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S1. General

Fluorescence spectra and kinetic studies were performed on an Agilent Cary Eclipse fluorescence
spectrophotometer equipped with stirring function and Peltier temperature controller. 3 mL
macrocuvettes (quartz or glass) were used and all solutions were stirred using a cuvette stir bar
(Sigma-Aldrich #2363545). HPLC traces were collected on a Thermo Fisher Scientific Vanquish Flex
UHPLC with variable wavelength detector, using a Hypersil GOLD C18 column (150 mm length, 3.0 mm
diameter, 3 um particle size). Solvents, reagents, inorganic salt (NaCl, NaNOs, K250,) and sodium salts
of some drugs (carbenicillin, diatrizoate, diclofenac, ibuprofen, naproxen, penicillin G, sodium
salicylate) were used as provided by the supplier. Ketorolac was used as the Tris salt, as provided by
the supplier. Other drugs (amoxicillin, aspirin, bezafibrate, furosemide, gemfibrozil, ketoprofen,
ramipril, valsartan) were converted to their sodium salt from the carboxylic acid by adding 1 equivalent
NaOH to an aqueous solution of the acid, followed by lyophilization. For the valinomycin mediated
uniport assay, potassium salicylate salt was prepared from salicylic acid and KOH. Buffers were
prepared using fresh UltraPure water.
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S2. Fluorescence quenching of lucigenin by carboxylate drugs

To a solution of 0.8 UM lucigenin in nitrate buffer (222 mM NaNOs, 10 mM HEPES, pH 7.4), was
added the sodium salt of the carboxylate drugs at various concentrations. The fluorescence spectrum
(excitation 430 nm) was measured before and after the addition of the drug. The spectra were
normalized by dividing the fluorescence intensity at any wavelength by the fluorescence intensity at
505 nm before the addition of drug. For the Stern-Volmer constant, the Fo/F value at 505 nm was
calculated and plotted against the drug concentration. The Stern-Volmer constant, Ksy, is given by the
slope of the linear fit (the intercept is fixed at a value of 1). The experiments were performed in
triplicate and the results are shown in Figure S1-Figure S19. All drugs gave a good linear correlation
(R?>0.99).
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Figure S1. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of NaCl. The
excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations NaCl.
Linear fits were performed for the range 0 — 0.025 M NaCl. Results are the average of 3 repeats and error bars represent
standard deviations.
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Figure S2. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of amoxicillin sodium.
The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations
amoxicillin sodium. Linear fits were performed for the range 0 —0.025 M amoxicillin sodium. Results are the average of 3

repeats and error bars represent standard deviations.
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Figure S3. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of aspirin sodium. The
excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations aspirin
sodium. Linear fits were performed for the range 0 —0.025 M aspirin sodium. Results are the average of 3 repeats and
error bars represent standard deviations.
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Figure S4. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of bezafibrate
sodium. The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various
concentrations bezafibrate sodium. Linear fits were performed for the range 0 — 0.025 M bezafibrate sodium. Results are

the average of 3 repeats and error bars represent standard deviations.
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Figure S5. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of carbenicillin
sodium. The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various
concentrations carbenicillin sodium. Linear fits were performed for the range 0 — 0.025 M carbenicillin sodium. Results are

the average of 3 repeats and error bars represent standard deviations.
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Figure S6. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of sodium diatrizoate.
The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations
sodium diatrizoate. Linear fits were performed for the range 0 — 0.025 M sodium diatrizoate. Results are the average of 3
repeats and error bars represent standard deviations.
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Figure S7. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of diclofenac sodium.
The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations
diclofenac sodium. Linear fits were performed for the range 0 —0.0125 M diclofenac sodium. Results are the average of 3
repeats and error bars represent standard deviations.
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Figure S8. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of furosemide
sodium. The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various

concentrations furosemide sodium. Linear fits were performed for the range 0 — 0.025 M furosemide sodium. Results are

the average of 3 repeats and error bars represent standard deviations.
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Figure S9. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of gemfibrozil
sodium. The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various

concentrations gemfibrozil sodium. Linear fits were performed for the range 0 —0.025 M gemfibrozil sodium. Results are

the average of 3 repeats and error bars represent standard deviations.
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Figure S10. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of ibuprofen
sodium. The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various
concentrations ibuprofen sodium. Linear fits were performed for the range 0 — 0.025 M ibuprofen sodium. Results are the

average of 3 repeats and error bars represent standard deviations.
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Figure S11. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of ketoprofen
sodium. The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various
concentrations ketoprofen sodium. Linear fits were performed for the range 0 — 0.025 M ketoprofen sodium. Results are

