Multi-component Cascade Reaction of 3-Formylchromones: Highly Selective Synthesis of 4,5-Dihydro-[4,5'-bipyrimidin] -6(1*H*)-one Derivatives

Li Chen, Rong-Huang, Xing-Han Yun, Tian-Hui Hao and Sheng-Jiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents:

Optimized Conditions for the Synthesis of 4b & 5d.S4Table S1 Optimized conditions for the synthesis of 4b & 5d.S4General Procedure for the Preparation of 4 and 5.S6Spectroscopic Data of 4a-5v.S7The Proposed Mechanism of the Cascade ReactionS25Scheme S1. The proposed mechanism of the cascade reaction.S27Scheme S2. Control experimentsS27X-ray Structure and Data of 4j and 5d.S29Figure S1. X-Ray crystal structure of 4jS29Table S2. Crystal data and structure refinement for 4jS29
Table S1 Optimized conditions for the synthesis of 4b & 5d.S4General Procedure for the Preparation of 4 and 5.S6Spectroscopic Data of 4a-5v.S7The Proposed Mechanism of the Cascade ReactionS25Scheme S1. The proposed mechanism of the cascade reaction.S25Control ExperimentsS27Scheme S2. Control experiments.S27X-ray Structure and Data of 4j and 5d.S29Figure S1. X-Ray crystal structure of 4j.S29Table S2. Crystal data and structure refinement for 4j.S29
General Procedure for the Preparation of 4 and 5
Spectroscopic Data of 4a-5v S7 The Proposed Mechanism of the Cascade Reaction S25 Scheme S1. The proposed mechanism of the cascade reaction. S25 Control Experiments S27 Scheme S2. Control experiments. S27 X-ray Structure and Data of 4j and 5d. S29 Figure S1. X-Ray crystal structure of 4j. S29 Table S2. Crystal data and structure refinement for 4j. S29
The Proposed Mechanism of the Cascade Reaction
Scheme S1. The proposed mechanism of the cascade reaction. S25 Control Experiments S27 Scheme S2. Control experiments. S27 X-ray Structure and Data of 4j and 5d. S29 Figure S1. X-Ray crystal structure of 4j S29 Table S2. Crystal data and structure refinement for 4j S29
Control Experiments S27 Scheme S2. Control experiments S27 X-ray Structure and Data of 4j and 5d. S29 Figure S1. X-Ray crystal structure of 4j. S29 Table S2. Crystal data and structure refinement for 4j. S29
Scheme S2. Control experiments. S27 X-ray Structure and Data of 4j and 5d. S29 Figure S1. X-Ray crystal structure of 4j. S29 Table S2. Crystal data and structure refinement for 4j. S29
X-ray Structure and Data of 4j and 5d
Figure S1. X-Ray crystal structure of 4j S29 Table S2. Crystal data and structure refinement for 4i S29
Table S2. Crystal data and structure refinement for 4i S29
Table S3. Bond Lengths for 4j S30
Table S4. Bond Angles for 4j S30
Figure S2. X-Ray crystal structure of 5d
Table S5. Crystal data and structure refinement for 5d S32
Table S6. Bond Lengths [Å] for 5d S33
Table S7. Bond Angles for 5d. S33
Figure S3. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 4aS35
Figure S4. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 4aS36
Figure S5. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 4bS37
Figure S6. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 4bS38
Figure S7 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 4c
Figure S8. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 4cS40
Figure S9. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 4dS41
Figure S10. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 4dS42
Figure S11. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 4e
Figure S12. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 4e S44
Figure S13. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 4f

Figure S1	4 . ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 4f	S46
Figure S1	5 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 4g	S47
Figure S1	6 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 4g	S48
Figure S1	7. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 4h	S49
Figure S1	8 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 4h	S50
Figure S1	9 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 4i	S51
Figure S2	0 . ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 4i	S52
Figure S2	1. ¹⁹ F NMR (564 MHz, DMSO- d_6) spectra of compound 4i	S53
Figure S2	2. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 4 j	S54
Figure S2	3 . ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound $4j$	S55
Figure S2	4 . ¹⁹ F NMR (564 MHz, $CDCl_3$) spectra of compound 4j	S56
Figure S2	5 . ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 4k	S57
Figure S2	6 . ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound $4k$	S58
Figure S2	7. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 41	S59
Figure S2	8 . ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 41	S60
Figure S2	9 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5a	S61
Figure S3	0 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5a	S62
Figure S3	1 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5b	S63
Figure S3	2 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5b	S64
Figure S3	3 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5 c	S65
Figure S3	4 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5 c	S66
Figure S3	5 . ¹⁹ F NMR (564 MHz, DMSO- d_6) spectra of compound 5 c	S67
Figure S3	6. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 5d	S68
Figure S3	7. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5d	S69
Figure S3	8 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5 e	S70
Figure S3	9 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5 e	
Figure S4	0 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5f	
Figure S4	1. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5 f	S73
Figure S4	2 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5 g	S74
Figure S4	3 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5 g	S75
Figure S4	4. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5h	
Figure S4	5. ¹ C NMR (150 MHz, DMSO- d_6) spectra of compound 5h	S77
Figure S4	10. H NMR (600 MHz, DMSO- a_6) spectra of compound 5	
Figure S4	8 ¹ H NMR (600 MHz DMSO- d_c) spectra of compound 5	
Figure S4	9. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5 i	
Figure S5	0 . ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 5k	
Figure S5	1. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5 k	S83
Figure S5	2 . ¹⁹ F NMR (564 MHz, DMSO- d_6) spectra of compound 5 k	S84
Figure S5	3. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 51	S85
Figure S5	4. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 51	
Figure S5	5. F NMR (564 MHz, DMSO- d_6) spectra of compound 5 1	S87
Figure S5	6. H NMR (600 MHz, DMSO- d_6) spectra of compound 5m	
Figure S5	1. CINVIR (150 MHz, DMSO- d_6) spectra of compound 5m	
Figure 55	9 . 1 INVIK (504 IVITZ, DIVISO- a_6) spectra of compound 5 m	
Figure SS	$\mathbf{\hat{n}}^{13}$ C NMR (150 MHz, DMSO- d_{c}) spectra of compound 5n	
Figure S6	1^{-19} F NMR (564 MHz DMSO- <i>d_c</i>) spectra of compound 5n	
Figure S6	2. ¹ H NMR (600 MHz, DMSO d_{δ}) spectra of compound 50	

