SUPPORTING INFORMATION

Rh-Catalyzed Tunable Defluorinative Borylation

Fei Hao, ^{a, b} Xueyun Shang, ^a Zhenwei Liu, ^a He Zhang, ^{*b} Jin-Hong Lin^{*b, c} and Ji-Chang Xiao^{*b}

^aShandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology-

Shandong Academy of Science, Ji'nan 250353, China

^bKey laboratory of organofluorine chemistry, Shanghai Institute of Organic Chemistry, University of

Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032,

China

^cDepartment of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. China

E-mail: zhanghe07@gmail.com (H. Zhang), jlin@sioc.ac.cn or jlin@shu.edu.cn (J.-H. Lin),

jchxiao@sioc.ac.cn (J.-C. Xiao)

Table of Contents

1. General Information	2
2. Experimental Procedure for the Synthesis of Substrates	2
3. The Optimization of Reaction Conditions	2-3
4. Experimental Procedure for Rh(I)-catalyzed Defluorinative Borylation to Allylborylated Monofluoroalkene.	4
5. Experimental Procedure for Rh(I)-catalyzed Defluorinative Borylation/Oxidation to 1,4-D Monofluoroalkenes 2	ihydroxy 4-8
6. X-ray Structure of 2f	9
7. Experimental Procedure for Transformation of 2h'/2h " to 2h "	9
8. Experimental Procedure for Rh(I)-Catalyzed Dehydroxylative/Defluorinative Borylation to Homoallylborylated Monofluoroalkenes 3 and the 2D NMR Spectrum of 3a	10-18
9. Evidence for the Proposed Mechanism	19-21
10. ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra	22-68

1. General Information

Reagents and solvents were obtained commercially and used without further purification unless indicated otherwise. Molecular sieves (4Å, powder) were dried under vacuum at 220 °C and stored in a glove box before use. Tetramethylsilane or residual proton signals of the deuterated solvents were used as internal standard for ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra. Data for ¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration).

2. Experimental Procedure for the Synthesis of Substrates

Substrates 1a - 1o were synthesized using the method reported by Masayuki Kirihara *et al.* (Ref. *Tetrahedron* 2000, 56, 8275), and the corresponding characterization data were the same as provided in our previous paper (Ref. Org. Biomol. Chem. 2014, 12, 581-588). Substrate 1p was synthesized using the method reported by Xingang Zhang *et al.* (Ref. J. Am. Chem. Soc. 2014, 136, 1230-1233) and the corresponding characterization data were the same as provided in their paper.

10 is a new compound. The characterization data are shown as follows.

1-(9-Ethyl-9*H***-carbazol-3-yl)-2,2-difluorobut-3-en-1-ol (10).** 67% yield; Yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 8.37 – 7.87 (m, 2H), 7.51 – 7.37 (m, 2H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.28 – 7.10 (m, 2H), 5.98 – 5.76 (m, 1H), 5.57 (d, *J* = 17.4 Hz, 1H), 5.39 (d, *J* = 11.1 Hz, 1H), 4.99 (t, *J* = 9.9 Hz, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 2.82 (brs, 1H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.1 (s), 139.9 (s), 129.7 (t, *J* = 25.7 Hz), 126.4 (s), 125.7 (s), 125.1 (s), 122.6 (s), 122.5 (s), 121.3 (t, *J* = 9.1 Hz), 120.4 (s), 119.8 (t, *J* = 244.3 Hz), 119.7 (s), 118.9 (s), 108.5 (s), 108.0 (s), 76.2 (t, *J* = 29.5 Hz), 37.4 (s), 13.6 (s); ¹⁹F NMR (282 MHz, CDCl₃) δ -107.26 – -109.41 (m, 2F); IR (neat) v = 3413, 2988, 1599, 1492, 1472, 1332, 1233, 1066 cm⁻¹; HRMS(EI) for C₁₈H₁₇F₂NO [M]⁺: calcd. 301.1273, found 301.1281.

3. The Optimization of Reaction Conditions

In our previous Rh-catalyzed defluorination of allylic *gem*-difluorides, 1,4-dioxane and DMF were used as cosolvents (**Ref.** *Org. Biomol. Chem.* 2014, **12**, 581-588). We then first examined the defluorinative borylation of substrate **1a** in 1,4-dioxane and DMF, respectively (Table S1, entries 1-2). Two completely different borylation reactions were observed. In 1,4-dioxane, a dehydroxylative/defluorinative borylation occurred to provide homoallylborylated monofluoroalkene **3a** (entry 1). However, in DMF, the hydroxyl group remained intact and allylborylated monofluoroalkenes **2a**' and **2a**'' were produced as major products (entry 2). Other reaction solvents cannot increase the yields of **2a'/2a''** or **3a** (entries 3-7), and some additives were then investigated (entries 8-14). The addition of a ligand, BINAP (entry 9) or 2,2'bipyridine (entry 10), was not effective either. To our delight, the use of PPh₃ (0.2 equiv) as an additive significantly increased the yield of **3a** (entry 11). It seemed that 2 equiv of B₂(pin)₂ has to be used for the formation of **3a**, as evidenced by the dramatically lower yield with decreasing its loading (entry 12). We originally thought that 4Å MS would dry the reaction system and thus its presence might lead to an increase in the yield of **3a**. However, **3a** was completely suppressed and the reaction afforded **2a'/2a''** as products instead (entry 13). Without using PPh₃, the yields of **2a'/2a''** were not decreased (entry 14). As can be seen from the results in entries 11, 13 and 14, two different paths were observed in the same reaction solvent, 1,4-dioxane. Apparently, it was 4Å MS that resulted in the **2a'/2a''** path. Since DMF was also found to favor the **2a'/2a''** were further increased (entry 15). The reaction efficiency was not affected by shortening the reaction time to 70 min (entry 16).

OH I .		Rh(PPh ₃) ₃ Cl	OX J	Bnin		∽ ∧ , Boir	
Ph F F	+ B ₂ pin	² additive, solvent	Ph F		+ Ph´	F F	
1a		2a'/2a'' (X = H or Bpin)					
	entry	additive (equiv)	solvent	yield ((%) ^b		
	enuy	additive (equiv)	solvent	2a'/2a''	3 a		
	1	-	dioxane	trace	52		
	2	-	DMF	72	ND		
	3	-	THF	5	44		
	4	-	DCE	ND	14		
	5	-	CH ₃ CN	ND	ND		
	6	-	DMAC	trace	ND		
	7	-	toluene	trace	36		
	8	H ₂ O (1)	DMF	31	ND		
	9	BINAP (0.05)	THF	ND	12		
	10 ^c	2,2'-bipy (0.05)	THF	10	14		
	11	PPh ₃ (0.2)	dioxane	4	73		
	12^d	PPh ₃ (0.2)	dioxane	2	36		
	13 ^e	4Å MS + PPh ₃	dioxane	80	ND		
	14 ^{f,g}	4Å MS	dioxane	80	ND		
	15 ^{<i>f</i>,<i>h</i>}	4Å MS	DMF	86	ND		
	16 ^{<i>d,f,h</i>}	4Å MS	DMF	87	ND		

Table S1 The optimization of the reaction conditions^a

^{*a*}Reaction conditions: **1a** (0.5 mmol), B₂pin₂ (1.0 mmol), Rh(PPh₃)₃Cl (5 mol %) in solvent (2 mL) at 80 °C under a N₂ atmosphere for around 18 h; ^{*b*}The yields were determined by ¹⁹F NMR spectroscopy; ND = Not Detected; ^{*c*}2,2'-bipy = 2,2' -bipyridine; ^{*d*}1.5 equiv of B₂(pin)₂ was used; ^{*e*}4Å MS (100 mg) and PPh₃ (0.1 mmol) were used as additives; ^{*f*}100 mg of 4Å MS was used and the reaction temperature was 120 °C; ^{*g*}The reaction time was 0.5 h; ^{*h*}The reaction time was 70 min.