the average of 3 repeats and error bars represent standard deviations.
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Figure S12. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of ketorolac tris salt.
The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations
ketorolac tris salt. Linear fits were performed for the range 0 —0.025 M ketorolac tris salt. Results are the average of 3
repeats and error bars represent standard deviations.
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Figure S13. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of naproxen sodium.
The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations
naproxen sodium. Linear fits were performed for the range 0 — 0.025 M naproxen sodium. Results are the average of 3
repeats and error bars represent standard deviations.
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Figure S14. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of penicillin G

sodium. The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various

concentrations penicillin G sodium. Linear fits were performed for the range 0 —0.025 M penicillin G sodium. Results are
the average of 3 repeats and error bars represent standard deviations.
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Figure S15. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of ramipril sodium.
The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations
ramipril sodium. Linear fits were performed for the range 0 —0.025 M ramipril sodium. Results are the average of 3 repeats
and error bars represent standard deviations.
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Figure S16. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of sodium salicylate.
The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations
sodium salicylate. Linear fits were performed for the range 0 — 0.025 M sodium salicylate. Results are the average of 3

repeats and error bars represent standard deviations.
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Figure S17. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of tolmetin sodium.
The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations
tolmetin sodium. Linear fits were performed for the range 0 — 0.025 M tolmetin sodium. Results are the average of 3

repeats and error bars represent standard deviations.
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Figure S18. (A) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of sodium valproate.
The excitation wavelength was 430 nm. (B) Stern-Volmer plot of the quenching of lucigenin by various concentrations
sodium valproate. Linear fits were performed for the range 0 — 0.025 M sodium valproate. Results are the average of 3

repeats and error bars represent standard deviations.
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Figure S19. (a) Normalized fluorescence spectra of lucigenin in the presence of various concentrations of valsartan sodium.
The excitation wavelength was 430 nm. (b) Stern-Volmer plot of the quenching of lucigenin by various concentrations
valsartan sodium. Linear fits were performed for the range 0 — 0.025 M valsartan sodium. Results are the average of 3

repeats and error bars represent standard deviations.
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S3. Kinetic drug permeability assay

The procedures for the various membrane transport assays mentioned in the article are described.
The experiments are analogous to the standard lucigenin-based assay for transmembrane chloride
transport.! EggPC (egg (chicken) phosphatidylcholine) was obtained from Avanti Polar Lipids, Inc.
(catalog# 840051) and cholesterol was obtained from VWR Life Science (MDL# MFCD00003646). A
combination of 70% eggPC and 30% cholesterol was used to mimic mammalian membrane
composition.>* The lipids were stored as a solution in chloroform at -20°C (28.63 mM eggPC and 12.27
mM cholesterol for a 7:3 mixture). Buffer was prepared with fresh UltraPure water following a recipe
calculated using an online tool (https://www.biomol.net/en/tools/buffercalculator.htm) for a 10 mM
HEPES buffer, pH 7.4, 25 °C, with an ionic strength of 225 mM. All drugs were used as sodium salt;
either provided by the manufacturer or prepared by adding 1 equivalent NaOH to the carboxylic acid.

Other salts and reagents were used as provided by the manufacturer. Stock solutions of transporters
1-5 were made in DMF at 400x the final concentration for the transport assay. Stock solutions of the
analytes (drugs and NaCl) were prepared as 75 mM stock solutions in buffer; except amoxicillin
sodium, furosemide sodium, ramipril sodium and valsartan sodium, which were prepared in 50 mM
stock solutions for solubility reasons; and diclofenac and gemfibrozil, which were prepared in 25 mM
stock solutions due to their low solubility. The pH of these drug stock solutions was adjusted to pH
7.4, if necessary, to avoid creating transmembrane pH gradients during the experiments. The kinetic
assays were performed on an Agilent Cary Eclipse fluorometer using an excitation wavelength of 430
nm and emission wavelength of 505 nm.

$3.1. Preparation of large unilamellar vesicles

An aliquot of the lipid stock solution in chloroform was transferred to a small round bottom
flask and dried via rotary evaporation. The lipid film was dried further on high vacuum for at least 5
hours prior to use. The lipid film was hydrated with the internal solution (1 mM lucigenin, 222 mM
NaNOs, 10 mM HEPES buffer at pH 7.4) and vortexed for about 5 minutes. The resulting suspension
was subjected to seven freeze-thaw cycles, alternating between submersion in liquid nitrogen
followed by thawing in mildly warm water (below 32 °C). The lipid suspension was allowed to rest at
room temperature for 30 minutes before extruding 27 times through a 100 nm polycarbonate
membrane (Nucleopore) using the Avanti mini extruder set (Avanti Polar Lipids, Inc.). The resulting
uniform large unilamellar vesicles (LUVs) were separated from the unencapsulated lucigenin by size
exclusion chromatography using a Sephadex column (G-50, medium). The obtained concentrated
stock liposome solution was diluted in external buffer (222 mM NaNOs, 10 mM HEPES buffer at pH
7.4) to afford a final total lipid concentration of 0.75 mM (1 mM stock total lipid solutions were used
for experiments with low solubility drugs).

