Supplementary Information

Synthesis of ¹⁵N-Labeled Heterocycles via the Cleavage of C-N Bonds

of Anilines and Glycine- ^{15}N

Jiwen He,^a Xingguo Zhang,^b Qiuqin He,^c Hao Guo^{*ac} and Renhua Fan^{*c}

^a. Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China.

^b. College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

^c Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.

Supplementary Data

List of Contents

Contents:

1. General Information	1
2. Evaluation of Conditions	2
3. Experimental Procedures	3
4. LC-MS analysis of intermediates II and VI	7
5. Characterization of Products	8

1. General Information

All reactions were performed in Schlenk tubes. Flash column chromatography was performed using silica gel (60-A pore size, 32–63 μ m, standard grade). Analytical thin–layer chromatography was performed using glass plates pre-coated with 0.25 mm 230–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~20 Torr (house vacuum) at 25–35 °C. Commercial reagents and solvents were used as received. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale.

2. Evaluation of Conditions

Table 1 Evaluation of ratio of secondary amine

	Me N ^H Ts 1 N ^H H 2) piperi H	(1.1 equiv), MeOH, r.t., 5 min dine (X equiv), CH ₂ Cl ₂ , r.t. H ₂ ¹⁵ N COOEt HCI (1.1 equiv)	Me ¹⁵ NH ₂ 2
entry	Secondary amine (equiv)	solvent	2 yield ^a (%)
1	Piperidine (0.2)	DCM	<5
2	Piperidine (0.5)	DCM	12
3	Piperidine (1.0)	DCM	18
4	Piperidine (1.5)	DCM	52
5	Piperidine (2.0)	DCM	72
6	Piperidine (2.5)	DCM	82
7	Piperidine (3.0)	DCM	94
8	Piperidine (3.5)	DCM	88

^aisolated yield.

Table 2 Eva	aluation of solvents		
	Me N ⁻ H Ts 1	hIO (1.1 equiv), MeOH, r.t., 5 min peridine (3.0 equiv), solvents, r.t. H ₂ ¹⁵ N COOEt HCI (1.1 equiv)	Me ¹⁵ NH ₂ 2
entry	Secondary amine (equiv)	solvent	2 yield ^a (%)
1	Piperidine (3.0)	CH ₃ CN	88
2	Piperidine (3.0)	DCE	86
3	Piperidine (3.0)	1,4-Dioxane	81
4	Piperidine (3.0)	EA	80

5	Piperidine (3.0)	THF	77
6	Piperidine (3.0)	CHCl ₃	80
7	Piperidine (3.0)	DMF	87
8	Piperidine (3.0)	DCM	94

aisolated yield.

3. Experimental Procedures

Representative Procedure

PhIO (0.22 mmol) was added to a solution of N-Ts *p*-toluidine **1** (0.2 mmol) in MeOH (2.0 mL) at 25 °C. After 5 min, the reaction mixture was concentrated in vacuo. The resulting mixture was mixed with the Ethyl glycinate-¹⁵N(1.1 equiv) and piperidine(3.0 equiv) in DCM (2.0 mL) at 25 °C under air atmosphere for 4 h. Then, the reaction mixture was passed through a short silica gel column to remove piperidine with DCM as flushing agent and then concentrated in vacuo. The resulting crude product was mixed with the AgOTf (0.04 mmol) in MeCN (2 mL). The reaction was stirred at 80 °C for 12 h. After the intermediate was consumed completely (monitored by TLC analysis). The mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/DCM = 2/1) to furnish the desired compound **4**.

The procedure for synthesis of a series of starting material 1

To a stirred solution of arylamine (1.0 mmol) in DCE (10 mL) was added TsCl (1.1 equiv) and pyridine (1.5 equiv). The resulted mixture was stirred at 80 °C for 4 h. Then the reaction was cooled down to room

temperature and quenched by saturated CuSO₄ solution and the reaction mixture was extracted with CH_2Cl_2 (3 x 5 mL). The combined organic layer was dried over anhydrous Na_2SO_4 and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether /ethyl acetate = 5/1) to furnish the desired compound.

The procedure of standard conditions for synthesis of 2

PhIO (0.22 mmol) was added to a solution of N-Ts *p*-toluidine **1** (0.2 mmol) in MeOH (2.0 mL) at 25 °C. After 5 min, the reaction mixture was concentrated in vacuo. The resulting mixture was mixed with the Ethyl glycinate- ${}^{15}N(1.1 \text{ equiv})$ and piperidine(3.0 equiv) in DCM (2.0 mL) at 25 °C under air atmosphere for 4 h. Then, the reaction mixture was passed through a short silica gel column to remove piperidine with DCM as flushing agent and then concentrated in vacuo to furnish the crude compound **2**.

The procedure¹ for synthesis of compound 33

After standard conditions, the crude precursor of 33(Pre.33) and CuI(0.02 mmol), and diaryliodonium salt(0.20 mmol) in a Schlenk tube. The tube was evacuated and recharged with N₂ for 3 times. After dichloroethane (2.0 mL) was added, the tube was sealed and the mixture was allowed to stir at 65 °C for 12 h until the complete consumption of starting material observed by TLC. 2N K₂CO₃ aq. was added and the mixture was extracted with EA (5 mL x 3). Combined the organic layer and dried over anhydrous Na₂SO₄. Evaporation of the solvent followed by purification on silica gel (petroleum ether/ethyl acetate = 5/1) provided the corresponding product 33.

The procedure² for synthesis of compound 34

After standard conditions, the crude precursor of 34(Pre.34) and *t*-BuOK (1.5 equiv) in DMSO (2.0 mL) were taken in a Schlenk tube. The tube containing the reaction mixture was purged with nitrogen for 5 min and allowed to stir at room temperature until the complete consumption of starting material observed by TLC. The reaction mixture was diluted with NaHCO₃ (5 mL) followed by washing with ethyl acetate (3 x 10 mL). The organic extract was dried over anhydrous Na₂SO₄. The solvents were removed under reduced pressure to provide the crude product 34 which was purified by flash column chromatography on silica gel using petroleum ether /ethyl acetate as eluent.

The procedure³ for synthesis of compound 35

After standard conditions^a, the crude precursor of **35(Pre.35)** and potassium tert-butoxide (1.0 mmol) were taken in a Schlenk tube. The tube was first evacuated and then filled with nitrogen gas. Then 3 mL of DMSO solvent was added and heated at 130 °C for 12 h. After completion of the reaction, the reaction mixture was cooled to room temperature and then diluted with water and extracted with ethyl acetate (3 x 20 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, evaporated under reduced pressure. Then the crude product was purified by column chromatography using silica gel and petroleum ether/DCM = 2/1 as eluent to afford the pure product **35**.("The step 2 of standard conditions demanded 80 °C in MeCN (2.0 mL) under air atmosphere for 6 h to desire higher yield. Then the MeCN was evaporated in vacuo and the residue was passed through a short silica gel column to remove piperidine with DCM as flushing agent.)