4. Experimental Procedure for Rh(I)-catalyzed Defluorinative Borylation to Allylborylated Monofluoroalkene

In a glove box, Rh(PPh₃)₃Cl (23.1 mg, 0.025 mmol), B₂pin₂ (191 mg, 0.75 mmol), and 4Å MS (100 mg) were added into a sealable tube. DMF (2 mL) and compound **1** (0.5 mmol) were then added to the mixture. The tube was sealed and the mixture was stirred at 120 °C for 70 min. The stereoselectivity was determined by ¹⁹F NMR before the reaction was quenched with water (30 mL). The mixture was extracted with 50 mL Et₂O. The Et₂O solution was washed with brine (20 mL × 3), and then dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography using PE/EtOAc as eluent.

(Z)-2-Fluoro-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-

2-en-1-ol (2a'). 40% yield; Colorless oil; ¹H NMR (400 MHz, DMF-d₇) δ 7.49 (d, J = 7.2 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.34 – 7.28 (m, 1H), 5.91 (d, J = 4.9 Hz, 1H), 5.27 – 5.06 (m, 2H), 1.62 (d, J = 7.9 Hz, 2H), 1.24 (s, 12H); ¹³C NMR (101 MHz, DMF-d₇) δ 159.8 (d, J = 254.9 Hz), 141.9 (s), 128.1 (s), 127.4 (s), 126.9 (s), 101.5 (d, J = 13.9 Hz), 83.3 (s), 71.6 (d, J = 31.5 Hz), 24.4 (s); ¹⁹F NMR (376 MHz, DMF-d₇) δ -124.05 (dd, J = 37.4, 14.2 Hz, 1F); IR (neat) v = 3448, 2979, 1702, 1372, 1274, 1144, 967, 701 cm⁻¹; HRMS(ESI) for C₁₆H₂₁¹¹BFO₂ [M-H₂O+H]⁺: calcd. 275.1613, found 275.1614.

5. Experimental Procedure for Rh(I)-catalyzed Defluorinative Borylation/Oxidation to 1,4-Dihydroxy Monofluoroalkenes

In a glove box, Rh(PPh₃)₃Cl (23.1 mg, 0.025 mmol), B₂pin₂ (191 mg, 0.75 mmol), and 4Å MS (100 mg) were added to a sealable tube. DMF (2 mL) and starting material **1** (0.5 mmol) were then added and the tube was sealed. The mixture was stirred at 120 °C for 70 min and then cooled to room temperature. Water (2 mL) and acetone (0.5 mL) were added, followed by Na₂CO₃ (0.8 g, 7.5 mmol) and oxone (308 mg, 0.5 mmol). The mixture was stirred for another 15 min. Saturated aqueous NaHSO₃ solution (0.5 mL) was added and stirring was continued for another 30 min. The excellent stereoselectivity was observed by ¹⁹F NMR (Z/E > 98 / 2). Water (30 mL) was added and the resulting mixture was then extracted with Et₂O (30 mL ×3). The organic solutions were combined and dried over anhydrous Na₂SO₄.

After filtration, the solvent was removed under reduced pressure. The pure product 2 was obtained by flash column chromatography using PE/Acetone as eluent.

(*Z*)-2-Fluoro-1-phenylbut-2-ene-1,4-diol (2a). 87% yield; Colorless oil; ¹H NMR (400 MHz, acetone-d₆) δ 7.46 (d, *J* = 7.3 Hz, 2H), 7.41 – 7.25 (m, 3H), 5.37 – 5.16 (m, 2H), 5.04 (d, *J* = 4.8 Hz, 1H), 4.20 – 4.14 (m, 2H), 3.89 (t, *J* = 5.5 Hz, 1H); ¹³C NMR (101 MHz, acetone-d₆) δ 160.1 (d, *J* = 259.2 Hz), 140.8 (s), 128.1 (s), 127.7 (s), 126.8 (s), 106.6 (d, *J* = 11.3 Hz), 71.5 (d, *J* = 31.9 Hz), 54.3 (d, *J* = 7.0 Hz); ¹⁹F NMR (376 MHz, acetone-d₆) δ -120.63 (dd, *J* = 37.2, 12.1 Hz, 1F); IR (neat) v = 3229, 2881, 1708, 1455, 1333, 1060, 1011, 771 cm⁻¹; HRMS(EI) for C₁₀H₁₁FO₂ [M]⁺: calcd. 182.0743, found 182.0739.

CO₂Me (Z)-Methyl 3-(2-fluoro-1,4-dihydroxybut-2-en-1-yl)benzoate (2b). 85% yield; Colorless oil; ¹H NMR (400 MHz, acetone-d₆) δ 8.14 (s, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.72 (d, J = 7.7 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 5.46 – 5.19 (m, 3H), 4.22 – 4.14 (m, 2H), 3.93 (t, J = 5.6 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (101 MHz, acetone-d₆) δ 166.3 (s), 159.6 (d, J = 259.3 Hz), 141.5 (s), 131.4 (s), 130.2 (s), 128.7 (s), 128.5 (s), 127.6 (s), 107.1 (d, J = 11.2 Hz), 71.0 (d, J = 31.6 Hz), 54.2 (d, J = 7.0 Hz), 51.5 (s); ¹⁹F NMR (376 MHz, acetone-d₆) δ -121.36 (dd, J = 37.0, 13.0 Hz, 1F); IR (neat) v = 3397, 2954, 1716, 1435, 1293, 1201, 1008, 758 cm⁻¹; HRMS(EI) for C₁₂H₁₃FO₄ [M]⁺: calcd. 240.0798, found 240.0795.

MeO₂S' (*Z*)-2-Fluoro-1-(4-(methylsulfonyl)phenyl)but-2-ene-1,4-diol (2c). 73% yield; Colorless oil; ¹H NMR (400 MHz, acetone-d₆) δ 7.95 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 5.47 – 5.24 (m, 3H), 4.17 (d, J = 5.9 Hz, 2H), 3.93 (brs, 1H), 3.13 (s, 3H); ¹³C NMR (101 MHz, acetone-d₆) δ 159.1 (d, J = 259.6 Hz), 146.6 (s), 140.7 (s), 127.5 (s), 127.2 (s), 107.6 (d, J = 11.0 Hz), 70.8 (d, J = 31.3 Hz), 54.2 (d, J = 6.9 Hz), 43.4 (s); ¹⁹F NMR (376 MHz, acetone-d₆) δ -121.81 (dd, J = 37.1, 13.7 Hz, 1F); IR (neat) v = 3457, 2928, 1706, 1406, 1300, 1149, 1089, 771 cm⁻¹; HRMS(ESI) for C₁₁H₁₂FO₄S [M-H]⁻⁻ calcd. 259.04458, found 259.04480.