$3.2. Drug transport kinetic assays

1.0 mL of lucigenin-loaded liposomes (0.75 mM total lipid) were transferred to a 3 mL
fluorescence cuvette and a small cuvette stir bar was added. A 3D printed block (9.5 mm x 12 mm x
12 mm) was taped to the bottom of the cuvette to lift the cuvette in an optimum height and reduce
the total volume of the solution. The cuvette was placed in the fluorometer, stirring was started at
maximum speed (stirring continued throughout the experiment) and data collection was started (Aex
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=430 nm, Aem = 505 nm). At time t = 10 s, 3.75 pl transporter in DMF was added. The concentrations
of transporter were chosen to minimize chloride transport®: 5 mol% 1, 5 mol% 2, 0.01 mol% 3, 0.05
mol% 4, and 5 mol% 5 (mol% with respect to total lipid concentration (eggPC+cholesterol)). At time t
= 20 s, 500 pL NacCl or carboxylate drugs stock solution (75 mM) was added to achieve a final
concentration of 25 mM drug and 0.5 mM lipid. Due to the large dilution occurring upon the addition
of drug, a large drop in fluorescence intensity is observed, but this quickly stabilizes within 1 second
of drug addition (see Figure S20). At time t = 330 s, detergent (10 pL of 10% Triton X-100) was added
to fully lyse the membrane and observe maximum quenching.

In the case of drugs with low solubility (amoxicillin sodium, furosemide sodium, ramipril sodium, and
valsartan sodium), 1.0 mL of lucigenin-loaded liposomes (1 mM total lipid) were transferred to a 3 mL
fluorescence cuvette and a small cuvette stir bar was added. The cuvette was placed in the
fluorometer, stirring was started at maximum speed (stirring continued throughout the experiment)
and data collection was started (Aex = 430 NM, Aem = 505 nm). At time t = 10 s, 3.75 pL transporter in
DMF was added. At time t = 20 s, 1.0 mL carboxylate drugs stock solution (50 mM) was added to
achieve a final concentration of 25 mM drug and 0.5 mM lipid. At time t = 330 s, detergent (10 pL of
10% Triton X-100) was added to fully lyse the membrane and observe maximum quenching.

In the case of drugs with extremely low solubility (diclofenac sodium and gemfibrozil sodium), 1.0 mL
of lucigenin-loaded liposomes (1 mM total lipid) were transferred to a 3 mL fluorescence cuvette and
a small cuvette stir bar was added. The cuvette was placed in the fluorometer, stirring was started at
maximum speed (stirring continued throughout the experiment) and data collection was started (Aex
=430 nm, Aem = 505 nm). At time t = 10 s, 3.75 pL transporter in DMF was added. At timet=20s, 1.0
mL carboxylate drugs stock solution (25 mM) was added to achieve a final concentration of 12.5 mM
drug and 0.5 mM lipid. At time t =330 s, detergent (10 pL of 10% Triton X-100) was added to fully lyse
the membrane and observe maximum quenching.
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Figure S20. (a) Representative example of drug transport experiment (shown: addition of DMF at 10 s, and NaCl at 20 s).

The addition of DMF leads to a small amount of quenching of lucigenin, while the addition of 0.5 mL NaCl stock to 1 mL

lucigenin-encapsulated liposomes leads to a large reduction in fluorescence intensity due to dilution. The box shows the

zoomed-in section of graph b (b) Zoomed-in section of graph a, showing that the dilution occurring upon the addition of
NaCl stabilizes within 1 second (i.e., complete mixing is achieved within 1 second).
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$3.3. Data work-up and results of kinetic assay

The time scale of the crude kinetic run was corrected to ensure that drug transport starts at
time O (time 0 was taken as 1 second after the addition of NaCl or carboxylate drug, as shown in Figure
$20). The corrected kinetic run was subsequently converted to ‘normalized Fo/F’, using the following
equation (where F is the fluorescence intensity at any time, Fsnal is the fluorescence intensity after
adding Triton X-100, and F is the fluorescence intensity at time t = 0 s (1 second after the addition of
NaCl or carboxylate drug, see Figure S20):

Fo_Fy Ry,
Normalized FOZ I;.O ng: Pli(')