The procedure⁴ for synthesis of compound 36

After standard conditions^a, the crude precursor of **36**(**Pre.36**) and *t*-BuOK (3.0 equiv) in a 1-neck round bottom flask equipped with a magnetic stir bar and 4A-molecular sieves. The flask was then evacuated and backfilled with O_2 three times and the vessel was equipped with an inlet of O_2 for the remainder of the reaction. To this mixture was then added DMF (1.0 mL per 100 mg of aniline) dropwise at room temperature and the mixture was allowed to stir vigorously. Upon completion of the reaction (monitored by TLC), the mixture was directly purified by silica gel chromatography (petroleum ether/ethyl acetate) to afford the desired product **36**. (^aThe step 2 of standard conditions demanded 80 °C in MeCN (2.0 mL) under air atmosphere for 6 h to desire higher yield. Then the MeCN was evaporated in vacuo and the residue was passed through a short silica gel column to remove piperidine with DCM as flushing agent.)

The procedure for synthesis of compound 3

Ethyl glycinate-¹⁵N (1.1 equiv) and piperidine (3.0 equiv) were added to a solution of 2-Alynycyclohexadienimines (0.4 mmol) in DCM (4.0 mL) at 25 °C under air atmosphere for 4 h. Then,

the reaction mixture was concentrated in vacuo to remove the solvent DCM. The resulting crude product was mixed with the AuCl₃(60 mmol%) in EtOH (4.0 mL). The reaction was stirred at 80 °C for 12 h. After the intermediate was consumed completely (monitored by TLC analysis). The mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to furnish the desired compound **3**.

Supplementary References

- 1. X. Pang, Z. Lou, M. Li, L. Wen and C. Chen, Eur. J. Org. Chem., 2015, 2015, 3361-3369.
- 2. M. Rehan, G. Hazra and P. Ghorai, Org. Lett., 2015, 17, 1668-1671.
- 3. R. Singha, A. Ahmed, Y. Nuree, M. Ghosh and J. K. Ray, RSC Advances, 2015, 5, 50174-50177.
- 4. C. J. Evoniuk, G. D. P. Gomes, S. P. Hill, S. Fujita, K. Hanson and I. V. Alabugin, *J. Am. Chem. Soc.*, 2017, **139**, 16210-16221.

4. LC-MS analysis of intermediates II and VI^a

^aThe reaction was analyzed by LC-MS using unlabeled glycine ethyl ester hydrochloride.

5. Characterization of Products

Ethyl

2-((4-methyl-2-(phenylethynyl)phenyl)amino-¹⁵*N*)-**2-(5-methyl-2-phenyl-1***H***-indol-3-yl-¹⁵***N***)acetate 3**: 150.1 mg, 30% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (d, *J* = 96.2 Hz, 1H), 7.83 (s, 1H), 7.77 – 7.68 (m, 2H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.44 (d, *J* = 7.3 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.28 – 7.22 (m, 4H), 7.12 (d, *J* = 2.0 Hz, 1H), 7.01 (d, *J* = 8.3 Hz, 1H), 6.80 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.16 (d, *J* = 8.3 Hz, 1H), 5.91 (d, *J* = 86.1 Hz, 1H), 5.49 (s, 1H), 4.30 (dq, *J* = 10.6, 7.1 Hz, 1H), 4.21 – 4.10 (m, 1H), 2.29 (s, 3H), 2.14 (s, 3H), 1.26 – 1.22 (m, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.2, 145.0 (d, *J* = 14.6 Hz), 137.4 (d, *J* = 14.5 Hz), 134.3 (d, *J* = 15.5 Hz), 132.2, 132.0, 131.3, 130.3, 129.8, 128.9, 128.8, 128.5, 128.2, 127.8, 126.8, 125.9, 124.2 (d, *J* = 2.0 Hz), 123.4, 120.0, 110.7, 110.1 (d, *J* = 1.8 Hz), 108.2 (d, *J* = 2.3 Hz), 108.0 (d, *J* = 4.4 Hz), 95.1, 86.1, 61.5, 53.8 (d, *J* = 10.7 Hz), 21.5, 20.2, 14.1; HRMS (m/z): [M+H]⁺ calcd. for C₃₄H₃₁¹⁵N₂O₂, 501.2321; found, 501.2311.

5-methyl-2-phenyl-1*H***-indole-**¹⁵*N* **4**: 38.3 mg, 92% yield. Colorless crystal, mp:215-216 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (dd, *J* = 95.3, 2.1 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.43 – 7.36 (m, 3H), 7.31 – 7.26 (m, 1H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.00 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.72 (ddd, *J* = 4.3, 2.1, 1.0

Hz, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.9 (d, J = 14.4 Hz), 135.1 (d, J = 15.8 Hz), 132.4 (d, J = 2.2 Hz), 129.5 (d, J = 4.6 Hz), 129.4, 128.9, 127.5, 125.0 (d, J = 1.4 Hz), 123.9 (d, J = 2.1 Hz), 120.3, 110.5 (d, J = 1.8 Hz), 99.5 (d, J = 4.0 Hz), 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₅H₁₄¹⁵N, 209.1091; found, 209.1084.

5-ethyl-2-phenyl-1*H***-indole-**¹⁵*N* **5**: 41.8 mg, 94% yield. White solid, mp:149-150 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (dd, *J* = 95.4, 2.1 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.45 – 7.38 (m, 3H), 7.33 – 7.26 (m, 2H), 7.05 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.76 (ddd, *J* = 4.4, 2.2, 0.9 Hz, 1H), 2.74 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.9 (d, *J* = 14.2 Hz), 136.2, 135.3 (d, *J* = 15.9 Hz), 132.5, 129.5 (d, *J* = 4.4 Hz), 129.0, 127.5, 125.0 (d, *J* = 1.4 Hz), 123.0 (d, *J* = 2.1 Hz), 119.0, 110.6 (d, *J* = 1.7 Hz), 99.7 (d, *J* = 3.9 Hz), 29.0, 16.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₆¹⁵N, 223.1248; found, 223.1252.

5-butyl-2-phenyl-1*H***-indole**⁻¹⁵*N* **6**: 46.5 mg, 93% yield. Pale yellow solid, mp:132-133 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (ddd, *J* = 95.4, 2.2, 0.8 Hz, 1H), 7.65 – 7.61 (m, 2H), 7.44 – 7.39 (m, 3H), 7.32 – 7.27 (m, 2H), 7.02 (dd, *J* = 8.2, 1.6 Hz, 1H), 6.75 (ddd, *J* = 4.4, 2.2, 0.9 Hz, 1H), 2.74 – 2.66 (m, 2H), 1.70 – 1.60 (m, 2H), 1.38 (dq, *J* = 14.7, 7.4 Hz, 2H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.9 (d, *J* = 14.3 Hz), 135.3 (d, *J* = 15.9 Hz), 134.8, 132.5 (d, *J* = 2.2 Hz), 129.4 (d, *J* = 4.3 Hz), 128.9, 127.5, 125.0 (d, *J* = 1.3 Hz), 123.4 (d, *J* = 2.1 Hz), 119.7, 110.5 (d, *J* = 1.7 Hz), 99.6 (d, *J* = 3.9 Hz), 35.8, 34.4, 22.4, 14.0; HRMS (m/z): [M+H]⁺ calcd. for C₁₈H₂₀¹⁵N, 251.1561; found, 251.1568.