Figure S63 . ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 50	\$95
Figure S64 . ¹⁹ F NMR (564 MHz, DMSO- d_6) spectra of compound 50	S96
Figure S65. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 5p	
Figure S66. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5p	\$98
Figure S67. ¹⁹ F NMR (564 MHz, DMSO- d_6) spectra of compound 5p	S99
Figure S68. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 5q	S100
Figure S69. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5q	S101
Figure S70. ¹ H NMR (564 MHz, DMSO- <i>d</i> ₆) spectra of compound 5r	S102
Figure S71. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5r	S103
Figure S72. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 5s	S104
Figure S73. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5 s	S105
Figure S74. ¹⁹ F NMR (564 MHz, DMSO- d_6) spectra of compound 5s	S106
Figure S75. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 5t	S107
Figure S76. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5t	S108
Figure S77. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 5u	S109
Figure S78. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5u	S110
Figure S79. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 5v	S111
Figure S80. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 5v	S112
Figure S81. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of intermediate 9f	S113
Figure S82. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of intermediate 9f	S114
Figure S83. HPLC of the reaction mixture	S115
Figure S84. HRMS of intermediate 1f	S116
Figure S85. HRMS of intermediate 2a/6a	S117
Figure S86. HRMS of intermediate 7f/8f	S118
Figure S87. HRMS of intermediate 9f/10f	S119
Figure S88. HRMS of intermediate 9f/10f	S120
Figure S89. HRMS of intermediate 12f/13f	S121
Figure S90. HRMS of intermediate 12f/13f	S122
Figure S91. HRMS of intermediate 14f	S123
Figure S92. HRMS of intermediate 15f/16f	S124
Figure S93. HRMS of intermediate 15f/16f	S125
Figure S94. HPLC of the reaction mixture	S126
Figure S95. HRMS of intermediate 4	S127
Figure S96. HRMS of intermediate 5f	S128

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX600. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated DMSO- d_6 or CDCl₃ was used as solvent, the solvent residue in DMSO- d_6 (¹³CNMR: 39.52 ppm, ¹H NMR, 2.50 ppm; the solvent residue in CDCl₃ (¹³CNMR: 7.26 ppm, ¹H NMR, 77.16 ppm). IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Two kinds of reagents which were used in the experiment were commercially available reagents.

Optimized Conditions for the Synthesis of 4b & 5d

	COOEt Solvent H T (°C)/3h 1b	9b COOEt	HN NH ₂ · HCl Ph 3b then promoter T ^o C/time	Ab Ph	N N Sd Ph
Entry	Solvent	Promoter	$T(^{o}C)$	Time (h)	4b/5d $(\%)^{b}$
1	EtOH	Cs_2CO_3	reflux	9	_/_
2	MeCN	Cs_2CO_3	reflux	9	72/-
3	H_2O	Cs_2CO_3	reflux	9	_/_
4	1,4-dioxane	Cs_2CO_3	reflux	9	14/33
5	DMF	Cs_2CO_3	110	9	-/83
6	PC	Cs_2CO_3	110	9	_/_
7	PE (1000)	Cs_2CO_3	110	9	_/_
8	[OMIM]PF ₆	Cs_2CO_3	110	9	_/_
9	MeCN	K_2CO_3	reflux	9	53/-
10	MeCN	Et ₃ N	reflux	9	_/_
11	MeCN	$Cs_2CO_3^c$	reflux	9	58/-
12	MeCN	$Cs_2CO_3^d$	reflux	9	70/-
13	MeCN	Cs_2CO_3	reflux	7	76/-
14	MeCN	Cs_2CO_3	reflux	11	71/trace
15	DMF	K_2CO_3	110	9	trace/32
16	DMF	DBU	110	9	20/64
17	DMF	Cs_2CO_3	100	9	15/75
18	DMF	Cs_2CO_3	120	9	-/81
19	DMF	Cs_2CO_3	110	7	-/83

Table S1 Optimized conditions for the synthesis of 4b & 5d^a

^{*a*} The reaction conditions: **1** (0.5 mmol), **2** (0.5 mmol), **3** (1.1 mmol), and promoter (2.0 equiv.) in 3.0 mL of solvent. ^{*b*} Isolated yield based on **1**. ^{*c*} Promoter (1.0 equiv.). ^{*d*} Promoter (2.5 equiv.).