Ffinal FO Ffinal -1
The calculation is valid because all drugs showed a linear correlation between lucigenin quenching
(Fo/F) and drug concentration (see Section S2). By taking the value upon addition of Triton X-100 (Ffinal)
as a reference point, the data is normalized and the error between experiments is reduced. By
subtracting 1 in the formula, we ensure that values start at 0 and reach a maximum value of 1. The
‘normalized Fo/F’ data of 3-4 independent experiments conducted over at least 2 different sets of
liposomes was averaged and the standard deviations were calculated. The results are shown in Figure
S21 - Figure S35. Diclofenac sodium, ibuprofen sodium, ketoprofen sodium and ramipril sodium
displayed unusual transport profiles and are discussed in Section S3.5.
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Figure S21. Chloride transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and is
the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background chloride permeability. Detergent was added around 310 seconds.
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Figure S22. Amoxicillin transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background amoxicillin permeability. Detergent was added around 310 seconds.
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Figure S23. Aspirin transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and is
the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background aspirin permeability. Detergent was added around 310 seconds.
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Figure S24. Bezafibrate transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background bezafibrate permeability. Detergent was added around 310 seconds.
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Figure S25. Carbenicillin transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background carbenicillin permeability. Detergent was added around 310 seconds.
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Figure S26. Diatrizoate transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background diatrizoate permeability. Detergent was added around 310 seconds.
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Figure S27. Furosemide transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background furosemide permeability. Detergent was added around 310 seconds.
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Figure S28. Gemfibrozil transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background gemfibrozil permeability. Detergent was added around 310 seconds.
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Figure S29. Ketorolac transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and is
the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background ketorolac permeability. Detergent was added around 310 seconds.
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Figure S30. Naproxen transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and is
the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background naproxen permeability. Detergent was added around 310 seconds.
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Figure S31. Penicillin G transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background penicillin G permeability. Detergent was added around 310 seconds.
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Figure S32. Salicylate transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and is
the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background salicylate permeability. Detergent was added around 310 seconds.
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Figure S33. Tolmetin transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and is
the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background tolmetin permeability. Detergent was added around 310 seconds.

S22



—=— DMF X PLe; i
L 1 /\/[\/\ . L -
- 2 s — '\‘,_ _'u'
0.8
L
\o N
(8
8 0.6
N
© d
£ 7 _
o 0.4~ ‘It-‘- J—
z < il et |
4 o il -
ik R
024 &+ et LU e 9
< (Il o sl SO LELLERE
P i
o (i
0.0l , ' : ' '
0 100 200 300
Time (s)

Figure S34. Valproate transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and is
the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background valproate permeability. Detergent was added around 310 seconds.
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Figure S35. Valsartan transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and is
the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background valsartan permeability. Detergent was added around 310 seconds.
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$3.5. Calculation of permeability enhancement

The ‘normalized Fo/F’ versus time traces shown in Figure S21-Figure S35 were subjected to an
asymptotic fit using OriginPro 2019 (y = a — bc'), and the absolute initial rate of transport was
calculated from the first derivative at time t = 0's (ki = |b - In(c)|). The permeability enhancement
induced by the transporters is then given by the ratio of the initial rate of transport induced by
compounds 1-5 (kii(transporter)) and the initial rate of transport observed in the absence of
transporter (kini( DMF)):

kini(transporter)
kini(DMF)

permeability enhancement =

To obtain the most accurate results, multiple DMF runs were performed per set of liposomes and their
initial rates were averaged. Transporters tested on the same set of liposomes used the ki,(DMF)
average calculated for the blank run on the same set of liposomes. Data from at least two different
sets of liposomes was used to ensure repeatability. The enhancement was calculated for each repeat
separately, and then averaged and the standard deviation was calculated. For some drugs (sodium
diatrizoate, amoxicillin sodium, and carbenicillin sodium), the permeability enhancement could not be
accurately determined due to the very small amounts of membrane permeability of these drugs. In
these cases, there was no visible transport in the presence or absence of compounds, and the
permeability enhancement was therefore assumed to be ‘1’. An overview of the obtained permeability
enhancement is given in Table S1. The results of the asymptotic fits are shown in Figure S36 - Figure
S46

Table S1. Permeability enhancement of a variety of carboxylate drugs induced by compounds 1-5. The values are the
average of at least 3 independent repeats and the errors represents standard deviations.

Drug Compound 1 Compound 2 Compound 3 Compound 4 Compound 5
Amoxicillin sodium 18] 10 18] 10 18]
Aspirin sodium 2.14 +0.69 26.72+£0.70 247+1.1 65.8+4.8 2.67 £0.05
Bezafibrate sodium 1.82+0.28 18.6+4.2 74+13 16.4+3.5 2.11+0.19
Carbenicillin sodium 10 10! 10 16 10
Sodium diatrizoate 10 10! 10 16 10
Furosemide sodium 1.13 £0.09 50+14 4.11+0.80 11.34+0.76 2.24+0.28
Gemfibrozil sodium 1.14 £0.56 1.48 £0.69 0.80+0.80 1.06 £ 0.07 1.05+0.33
Ketorolac Tris salt 1.39+0.31 2.97+£0.39 3.84+0.39 9.3+1.1 1.74 £0.47
Naproxen sodium 1.96 £ 0.27 20.3+3.3 214+15 45+10 4.63 £ 0.66
Penicillin G sodium 1.82+0.41 1.77 £0.36 1.84£0.45 3.02+0.60 1.52+£0.17
Sodium salicylate 2.89+0.42 242+3.8 18.1+1.3 32375 2.74+0.40
Tolmetin sodium 2.25+0.26 26.0+5.5 205+4.1 72+19 3.12+0.32
Sodium valproate 1.66 £ 0.66 6.1+1.38 6.61+0.89 17.2+5.1 1.72 £ 0.46
Valsartan sodium 1.90 £0.08 3.76 £0.26 3.31+0.44 6.86+0.74 1.74£0.11