5-dodecyl-2-phenyl-1*H***-indole**-¹⁵*N* 7: 65.2 mg, 90% yield. Colorless crystal, mp:134-135 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (dd, *J* = 95.4, 2.1 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.44 – 7.38 (m, 3H), 7.32 – 7.26 (m, 2H), 7.02 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.75 (dd, *J* = 4.5, 2.1 Hz, 1H), 2.72 – 2.65 (m, 2H), 1.70 – 1.61 (m, 2H), 1.25 (s, 18H), 0.88 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.9 (d, *J* = 14.4 Hz), 135.3 (d, *J* = 15.9 Hz), 134.8, 132.5, 129.4 (d, *J* = 4.3 Hz), 128.9, 127.5, 125.0 (d, *J* = 1.4 Hz), 123.4 (d, *J* = 2.1 Hz), 119.7, 110.5 (d, *J* = 1.6 Hz), 99.6 (d, *J* = 4.0 Hz), 36.1, 32.3, 31.9, 29.7, 29.7, 29.6, 29.4, 29.4, 22.7, 14.1; HRMS (m/z): [M+H]⁺ calcd. for C₂₆H₃₆¹⁵N, 363.2813; found, 363.2815.

5-phenethyl-2-phenyl-1*H***-indole**⁻¹⁵*N* **8**: 49.5 mg, 83% yield. Pale yellow solid, mp:178-179 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (dd, *J* = 95.4, 2.1 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.45 – 7.38 (m, 3H), 7.33 – 7.25 (m, 4H), 7.24 – 7.17 (m, 3H), 7.03 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.75 (dd, *J* = 4.5, 2.1 Hz, 1H), 3.04 – 2.94 (m, 4H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.2, 138.0 (d, *J* = 14.3 Hz), 135.4 (d, *J* = 15.8 Hz), 133.7, 132.4 (d, *J* = 2.2 Hz), 129.5 (d, *J* = 4.4 Hz), 129.0, 128.5, 128.3, 127.6, 125.8, 125.1 (d, *J* = 1.3 Hz), 123.4 (d, *J* = 2.1 Hz), 119.8, 110.6 (d, *J* = 1.7 Hz), 99.7 (d, *J* = 4.0 Hz), 38.8, 38.1; HRMS (m/z): [M+H]⁺ calcd. for C₂₂H₂₀¹⁵N, 299.1561; found, 299.1564.

5-isopropyl-2-phenyl-1*H***-indole-**¹⁵*N***9**: 43.4 mg, 92% yield. Colorless crystal, mp:170-171 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (dd, *J* = 95.3, 2.1 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.47 (d, *J* = 1.6 Hz, 1H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.33 – 7.27 (m, 2H), 7.09 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.77 (ddd, *J* = 4.4, 2.2, 0.9 Hz, 1H), 3.01 (hept, *J* = 6.9 Hz, 1H), 1.31 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.0, 138.0 (d, *J* = 14.3 Hz), 135.4 (d, *J* = 15.8 Hz), 132.6 (d, *J* = 2.3 Hz), 129.4 (d, *J* = 4.4 Hz), 129.0, 127.5, 125.1 (d, *J* = 1.4 Hz), 121.7 (d, *J* = 2.1 Hz), 117.5, 110.6 (d, *J* = 1.7 Hz), 99.8 (d, *J* = 4.0 Hz), 34.2, 24.6; HRMS (m/z): [M+H]⁺ calcd. for C₁₇H₁₈¹⁵N, 237.1404; found, 237.1407.

5-cyclohexyl-2-phenyl-1*H***-indole**⁻¹⁵*N***10**: 52.5 mg, 95% yield. Pale yellow solid, mp:178-179 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (dd, *J* = 95.4, 2.1 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.47 – 7.38 (m, 3H), 7.32 – 7.27 (m, 2H), 7.06 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.76 (dd, *J* = 4.6, 2.1 Hz, 1H), 2.62 – 2.54 (m, 1H), 1.97 – 1.73 (m, 5H), 1.55 – 1.42 (m, 3H), 1.41 – 1.26 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.3, 137.9 (d, *J* = 14.3 Hz), 135.4 (d, *J* = 16.0 Hz), 132.5, 129.4 (d, *J* = 4.4 Hz), 128.9, 127.5, 125.1 (d, *J* = 1.4 Hz), 122.1 (d, *J* = 2.1 Hz), 117.9, 110.6 (d, *J* = 1.7 Hz), 99.8 (d, *J* = 4.0 Hz), 44.7, 35.1, 27.1, 26.3; HRMS (m/z): [M+H]⁺ calcd. for C₂₀H₂₂¹⁵N, 277.1717; found, 277.1721.

2,5-diphenyl-1*H***-indole-**¹⁵*N***11**: 48.6 mg, 90% yield. Pale yellow solid, mp:189-190 °C. ¹H NMR (400 MHz, Acetone-*d*₆) δ 10.74 (dd, *J* = 97.1, 2.2 Hz, 1H), 7.90 – 7.83 (m, 3H), 7.70 – 7.65 (m, 2H), 7.53 – 7.39 (m, 7H), 7.34 – 7.26 (m, 2H), 6.96 (dd, *J* = 4.4, 2.2 Hz, 1H); ¹³C NMR (101 MHz, Acetone-*d*₆) δ 143.2, 139.4 (d, *J* = 14.2 Hz), 137.8 (d, *J* = 15.7 Hz), 133.7, 133.3 (d, *J* = 2.3 Hz), 130.7 (d, *J* = 4.1 Hz), 129.6, 129.4, 128.2, 127.6, 126.9, 125.8 (d, *J* = 1.4 Hz), 122.2 (d, *J* = 2.1 Hz), 119.3, 112.2 (d, *J* = 1.8 Hz), 100.2 (d, *J* = 3.7 Hz); HRMS (m/z): [M+H]⁺ calcd. for C₂₀H₁₆¹⁵N, 271.1248; found, 271.1241.

5,7-dimethyl-2-phenyl-1*H***-indole-**¹⁵*N* **12**: 32.9 mg, 74% yield. Pale yellow solid, mp:76-77 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.1 (ddd, *J* = 94.9, 2.2, 0.8 Hz, 1H), 7.7 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.4 (dd, *J* = 8.5, 7.0 Hz, 2H), 7.3 – 7.3 (m, 1H), 7.3 – 7.2 (m, 1H), 6.8 – 6.8 (m, 1H), 6.7 (dd, *J* = 4.4, 2.2 Hz, 1H), 2.5 (s, 3H), 2.4 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.6 (d, *J* = 14.2 Hz), 134.7 (d, *J* = 15.5 Hz), 132.7 (d, *J* = 2.2 Hz), 129.7, 129.1 (d, *J* = 4.5 Hz), 128.9, 127.5, 125.1 (d, *J* = 1.4 Hz), 124.7 (d, *J* = 1.8 Hz), 119.7 (d, *J* = 1.5 Hz), 117.9, 100.1 (d, *J* = 4.0 Hz), 21.4, 16.7; HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₆¹⁵N, 223.1248; found, 223.1252.

5,6-dimethyl-2-phenyl-1*H***-indole-**¹⁵*N* **13**: 26.7 mg, 60% yield. Colorless crystal, mp:211-212 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (dd, *J* = 95.2, 2.1 Hz, 1H), 7.60 (d, *J* = 7.7 Hz, 2H), 7.42 – 7.36 (m, 3H), 7.30 – 7.25 (m, 1H), 7.13 (s, 1H), 6.71 (dd, *J* = 4.6, 2.1 Hz, 1H), 2.35 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.0 (d, *J* = 14.0 Hz), 135.8 (d, *J* = 15.7 Hz), 132.6, 131.5, 128.9, 127.6 (d, *J* = 3.9 Hz), 127.3, 124.9 (d, *J* = 1.4 Hz), 120.7, 111.3, 99.3 (d, *J* = 4.0 Hz); HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₆¹⁵N, 223.1248; found, 223.1252.