The cascade reaction of 3-formylchromone 1b, ethyl 2-(pyridine-2-yl)acetate 2a and benzimidamide hydrochloride 3b was used as the model reaction to determinate the optimal conditions including the solvent, promoter, temperature, and time. We first explored the effect of different solvents, such as ethanol, acetonitrile, water, 1,4-dioxane, DMF, PEG1000, 3-methyl-1-octylimidazolium hexafluorophosphate ([OMIM]PF₆), and propylene carbonate (PC) on the reaction yield. From the solvent screen, we discovered that acetonitrile was the optimal solvent for the synthesis of 4,5-dihydro-[4,5'-bipyrimidin]-6(1H)-one (DBPMO) 4b, furnishing the product in 72% yield (Table S1, entry 2 vs. entry 1 and entries 3-8). Interestingly, DMF (in the presence of Cs_2CO_3) favored the formation of [4,5'-bipyrimidin]-6(1H)-one (BPMO) 5d (Table S1, entry 5 vs. entries 1–4 and 6–8). Next, we screened different bases, including K_2CO_3 , Et_3N , and Cs_2CO_3 , that would promote the generation of target compound **4b** in high yield. From this base screen, we determined and that Cs₂CO₃ was the optimal base for promoting this reaction (Table S1, entry 2 vs. 9-10). After screening the amount of $C_{52}CO_3$, we found that 2.0 equiv. of $C_{52}CO_3$ was ideal for promoting this cascade reaction (Table S1, entry 2 vs. 11-12). Finally, the reaction time was assessed, and it was determined that 7 hours was most beneficial for enabling high-yielding reactions (Table S1, entry 2 vs. 13-14). Based on the above results, we determined that the optimal conditions for selective synthesis of compound **4b** entailed acetonitrile as the solvent, 2.0 equiv. of Cs_2CO_3 as the base promoter, and stirring at reflux for about 7 hours (Table S1, entry 13).

As previously mentioned, the use of DMF as the solvent in the presence of Cs_2CO_3 led to the selective formation of product **5d**. In an attempt to determine the optimal conditions to enable the selective synthesis of **5d**, different base promoters, including K_2CO_3 and DBU, were screened in this reaction. The results of the base screen showed that Cs_2CO_3 was the optimal base for promoting this reaction (Table S1, entry 5 vs. 15–16). We then screened the reaction temperature, the results of which demonstrated that 110 $^{\circ}$ C was the optimal temperature for this cascade reaction (Table S1, entry 5 vs. 17–18). Lastly, after a reaction duration screen, it was determined that a reaction time of 10 hours selectively afforded **5d** in excellent yield (83%). Therefore, the results of the reaction optimization indicated that DMF as the solvent, 2.0 equiv. of Cs_2CO_3 as the base promoter, a temperature of 110 $^{\circ}$ C, and a duration of about 7 hours was best-suited for the selective synthesis of compound **5d** (Table S1, entry 19).

A round-bottom flask was charged with the chromone-3-carboxaldehyde **1** (0.5 mmol). Then, the flask was supplemented with MeCN (3 mL) and ethyl 2-(pyridin-2-yl)acetate **2** (0.5 mmol, and the mixture was stirred under reflux for approximately 3 hours while monitoring the reaction by TLC until the intermediate was completely consumed. Next, intermediate **3** (1.1 mmol) and Cs₂CO₃ (2.0 equiv.) were subsequently added to the above mixture, which was stirred under reflux for 7 hours until the substrates were completely consumed. After cooling the reaction to room temperature, the mixture was extracted with ethyl acetate (3 × 15 mL). The organic layer was washed with water and brine, and the combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford the crude product. Finally, product **4** was purified from the crude mixture by flash column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (2:1-1:1, v/v) as the eluent.

A round-bottom flask was charged with the chromone-3-carboxaldehyde 1 (0.5 mmol). Then, the flask was supplemented with DMF (3 mL) and ethyl 2-(pyridin-2-yl)acetate 2 (0.5 mmol, and the mixture was stirred at 110° C for approximately 3 hours while monitoring the reaction by TLC until the intermediate was completely consumed. Next, intermediate 3 (1.1 mmol) and Cs₂CO₃ (2.0 equiv.) were subsequently added to the above mixture, which was stirred at 110° C for 7 hours until the substrates were completely consumed. After cooling the reaction to room temperature, the mixture was extracted with ethyl acetate (3 × 15 mL). The organic layer was washed with water and brine, and the combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford the crude product. Finally, product **5** was purified from the crude mixture by flash column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (2:1-1:1, v/v) as the eluent.

Spectroscopic Data of 4a-5v

4'-(2-Hydroxy-5-nitrophenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-4,5-dihydro-[4,5'bipyrimidin]-6(1*H*)-one (4a)

White solid (83%, 225 mg); Mp: 253.2-254.3 °C; IR (KBr): 3766, 3409, 2273, 1613, 1589, 1473, 1134,1075, 757, 647, 540 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 4.26 (d, *J* = 12.7 Hz, 1H, CH), 5.35 (d, *J* = 12.8 Hz, 1H, CH), 6.65 (s, 1H, ArH), 6.72-6.89 (m, 2H, ArH), 7.17-7.19 (m, 1H, ArH), 7.43-7.55 (m, 8H, ArH), 7.96-8.01 (m, 2H, ArH), 8.18 (t, *J* = 4.0 Hz, 1H, ArH), 8.33-8.35 (m, 2H, ArH), 9.06 (s, 1H, ArH), 10.15 (s, 1H, ArOH), 11.18 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 53.4, 59.6, 110.6, 118.4, 122.4, 125.2, 127.8, 127.8, 128.2, 128.2, 128.8, 128.8, 129.2, 129.2, 131.2, 131.5, 131.5, 133.2, 133.3, 133.7, 136.6, 137.4, 149.5, 152.6, 153.8, 156.2, 158.6, 162.3, 162.4, 170.9 ppm. HRMS (TOF ES⁺): *m*/*z* calcd for C₃₁H₂₃N₆O₄ [(M+H)⁺], 543.1775; found, 543.1762.