[a] The enhancement was assumed to be ‘1’ (i.e., no enhancement) because no transport was observed upon
visual inspection of the graphs. The transport rates were too low to calculate an accurate enhancement factor.
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Figure S36. Aspirin transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and the
graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)

compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure S37. Bezafibrate transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)
compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure S38. Furosemide transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)
compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure $39. Gemfibrozil transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. Due to the fast permeability, only the first 50 seconds of the run is shown. The asymptotic fit is shown

as solid lines. (a) DMF, (b) compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure S40. Ketorolac transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)

compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure S41. Naproxen transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)
compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure S42. Penicillin G transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)
compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure S43. Salicylate transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)
compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure S44. Tolmetin transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)
compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure S45. Valproate transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)
compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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Figure S46. Valsartan transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
the graphs show the fitting of the data using OriginPro 2019 to determine the initial rate of transport and subsequently the
enhancement factor. For clarity, only 1 in 15 data points are shown. The asymptotic fit is shown as solid lines. (a) DMF, (b)
compound 1, (c) compound 2, (d) compound 3, (e) compound 4, (f) compound 5.
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$3.6. Drugs with unusual transport profiles
Four drugs (diclofenac, ibuprofen, ketoprofen and ramipril) showed unusual transport profiles
in the kinetic transport assays. Although there is qualitatively a clear enhancement in permeability of

these drugs in the presence of transporters 1-5, the unusual transport profiles prohibit accurate
determination of enhancement factors.

In the case of diclofenac (a very hydrophobic drug), the permeability in the absence of transporters
did not show the usual asymptotic profile, but a bi-sigmoidal profile corresponding to very fast
membrane permeability (see Figure S47). Consequently, the initial rate of transport could not be
calculated. The reason for the unusual permeability profile is not clear, but might be related to the
previously reported ability of diclofenac to interact with PC lipids.5>’
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Figure S47. (a) Diclofenac transport mediated by compounds 1-5. Experiment was performed as described in Section S3,
and is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background diclofenac permeability. Detergent was added around 310 seconds. (b) Graph
showing the background permeability of diclofenac only (addition of DMF as a blank), indicating the bi-sigmoidal shape of
the membrane permeability.