5-methyl-2,6-diphenyl-1*H***-indole-**¹⁵*N* **14**: 37.5 mg, 66% yield. Colorless crystal, mp:194-195 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.2 (dd, *J* = 95.5, 2.1 Hz, 1H), 7.7 – 7.6 (m, 2H), 7.5 (s, 1H), 7.4 – 7.4 (m, 6H), 7.4 – 7.3 (m, 2H), 7.2 (s, 1H), 6.8 – 6.8 (m, 1H), 2.3 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.0, 138.3 (d, *J* = 14.2 Hz), 137.1, 135.5 (d, *J* = 15.8 Hz), 132.4 (d, *J* = 2.2 Hz), 129.5, 129.0, 128.7 (d, *J* = 4.3 Hz), 127.9, 127.6, 127.5, 126.4, 125.1 (d, *J* = 1.5 Hz), 121.3, 111.8 (d, *J* = 1.7 Hz), 99.3 (d, *J* = 3.9 Hz), 20.9; HRMS (m/z): [M+H]⁺ calcd. for C₂₁H₁₈¹⁵N, 285.1404; found, 285.1405.

5-methyl-2-(m-tolyl)-1*H***-indole-¹⁵***N* **15**: 40.0 mg, 90% yield. Colorless crystal, mp:196-197 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (dd, *J* = 95.4, 2.2 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.41 – 7.39 (m, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 8.2 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.00 (dd, *J* = 8.2, 1.6 Hz, 1H), 6.72 (ddd, *J* = 4.4, 2.2, 0.9 Hz, 1H), 2.44 (s, 3H), 2.41 (s, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.6, 138.0 (d, *J* = 14.3 Hz), 135.0 (d, *J* = 15.8 Hz), 132.4 (d, *J* = 2.1 Hz), 129.5 (d, *J* = 4.4 Hz), 129.4, 128.9, 128.4, 125.8 (d, *J* = 1.4 Hz), 123.8 (d, *J* = 2.0 Hz), 122.2 (d, *J* = 1.3 Hz), 120.2, 110.5 (d, *J* = 1.6 Hz), 99.4 (d, *J* = 4.0 Hz), 21.5, 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₆¹⁵N, 223.1248; found, 223.1247.

5-methyl-2-(p-tolyl)-1*H***-indole**⁻¹⁵*N* **16**: 32.4 mg, 73% yield. Colorless crystal, mp:201-202 °C. ¹H NMR (400 MHz, Acetone-*d*₆) δ 10.47 (dd, *J* = 96.8, 2.2 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.32 (s, 1H), 7.28 (d, *J* = 8.3 Hz, 1H), 7.23 (d, *J* = 8.2 Hz, 2H), 6.92 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.76 – 6.71 (m, 1H), 2.38 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, Acetone-*d*₆) δ 138.9 (d, *J* = 14.3 Hz), 137.6, 136.5 (d, *J* = 15.6 Hz), 130.8 (d, *J* = 2.3 Hz), 130.4 (d, *J* = 4.0 Hz), 130.2, 129.0, 125.6 (d, *J* = 1.3 Hz), 123.9 (d, *J* = 2.0 Hz), 120.5, 111.5 (d, *J* = 1.8 Hz), 98.8 (d, *J* = 3.7 Hz), 21.4, 21.0; HRMS (m/z): [M+H]⁺ calcd. for C₁₆H₁₆¹⁵N, 223.1248; found, 223.1247.

2-(4-(tert-butyl)phenyl)-5-methyl-1*H***-indole-**¹⁵*N* **17**: 49.7 mg, 94% yield. Colorless crystal, mp:219-220 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (dd, *J* = 95.3, 2.1 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 1.6 Hz, 1H), 7.26 (d, *J* = 8.3 Hz, 1H), 7.00 (d, *J* = 8.3 Hz 1H), 6.73 – 6.68 (m, 1H), 2.44 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.7, 138.0 (d, *J* = 14.4 Hz), 135.0 (d, *J* = 15.9 Hz), 129.7 (d, *J* = 2.1 Hz), 129.6 (d, *J* = 4.6 Hz), 129.3, 125.9, 124.8 (d, *J* = 1.3 Hz), 123.7 (d, *J* = 2.1 Hz), 120.2, 110.4 (d, *J* = 1.7 Hz), 99.0 (d, *J* = 3.9 Hz), 34.6, 31.3, 21.5; HRMS (m/z): [M+H]⁺ calcd. for C₁₉H₂₂¹⁵N, 265.1717; found, 265.1718.

2-(2-chlorophenyl)-5-methyl-1*H***-indole-**¹⁵*N* **18**: 32.9 mg, 68% yield. Colorless crystal, mp:172-173 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.62 (dd, *J* = 96.5, 2.2 Hz, 1H), 7.62 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.32 – 7.25 (m, 2H), 7.22 (td, *J* = 7.7, 1.7 Hz, 1H), 7.04 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.79 – 6.74 (m, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.1 (d, *J* = 14.6 Hz), 134.7 (d, *J* = 15.7 Hz), 131.2 (d, *J* = 1.8 Hz), 131.2, 130.8, 130.6 (d, *J* = 1.3 Hz), 129.3, 128.6, 128.4 (d, *J* = 4.2 Hz), 127.1, 124.3 (d, *J* = 2.1 Hz), 120.3, 110.7 (d, *J* = 1.8 Hz), 103.0 (d, *J* = 3.9 Hz), 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₅H₁₃Cl¹⁵N, 243.0701; found, 243.0702.

2-(3-chlorophenyl)-5-methyl-1*H***-indole-¹⁵***N* **19**: 32.9 mg, 68% yield. Colorless crystal, mp:208-209 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (dd, *J* = 95.4, 2.1 Hz, 1H), 7.57 (d, *J* = 1.4 Hz, 1H), 7.45 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.39 (s, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.02 (d, *J* = 8.3 Hz, 1H), 6.72 (dd, *J* = 4.5, 2.1 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.3 (d, *J* = 14.5 Hz), 135.3 (d, *J* = 15.7 Hz), 134.9, 134.2, 130.2, 129.7, 129.3 (d, *J* = 4.2 Hz), 127.4,

125.0, 124.5, 123.0, 120.4, 110.7, 100.5 (d, J = 4.0 Hz), 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₅H₁₃Cl¹⁵N, 243.0701; found, 243.0701.

2-(4-chlorophenyl)-5-methyl-1*H***-indole-**¹⁵*N***20**: 37.8 mg, 78% yield. Colorless crystal, mp:214-215 °C. ¹H NMR (400 MHz, Acetone-*d*₆) δ 10.57 (ddd, *J* = 96.8, 2.3, 0.8 Hz, 1H), 7.86 – 7.80 (m, 2H), 7.48 – 7.42 (m, 2H), 7.34 (s, 1H), 7.29 (dd, *J* = 8.2, 0.8 Hz, 1H), 6.96 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.82 (ddd, *J* = 4.1, 2.3, 0.8 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, Acetone-*d*₆) δ 137.4 (d, *J* = 14.4 Hz), 136.7 (d, *J* = 15.6 Hz), 133.0, 132.4 (d, *J* = 2.4 Hz), 130.3 (d, *J* = 4.0 Hz), 129.6, 129.3, 127.2 (d, *J* = 1.8 Hz), 124.5 (d, *J* = 2.1 Hz), 120.7, 111.6 (d, *J* = 1.7 Hz), 100.0 (d, *J* = 3.6 Hz), 21.4. HRMS (m/z): [M+H]⁺ calcd. for C₁₅H₁₃Cl¹⁵N, 243.0701; found, 243.0701.

