahydro-4H-[1,2,3]triazolo[1,5-a][1,4]diaz-epin-7-yl)carbamate $\mathbf{2 5 b}-{ }^{13} \mathrm{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$, mixture of diastereomers)

(S)-2-(2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)-2-phenylacetamido)-3phenylpropanamide 26a- ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}$, DMSO- \boldsymbol{d}_{6}, diastereomer 1)

(S)-2-(2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)-2-phenylacetamido)-3phenylpropanamide $\mathbf{2 6 a}-{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- d_{6}, diastereomer 1)

(S)-2-(2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)-2-phenylacetamido)-3phenylpropanamide $\mathbf{2 6 a}-{ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ D M S O - ~} d_{6}$, diastereomer 2)

(S)-2-(2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)-2-phenylacetamido)-3phenylpropanamide $\mathbf{2 6 a}-{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- d_{6}, diastereomer 2)

N-((S)-1-amino-1-oxo-3-phenylpropan-2-yl)-4-methyl-2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5a] [1,4]diazepin-5(6H)-yl)pentanamide 26b - ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- \boldsymbol{d}_{6}, diastereomer 1)

N-((S)-1-amino-1-oxo-3-phenylpropan-2-yl)-4-methyl-2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)pentanamide 26b - ${ }^{13}$ C NMR (126 MHz , DMSO- \boldsymbol{d}_{6}, diastereomer 1)

N-((S)-1-amino-1-oxo-3-phenylpropan-2-yl)-4-methyl-2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5a] [1,4]diazepin-5(6H)-yl)pentanamide 26b - ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- \boldsymbol{d}_{6}, diastereomer 2)

N-((S)-1-amino-1-oxo-3-phenylpropan-2-yl)-4-methyl-2-((S)-6-oxo-7-((2,2,2-trifluoroacetyl)- λ^{4}-azanyl)-7,8-dihydro-4H-[1,2,3]triazolo[1,5-a][1,4]diazepin-5(6H)-yl)pentanamide 26b - ${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}, diastereomer 2)

tert-Butyl ((5S)-7-(1-((3-chloropyridin-2-yl)amino)-1-oxopropan-2-yl)-6-oxo-4,5,6,7-tetrahydrobenzo[b][1,2,3]triazolo[1,5-d][1,4]diazocin-$5-\mathrm{y})$ carbamate $\mathbf{2 7 - 1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio)
(
tert－Butyl（（5S）－7－（1－（（3－chloropyridin－2－yl）amino）－1－oxopropan－2－yl）－6－oxo－4，5，6，7－tetrahydrobenzo［b］［1，2，3］triazolo［1，5－d］［1，4］diazocin－ $5-\mathrm{yl})$ carbamate $\mathbf{2 7 - 1 3} \mathrm{C}$ NMR（ $\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ，mixture of diastereomers in a 1：1 ratio）
$\begin{aligned} & 9 \cdot \mathcal{I} \\ & 6 \cdot \mathcal{L} \\ & I \cdot 8 Z \\ & Z \cdot 8 Z \\ & L \cdot 8 Z \\ & 0 \cdot 6 Z\end{aligned}>$
$\varepsilon 87$
$L 8 D$
$0 \cdot \mathrm{SS}$
＊19
$L^{9} 9$
0 生
$\varepsilon \cdot L L$
$\mathrm{S} \cdot 08$
9

S．I Z I
$8 \cdot 2 Z I$
8 そてI
8 し し I
0 －8てI
0.62 I
$9.6 Z 1$
S．0EI
8 0モI
I てモI
そてEI
GモモI－

$\downarrow \varepsilon I$
$\checkmark \mathcal{S} I$
S．SEI

2-((S)-5-((tert-Butoxycarbonyl)amino)-6-oxo-5,6-dihydrobenzo[b][1,2,3]triazolo[1,5-d][1,4]diazocin-7(4H)-yl)propanoic acid $28-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers in a 1:1 ratio)

2-((S)-5-((tert-Butoxycarbonyl)amino)-6-oxo-5,6-dihydrobenzo[b][1,2,3]triazolo[1,5-d][1,4]diazocin-7(4H)-yl)propanoic acid 28- ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers)

REFERENCE

1. van der Heijden, G.; Jong, J. A. W.; Ruijter, E.; Orru, R. V. A., 2-Bromo-6-Isocyanopyridine as a Universal Convertible Isocyanide for Multicomponent Chemistry. Org. Lett. 2016, 18, 984-987.
2. Hollanders, K.; Renders, E.; Gadais, C.; Masullo, D.; Van Reamdonck, L.; Wybon, C. C. D.; Martin, C.; Herrebout, W. A.; Maes, B. U. W.; Ballet, S., Zn-Catalyzed Nicotinate-Directed Transamidations in Peptide Synthesis. ACS Catal. 2020, 10, 4280-4289.
3. Wybon, C. C. D.; Mensch, C.; Hollanders, K.; Gadais, C.; Herrebout, W. A.; Ballet, S.; Maes, B. U. W., Zn-Catalyzed Tert-Butyl Nicotinate-Directed Amide Cleavage as a Biomimic of Metallo-Exopeptidase Activity. ACS Catal. 2018, 8, 203-218.
4. Yang, Y.; Zhang, Y.; Yang, L.; Zhao, L.; Si, L.; Zhang, H.; Liu, Q.; Zhou, J., Discovery of Imidazopyridine Derivatives as Novel CMet Kinase Inhibitors: Synthesis, Sar Study, and Biological Activity. Bioorganic Chemistry 2017, 70, 126-132.

[^0]: $\begin{array}{llllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