In the case of ibuprofen and ketoprofen, the addition of detergent did not lead to a stable Fo/F value.
Instead, a continuous upwards drift is seen upon the addition of detergent (see Figure $48). A similar
drift also appears to be present before the addition of detergent. To explain this observation, we
conducted an experiment without liposomes. In this experiment, the fluorescence intensity (excitation
430 nm, emission 505 nm) of a solution of 0.8 UM lucigenin in nitrate buffer (222 mM NaNOs, 10 mM
HEPES, pH 7.4) was monitored for 400 seconds. After 10 seconds, sodium ibuprofen, sodium
ketoprofen or sodium salicylate was added to achieve a final concentration of 25 mM drug; and after
200 seconds 10 pL Triton X-100 was added. The results are shown in Figure S49. It is normally expected
that the fluorescence intensity upon the addition of carboxylate drug to lucigenin remains stable, as
is observed in the case of sodium salicylate. There are no liposomes present and no kinetic events are
expected (just quenching of lucigenin fluorescence). However, in the case of ibuprofen and
ketoprofen, the fluorescence intensity is not stable, and shows a similar drift as observed during the
transport experiments. The reason for this drift is not clear but could involve reactions between
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ibuprofen/ketoprofen and lucigenin. Ibuprofen and ketoprofen can have photosensitization as a side
effect due to their ability to photo-dissociate and generate radicals, which might explain the
interaction with lucigenin.® ° This unstable lucigenin reading in the presence of ketoprofen and
ibuprofen prevents the calculation of accurate transport rates.
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Figure S48. (a) Ibuprofen transport mediated by compounds 1-5. Experiment was performed as described in Section S3,
and is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background ibuprofen permeability. (b) Ketoprofen transport mediated by compounds 1-5.
Experiment was performed as described in Section S3, and is the average of a minimum of 3 repeats (error bars represent
standard deviations). DMF was used as a blank run (no transporter added) to assess background ketoprofen permeability.
In both cases, detergent was added around 310 seconds and shows a ‘drift’ rather than a constant value.
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Figure S49. ‘No liposome’ experiment with ketoprofen, ibuprofen and salicylate. The fluorescence intensity (excitation 430
nm, emission 505 nm) of a solution of 0.8 uM lucigenin in nitrate buffer (222 mM NaNOs, 10 mM HEPES, pH 7.4) was
monitored for 400 seconds. After 10 seconds, sodium ibuprofen, sodium ketoprofen or sodium salicylate was added to
achieve a final concentration of 25 mM drug; and after 200 seconds 10 pL Triton X-100 was added.
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In the case of ramipril, a similar drift in the Fo/F value upon the addition of detergent was observed.
In addition, normalized Fo/F values larger than 1 were observed for some of the transporters, which
should not be possible (see Figure $50a). We therefore conducted the same ‘no liposome’ experiment
as described for ibuprofen and ketoprofen. In this case, the fluorescence intensity upon the addition
of ramipril is relatively stable, but starts to drift significantly when Triton X-100 is added to the solution
(see Figure S50b). It is possible that this drift is due to partitioning of ramipril into the micelles
generated by Triton X-100 (which can be a slow process). This might also explain the unusual transport
profile of ramipril before the addition of detergent. It is possible that ramipril is quickly transported
into the liposomes (resulting in a fast increase in normalized Fo/F), but then slowly partitions back into
the membrane of the liposomes (resulting in a subsequent decrease in normalized Fo/F). Once again,
these factors imply that accurate rates of transport cannot be obtained for ramipril.
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Figure S50. (a) Ramipril transport mediated by compounds 1-5. Experiment was performed as described in Section S3, and
is the average of a minimum of 3 repeats (error bars represent standard deviations). DMF was used as a blank run (no
transporter added) to assess background diclofenac permeability. Detergent was added around 310 seconds. (b) ‘No

liposome’ experiment with ramipril and salicylate. The fluorescence intensity (excitation 430 nm, emission 505 nm) of a
solution of 0.8 uM lucigenin in nitrate buffer (222 mM NaNOs, 10 mM HEPES, pH 7.4) was monitored for 400 seconds. After

10 seconds, sodium ramipril or sodium salicylate was added to achieve a final concentration of 25 mM drug; and after 200

seconds 10 pL Triton X-100 was added.

As a comparison, the ‘no liposome’ experiment was also repeated with all other drugs tested. As
shown in Figure S51, most drugs show stable readings that remain constant throughout the
experiment and do not show the extreme ‘drifts’ as seen for ibuprofen, ketoprofen and ramipril
(ibuprofen, ketoprofen and ramipril are shown as bold lines, while all other drugs are shown as dotted
lines).
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Figure S51. ‘No liposome’ experiment with all carboxylate drugs. The fluorescence intensity (excitation 430 nm, emission

505 nm) of a solution of 0.8 uM lucigenin in nitrate buffer (222 mM NaNOs, 10 mM HEPES, pH 7.4) was monitored for 400

seconds. After 10 seconds, the sodium salt of the carboxylate drugs was added to achieve a final concentration of 25 mM
drug; and after 200 seconds 35 pL Triton X-100 was added.
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S4. HPLC traces and lipophilicity of drugs

HPLC traces were collected on a Thermo Fisher Scientific Vanquish Flex UHPLC with variable
wavelength detector with ISQ EC Single Quadrupole Mass Spectrometer, using a Hypersil GOLD C18
column (150 mm length, 3.0 mm diameter, 3 um particle size). ‘Solvent A’ was 0.1% (v/v) HCOOH in
water and ‘solvent B’ was 0.1% (v/v) HCOOH in acetonitrile. Gradient was from 10% B to 90% B in 15
min, followed by 5 minutes at 90% B. The detection wavelength was set at 225 nm and the baseline
was corrected by subtracting a blank solvent run. Valproic acid does not absorb at this wavelength,
and the MS trace was used to determine the retention time. Drugs were dissolved in water before
injecting into the UHPLC. Carbenicillin gives two peaks on HPLC, but MS indicated that both peaks
correspond to carbenicillin (they are presumably the result of different protonation states, as
carbenicillin is a di-carboxylic acid). The experiment was performed in triplicate and the obtained HPLC
traces are shown in Figure S52 - Figure S69. Experimental logP values could be found for some drugs
on https://go.drugbank.com/.X® These values correlate well with our HPLC retention times (Figure

$70), and this plot was used to calculate semi-empirical logP values for all drugs using the equation
logP =-0.03157 + 0.37369*(retention time). The obtained values are summarized in Table S2.
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Figure S52. Reverse-phase HPLC of amoxicillin at 225 nm.
— Trial 1
400 & Trial 2
=) —— Trial 3
E 300
(0]
O
& 200
g -
o
wn
Q
<C 100 -
01— J - —,
i T ¥ T T T T T T T T T T T T T T T Y
0 2 4 6 8 10 12 14 16 18 20