^{CF₃} (*Z*)-2-Fluoro-1-(3-(trifluoromethyl)phenyl)but-2-ene-1,4-diol (2d). 57% yield; Colorless oil; ¹H NMR (400 MHz, acetone-d₆) δ 7.82 (s, 1H), 7.76 (d, *J* = 7.5 Hz, 1H), 7.69 – 7.57 (m, 2H), 5.46 - 5.22 (m, 3H), 4.24 - 4.12 (m, 2H), 3.87 (t, J = 5.7 Hz, 1H); ¹³C NMR (101 MHz, acetone-d₆) δ 159.4 (d, J = 259.4 Hz), 142.3 (s), 1307 (s), 130.0 (q, J = 31.8 Hz), 129.1 (s), 124.5 (q, J = 271.5 Hz), 124.5 (q, J = 3.8 Hz), 123.3 (q, J = 3.8 Hz), 107.5 (d, J = 11.1 Hz), 70.9 (d, J = 31.5 Hz), 54.3 (d, J = 6.9 Hz); ¹⁹F NMR (376 MHz, acetone-d₆) δ -63.05 (s, 3F), -122.03 (dd, J = 37.1, 13.5 Hz, 1F); IR (neat) v = 3348, 2893, 1706, 1330, 1166, 1126, 1074 cm⁻¹; LRMS(EI) C₁₁H₁₀F₄O₂ [M]⁺: calcd. for 250.1, found 250.0; Anal. for C₁₁H₁₀F₄O₂: calcd. C 52.81, H 4.03, found C 52.85, H, 3.93.

F (*Z*)-2-Fluoro-1-(4-fluorophenyl)but-2-ene-1,4-diol (2e). 84% yield; Colorless solid; ¹H NMR (400 MHz, acetone-d₆) δ 7.58 – 7.34 (m, 2H), 7.21 – 7.01 (m, 2H), 5.35 – 5.18 (m, 2H), 5.14 (d, J = 4.8 Hz, 1H), 4.21 – 4.12 (m, 2H), 3.92 (t, J = 5.5 Hz, 1H); ¹³C NMR (101 MHz, acetone-d₆) δ 162.3 (d, J = 243.8 Hz), 159.9 (d, J = 259.2 Hz), 137.0 (d, J = 3.1 Hz), 128.7 (d, J = 8.3 Hz), 114.8 (d, J = 21.5 Hz), 106.8 (d, J = 11.2 Hz), 70.8 (d, J = 31.9 Hz), 54.3 (d, J = 7.1 Hz); ¹⁹F NMR (376 MHz, acetone-d₆) δ -116.31 – 1116.43 (m, 1F), -121.03 (dd, J = 37.2, 12.1 Hz, 1F); IR (neat) v = 3335, 1712, 1604, 1509, 1228, 1158, 840 cm⁻¹; LRMS(EI) for C₁₀H₁₀F₂O₂ [M]⁺: calcd. 200.1, found 200.1; Anal. for C₁₀H₁₀F₂O₂: calcd. C 60.00, H 5.04, found C 59.90, H 5.05.

Br (Z)-1-(3-Bromophenyl)-2-fluorobut-2-ene-1,4-diol (2g). 64% yield; Colorless oil; ¹H NMR (400 MHz, acetone-d₆) δ 7.65 (s, 1H), 7.52 – 7.42 (m, 2H), 7.32 (t, J = 7.8 Hz, 1H), 5.39 – 5.15 (m, 3H), 4.20 – 4.13 (m, 2H), 3.84 (t, J = 5.7 Hz, 1H); ¹³C NMR (101 MHz, acetone-d₆) δ 159.4 (d, J = 259.2 Hz), 143.6 (s), 130.7 (s), 130.2 (s), 129.6 (s), 125.8 (s), 121.8 (s), 107.4 (d, J = 11.2 Hz), 70.8 (d, J = 31.7 Hz), 54.2 (d, J = 6.9 Hz); ¹⁹F NMR (376 MHz, acetone-d₆) δ -121.77 (dd, J = 37.1, 13.1 Hz,1F); IR (neat) v = 3349, 2887, 1705, 1571, 1474, 1189, 999, 784 cm⁻¹; HRMS(EI) for C₁₀H₁₀FO₂Br [M]⁺: calcd. 259.9848, found 259.9844.

BnO (Z)-1-(4-(Benzyloxy)phenyl)-2-fluorobut-2-ene-1,4-diol (2h). 72% yield; Colorless oil; ¹H NMR (400 MHz, acetone-d₆) δ 7.48 (d, J = 7.3 Hz, 2H), 7.44 – 7.28 (m, 5H), 7.00 (d, J = 8.7 Hz, 2H), 5.33 – 5.08 (m, 4H), 4.90 (d, J = 4.8 Hz, 1H), 4.20 – 4.13 (m, 2H), 3.81 (t, J = 5.7 Hz, 1H); ¹³C NMR (101 MHz, acetone-d₆) δ 160.3 (d, J = 258.7 Hz), 158.6 (s), 137.5 (s), 133.2 (s), 128.4 (s), 128.1 (s), 127.7 (s), 127.5 (s), 114.4 (s), 106.3 (d, J = 11.4 Hz), 71.1 (d, J = 32.2 Hz), 69.5 (s), 54.3 (d, J = 7.1 Hz); ¹⁹F NMR (376 MHz, acetone-d₆) δ -120.43 (dd, J = 37.2, 11.3 Hz, 1F); IR (neat) v = 3336, 2882, 1701, 1508, 1245, 1170, 1013, 744 cm⁻¹; HRMS(ESI) for C₁₇H₁₆FO₃ [M-H]⁻: calcd. 287.1089, found 287.1089.

^(C) (*Z*)-1-(2-Chlorophenyl)-2-fluorobut-2-ene-1,4-diol (2j). 79% yield; White solid; ¹H NMR (400 MHz, acetone-d₆) δ 7.74 – 7.67 (m, 1H), 7.47 – 7.19 (m, 3H), 5.64 (dd, *J* = 11.2, 4.9 Hz, 1H), 5.28 (d, *J* = 4.9 Hz, 1H), 5.14 (dt, *J* = 37.0, 6.8 Hz, 1H), 4.21 – 4.13 (m, 2H), 3.91 (t, *J* = 5.5 Hz, 1H); ¹³C NMR (101 MHz, acetone-d₆) δ 158.7 (d, *J* = 259.4 Hz), 138.0 (s), 132.5 (s), 129.4 (s), 129.2 (s), 128.7 (s), 127.1 (s), 107.8 (d, *J* = 11.5 Hz), 68.0 (d, *J* = 32.0 Hz), 54.3 (d, *J* = 7.0 Hz); ¹⁹F NMR (376 MHz, acetone-d₆) δ -120.66 (dd, *J* = 37.0, 11.2 Hz, 1F); IR (neat) v = 3346, 2889, 1706, 1473, 1443, 1237, 1007 cm⁻¹; LRMS(EI) for C₁₀H₁₀ClFO₂ [M]⁺: calcd. 216.0, found 216.0; Anal. for C₁₀H₁₀ClFO₂: calcd. C 55.44, H 4.65, found C 55.56, H 4.68.