2-(4-fluorophenyl)-5-methyl-1*H***-indole-¹⁵***N* **21**: 32.6 mg, 72% yield. White solid, mp:169-170 °C. ¹H NMR (400 MHz, Acetone-*d*₆) δ 10.51 (ddd, *J* = 96.8, 2.2, 0.8 Hz, 1H), 7.88 – 7.82 (m, 2H), 7.34 – 7.32 (m, 1H), 7.31 – 7.27 (m, 1H), 7.23 – 7.16 (m, 2H), 6.95 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.75 (ddd, *J* = 4.1, 2.2, 0.8 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, Acetone-*d*₆) δ 162.8 (d, *J* (C,F) = 244.9 Hz), 137.7 (d, *J* = 14.3 Hz), 136.6 (d, *J* = 15.6 Hz), 130.3 (d, *J* = 4.1 Hz), 130.2 – 130.1 (m), 129.2, 127.6 (dd, *J* = 8.0, 1.4 Hz), 124.2 (d, *J* = 2.1 Hz), 120.6, 116.4 (d, *J* = 21.8 Hz), 111.6 (d, *J* = 1.9 Hz), 99.4 (dd, *J* = 3.8, 1.4 Hz), 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₅H₁₃F¹⁵N, 227.0997; found, 227.0999.

2-(4-bromophenyl)-5-methyl-1*H***-indole-¹⁵***N* **22**: 38.9 mg, 68% yield. Pale yellow solid, mp:184-185 °C. ¹H NMR (400 MHz, Acetone-*d*₆) δ 10.59 (dd, *J* = 96.9, 2.3 Hz, 1H), 7.78 (d, *J* = 8.6 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 7.35 (s, 1H), 7.29 (d, *J* = 8.3 Hz, 1H), 6.96 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.86 - 6.82 (m, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, Acetone-*d*₆) δ 137.4 (d, *J* = 14.6 Hz), 136.7 (d, *J* = 15.6 Hz), 132.8 (d, *J* = 2.4 Hz), 132.6, 130.2 (d, *J* = 4.0 Hz), 129.3, 127.4 (d, *J* = 1.8 Hz), 124.5 (d, *J* = 2.2 Hz), 121.1, 120.7, 111.7 (d, *J* = 1.7 Hz), 100.1 (d, *J* = 3.7 Hz), 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₅H₁₃Br¹⁵N, 287.0196; found, 287.0197.

1-(4-(5-methyl-1*H***-indol-2-yl-¹⁵***N***)phenyl)ethan-1-one 23**: 23.0 mg, 46% yield. Colorless crystal, mp:197-198 °C. ¹H NMR (400 MHz, Acetone- d_6) δ 10.74 (dd, J = 97.0, 2.3 Hz, 1H), 8.04 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 8.5 Hz, 2H), 7.38 (s, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.02 – 6.95 (m, 2H), 2.59 (s, 3H), 2.39 (s, 3H); ¹³C NMR (101 MHz, Acetone- d_6) δ 197.0, 137.6 (d, J = 2.3 Hz), 137.3 (d, J = 14.3 Hz), 137.1 (d, J = 15.6 Hz), 136.3, 130.1 (d, J = 4.0 Hz), 129.7, 129.5, 125.3 (d, J = 1.4 Hz), 125.0 (d,

J = 2.1 Hz), 120.9, 111.8 (d, J = 1.7 Hz), 101.4 (d, J = 3.7 Hz), 26.5, 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₇H₁₆¹⁵NO, 251.1197; found, 251.1198.

methyl 4-(5-methyl-1*H***-indol-2-yl-¹⁵***N***)benzoate 24**: 36.7 mg, 69% yield. Colorless crystal, mp:216-217 °C. ¹H NMR (400 MHz, Acetone- d_6) δ 10.72 (d, J = 97.0 Hz, 1H), 8.05 (dd, J = 8.0, 1.0 Hz, 2H), 7.97 – 7.93 (m, 2H), 7.39 – 7.36 (m, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.02 – 6.96 (m, 2H), 3.89 (d, J = 1.0 Hz, 3H), 2.39 (s, 3H); ¹³C NMR (101 MHz, Acetone- d_6) δ 166.8, 137.8, 137.3 (d, J = 14.6 Hz), 137.1 (d, J = 15.6 Hz), 130.7, 130.2 (d, J = 3.8 Hz), 129.5, 129.2, 125.4 (d, J = 1.4 Hz), 125.1 (d, J = 2.0 Hz), 121.0, 111.8 (d, J = 1.7 Hz), 101.4 (d, J = 3.7 Hz), 52.2, 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₇H₁₆¹⁵NO₂, 267.1146; found, 267.1147.

5-methyl-2-(4-nitrophenyl)-1*H***-indole-**¹⁵*N***25**: 29.4 mg, 58% yield. Colorless crystal, mp:214-215 °C. ¹H NMR (400 MHz, Acetone-*d*₆) δ 10.84 (dd, *J* = 97.1, 2.2 Hz, 1H), 8.28 (d, *J* = 8.9 Hz, 2H), 8.06 (d, *J* = 8.9 Hz, 2H), 7.40 (s, 1H), 7.34 (d, *J* = 8.3 Hz, 1H), 7.10 – 7.07 (m, 1H), 7.03 (dd, *J* = 8.3, 1.5 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (101 MHz, Acetone-*d*₆) δ 147.0, 139.7 (d, *J* = 2.4 Hz), 137.4 (d, *J* = 15.5 Hz), 136.1 (d, *J* = 14.7 Hz), 130.1 (d, *J* = 3.9 Hz), 129.9, 125.9 (d, *J* = 1.4 Hz), 125.8 (d, *J* = 2.2 Hz), 124.9, 121.2, 112.0 (d, *J* = 1.9 Hz), 103.0 (d, *J* = 3.7 Hz), 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₅H₁₃N¹⁵NO₂, 254.0942; found, 254.0939.

5-methyl-2-(thiophen-2-yl)-1*H***-indole-**¹⁵*N* **26**: 30.8 mg, 72% yield. Colorless crystal, mp:185-186 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (ddd, *J* = 95.8, 2.2, 0.8 Hz, 1H), 7.38 – 7.35 (m, 1H), 7.27 – 7.21 (m, 3H), 7.07 (dd, *J* = 5.1, 3.6 Hz, 1H), 7.03 – 6.98 (m, 1H), 6.64 (ddd, *J* = 4.3, 2.2, 0.8 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.8 (d, *J* = 2.8 Hz), 134.8 (d, *J* = 15.8 Hz), 132.4 (d, *J* = 14.9 Hz), 129.6, 129.3 (d, *J* = 4.4 Hz), 127.8, 124.4, 124.1 (d, *J* = 2.1 Hz), 122.7, 120.2, 110.4 (d, *J* = 1.7 Hz), 100.0 (d, *J* = 3.9 Hz), 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₃H₁₂¹⁵NS, 215.0655; found, 215.0655.