Time (min)

Figure S53. Reverse-phase HPLC of aspirin at 225 nm.
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Figure S54. Reverse-phase HPLC of bezafibrate at 225 nm.
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Figure S55. Reverse-phase HPLC of carbenicillin at 225 nm.
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Figure S56. Reverse-phase HPLC of diatrizoate at 225 nm.
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Figure S57. Reverse-phase HPLC of diclofenac at 225 nm.
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Figure S58. Reverse-phase HPLC of furosemide at 225 nm.
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Figure S59. Reverse-phase HPLC of gemfibrozil at 225 nm.
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Figure S60. Reverse-phase HPLC of ibuprofen at 225 nm.
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Figure S61. Reverse-phase HPLC of ketoprofen at 225 nm.
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Figure S62. Reverse-phase HPLC of ketorolac at 225 nm.
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Figure S63. Reverse-phase HPLC of naproxen at 225 nm.
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Figure S64. Reverse-phase HPLC of penicillin G at 225 nm.
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Figure S65. Reverse-phase HPLC of ramipril at 225 nm.
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Figure S66. Reverse-phase HPLC of salicylate at 225 nm.
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Figure S67. Reverse-phase HPLC of tolmetin at 225 nm.
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Figure S68. Reverse-phase HPLC of valproate, showing the MS (ESI-) trace.
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Figure S69. Reverse-phase HPLC of valsartan at 225 nm.
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linear fit.

546



Table S2. Overview of the retention time on reverse-phase HPLC, experimental logP values obtained from Drugbank.com,
and semi-empirical logP values calculated from the HPLC retention times.

Drug HPLC retention time logP (drugbank.com) logP (semi-empirical)®!

Amoxicillin 0.65 0.87 0.21
Aspirin 4.03 1.18 1.48
Bezafibrate 8.69 n/al 3.21
Carbenicillin 53 1.13 1.95
Diatrizoate 0.62 3.3 0.20
Diclofenac 10.09 4.51 3.74
Furosemide 6.72 2.03 2.48
Gemfibrozil 11.2 4.387 4.16
Ibuprofen 10.22 3.97 3.79
Ketoprofen 8.34 3.12 3.09
Ketorolac 7.29 2.1 2.69
Naproxen 8.42 3.18 3.12
Penicillin G 6.49 1.83 2.39
Ramipril 6.56 2.9 2.42
Salicylate 4.32 2.26 1.58
Tolmetin 8.08 2.79 2.99
Valproate 7.94 2.75 2.94
Valsartan 9.19 1.499 3.40

la] Semi-empirical logP values were calculated from the HPLC retention times using the equation obtained in
Figure $70. ' No experimental logP value available on Drugbank.com.
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S5. Correlation of permeability enhancement and lipophilicity

The permeability enhancement induced by each transporter, was compared to the lipophilicity of
the carboxylate drugs by plotting the semi-experimental logP value (see Section S4) against the
permeability enhancement of the drug. The obtained graphs are given in Figure S71-Figure S75.
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Figure S71. Enhancement of the permeability of different carboxylate drugs induced by compound 1, as a function of the
logP of the carboxylate drug.
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Figure S72. Enhancement of the permeability of different carboxylate drugs induced by compound 2, as a function of the
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Figure S73. Enhancement of the permeability of different carboxylate drugs induced by compound 3, as a function of the
logP of the carboxylate drug.
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Figure S74. Enhancement of the permeability of different carboxylate drugs induced by compound 4, as a function of the

logP of the carboxylate drug.
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Figure S75. Enhancement of the permeability of different carboxylate drugs induced by compound 5, as a function of the

logP of the carboxylate drug.
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$6. Valinomycin-mediated salicylate uniport

In the assays described above, the transport of the carboxylate drug causes a charge gradient
across the membrane, that is presumably dissipated through the transport of nitrate anions out of the
liposome (antiport). This antiport mechanism is unlikely to occur in biological systems, due to the low
concentration of nitrate in cells.!! It is more likely that the charge gradient created through transport
of anionic drugs is compensate by the various ion channel proteins in the cell membrane. This requires
that compounds 1-5 have to be able to perform electrogenic uniport of the carboxylate drugs in
biological systems, whereby the charge gradient is dissipated through a separate uniport event
induced by a separate ion transporter. To test this possibility, we performed a valinomycin-based
assay similar to the assay established to assess chloride uniport.?? In this assay, we employ the known
K* uniport ability of valinomycin to help dissipate the charge gradient that would be created by
carboxylate drug transport. Preparation of large unilamellar vesicles (LUVs), experimental procedure
of the kinetic drug transport assay and data work-up were the same as described in Sections S3.1-
S3.3, except that Na* was replaced with K*, and NOs™ with SO4%. Thus, the employed buffer consisted
of a K*-based 10 mM HEPES buffer at pH 7.4, with 75 mM K;SO.. The assay was performed with
potassium salicylate (25 mM) to study the uniport of salicylate as a model carboxylate drug.
Transporter concentrations were the same as for the previous assays (5 mol% 1, 5 mol% 2, 0.01 mol%
3, 0.05 mol% 4, and 5 mol% 5), and 5 mol% 3 and 5 mol% 4 were also tested. The concentration of
valinomycin was set to 0.000025 mol% with respect to total lipid.