4'-(5-Chloro-2-hydroxyphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-4,5-dihydro-[4, 5'-bipyrimidin]-6(1*H*)-one (4b)

White solid (76%, 202 mg); Mp: 225.4-226.6 °C; IR (KBr): 3422, 2374, 1693, 1604, 1434, 1377, 1105, 702, 653, 616, 572 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): ¹H NMR (600 MHz, DMSO- d_6): $\delta = 4.24$ (d, J = 12.5 Hz, 1H, CH), 5.36 (d, J = 12.7 Hz, 1H, CH), 6.53 (s, 1H, ArH), 6.87 (d, J = 7.6 Hz, 1H, ArH), 6.93 (d, J = 8.7 Hz, 1H, ArH), 7.15-7.17 (m, 1H, ArH), 7.31-7.32 (m, 1H, ArH), 7.47-7.56 (m, 7H, ArH), 7.97 (d, J = 7.6 Hz, 1H, ArH), 7.99 (s, 1H, ArH), 8.17 (d, J = 4.2 Hz, 1H, ArH), 8.33-8.34 (m, 2H, ArH), 9.05 (s, 1H, ArH), 10.12 (s, 1H, ArOH), 11.17 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 53.4$, 59.6, 117.9, 122.4, 123.0, 123.2, 125.2, 127.2, 127.7, 128.1, 128.2, 128.8, 128.8, 129.2, 130.3, 130.5, 131.2, 131.5, 131.5, 133.2, 133.6, 136.6, 137.4, 149.4, 152.5, 153.4, 156.3, 158.6,

162.3, 162.4, 170.8 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₃ClN₅O₂ [(M+H)⁺], 532.1535; found, 532.1539.

4'-(5-Bromo-2-hydroxyphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-4,5-dihydro-[4,5'bipyrimidin]-6(1*H*)-one (4c)

White solid (78%, 225mg); Mp: 248.0-249.2 °C; IR (KBr): 3774, 3416, 2350, 1709, 1606, 1432, 1106, 695, 619, 557, 513 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): $\delta = 4.26$ (d, J = 12.7 Hz, 1H, CH), 5.35 (d, J = 12.7 Hz, 1H, CH), 6.66 (s, 1H, ArH), 6.88 (t, J = 8.6 Hz, 2H, ArH), 7.18 (t, J = 5.4 Hz, 1H, ArH), 7.43-7.44 (m, 1H, ArH), 7.49-7.56 (m, 7H, ArH), 7.97 (d, J = 7.5 Hz, 1H, ArH), 8.00 (s, 1H, ArH), 8.18 (d, J = 3.9 Hz, 1H, ArH), 8.34 (d, J = 4.3 Hz, 2H, ArH), 9.06 (s, 1H, ArH), 10.15 (s, 1H, ArOH) ppm, 11.18 (s, 1H, NH); ¹³C NMR (150 MHz, DMSO-*d*₆): $\delta = 53.4$, 59.6, 110.6, 118.4, 122.4, 125.2, 127.8, 127.8, 127.8, 128.1, 128.2, 128.8, 128.8, 129.1, 129.1, 131.2, 131.5, 133.2, 133.2, 133.3, 133.6, 136.6, 137.4, 149.5, 152.5, 153.8, 156.2, 158.6, 162.3, 162.4, 170.9 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₃BrN₅O₂ [(M+H)⁺], 576.1030; found, 576.1033.

4'-(3,5-Dichloro-2-hydroxyphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-4,5-dihydro-[4, 5'-bipyrimidin]-6(1*H*)-one (4d)

White solid (77%, 218 mg); Mp: 233.1-234.2 °C; IR (KBr): 3786, 3413, 2251, 1703, 1656, 1412, 1007, 895, 766, 654, 606 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 4.32$ (d, J = 13.1 Hz, 1H, CH), 5.33 (d, J = 12.8 Hz, 1H, CH), 6.60 (s, 1H, ArH), 6.99 (d, J = 7.6 Hz, 1H, ArH), 7.19 (t, J = 5.3 Hz, 1H, ArH), 7.50-7.52 (m, 5H, ArH), 7.55-7.59 (m, 2H, ArH), 7.61 (s, 1H, ArH), 7.97-8.01 (m, 2H, ArH), 8.23 (t, J = 4.5 Hz, 1H, ArH), 8.34 (d, J = 6.7 Hz, 2H, ArH), 9.09 (s, 1H, ArH), 11.22 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 53.0$, 59.4, 122.6, 123.0, 123.8, 125.5, 127.8, 128.2, 128.3, 128.3, 128.8, 128.8, 128.8, 129.2, 129.2, 129.4, 130.1, 131.3, 131.5, 133.0, 133.6, 136.8, 137.2, 149.5, 149.5, 152.6, 156.1,

159.1, 161.7, 162.3, 170.8 ppm. HRMS (TOF ES⁺): m/z calcd for $C_{31}H_{22}Cl_2N_5O_2$ [(M+H)⁺], 566.1145; found, 566.1149.