(Z)-1-(2-Ethoxyphenyl)-2-fluorobut-2-ene-1,4-diol (2k). 52% yield; Colorless oil; ¹H NMR (400 MHz, acetone-d₆) δ 7.51 (d, *J* = 7.2 Hz, 1H), 7.29-7.22 (m, 1H), 6.95 (t, *J* = 7.3 Hz, 2H), 5.60 (dd, *J* = 11.8, 5.3 Hz, 1H), 5.09 (dt, *J* = 37.1, 7.0 Hz, 1H), 4.73 (d, *J* = 5.3 Hz, 1H), 4.19 – 4.11 (m, 2H), 4.07 (q, *J* = 7.0 Hz, 2H), 3.71 (t, *J* = 5.7 Hz, 1H), 1.38 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, acetone-d₆) δ 159.9 (d, *J* = 259.4 Hz), 156.1 (s), 128.9 (d, *J* = 1.1 Hz), 128.8 (s), 127.5 (d, *J* = 0.7 Hz), 120.2 (s), 111.5 (s), 106.7 (d, *J* = 11.9 Hz), 65.7 (d, *J* = 31.9 Hz), 63.6 (s), 54.4 (d, *J* = 7.1 Hz), 14.2 (s); ¹⁹F NMR (376 MHz, acetone-d₆) δ -120.62 (dd, *J* = 37.0, 11.8 Hz, 1F); IR (neat) v = 3305, 2980, 1707, 1493, 1456, 1246, 1046, 757 cm⁻¹; LRMS(EI) for C₁₂H₁₅FO₃ [M]⁺: calcd. 226.1, found 226.1; Anal. for C₁₂H₁₅FO₃: calcd. C 63.70, H 6.68, found C 63.63, H 6.61.

(Z)-2-Fluoro-1-(naphthalen-2-yl)but-2-ene-1,4-diol (2l). 67% yield; White solid; ¹H NMR (400 MHz, acetone-d₆) δ 7.99 (s, 1H), 7.93 – 7.83 (m, 3H), 7.63-7.58 (m, 1H), 7.56 – 7.44 (m, 2H), 5.47 – 5.26 (m, 2H), 5.21 (d, *J* = 4.8 Hz, 1H), 4.25 – 4.17 (m, 2H), 3.90 (t, *J* = 5.4 Hz, 1H); ¹³C NMR (101 MHz, acetone-d₆) δ 160.0 (d, *J* = 259.2 Hz), 138.4 (s), 133.3 (s), 133.2 (s), 127.9 (s), 127.8 (s), 127.6 (s), 126.1 (s), 126.0 (s), 125.7 (s), 124.9 (s), 107.0 (d, *J* = 11.3 Hz), 71.6 (d, *J* = 31.9 Hz), 54.3 (d, *J* = 7.0 Hz); ¹⁹F NMR (376 MHz, acetone-d₆) δ -120.44 (dd, *J* = 37.1, 12.2 Hz, 1F); IR (neat) v = 3337, 3057, 1704, 1507, 1271, 1158, 1080, 817 cm⁻¹; LRMS(EI) for C₁₄H₁₃FO₂ [M]⁺: calcd. 232.1, found 232.1; Anal. for C₁₄H₁₃FO₂: calcd. C 72.40, H 5.64, found C 72.37, H 5.73.

S (*Z*)-1-(Benzo[*b*]thiophen-3-yl)-2-fluorobut-2-ene-1,4-diol (2m). 54% yield; Colorless oil; ¹H NMR (400 MHz, acetone-d₆) δ 8.05 – 7.99 (m, 1H), 7.98 – 7.90 (m, 1H), 7.67 (s, 1H), 7.42 – 7.34 (m, 2H), 5.67 (dd, *J* = 12.0, 4.6 Hz, 1H), 5.38 (dt, *J* = 37.0, 6.9 Hz, 1H), 5.22 (d, *J* = 5.1 Hz, 1H), 4.22 (br, 2H), 3.89 (br, 1H); ¹³C NMR (101 MHz, acetone-d₆) δ 159.1 (d, *J* = 259.7 Hz), 140.6 (s), 137.6 (s), 135.6 (s), 124.4 (s), 124.0 (s), 122.9 (s), 122.7 (s), 107.5 (d, J = 11.4 Hz), 67.5 (d, J = 32.5 Hz), 54.4 (d, J = 6.9 Hz); ¹⁹F NMR (376 MHz, acetone-d₆) δ -119.81 (dd, J = 37.0, 12.1 Hz, 1F); IR (neat) v = 3346, 1705, 1460, 1428, 1245, 1155, 1079, 761 cm⁻¹; HRMS(EI) for C₁₂H₁₁FO₂S [M]⁺: calcd. 288.0464, found 288.0463.

(Z)-3-Fluoro-6-phenylhex-2-ene-1,4-diol (2n). 60% yield; Colorless oil; ¹H NMR (400 MHz, acetone-d₆) δ 7.31 – 7.13 (m, 5H), 5.13 (dt, J = 37.9, 6.9 Hz, 1H), 4.44 (d, J = 5.5 Hz, 1H), 4.20 – 4.03 (m, 3H), 3.73 (t, J = 5.7 Hz, 1H), 2.83 – 2.60 (m, 2H), 2.01 – 1.77 (m, 2H); ¹³C NMR (101 MHz, acetone-d₆) δ 161.0 (d, J = 259.9 Hz), 142.0 (s), 128.4 (s), 128.3 (s), 125.8 (s), 106.1 (d, J = 11.6 Hz), 68.6 (d, J = 30.9 Hz), 54.3 (d, J = 7.5 Hz), 36.0 (s), 31.3 (s); ¹⁹F NMR (376 MHz, acetone-d₆) δ -123.10 (dd, J = 37.9, 13.5 Hz, 1F); IR (neat) v = 3358, 2950, 1705, 1454, 1297, 1088, 1009, 748 cm⁻¹; HRMS(EI) for C₁₂H₁₅FO₂ [M]⁺: calcd. 210.1056, found 210.1053.

Et (*Z*)-1-(9-Ethyl-9*H*-carbazol-3-yl)-2-fluorobut-2-ene-1,4-diol (20). 50% yield; Yellow oil; ¹H NMR (400 MHz, DMSO-d₆) δ 8.39 – 8.13 (m, 2H), 7.68 – 7.38 (m, 4H), 7.20 (t, J = 7.4 Hz, 1H), 6.01 (d, J = 4.7 Hz, 1H), 5.41 – 5.07 (m, 2H), 4.78 (t, J = 5.5 Hz, 1H), 4.42 (q, J = 6.8 Hz, 2H), 4.12 – 4.03 (m, 2H), 1.30 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 160.3 (d, J = 258.6 Hz), 139.9 (s), 139.2 (s), 131.6 (s), 125.7 (s), 124.8 (s), 122.1 (s), 121.8 (s), 120.3 (s), 118.8(s), 118.7 (s), 109.1 (s), 108.7 (s), 106.4 (d, J = 11.5 Hz), 71.1 (d, J = 31.2 Hz), 53.7 (d, J = 6.7 Hz), 37.0 (s), 13.7 (s); ¹⁹F NMR (376 MHz, DMSO-d₆) δ -118.84 (dd, J = 38.2, 11.7 Hz, 1F); IR (neat) v = 3363, 1704, 1601, 1491, 1471, 1331, 1233, 748 cm⁻¹; HRMS(ESI) for C₁₈H₁₇FO₂N [M-H]⁻: calcd. 298.12488, found 298.12497.