2-butyl-5-methyl-1*H***-indole-**¹⁵*N* **27**: 27.1 mg, 72% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 95.2 Hz, 1H), 7.30 (s, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 6.17 - 6.10 (m, 1H), 2.72 (td, *J* = 7.7, 2.4 Hz, 2H), 1.73 - 1.63 (m, 2H), 1.46 - 1.34 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.0 (d, *J* = 13.2 Hz), 134.0 (d, *J* = 15.8

Hz), 129.1 (d, J = 4.8 Hz), 128.7, 122.3, 119.4, 109.9, 98.9, 31.3, 28.0 (d, J = 2.1 Hz), 22.4, 21.4, 13.9; HRMS (m/z): [M]⁺ calcd. for C₁₃H₁₇¹⁵N, 188.1331; found, 188.1326.

5-methyl-2-(4-pentylphenyl)-1*H***-indole-¹⁵***N* **28**: 46.2 mg, 83% yield. Colorless crystal, mp:204-205 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (dd, *J* = 95.3, 2.1 Hz, 1H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.39 (s, 1H), 7.27 – 7.21 (m, 2H), 6.99 (dd, *J* = 8.2, 1.6 Hz, 1H), 6.69 (ddd, *J* = 4.4, 2.1, 0.9 Hz, 1H), 2.66 – 2.59 (m, 2H), 2.44 (s, 3H), 1.68 – 1.59 (m, 2H), 1.38 – 1.30 (m, 4H), 0.94 – 0.86 (m, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.6, 138.1 (d, *J* = 14.3 Hz), 135.0 (d, *J* = 15.9 Hz), 129.9 (d, *J* = 2.3 Hz), 129.6 (d, *J* = 4.4 Hz), 129.3, 129.0, 125.0 (d, *J* = 1.4 Hz), 123.7 (d, *J* = 2.0 Hz), 120.1, 110.4 (d, *J* = 1.7 Hz), 99.0 (d, *J* = 4.0 Hz), 35.7, 31.5, 31.1, 22.5, 21.5, 14.0; HRMS (m/z): [M+H]⁺ calcd. for C₂₀H₂₄¹⁵N, 279.1874; found, 279.1877.

2-(tert-butyl)-5-methyl-1*H***-indole-¹⁵***N* **29**: 36.1 mg, 96% yield. Pale yellow solid, mp:94-95 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, *J* = 94.9, 2.1 Hz, 1H), 7.32 (d, *J* = 1.6 Hz, 1H), 7.19 (d, *J* = 8.2 Hz, 1H), 6.94 (dd, *J* = 8.2, 1.6 Hz, 1H), 6.16 (dd, *J* = 4.9, 2.1 Hz, 1H), 2.42 (s, 3H), 1.37 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.8 (d, *J* = 12.9 Hz), 134.0 (d, *J* = 15.7 Hz), 128.8 (d, *J* = 4.8 Hz), 128.7, 122.5 (d, *J* = 2.0 Hz), 119.7, 109.9 (d, *J* = 1.6 Hz), 96.4 (d, *J* = 4.1 Hz), 30.3, 21.4; HRMS (m/z): [M]⁺ calcd. for C₁₃H₁₇¹⁵N, 188.1331; found, 188.1326.

2-cyclohexyl-5-methyl-1*H***-indole-**¹⁵*N* **30**: 38.5 mg, 90% yield. Pale yellow solid, mp:124-125 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (dd, *J* = 95.1, 2.2 Hz, 1H), 7.31 (s, 1H), 7.15 (d, *J* = 8.2 Hz, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 6.15 – 6.11 (m, 1H), 2.64 (tt, *J* = 11.0, 2.8 Hz, 1H), 2.41 (s, 3H), 2.07 – 2.01 (m, 2H), 1.86 – 1.80 (m, 2H), 1.77 – 1.70 (m, 1H), 1.50 – 1.29 (m, 5H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.2 (d, *J* = 12.7 Hz), 133.7 (d, *J* = 15.7 Hz), 128.8 (d, *J* = 4.7 Hz), 128.6, 122.3 (d, *J* = 1.9 Hz), 119.6, 109.9 (d, *J* = 1.6 Hz), 96.9 (d, *J* = 4.0 Hz), 37.3 (d, *J* = 1.9 Hz), 32.9, 26.2, 26.1, 21.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₅H₂₀¹⁵N, 215.1561; found, 215.1563.

2-cyclopropyl-5-methyl-1*H***-indole-¹⁵***N* **31**: 32.4 mg, 94% yield. Pale yellow solid, mp:87-88 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (dd, *J* = 95.4, 2.1 Hz, 1H), 7.27 (s, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 6.05 (dd, *J* = 4.5, 2.1 Hz, 1H), 2.41 (s, 3H), 1.90 (tt, *J* = 9.0, 5.4 Hz, 1H), 0.96 - 0.89 (m, 2H), 0.77 - 0.71 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.7 (d, *J* = 13.6 Hz), 134.0 (d, *J* = 15.7 Hz), 128.9 (d, *J* = 4.6 Hz), 128.7, 122.4 (d, *J* = 2.0 Hz), 119.4, 109.8 (d, *J* = 1.6 Hz),

97.1 (d, J = 4.2 Hz), 21.4, 8.9 (d, J = 2.9 Hz), 7.3; HRMS (m/z): [M+H]⁺ calcd. for C₁₂H₁₄¹⁵N, 173.1091; found, 173.1085.

5-methyl-2-(trimethylsilyl)-1*H***-indole-**¹⁵*N* **32**: 28.6 mg, 70% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (dd, *J* = 96.0, 2.1 Hz, 1H), 7.39 (s, 1H), 7.27 (d, *J* = 8.3 Hz, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.65 – 6.61 (m, 1H), 2.43 (s, 3H), 0.32 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.2 (d, *J* = 7.4 Hz), 136.9 (d, *J* = 15.0 Hz), 128.9 (d, *J* = 5.9 Hz), 128.8, 123.9 (d, *J* = 2.0 Hz), 120.0 (d, *J* = 1.4 Hz), 110.7 (d, *J* = 2.2 Hz), 110.4 (d, *J* = 1.5 Hz), 21.4, -1.1; HRMS (m/z): [M+H]⁺ calcd. for C₁₂H₁₈¹⁵NSi, 205.1173; found, 205.1174.

(2-(amino-¹⁵*N*)-5-methylphenyl)(phenyl)methanone Pre.33: 195.1 mg, 92% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.61 (m, 2H), 7.55 – 7.49 (m, 1H), 7.45 (dd, *J* = 8.1, 6.6 Hz, 2H), 7.22 (d, *J* = 2.0 Hz, 1H), 7.11 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.66 (dd, *J* = 8.4, 2.3 Hz, 1H), 5.83 (s, 2H), 2.16 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.0, 148.7 (d, *J* = 13.3 Hz), 140.1, 135.3 (d, *J* = 1.6 Hz), 134.0, 130.9, 129.0, 128.0, 124.5, 118.1, 117.1 (d, *J* = 2.2 Hz), 20.3; HRMS (m/z): [M+H]⁺ calcd. for C₁₄H₁₄¹⁵NO, 213.1040; found, 213.1041.