4'-(5-Chloro-2-hydroxy-4-methylphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-4,5-dihydro-[4,5'-bipyrimidin]-6(1*H*)-one (4e)

White solid (70%, 191 mg); Mp: >300 °C; IR (KBr): 3802, 3409, 1622, 1605, 1433, 1299, 1104, 882, 700, 611, 556, 530 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d₆*): $\delta = 2.32$ (s, 3H, CH₃), 4.24 (d, J = 12.6 Hz, 1H, CH), 5.37 (d, J = 12.7 Hz, 1H, CH), 6.53 (s, 1H, ArH), 6.85 (d, J = 5.3 Hz, 2H, ArH), 7.14 (m, 1H, ArH), 7.48-7.55 (m, 7H, ArH), 7.96 (d, J = 7.4 Hz, 2H, ArH), 8.14 (d, J = 4.4 Hz, 1H, ArH), 8.32-8.34 (m, 2H, ArH), 9.03 (s, 1H, ArH), 10.0 (s, 1H, ArOH), 11.17 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO-*d₆*): $\delta = 20.1$, 53.4, 59.5, 118.6, 119.1, 122.4, 123.4, 125.0, 125.2, 127.7, 127.7, 128.1, 128.2, 128.8, 128.8, 129.1, 130.9, 131.2, 131.5, 133.3, 133.6, 136.6, 137.4, 137.7, 149.4, 152.5 153.2, 156.3, 158.5, 162.2, 162.4, 170.9 ppm. HRMS (TOF ES⁺): *m*/*z* calcd for C₃₂H₂₅ClN₅O₂ [(M+H)⁺], 546.1691; found, 546.1695.

4'-(5-Bromo-2-hydroxyphenyl)-2,2'-bis(2-chlorophenyl)-5-(pyridin-2-yl)-4,5-dihydro-[4,5'-bipyrimidin]-6(1*H*)-one (4f)

White solid (69% 222 mg); Mp: 190.0-191.1 °C; IR (KBr): 3760, 3433, 1720, 1665, 1595, 1486, 1435, 1272, 1104, 831, 750, 611, 553 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 4.10$ (d, J = 13.3 Hz, 1H, CH), 5.92 (d, J = 13.3 Hz, 1H, CH), 6.90-6.99 (m, 2H, ArH), 7.12 (t, J = 5.0 Hz, 1H, ArH), 7.36-7.54 (m, 9H, ArH), 7.67-7.73 (m, 3H, ArH), 8.29 (d, J = 4.8 Hz, 1H, ArH), 9.09 (s, 1H, ArH), 9.99 (s, 1H, ArOH) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 53.0$, 59.4, 111.7, 120.4, 122.8, 123.3, 125. 1, 127.0, 127.5, 129.9, 130.4, 130.5, 130.5, 130.9, 130.9, 131.7, 131.9, 132.1, 132.4, 132.5, 133.5, 134.7, 136.4, 136.8, 149.7, 153.3, 155.3,

159.2, 162.4, 162.9, 168.8 ppm. HRMS (TOF ES⁺): m/z calcd for $C_{31}H_{21}BrCl_2N_5O_2$ [(M+H)⁺], 644.0250; found, 644.0257.

2,2'-Bis(2-chlorophenyl)-4'-(2-hydroxyphenyl)-5-(pyridin-2-yl)-4,5-dihydro-[4,5'-bipyrimidin]-6(1*H*)-one (4g)

White solid (63%, 178 mg); Mp: 198.0-199.2; IR (KBr): 3802, 3425, 1700, 1638, 1577, 1433, 1405, 1202, 1004, 750, 633, 543 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 4.19$ (d, J = 10.9 Hz, 1H, CH), 5.45 (d, J = 10.9 Hz, 1H, CH), 6.77 (t, J = 9.1 Hz, 2H, ArH), 6.82 (t, J = 7.5 Hz, 1H, ArH), 6.94 (d, J = 8.1 Hz, 1H, ArH), 7.15-7.17 (m, 1H, ArH), 7.28-7.30 (m, 1H, ArH), 7.49-7.43 (m, 3H, ArH), 7.51-7.61 (m, 5H, ArH), 7.70-7.72 (m, 1H, ArH), 8.18 (t, J = 4.0Hz, 1H, ArH), 9.07 (s, 1H, ArH), 9.81 (s, 1H, ArOH), 11.15 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 53.2$, 59.8, 116.3, 119.5, 122.6, 124.7, 127.6, 127.6, 127.7, 130.1, 130.2, 130.5, 130.6, 130.9, 131.1, 131.4, 131.8, 131.9, 132.0, 132.2, 134.6, 136.7, 137.9, 149.6, 152.7, 154.4, 156.3, 157.4, 163.3, 163.9, 169.8 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₂Cl₂N₅O₂ [(M+H)⁺], 566.1145; found, 566.1143.

4'-(5-Chloro-2-hydroxy-4-methylphenyl)-2,2'-bis(2-chlorophenyl)-5-(pyridin-2-yl)-4,5-dihydro-[4,5'-bipyrimidin]-6(1*H*)-one (4h)

White solid (65%, 200 mg); Mp: 221.4-222.7 °C; IR (KBr): 3759, 3409, 1701, 1655, 1600, 1471, 1436, 1222, 1107, 748, 599, 530 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 2.32$ (s, 3H, CH₃), 4.22 (d, J = 12.5 Hz, 1H, CH), 5.43 (d, J = 12.7 Hz, 1H, CH), 6.46 (s, 1H, ArH), 6.86 (t, J = 7.8 Hz, 1H, ArH), 7.16-7.18 (m, 1H, ArH), 7.43-7.50 (m, 4H, ArH), 7.51-7.61 (m, 5H, ArH), 7.70 (d, J = 7.6 Hz, 1H, ArH), 8.12 (s, 1H, ArH), 9.11 (s, 1H, ArH), 10.00 (s, 1H, ArOH), 11.12 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 20.1$, 53.7, 60.0, 118.5, 122.4,

123.4, 124.4, 125.3, 127.6, 127.7, 130.1, 130.6, 131.0, 131.2, 131.8, 131.8, 131.9, 131.9, 132.1, 133.1, 134.6, 136.5, 137.8, 137.9, 149.4, 152.6 153.1, 156.1, 158.1, 161.9, 163.3, 170.0 ppm. HRMS (TOF ES⁺): m/z calcd for $C_{32}H_{23}Cl_3N_5O_2$ [(M+H)⁺], 614.0912; found, 614.0913.