(*Z*)-3-fluoro-3-(naphthalen-2-yl)prop-2-en-1-ol (2p). 73% yield; White solid; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.89 – 7.70 (m, 3H), 7.62 – 7.39 (m, 3H), 5.79 (dt, *J* = 36.7, 6.9 Hz, 1H), 4.51 (d, *J* = 6.8 Hz, 2H), 1.63 (brs, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.2 (d, *J* = 250.8 Hz), 133.7 (s), 133.1 (s), 129.0 (d, *J* = 28.1 Hz), 128.7 (s), 128.5 (d, *J* = 2.3 Hz), 127.8 (s), 127.0 (s), 126.8 (s), 124.0 (d, *J* = 7.4 Hz), 121.9 (d, *J* = 6.8 Hz), 105.5 (d, *J* = 15.3 Hz), 56.3 (d, *J* = 7.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -117.49 (d, *J* = 36.6 Hz, 1F); GCMS (EI) for C₁₃H₁₁FO⁺ [M]⁺ calcd.: 202.1, found: 202.1.

6. X-ray Structure of 2f

CCDC 929444

7. Experimental Procedure for Transformation of 2h'/2h" to 2h""

In a glove box, Rh(PPh₃)₃Cl (23.1 mg, 0.025 mmol), B₂pin₂ (191 mg, 0.75 mmol) and 4Å MS (100 mg) were added into a sealable tube. DMF (2 mL) and compound **1h** (0.5 mmol) were then added and the tube was sealed. The mixture was stirred at 120 °C for 70 min and then cooled to room temperature. Water (30 mL) was added and the resulting mixture was extracted with Et₂O (30 mL ×3). The organic solutions were combined and dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure and **2h'/2h**" mixture was obtained. The transformation of Bpin moiety to Br group was performed following the procedure reported by Feng-Ling Qing *et al.* (**Ref.** *ACS Catal.* 2019, **9**, 5726–5731). Under N₂, *n*-BuLi (0.25 mL, 2.4 M in hexanes, 0.60 mmol) was added dropwise to a solution of 1-bromo-3,5-bis(trifluoromethyl)benzene (175.8 mg, 0.6 mmol) in THF (2.0 mL) at -78 °C. The mixture was stirred at -78 °C for 30 min. Next, *N*-bromosuccinimide (106.8 mg, 0.6 mmol) was added at -78 °C. The reaction mixture was stirred at -78 °C for 5 min, and then it was warmed to room temperature and stirred for 1 h. Na₂SO₃ (aq, 10.0 mL) was added, and the reaction mixture was extracted with Et₂O. The combined organic phases were dried over MgSO₄ and concentrated. The pure product **2h**"' was obtained by flash column chromatography using hexane/EtOAc as eluent.

BnO (Z)-1-(4-(benzyloxy)phenyl)-4-bromo-2-fluorobut-2-en-1-ol (5h). 42% yield; Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.31 (m, 7H), 6.99 (d, J = 8.7 Hz, 2H), 5.42 (dt, J = 33.1, 8.6 Hz, 1H), 5.19 (d, J = 8.6 Hz, 1H), 5.08 (s, 2H), 4.05 (d, J = 8.9 Hz, 2H), 1.31 (d, J = 19.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, J = 265.6 Hz), 159.3 (s), 136.9 (s), 131.3 (s), 128.8 (s), 128.4 (s), 128.2 (s), 127.6 (s), 115.3 (s), 104.1 (d, J = 10.8 Hz), 71.9 (d, J = 32.6 Hz), 70.2 (s), 22.9 (d, J = 8.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -114.87 (dd, J = 32.9, 8.5 Hz, 1F); HRMS(DART) for C₁₇H₂₀BrFNO₂ [M+NH₄]⁺: calcd. 368.0661, found 368.0656.

8. Experimental Procedure for Rh(I)-Catalyzed Dehydroxylative/Defluorinative Borylation to Homoallylborylated Monofluoroalkenes and the 2D NMR Spectrum of 3a

In a glove box, Rh(PPh₃)₃Cl (23.1 mg, 0.025 mmol), B₂pin₂ (254 mg, 1.0 mmol) and PPh₃ (26.2 mg, 0.1 mmol) were added to a sealable tube. Dioxane (2 mL) and compound **1** (78 μ L, 0.5 mmol) were then added and the tube was sealed. The mixture was stirred at 80 °C for 18 h and then cooled to room temperature. Water (30 mL) was added and the resulting mixture was extracted with Et₂O (30 mL ×3). The organic solutions were combined and dried over anhydrous Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The product **3** was obtained by flash column chromatography using Et₂O/hexane as eluent.

(Z)-2-(3-Fluoro-4-phenylbut-3-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane(3a). 67% yield; Colorless liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, J = 7.6 Hz, 2H), 7.19 (t, J = 7.6 Hz, 2H), 7.07 (t, J = 7.6 Hz, 1H), 5.37 (d, J = 39.6 Hz, 1H), 2.36 (dt, J = 15.6, 7.8 Hz, 2H), 1.14 (s, 12H), 0.99 (t, J = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (d, J = 266.6 Hz), 133.9 (d, J = 2.4 Hz), 128.2 (s), 128.1 (s), 126.4 (d, J = 2.0 Hz), 104.6 (d, J = 8.8 Hz), 83.2 (s), 27.3 (d, J = 27.4 Hz), 24.7 (s); ¹⁹F NMR (282 MHz, CDCl₃) δ -100.97 (dt, J = 39.6, 15.6 Hz, 1F); IR (neat) v = 2978, 2926, 1691, 1379, 1325, 1144, 968, 694 cm⁻¹; HRMS(EI) for C₁₆H₂₂FO₂¹¹B [M]⁺: calcd. 276.1697, found 276.1696.

NOESY

H⁵ $H^{2} O C^{5} C^{5} C^{6}$ C⁶ C⁵ AN C² C¹ C^3 C^4 11 8.0 7.5 -7.0 6.5 6.0 5.5 H^{1} 5.0 4.5 4.0 3.5 3.0 2.5 H^2 2.0 1.5 H^{5} 1.0 H³ 0.5 0.0 ppm 0 o - 140 -120 -100 - 160 180 20 8 60 40

HMBC

(Z)-Methyl 3-(2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-

1-en-1-yl)benzoate(3b). 73% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 5.52 (d, J = 38.9 Hz, 1H), 3.91 (s, 3H), 2.46 (dt, J = 15.8, 7.8 Hz, 2H), 1.25 (s, 12H), 1.09 (t, J = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1 (s), 163.4 (d, J = 268.1 Hz), 134.2 (d, J = 2.3 Hz), 132.5 (d, J = 8.3 Hz), 130.2 (s), 129.3 (d, J = 6.6 Hz), 128.4 (s), 127.5 (d, J = 2.0 Hz), 104.0 (d, J = 8.6 Hz), 83.3 (s), 52.1 (s), 27.4 (d, J = 27.2 Hz), 24.8 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -99.13 (dt, J = 38.9, 15.8 Hz, 1F); IR (neat) v = 2978, 2928, 1687, 1407,1380, 1308, 1150, 966 cm⁻¹; HRMS(EI) for C₁₈H₂₄FO₄¹⁰B [M]⁺: calcd. 333.1788, found 333.1786.