(E)-2-(1,3-diphenylallyl)-4-methylaniline-¹⁵N Pre.34: 255.1 mg, 85% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.17 (m, 10H), 6.89 (d, J = 6.3 Hz, 2H), 6.66 (dd, J = 15.9, 7.0 Hz, 1H), 6.60 – 6.54 (m, 1H), 6.26 (d, J = 15.9 Hz, 1H), 4.86 (d, J = 7.0 Hz, 1H), 3.32 (s, 2H), 2.22 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.8, 141.6 (d, J = 10.2 Hz), 137.1, 131.5, 131.3, 129.6, 128.7, 128.6, 128.4, 128.2 (d, J = 2.2 Hz), 128.0, 128.0, 127.3, 126.7, 126.3, 116.6 (d, J = 2.2 Hz), 49.5, 20.7; HRMS (m/z): [M]⁺ calcd. for C₂₂H₂₁¹⁵N, 300.1644; found, 300.1645.

2'-bromo-5-methyl-[1,1'-biphenyl]-2-amine-¹⁵*N* **Pre.35**: 183.4 mg, 70% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.41 – 7.35 (m, 1H), 7.33 – 7.29 (m, 1H), 7.26 – 7.20 (m, 1H), 7.03 (dd, *J* = 8.1, 2.0 Hz, 1H), 6.85 (d, *J* = 2.0 Hz, 1H), 6.71 (dd, *J* = 8.1, 1.8 Hz, 1H), 3.31 (s, 2H), 2.28 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.8 (d, *J* = 11.6 Hz), 140.1, 133.0, 131.8, 130.6, 129.6, 129.1, 127.8, 127.7, 127.6, 124.1, 115.7 (d, *J* = 2.9 Hz), 20.4; HRMS (m/z): [M+H]⁺ calcd. for C₁₃H₁₃Br¹⁵N, 263.0196; found, 263.0198.

2'-benzyl-5-methyl-[1,1'-biphenyl]-2-amine-¹⁵*N* **Pre.36**: 227.5 mg, 83% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 – 7.10 (m, 7H), 6.98 – 6.93 (m, 3H), 6.72 (d, *J* = 2.0 Hz, 1H), 6.64 (dd, *J* = 8.0, 2.0 Hz, 1H), 3.90 – 3.76 (m, 2H), 3.13 (s, 2H), 2.21 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.2 (d, *J* = 11.3 Hz), 141.0, 140.2, 138.7, 130.9, 130.4, 130.1, 129.0, 128.9 (d, *J* = 1.3 Hz), 128.1, 127.8, 127.3, 127.1 (d, *J* = 2.1 Hz), 126.6, 125.7, 115.3 (d, *J* = 3.0 Hz), 39.2, 20.4; HRMS (m/z): [M+H]⁺ calcd. for C₂₀H₂₀¹⁵N, 275.1561; found, 275.1563.

2-methyl-9-phenylacridine-¹⁵*N* **33**: 224.2 mg, 76% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 (d, *J* = 8.8 Hz, 1H), 8.19 (d, *J* = 8.8 Hz, 1H), 7.73 (dd, *J* = 8.8, 6.6 Hz, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.64 – 7.56 (m, 4H), 7.45 – 7.37 (m, 4H), 2.45 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.1, 147.6, 146.1, 136.1, 135.4, 132.9 (d, *J* = 4.1 Hz), 130.4, 129.5 (d, *J* = 3.7 Hz), 129.4, 129.2 (d, *J* = 9.1 Hz), 128.4, 128.2, 126.7, 125.5, 125.3 (d, *J* = 2.3 Hz), 125.1 (d, *J* = 2.3 Hz), 124.7, 22.0; HRMS (m/z): [M+H]⁺ calcd. for C₂₀H₁₆¹⁵N, 271.1248; found, 271.1249.

6-methyl-2,4-diphenylquinoline-¹⁵*N* **34**: 245.8 mg, 71% yield. Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 – 8.15 (m, 3H), 7.80 – 7.76 (m, 1H), 7.65 (s, 1H), 7.59 – 7.50 (m, 8H), 7.48 – 7.44 (m, 1H), 2.48 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.9, 147.1, 144.2, 139.5, 138.5, 136.4, 131.9, 129.7 (d, *J* = 9.6 Hz), 129.5, 129.2, 128.8, 128.6, 128.3, 127.5 (d, *J* = 2.4 Hz), 125.7, 124.4, 119.5 (d, *J* = 2.5 Hz), 21.8; HRMS (m/z): [M+H]⁺ calcd. for C₂₂H₁₈¹⁵N, 297.1404; found, 297.1402.

3-methyl-9*H***-carbazole-¹⁵***N* **35**: 158.4 mg, 61% yield. Yellow solid, mp:172-173 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 – 8.00 (m, 1H), 7.87 (s, 1H), 7.77 (s, 1H), 7.42 – 7.34 (m, 2H), 7.31 – 7.18 (m, 3H), 2.52 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.7 (d, *J* = 15.6 Hz), 137.6 (d, *J* = 15.8 Hz), 128.7, 127.1 (d, *J* = 1.7 Hz), 125.6, 123.5 (d, *J* = 3.8 Hz), 123.2, 123.2 (d, *J* = 3.6 Hz), 120.2, 119.2, 110.5 (d, *J* = 1.8 Hz), 110.2 (d, *J* = 2.0 Hz), 21.4; HRMS (m/z): [M]⁺ calcd. for C₁₃H₁₁¹⁵N, 182.0862; found, 182.0858.

2-methyl-6-phenylphenanthridine-¹⁵*N* **36**: 208.0 mg, 64% yield. Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.69 (d, J = 8.3 Hz, 1H), 8.40 (s, 1H), 8.15 (dd, J = 8.3, 1.9 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.84 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.62 – 7.51 (m, 5H), 2.65 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.2 (d, J = 4.4 Hz), 142.0 (d, J = 7.1 Hz), 136.8, 133.2, 130.6 (d, J = 3.6 Hz), 130.4, 130.0 (d, J = 9.2 Hz), 129.7 (d, J = 1.7 Hz), 128.8, 128.6, 128.4, 127.0, 125.2 (d, J = 1.8 Hz), 123.5 (d, J = 1.6 Hz), 122.1, 121.7 (d, J = 5.9 Hz), 121.5, 22.0; HRMS (m/z): [M+H]⁺ calcd. for C₂₀H₁₆¹⁵N, 271.1248; found, 271.1246.

137.95	137.80	135.17	135.02	132.45	132.43	129.52	129.47	129.42	128.93	127.52	125.02	125.00	123.94	123.92	120.26	110.54	110.52	99.51 99.47	
-	-		-				-	-	-	1	5	\sim	4	1	_	5	\checkmark	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

- 21.45

100 90 f1 (ppm) 180 170 140 130

HJW2020-111-NMR-HC.2020112407.fid — 13C HJW2020-111-NMR-H/C

100 90 f1 (ppm) 00 190 180 170 140 130

69	12	30
44	35	27
		52

140.26 138.01 135.46 135.46 135.30 135.30 125.35 129.37 129.37 127.50 127.50 127.50 127.50 127.50 127.50 127.50 127.00 100 100 100 100 100 100 100 100 100	99.82 99.78	
	\vee	

HJW2020-110-NMR-HC.2020112406.fid — 13C HJW2020-110-NMR-H/C

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

— 21.39 — 16.66

100 90 f1 (ppm) 180 170 140 130

HJW2020-97-NMR-HC.2020112401.fid — 13C HJW2020-97-NMR-H/C

137.05	136.91	135.90	135.74	132.62	131.47	128.91	128.85	127.62	127.58	127.27	124.87	124.85	120.65	111.26	99.36	99.32
L	<u> </u>				-			-	4	-	4	_	_		5	\checkmark