2,2'-Bis(4-fluorophenyl)-4'-(2-hydroxy-5-nitrophenyl)-5-(pyridin-2-yl)-4,5-dihydro-[4,5'-bipyrimidin]-6(1*H*)-one (4i)

White solid (73%, 211 mg); Mp: >300 °C; IR (KBr): 3766, 3396, 2277, 1606, 1505, 1385, 1122, 1048, 755, 605, 550 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): δ = 4.29 (d, J = 13.3 Hz, 1H, CH), 5.32 (d, J = 13.3 Hz, 1H, CH), 6.93 (d, J = 7.6 Hz, 1H, ArH), 7.02-7.04 (m, 1H, ArH), 7.09 (d, J = 9.1 Hz, 1H, ArH), 7.31-7.40 (m, 5H, ArH), 7.50-7.52 (m, 1H, ArH), 8.02-8.06 (m, 3H, ArH), 8.17-8.22 (m, 1H, ArH), 8.37-8.39 (m, 2H, ArH), 9.13 (s, 1H, ArH), 11.25 (s, 1H, ArOH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): δ = 53.4, 59.5, 115.7, 115.8, 116.1, 116.2, 116.8, 122.4, 125.6, 126.0, 126.9, 127.4, 130.0, 130.3, 130.5, 130.6, 133.5, 133.7, 136.6, 139.0, 149.2, 151.7, 156.1, 159.3, 160.9, 161.4, 161.5, 163.6, 164.2 (d, J_I = 246 Hz), 165.3, 170.9 ppm; ¹⁹F NMR (564 MHz, DMSO- d_6): δ = -110.28, -109.60 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₀F₂N₆O₄ [(M+H)⁺], 579.1587; found, 579.1587.

2,2'-Di-tert-butyl-4'-(5-fluoro-2-hydroxyphenyl)-5-(pyridin-2-yl)-4,5-dihydro-[4,5 '-bipyrimidin]-6(1*H*)-one (4j)

White solid (74%, 176 mg); Mp: 138.5-139.5 °C; IR (KBr): 3761, 3420, 2966, 1707, 1658, 1575, 1483, 1441, 1361, 1273, 1140, 867, 833, 769, 711, 607 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.32$ (s, 9H, C(CH₃)₃), 1.38 (s, 9H, C(CH₃)₃), 3.82 (d, J = 12.8 Hz, 1H, CH), 5.61 (d, J = 12.4 Hz, 1H, CH), 6.77 (d, J = 7.4 Hz, 1H, ArH), 6.95-6.97 (m, 1H, ArH), 7.04-7.07 (m, 2H, ArH), 7.44-7.46 (m, 1H,

ArH), 7.55 (d, J = 9.1 Hz, 1H, ArH), 8.30 (s, 1H, ArH), 8.43 (s, 1H, ArOH), 8.81 (s, 1H, ArH), 10.90 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 27.5$, 27.5, 27.5, 29.3, 29.3, 29.3, 37.1, 39.1, 52.6, 59.0, 117.4 (d, $J_2 = 25.5$ Hz), 118.6 (d, $J_2 = 22.5$ Hz), 119.3 (d, $J_3 = 7.5$ Hz), 121.3, 122.5, 124.5, 128.5, 136.4, 149.8, 153.3, 154.2, 154.0, 156.5, 159.6, 161.2 (d, $J_1 = 228.0$ Hz), 170.3, 174.5 ppm; ¹⁹F NMR (564 MHz, CDCl₃): $\delta = -124.09$ ppm. HRMS (TOF ES⁺): m/z calcd for C₂₇H₃₁FN₅O₂ [(M+H)⁺], 476.2456; found, 476.2460.

2,2'-Di-tert-butyl-4'-(3,5-dichloro-2-hydroxyphenyl)-5-(pyridin-2-yl)-4,5-dihydro -[4,5'-bipyrimidin]-6(1*H*)-one (4k)

White solid (75%, 197 mg); Mp: >300 °C; IR (KBr): 3766, 3398, 2974, 1710, 1652, 1591, 1441, 1364, 1142, 752, 646, 618, 572, 529 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 1.17-1.27 (m, 9H, C(CH₃)₃), 1.28-1.36 (m, 9H, C(CH₃)₃), 3.76 (d, *J* = 12.8 Hz, 1H, CH), 5.44 (d, *J* = 12.8 Hz, 1H, CH), 6.74 (d, *J* = 7.7 Hz, 1H, ArH), 6.98-7.00 (m, 1H, ArH), 7.36 (d, *J* = 2.5 Hz, 1H, ArH), 7.41 (d, *J* = 1.6 Hz, 1H, ArH), 7.59 (d, *J* = 2.3 Hz, 1H, ArH), 8.21 (d, *J* = 4.3 Hz, 1H, ArH), 8.75 (s, 1H, ArH), 11.67 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 27.6, 27.6, 27.6, 29.3, 29.3, 29.4, 37.1, 39.1, 52.6, 58.8, 122.6, 124.0, 124.0, 124.5, 128.7, 129.4, 129.4, 131.5, 131.5, 136.6, 149.7, 151.9 153.9, 159.4, 161.2, 169.9, 174.7 ppm. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₃₀Cl₂N₅O₂ [(M+H)⁺], 526.1771; found, 526.1776.