MeO₂S (*Z*)-2-(3-Fluoro-4-(4-(methylsulfonyl)phenyl)but-3-en-1-yl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane (3c). 66% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.6 Hz, 2H), 7.58 (d, *J* = 8.6 Hz, 2H), 5.53 (d, *J* = 38.3 Hz, 1H), 3.00 (s, 3H), 2.46 (dt, *J* = 15.8, 7.7 Hz, 2H), 1.21 (s, 12H), 1.06 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5 (d, *J* = 272.1 Hz), 139.6 (d, *J* = 2.4 Hz), 137.8 (d, *J* = 2.6 Hz), 128.8 (d, *J* = 7.9 Hz), 127.4 (s), 103.6 (d, *J* = 8.2 Hz), 83.4 (s), 44.5 (s), 27.5 (d, *J* = 26.7 Hz), 24.8 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -94.79 (dt, *J* = 38.3, 15.8 Hz, 1F); IR (neat) v = 2978, 2928, 1687, 1407,1308, 1150, 965, 767 cm⁻¹; HRMS(EI) calcd. for $C_{17}H_{24}FO_4S^{10}B$ [M]⁺ 353.1509, found 353.1507.

(Z)-2-(3-Fluoro-4-(3-(trifluoromethyl)phenyl)but-3-en-1-yl)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane (3d). 52% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.49 – 7.31 (m, 2H), 5.52 (d, J = 38.5 Hz, 1H), 2.48 (dt, J = 15.8, 7.8 Hz, 2H), 1.25 (s, 12H), 1.09 (t, J = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0 (d, J = 268.9 Hz), 134.6 (d, J = 2.3 Hz), 131.3 (d, J = 7.6 Hz), 130.7 (q, J = 32.1 Hz), 128.7 (s), 124.8 (q, J = 3.9 Hz), 124.1 (q, J = 272.3 Hz), 123.0 (q, J = 2.2 Hz), 103.7 (d, J = 8.5 Hz), 83.4 (s), 27.4 (d, J = 27.1 Hz), 24.8 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.78 (s, 3F), -98.21 (dt, J = 38.5, 15.8 Hz, 1F); IR (neat) v = 2980, 1690, 1380, 1329,1211, 1166, 1128, 846 cm⁻¹; HRMS(EI) for C₁₇H₂₁F₄O₂¹⁰B [M]⁺: calcd. 343.1607, found 343.1604.

(Z)-2-(3-Fluoro-4-(4-fluorophenyl)but-3-en-1-yl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (3e). 63% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 8.0, 5.7 Hz, 2H), 6.98 (t, J = 8.0 Hz, 2H), 5.43 (d, J = 39.1 Hz, 1H), 2.44 (dt, J = 15.7, 7.8 Hz, 2H), 1.24 (s, 12H), 1.07 (t, J = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (dd, J = 266.0, 2.3 Hz), 161.3 (dd, J = 246.0, 3.3 Hz), 130.0 (dd, J = 3.4, 2.4 Hz), 129.7 (t, J = 7.7 Hz), 115.2 (d, J = 21.3 Hz), 103.6 (d, J = 9.1 Hz), 83.3 (s), 27.4 (d, J = 27.4 Hz), 24.8 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -101.95 (dt, J = 39.1, 15.7 Hz, 1F), -112.71 – -119.22 (m, 1F); IR (neat) v = 2979, 2930, 1692, 1606, 1509, 1380, 1327, 848 cm⁻¹; HRMS(EI) for C₁₆H₂₁F₂O₂¹⁰B [M]⁺: calcd. 293.1639, found 293.1645.

(Z)-2-(4-(4-Chlorophenyl)-3-fluorobut-3-en-1-yl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (3f). 62% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.6 Hz, 2H), 7.25 (d, *J* = 8.6 Hz, 2H), 5.43 (d, *J* = 39.0 Hz, 1H), 2.44 (dt, *J* = 16.0, 7.6 Hz, 2H), 1.24 (s, 12H), 1.07 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (d, *J* = 267.5 Hz), 132.4 (d, *J* = 2.4 Hz), 131.9 (d, *J* = 3.4 Hz), 129.4 (d, *J* = 7.7 Hz), 128.4 (s), 103.7 (d, *J* = 8.8 Hz), 83.3 (s), 27.4 (d, *J* = 27.2 Hz), 24.8 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -99.65 (dt, *J* = 39.0, 16.0 Hz, 1F); IR (neat) v = 2979, 2927, 1690, 1491, 1406, 1372, 1144, 905 cm⁻¹; LRMS(EI) for C₁₆H₂₁FO₂C¹¹B [M]⁺: calcd. 310.1, found 310.1; Anal. for C₁₆H₂₁FO₂ClB: calcd. C 61.87, H 6.81, found C 62.00, H 6.93.

(Z)-2-(4-(3-Bromophenyl)-3-fluorobut-3-en-1-yl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (3g). 46% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.15 (t, *J* = 7.9 Hz, 1H), 5.41 (d, *J* = 39.0 Hz, 1H), 2.45 (dt, *J* = 15.7, 7.9 Hz, 2H), 1.24 (s, 12H), 1.07 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (d, *J* = 268.7 Hz), 136.0 (d, *J* = 2.4 Hz), 131.0 (d, *J* = 8.2 Hz), 129.8 (s), 129.4 (s), 126.73 (d, *J* = 7.3 Hz), 122.4 (s), 103.6 (d, *J* = 8.6 Hz), 83.3 (s), 27.4 (d, *J* = 27.1 Hz), 24.8 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -101.81 (dt, *J* = 39.0, 15.7 Hz, 1F); IR (neat) v = 2979, 2928, 1688, 1593, 1472, 1328, 1074, 847 cm⁻¹; HRMS(EI) for C₁₆H₂₁FO₂Br¹⁰B [M]⁺: calcd. 353.0838, found 353.0833.

(Z)-2-(4-(4-(Benzyloxy)phenyl)-3-fluorobut-3-en-1-yl)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane (3h). 64% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.21 (m, 7H), 6.91 (d, J = 8.7 Hz, 2H), 5.41 (d, J = 39.8 Hz, 1H), 5.05 (s, 2H), 2.43 (dt, J = 15.7, 7.9 Hz, 2H), 1.24 (s, 12H), 1.07 (t, J = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, J = 264.2 Hz), 157.4 (d, J = 2.8 Hz), 137.1 (s), 129.6 (d, J = 7.4 Hz), 128.7 (s), 128.0 (s), 127.6 (s), 127.1 (d, J = 2.2 Hz), 114.8 (s), 104.2 (d, J = 9.2 Hz), 83.4 (s), 70.1 (s), 27.5 (d, J = 27.5 Hz), 24.9 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.40 (dt, J = 39.8, 15.7 Hz, 1F); IR (neat) v = 2978, 2927, 1691, 1608, 1437, 1380, 1323, 848 cm⁻¹; LRMS(EI) C₂₃H₂₈FO₃¹¹B [M]⁺: calcd. for 382, found 382; Anal. for C₂₃H₂₈FO₃B: calcd. C 72.26, H 7.38, found C 72.75, H 7.60.

(Z)-4-(2-Fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-

1-en-1-yl)-N,N-dimethylaniline (3i). 72% yield; Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.8 Hz, 2H), 6.69 (d, *J* = 8.8 Hz, 2H), 5.37 (d, *J* = 40.5 Hz, 1H), 2.94 (s, 6H), 2.42 (dt, *J* = 15.6, 7.8 Hz, 2H), 1.24 (s, 12H), 1.06 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.4 (d, *J* = 262.2 Hz), 148.9 (s), 129.1 (d, *J* = 7.2 Hz), 123.0 (s), 112.6 (s), 104.3 (d, *J* = 9.5 Hz), 83.2 (s), 40.7 (s), 27.4 (d, *J* = 27.8 Hz), 24.8 (s); ¹⁹F NMR (282 MHz, CDCl₃) δ -105.19 (dt, *J* = 40.5, 15.6 Hz, 1F); IR (neat) v = 2978, 2926, 2853, 1690, 1612, 1272, 1144, 847 cm⁻¹; HRMS(EI) for C₁₈H₂₇NFO₂¹⁰B [M]⁺: calcd. 318.2155, found 318.2158.