The results are shown in Figure S76-Figure S80. Each graph represents the uniport of salicylate by one
transporter by comparing the salicylate permeability in the absence of transporter (DMF), in the
presence of only urea-based transporters, in the presence of only valinomycin, and in the presence of
both a urea-based transporter and valinomycin. Evidence of uniport is seen by the cooperative
salicylate transport by a combination of a urea-based transporter and valinomycin (i.e. transport
induce by a combination of urea-based transporter and valinomycin is greater than the sum of the
transport induced by only urea-based transporter and only valinomycin). In all cases, the addition of
urea-based transporter alone, or the addition of valinomycin alone caused a minimal increase in the
permeability of salicylate. However, the combinations 2-valinomycin, 3-valinomycin, 4-valinomycin
and 5-valinomycin caused a noticeable increase in salicylate membrane permeability, suggesting that
transporters 2-5 are able to mediate electrogenic carboxylate drug uniport.
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Figure S76. Uniport of salicylate mediated by compound 1. Fraction of drug transported by 5 mol% 1, 0.000025 mol%
valinomycin, or the combination of 5 mol% 1 and 0.000025 mol% valinomycin across 100 nm 7:3 eggPC:cholesterol LUVs
loaded with 1 mM lucigenin, 75 mM K;SO4, 10 mM HEPES buffer at pH 7.4. DMF was used as a blank run (no transporter).

Results are the average of 3 independent repeats and error bars represent standard deviations.
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Figure S77. Uniport of salicylate mediated by compound 2. Fraction of drug transported by 5 mol% 2, 0.000025 mol%
valinomycin, or the combination of 5 mol% 2 and 0.000025 mol% valinomycin across 100 nm 7:3 eggPC:cholesterol LUVs
loaded with 1 mM lucigenin, 75 mM K,SO4, 10 mM HEPES buffer at pH 7.4. DMF was used as a blank run (no transporter).

Results are the average of 3 independent repeats and error bars represent standard deviations.
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Figure S78. Uniport of salicylate mediated by compound 3. Fraction of drug transported by 0.01 mol% 3, 5 mol% 3,
0.000025 mol% valinomycin, the combination of 0.01 mol% 3 and 0.000025 mol% valinomycin, or the combination of 5
mol% 3 and 0.000025 mol% valinomycin across 100 nm 7:3 eggPC:cholesterol LUVs loaded with 1 mM lucigenin, 75 mM

K2S04, 10 mM HEPES buffer at pH 7.4. DMF was used as a blank run (no transporter). Results are the average of 3
independent repeats and error bars represent standard deviations.
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Figure S79. Uniport of salicylate mediated by compound 4. Fraction of drug transported by 0.05 mol% 4, 5 mol% 4,
0.000025 mol% valinomycin, the combination of 0.05 mol% 4 and 0.000025 mol% valinomycin, or the combination of 5
mol% 4 and 0.000025 mol% valinomycin across 100 nm 7:3 eggPC:cholesterol LUVs loaded with 1 mM lucigenin, 75 mM

K2504, 10 mM HEPES buffer at pH 7.4. DMF was used as a blank run (no transporter). Results are the average of 3

independent repeats and error bars represent standard deviations.

S53



1.0 4 —+—omF
" | @~ valinomycin ==
—A—5mol% 5
1—A— 5 mol% 5 + valinomycin
0.8 -
L
\O
L
- 0.6 -
(0]
N
£
& 0.4 4
pzd
0.2
RO ‘*5_...1?;4;.,:_,,1:41.’;,- (SN
0.0 : | |
0 100 200 5
Time (s)

Figure S80. Uniport of salicylate mediated by compound 5. Fraction of drug transported by 5 mol% 5, 0.000025 mol%
valinomycin, or the combination of 5 mol% 5 and 0.000025 mol% valinomycin across 100 nm 7:3 EggPC:cholesterol LUVs
loaded with 1 mM lucigenin, 75 mM K;SO4, 10 mM HEPES buffer at pH 7.4. DMF was used as a blank run (no transporter).

Results are the average of 3 independent repeats and error bars represent standard deviations.
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