HJW2020-122-NMR-HC.2020112508.fid — 13C HJW2020-122-NMR-H/C

1125.06 111.81 1125.06	99.33 99.29
	\vee

- 20.87

138.58 138.58 137.98 135.13 135.13 132.41	129.55 129.55 129.51 128.38 128.38 128.38 125.76 125.76 125.75 10	99.41 99.37
		\vee

100 90 f1 (ppm)

 $<^{21.51}_{21.45}$

HJW2020-82-NMR-HC.2020111101.fid — 1H HJW2020-82-NMR-H/C-acetone

HJW2020-82-NMR-HC.2020111203.fid — 13C HJW2020-82-NMR-H/C

|--|

 $< \frac{21.45}{21.03}$

	- I I	- I I	- · ·	- · ·		- · ·	- · ·	- I I	- · ·	- · ·		- I - I	- · ·	- · ·		- I I	- I - I	- I I	- I - I				
20	210	200	190	180	170	160	150	140	130	120	110 f1 (pp	100 m)	90	80	70	60	50	40	30	20	10	0	

000				
150.70 138.08 137.94	135.08 134.93 129.66 129.65 129.65 129.65 129.65 129.67 129.33 124.76 124.76 123.67 123.67 123.67 123.67 123.67 123.67 110.45 110.45 110.45	99.06 99.02	34.63	31.26
		\checkmark		

— 21.46

100 90 f1 (ppm) 00 190 180 170 140 130

35.12 34.60 34.60 34.60 34.60 33.125 30.55 30.55 30.55 29.35 20.75 22.35 22.35 22.35 22.35 22.35 22.10	03.06 03.02
	5
	Y

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

--- 21.44

18210860001.2020120404.fid — 13C HJW2020-102-NMR-H/C

136.40 136.26 135.33 135.35 135.17 135.17 135.17 135.17 135.01 129.28 129.28 129.28 129.28 129.28 129.28 129.28 129.28 129.28 129.49 123.05 120.45 120.45 120.45	100.50 100.46
	\checkmark

HJW2020-99-NMR-HC.2020111704.fid — 13C HJW2020-99-NMR-H/C

137, 43 137, 29 137, 29 137, 29 133, 01 133, 01 133, 01 133, 01 133, 27 133, 27 130, 27 130, 27 130, 27 120, 73 122, 49 122, 49 133, 66 133, 66 136, 66 126, 66 127, 66 126, 66 127, 66 126, 6	100.04
	Ý

20

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

53

HJW2020-91-NMR-HC.2020112306.fid — 13C HJW2020-91-NMR-H/C

164.01 161.57 137.79 137.79 137.65 137.65 137.65 137.65 137.65 133.65 133.65 130.38 130.16 100.16 10	127.62 127.61 127.54 127.54 127.54 127.54 124.15 124.17 116.25 111.58 99.43 99.43 99.39

21

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

— 21.43

HJW2020-83-NMR-HC.2021010804.fid — 13C HJW2020-83

137.43 137.28 137.28 136.61 132.66 132.66 132.61 132.61 132.61 132.64 132.64 124.55 129.32 127.42 124.56 124.55 124.55 124.55 124.55 127.42 127.42 127.42 127.42 127.42 127.42 127.73 127.74 177.74 17	100.09 100.05	
$ \land \land$	\checkmark	

— 21.41

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

HJW2020-101-NMR-HC.2020120410.fid — 1H HJW2020-101-NMR-H/C

HJW2020-101-NMR-HC.2020120411.fid — 13C HJW2020-101-NMR-H/C

196.99	137.64 137.65 137.137.64 137.137.137.137.137.137.137.137.137.137.	101.42 101.39
1		\vee

— 26.49 — 21.40

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

HJW2020-118-NMR-HC.2020112505.fid — 13C HJW2020-118-NMR-H/C

— 21.40

	- I I	- · ·	· ·	- I - I		- · ·	- · ·	· · ·	· ·	- I - I		- · ·	- · ·	- · ·	- I - I	- I - I	- I - I		- · ·			- · ·
20	210	200	190	180	170	160	150	140	130	120	110 f1 (pp	100 m)	90	80	70	60	50	40	30	20	10	0

147.04 139.70 139.67 137.52 137.52 137.52 137.52 137.52 137.52 137.52 137.52 137.52 137.52 137.52 137.52 125.94 125.73 12	102.98 102.94	
	\checkmark	

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

— 21.38

HJW2020-104-NMR-HC.2020112307.fid — 13C HJW2020-104-NMR-H/C

135.81 135.79 135.79 134.77 134.77 132.28 132.28 129.63 129.63 124.11 124.11 124.11 124.11 122.68 124.11 122.68 1122.68 1122.68 1120.15	99.98 99.94
	\vee

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

— 21.44

124 100				
 140.10 134.11 133.95 133.91 133.95 123.95 129.07 129.07 129.05 	— 109.86	— 98.95	 ✓ 31.29 ✓ 27.96 ✓ 21.36 ✓ 21.42 	— 13.86

HJW2020-124-NMR-HC.2020121108.fid — HJW 124 13C

35.65 31.49 31.08	22.54 21.45	14.03
	57	

HJW2020-90-NMR-HC.2020111105.fid — 13C HJW2020-90-NMR-H/C	
128.99 12.3.65 12.3.65 12.9.92 12.9.93 12.9.93 12.9.93 12.9.93 12.9.93 12.9.93 12.9.95 12.95 1	$ < \frac{98.97}{98.93} $

148.90 148.77	134.05 133.90 128.78 128.73 128.70 122.51 122.51 119.66	109.94 109.93	96.44 96.40	30.29	21.42
\checkmark	$\checkmark \lor \lor \lor \land$	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	\checkmark		

100 90 f1 (ppm) 00 190 180 170 160 150 140 130 120 110

HJW2020-88-NMR-HC.2020120209.fid — 13C HJW2020-88-NMR-H/C

145.23 145.11	133.81 133.65 128.87 128.82 128.59 128.59 122.33 122.33 122.33 122.33	109.94 109.93	96.93 96.89	37.31	37.29 32.92	26.22 26.08 21.41
Y	$\rightarrow \rightarrow \rightarrow \rightarrow $	Y	\checkmark		21	V1

141.81 141.68 134.03 133.88 128.95 128.95 128.95 128.95 128.75 10	109.81 109.80	97.15 97.11	
$\lor \lor \lor \lor \lor \lor$	\vee	\checkmark	

— 21.41

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)

— 20.40

HJW2020-142-NMR-HC	2020120208 fid — 13C HJW2020-142-NMR-H	/C
	044000004070000	~ ~ ~
	- $ -$	0.0
		Ý

148.11	147.65	146.05	136.12	135.45	132.93	132.89	130.41	129.51	129.47	129.41	129.27	129.18	128.42	128.22	126.72	125.46	125.27	125.25	125.11	125.09	124.73	
ζ	1	2	5		ľ	1	1.	4	-	_	_	_		_				_		_		

22.01 Ι

100 90 f1 (ppm) 00 190 180 170 140 130 120 110

21.83

21.42

HJW2020-173-NMR-HC.2020121005.fid — 13C HJW2020-173-NMR-H/C

22 20 20 20 20 20 20 20 20 20 20 20 20 2
160. 1729. 1729. 1729. 1720. 1

36

- 22.02