5-(6-Ethylpyridin-2-yl)-4'-(2-hydroxy-5-nitrophenyl)-2,2'-diphenyl-4,5-dihydro-[4,5'-bipyrimidin]-6(1*H*)-one (4l)

White solid (80%, 228 mg); Mp: 206.4-207.7 °C; IR (KBr): 3760, 3415, 1606, 1425, 1345, 1107, 765, 703, 656, 612, 549, 519, 509 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 1.11 (t, *J* = 7.6 Hz, 3H, CH₃), 2.46 (m, 2H, CH₂), 4.26 (d, *J* = 13.3 Hz, 1H, CH), 5.35 (d, *J* = 13.4 Hz, 1H, CH), 6.84 (d, *J* = 7.9 Hz, 1H, ArH), 7.11 (d,

J = 9.1 Hz, 1H, ArH), 7.35 (d, J = 6.5 Hz, 1H, ArH), 7.45-7.57 (m, 7H, ArH), 7.92 (s, 1H, ArH), 7.97 (d, J = 7.6 Hz, 2H, ArH), 8.24 (d, J = 12.8 Hz, 1H, ArH), 8.34 (d, J = 5.6 Hz, 2H, ArH), 9.15 (s, 1H, ArH), 11.19 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 15.2$, 25.2, 53.0, 59.5, 116.8, 125.0, 126.8, 127.4, 127.7, 128.1, 128.1, 128.8, 128.8, 129.2, 129.2, 131.3, 135.7, 137.2, 137.7, 139.8, 148.9, 153.4, 161.0, 162.4 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₃H₂₇N₆O₄ [(M+H)⁺], 571.2088; found, 571.2091.

4'-(3,5-Dichloro-2-hydroxyphenyl)-5-(pyridin-2-yl)-2,2'-di-p-tolyl-[4,5'-bipyrimidin]-6(1*H*)-one (5a)

Yellow solid (81%, 240mg); Mp: 295.5-296.0 °C; IR (KBr): 3739, 3411, 2430, 1644, 1535, 1439, 1357, 1121, 730, 665, 622, 548, 513 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): δ = 2.35-2.44 (m, 6H, CH₃), 7.06 (s, 1H, ArH), 7.23-7.28 (m, 1H, ArH), 7.33 (t, *J* = 8.9 Hz, 4H, ArH), 7.46 (d, *J* = 7.7 Hz, 1H, ArH), 7.54 (s, 1H, ArH), 7.74 (t, *J* = 7.7 Hz, 1H, ArH), 7.86-8.00 (m, 2H, ArH), 8.27-8.34 (m, 3H, ArH), 8.86 (s, 1H, ArH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): δ = 21.5, 21.5, 122.8, 123.0, 123.7, 126.9, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.9, 129.0, 129.7, 129.7, 129.7, 129.9, 129.9, 129.9, 130.3, 130.3, 131.1, 134.2, 136.7, 141.7, 142.8, 148.7, 150.2, 151.9, 158.8, 160.9, 162.9 ppm. HRMS (TOF ES⁺): *m/z* calcd for C₃₃H₂₄Cl₂N₅O₂ [(M+H)⁺], 592.1302; found, 592.1302.

4'-(2-Hydroxy-5-nitrophenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6 (1*H*)-one (5b)

Yellow solid (86%, 233 mg); Mp: >300 °C; IR (KBr): 3788, 3430, 2370, 1650, 1595, 1404, 1349, 1194, 1104, 829, 728, 690, 607, 536 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 6.93$ (d, J = 9.0 Hz, 1H, ArHs), 7.08-7.11 (m, 2H, ArH), 7.42-7.44

(m, 1H, ArH), 7.54-7.57 (m, 7H, ArH), 8.10-8.12 (m, 1H, ArH), 8.18-8.31 (m, 3H, ArH), 8.43-8.45 (m, 2H, ArH), 9.10 (s, 1H, ArH), 11.50 (s, 1H, ArOH), 13.20 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 29.9$, 30.0, 30.1, 30.2, 30.4, 30.5, 30.7, 116.7, 122.5, 126.2, 126.3, 126.9, 127.0, 128.3, 128.3, 128.4, 129.1, 129.2, 129.2, 129.3, 131.6, 132.5, 135.6, 137.1, 140.4, 148.8, 152.1, 159.2, 159.8, 161.4, 163.1 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₁N₆O₄ [(M+H)⁺], 541.1619; found, 541.1619.

4'-(5-Fluoro-2-hydroxyphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6(1*H*)-one(5c)

Yellow solid (82% 211 mg); Mp: >300 °C; IR (KBr): 3751, 3449, 2367, 1649, 1512, 1432, 1362, 1107, 881, 690, 603, 538 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 6.59$ -6.61 (m, 1H, ArH), 6.73-6.75 (m, 1H, ArH), 7.05 (d, J = 3.2 Hz, 1H, ArH), 7.17-7.19 (m, 2H, ArH), 7.52-7.61 (m, 7H, ArH), 8.11 (d, J = 7.6 Hz, 2H, ArH), 8.27 (d, J = 3.8 Hz, 1H, ArH), 8.41-8.43 (m, 2H, ArH), 8.94 (s, 1H, ArH), 9.79 (s, 1H, ArOH), 13.16 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 116.4$, 116.5, 117.2, 117.2, 117.6, 117.7, 122.6, 126.4, 126.5, 126.5, 128.3, 128.3, 128.4, 128.4, 129.1, 129.1, 129.3, 129.3, 131.3, 131.5, 132.4, 136.1, 137.2, 148.8, 151.5, 152.4, 155.2, 156.8, 158.9, 161.2, 162.7 ppm. ¹⁹F NMR (564 MHz, DMSO- d_6): $\delta = -125.95$ ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₁FN₅O₂ [(M+H)⁺], 514.1674; found, 514.0672.