(Z)-2-(4-(2-Ethoxyphenyl)-3-fluorobut-3-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (3k). 50% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.7 Hz, 1H), 7.14 (t, *J* = 7.7 Hz, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 5.91 (d, *J* = 40.8 Hz, 1H), 4.01 (q, *J* = 6.8 Hz, 2H), 2.47 (dt, *J* = 16.1, 7.8 Hz, 2H), 1.42 (t, *J* = 6.9 Hz, 3H), 1.25 (s, 12H), 1.10 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (d, *J* = 266.0 Hz), 155.2 (s), 129.6 (d, *J* = 12.9 Hz), 127.5 (d, *J* = 1.6 Hz), 122.9 (d, *J* = 2.9 Hz), 120.4 (s), 111.5 (s), 98.1 (d, *J* = 7.0 Hz), 83.2 (s), 63.8 (s), 27.8 (d, *J* = 28.0 Hz), 24.8 (s), 14.9 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.71 (dt, *J* = 40.8, 16.1 Hz, 1F); IR (neat) v = 2979, 2931, 1687, 1489,1454, 1379, 1324, 1144 cm⁻¹; HRMS(EI) for C₁₈H₂₆FO₃¹⁰B [M]⁺: calcd. 319.1995, found 319.1994.

(Z)-2-(3-Fluoro-4-(naphthalen-2-yl)but-3-en-1-yl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (3l). 67% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.83-7.74 (m, 3H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.48-7.38 (m, 2H), 5.63 (d, *J* = 39.5 Hz, 1H), 2.51 (dt, *J* = 15.4, 7.7 Hz, 2H), 1.24 (s, 12H), 1.12 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.9 (d, *J* = 267.2 Hz), 133.5 (s), 132.1 (d, *J* = 1.6 Hz), 131.5 (d, *J* = 2.5 Hz), 127.9 (s), 127.8 (s), 127.5 (s), 126.9 (d, *J* = 7.4 Hz), 126.6 (d, *J* = 7.6 Hz), 125.9 (s), 125.5 (s), 104.8 (d, *J* = 8.6 Hz), 83.3 (s), 27.6 (d, *J* = 27.4 Hz), 24.8 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -100.00 (dt, *J* = 39.5, 15.4 Hz, 1F); IR (neat) v = 2978, 2928, 1687, 1379, 1326, 1214, 1144, 745 cm⁻¹; LRMS(EI) for C₂₀H₂₄FO₂¹¹B [M]⁺: calcd. 382, found 382; Anal. for C₂₀H₂₄FO₂B: calcd. C 73.64, H 7.42, found C 73.43, H 7.51.

S (*Z*)-2-(4-(Benzo[*b*]thiophen-3-yl)-3-fluorobut-3-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3m). 53% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.83 (m, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.71 (s, 1H), 7.49 – 7.28 (m, 2H), 5.87 (d, *J* = 38.8 Hz, 1H), 2.56 (dt, *J* = 15.3, 7.7 Hz, 2H), 1.24 (s, 14H), 1.15 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.8 (d, *J* = 266.8 Hz), 139.3 (s), 138.1 (s), 127.7 (s), 124.2 (s), 123.9 (t, *J* = 6.8 Hz), 122.6 (s), 121.2 (s), 96.6 (d, *J* = 11.4 Hz), 83.3 (s), 27.3 (d, *J* = 26.9 Hz), 24.8 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -96.48 (dt, *J* = 38.8, 15.3 Hz, 1F); IR (neat) v = 2978, 2928, 1688, 1379, 1325, 1143, 967, 758 cm⁻¹; HRMS(EI) or C₁₈H₂₂F₂O₂S¹⁰B [M]⁺: calcd. 331.1454, found 331.1449.

(Z)-9-Ethyl-3-(2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)but-1-en-1-yl)-9*H***-carbazole (3o).** 69% yield; Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.28 (d, J = 8.5 Hz, 1H), 7.20 (t, J = 7.2 Hz, 1H), 5.64 (d, J = 40.0 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.51 (dt, J = 15.6, 7.8 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.24 (s, 12H), 1.14 (t, J = 7.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7 (d, J = 262.9 Hz), 140.1 (s), 138.6 (d, J = 2.1 Hz), 126.3 (d, J = 6.9 Hz), 125.5 (s), 124.9 (d, J = 2.3 Hz), 122.9 (s), 120.4 (s), 120.1 (s), 120.0 (s), 118.7 (s), 108.4 (s), 108.1 (s), 105.2 (d, J = 9.0 Hz), 83.2 (s), 37.4 (s), 27.5 (d, J = 27.7 Hz), 24.7 (s), 13.7 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.23 (dt, J = 40.0, 15.6 Hz, 1F); IR (neat) v = 2977, 2933, 1689, 1599, 1491, 1379, 1331, 1144 cm⁻¹; HRMS(ESI) for C₁₆H₂₁F₂O₂¹¹B [M+H]⁺: calcd. 394.2348, found 394.2369.

9. Evidence for the Proposed Mechanism

In a glove box, Rh(PPh₃)₃Cl (23.1 mg, 0.025 mmol), B₂pin₂ (191 mg, 0.75 mmol), 4Å MS (100 mg), **1h** (0.5 mmol) and DMF (2 mL) were added into a sealable tube and the tube was sealed. The mixture was stirred at 120 °C for 70 min and then cooled to room temperature. HF (35% in water) (5 drops) was added using a plastic dropper. The mixture was stirred for another 5 min. No isomers of **4h** were detected by ¹⁹F NMR. Water (30 mL) was added and the resulting mixture was extracted with Et₂O (30 mL ×3). The organic solutions were combined and dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The pure product **4h** was obtained by flash column chromatography.

BnO (Z)-1-(Benzyloxy)-4-(2-fluorobuta-1,3-dien-1-yl)benzene (4h). 65% yield; White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.4 Hz, 2H), 7.45-7.29 (m, 5H), 6.94 (d, J = 8.5 Hz, 2H), 6.33 – 6.09 (m, 1H), 5.68 – 5.16 (m, 3H), 5.06 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.1 (d, J = 3.0 Hz), 155.6 (d, J = 258.4 Hz), 136.8 (s), 130.3 (d, J = 7.8 Hz), 129.6 (d, J = 25.3 Hz), 128.6 (s), 128.0 (s), 127.4 (s), 126.5 (d, J = 3.2 Hz), 114.9 (s), 114.2 (d, J = 4.7 Hz), 109.8 (d, J = 9.8 Hz), 69.9 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -122.14 (dd, J = 38.4, 26.4 Hz, 1F); IR (neat) v = 2901, 1597, 1509, 1350, 1173, 1025, 980, 734 cm⁻¹; HRMS(EI) for C₁₇H₁₅OF [M]⁺: calcd. 254.1107, found 254.1106.

In a glove box, $Rh(PPh_3)_3Cl$ (23.1 mg, 0.025 mmol), B_2pin_2 (254 mg, 1.0 mmol), PPh_3 (26.2 mg, 0.1 mmol), diene **4h** (0.5 mmol) and dioxane (2 mL) were added to a sealable tube and the tube was sealed. The mixture was stirred at 80 °C for 12 h and cooled to room temperature. Water (30 mL) was added and the resulting mixture was extracted with Et_2O (30 mL ×3). The organic layers were combined and dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The product **3h** was detected by ¹⁹F NMR in 25% yield.

In a glove box, Rh(PPh₃)₃Cl (23.1 mg, 0.025 mmol), B₂pin₂ (254 mg, 1.0 mmol), PPh₃ (26.2 mg, 0.1 mmol), the mixture of **2h'/2h''** (0.5 mmol), obtained by the procedure mentioned in Supporting Information Section **6**, and dioxane (2 mL) were added to a sealable tube and the tube was sealed. The mixture was stirred at 80 °C for 12 h and cooled to room temperature. Water (30 mL) was added and the resulting mixture was extracted with Et₂O (30 mL ×3). The organic layers were combined and dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The product **3h** detected by ¹⁹F NMR in 19% yield.

In a glove box, Rh(PPh₃)₃Cl (23.1 mg, 0.025 mmol), PPh₃ (131.0 mg, 0.5 mmol), the mixture of **2h'/2h''** (0.5 mmol), obtained by the procedure mentioned in Supporting Information Section **6**, and dioxane (2 mL) were added to a sealable tube and the tube was sealed. The mixture was stirred at 80 °C for 12 h and cooled to room temperature. Water (30 mL) was added and the resulting mixture was extracted with Et₂O (30 mL ×3). The organic layers were combined and dried over Na₂SO₄. After filtration, the solvent was removed under reduced pressure. The product **4h** was detected by ¹⁹F NMR in 82% yield.

General Kinetics Experimental Procedure: In a glove box, substrate 1h (0.5 mmol, 1.0 equiv), B_2pin_2 (1.0 mmol, 2.0 equiv), $Rh(PPh_3)_3Cl$ (23.1 mg, 5 mol%), PPh_3 (26.2 mg, 0.2 equiv) were added in a 10 mL tube, followed by addition of internal standard 1-fluoronaphthalene (14.6 mg, 0.1 mmol) and dioxane (2.0 mL). The tube was sealed using an open top cap with PTFE cap liner, and moved outside the glovebox, the tube was then heated to 80 °C. The reaction progress was monitored by removing aliquots (~50 µL) from the reaction mixture via syringe under N₂. Each aliquot was dissolved in C₆D₆ and analyzed by ¹⁹F NMR.

Kinetic Plots for "Different Excess" Experiment

"Different excess" studies were performed using general kinetics experimental procedure and the data was analyzed using the method reported by Donna G. Blackmond *et al* (**Ref.** *Angew. Chem. Int. Ed.* 2005, **44**, 4302–4320; *J. Org. Chem.* 2006, **71**, 4711–4722).

"Different excess" experiments reveal that this reaction is zero order to substrate and B₂pin₂.

Figure S1 Time-course for the dehydroxylative/defluorinative borylation reaction.

10. ¹H NMR, ¹⁹F NMR and ¹³C NMR Spectra

¹H NMR spectrum of compound **10**

¹³C NMR spectrum of compound **10**

¹⁹F NMR spectrum of compound **10**

¹H NMR spectrum of compound **2a**'

¹³C NMR spectrum of compound **2a'**

¹H NMR spectrum of compound **2a**

¹⁹F NMR spectrum of compound **2a**

¹³C NMR spectrum of compound **2b**

$^1\mathrm{H}$ NMR spectrum of compound 2c

¹³C NMR spectrum of compound **2c**

 $^{19}\mathrm{F}$ NMR spectrum of compound 2c

$^1\mathrm{H}$ NMR spectrum of compound $\mathbf{2d}$

¹³C NMR spectrum of compound **2d**

$^1\mathrm{H}$ NMR spectrum of compound 2e

¹³C NMR spectrum of compound **2e**

¹⁹F NMR spectrum of compound **2e**

 $^{13}\mathrm{C}$ NMR spectrum of compound $\mathbf{2g}$

¹⁹F NMR spectrum of compound **2g**

$^1\mathrm{H}$ NMR spectrum of compound $\mathbf{2h}$

¹³C NMR spectrum of compound **2h**

 $^{19}\mathrm{F}$ NMR spectrum of compound $\mathbf{2h}$

¹H NMR spectrum of compound **2**j

¹³C NMR spectrum of compound **2**j

¹⁹F NMR spectrum of compound **2**j

$^1\mathrm{H}$ NMR spectrum of compound 2k

^{13}C NMR spectrum of compound 2k

 $^{19}\mathrm{F}$ NMR spectrum of compound 2k

 ^{13}C NMR spectrum of compound 2l

¹⁹F NMR spectrum of compound **2**I

¹H NMR spectrum of compound 2m

¹³C NMR spectrum of compound **2m**

¹⁹F NMR spectrum of compound **2m**

¹H NMR spectrum of compound **2n**

^{13}C NMR spectrum of compound 2n

¹⁹F NMR spectrum of compound **2n**

¹H NMR spectrum of compound **20**

¹³C NMR spectrum of compound **20**

¹⁹F NMR spectrum of compound **20**

¹³C NMR spectrum of compound **2p**

¹H NMR spectrum of compound **2h**""

¹³C NMR spectrum of compound **2h**""

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

¹⁹F NMR spectrum of compound **2h**""

¹H NMR spectrum of compound **3a**

¹³C NMR spectrum of compound **3a**

¹H NMR spectrum of compound **3b**

¹³C NMR spectrum of compound **3b**

¹⁹F NMR spectrum of compound **3b**

¹H NMR spectrum of compound **3c**

 $^{13}\mathrm{C}$ NMR spectrum of compound 3c

¹⁹F NMR spectrum of compound **3c**

$^1\mathrm{H}$ NMR spectrum of compound $\mathbf{3d}$

¹³C NMR spectrum of compound **3d**

¹⁹F NMR spectrum of compound **3d**

¹H NMR spectrum of compound **3e**

¹³C NMR spectrum of compound **3e**

¹⁹F NMR spectrum of compound **3e**

 $^1\mathrm{H}$ NMR spectrum of compound $\mathbf{3f}$

¹³C NMR spectrum of compound **3f**

 $^{19}\mathrm{F}$ NMR spectrum of compound $\mathbf{3f}$

¹H NMR spectrum of compound 3g

$^{13}\mathrm{C}$ NMR spectrum of compound 3g

¹⁹F NMR spectrum of compound **3**g

¹H NMR spectrum of compound **3h**

¹³C NMR spectrum of compound **3h**

$^{19}\mathrm{F}$ NMR spectrum of compound $\mathbf{3h}$

¹H NMR spectrum of compound **3i**

¹³C NMR spectrum of compound **3i**

¹⁹F NMR spectrum of compound **3i**

 $^1\mathrm{H}$ NMR spectrum of compound 3k

0 PPM

$^{19}\mathrm{F}$ NMR spectrum of compound 3k

¹³C NMR spectrum of compound **3**l

¹⁹F NMR spectrum of compound **3**l

¹H NMR spectrum of compound 3m

¹³C NMR spectrum of compound **3m**

¹⁹F NMR spectrum of compound **3m**

¹³C NMR spectrum of compound **30**

$^1\mathrm{H}$ NMR spectrum of compound 4h

¹⁹F NMR spectrum of compound **4h**