4'-(5-Chloro-2-hydroxyphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6(1*H*)-one (5d)

Yellow solid (83%, 220 mg); Mp: $>300 \,$ °C; IR (KBr): 3765, 3452, 2344, 1645, 1590, 1401, 1385, 1121, 708, 615, 569, 513 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆):

δ = 6.70 (d, J = 2.3 Hz, 1H, ArH), 6.76 (d, J = 8.7 Hz, 1H, ArH), 7.12 (d, J = 7.9 Hz, 1H, ArH), 7.17-7.19 (m, 1H, ArH), 7.22-7.23 (m, 1H, ArH), 7.53-7.58 (m, 6H, ArH), 7.61 (d, J = 7.3 Hz, 1H, ArH), 8.13 (d, J = 7.6 Hz, 2H, ArH), 8.26 (d, J = 4.3 Hz, 1H, ArH), 8.41-8.43 (m, 2H, ArH), 8.98 (s, 1H, ArH), 10.07 (s, 1H, ArOH), 13.14 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): δ = 117.8, 122.4, 123.5, 126.4, 127.3, 128.3, 128.3, 128.3, 128.4, 128.4, 128.4, 129.1, 129.1, 129.1, 129.3, 129.3, 129.3, 129.3, 129.9, 130.7, 131.4, 131.6, 132.4, 136.1, 137.2, 148.7, 152.2, 154.0, 158.9, 160.9, 162.8 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₁ClN₅O₂ [(M+H)⁺], 530.1378; found, 530.1376.

4'-(5-Bromo-2-hydroxyphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6(1*H*)-one (5e)

Yellow solid (80%, 230 mg); Mp: >300 °C; IR (KBr): 3454, 2366, 1642, 1586, 1400, 1387, 1116, 698, 610, 556 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 6.72 (d, *J* = 8.7 Hz, 1H, ArH), 6.84 (s, 1H, ArH), 7.13-7.20 (m, 2H, ArH), 7.33-7.37 (m, 1H, ArH), 7.45-7.68 (m, 7H, ArH), 8.15 (t, *J* = 7.6 Hz, 2H, ArH), 8.22-8.26 (m, 1H, ArH), 8.32-8.43 (m, 2H, ArH), 8.98 (s, 1H, ArH), 10.12 (s, 1H, ArOH), 13.13 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): δ =111.1, 118.3, 122.4, 126.4, 127.8, 128.3, 128.3, 128.4, 128.4, 128.4, 129.1, 129.1, 129.1, 129.3, 129.3, 129.3, 131.4, 131.4, 131.5, 131.5, 132.3, 132.7, 133.5, 136.2, 137.2, 148.7, 152.3, 154.4, 158.9, 160.9, 162.8 ppm. HRMS (TOF ES⁺): *m/z* calcd for C₃₁H₂₁BrN₅O₂ [(M+H)⁺], 574.0873; found, 574.0875.

4'-(2-Hydroxyphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6(1*H*)one (5f)

Yellow solid (80%, 198 mg); Mp: >300 °C; IR (KBr): 3446, 2363, 1644, 1509, 1428, 1359, 1107, 898, 655, 572, 542 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta =$

6.75-6.78 (m, 2H, ArH), 7.06 (d, J = 7.3 Hz, 1H, ArH), 7.16-7.23 (m, 3H, ArH), 7.49-7.61 (m, 7H, ArH), 8.01 (d, J = 7.6 Hz, 2H, ArH), 8.31 (t, $J_1 = 8.3$ Hz, $J_2 =$ 4.2 Hz, 1H, ArH), 8.41 (t, $J_1 = 5.3$ Hz, $J_2 = 2.5$ Hz, 2H, ArH), 8.81 (s, 1H, ArH), 9.94 (s, 1H, ArOH), 13.12 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta =$ 116.3, 119.6, 122.7, 125.3, 126.5, 128.3, 128.3, 128.3, 128.4, 128.4, 128.4, 129.0, 129.0, 129.0, 129.2, 129.2, 129.2, 131.0, 131.2, 131.5, 132.3, 136.3, 137.3, 148.7, 152.6, 155.4, 156.5, 158.7, 159.3, 162.5, 162.8 ppm. HRMS (TOF ES⁺): m/zcalcd for C₃₁H₂₂N₅O₂ [(M+H)⁺], 496.1768; found, 496.1768.

4'-(3,5-Dichloro-2-hydroxyphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6(1*H*)-one (5g)

Yellow solid (83%, 234 mg); Mp: >300 °C; IR (KBr): 3837, 3422, 2967, 1749, 1593, 1434, 1390, 1194, 1104, 819, 674, 602, 572 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 6.99$ (d, J = 2.5 Hz, 1H, ArH), 7.23-7.25 (m, 1H, ArH), 7.42 (d, J = 8.0 Hz, 1H, ArH), 7.52-7.58 (m, 6H, ArH), 7.61 (t, J = 7.3 Hz, 1H, ArH), 7.71-7.74 (m, 1H, ArH), 8.06 (d, J = 7.5 Hz, 2H, ArH), 8.28 (d, J = 4.5 Hz, 1H, ArH), 8.39-8.41 (m, 2H, ArH), 8.84 (s, 1H, ArH), 10.54 (s, 1H, ArOH), 13.23 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 122.8$, 123.0, 123.8, 126.9, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.9, 129.1, 129.1, 129.1, 129.3, 129.3, 129.3, 130.3, 131.4, 131.8, 132.6, 136.7, 136.9, 148.8, 150.1, 151.8, 158.4, 158.9, 160.8, 162.9 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₀ClN₅O₂ [(M+H)⁺], 564.0989; found, 564.0992.

4'-(5-Chloro-2-hydroxy-4-methylphenyl)-2,2'-diphenyl-5-(pyridin-2-yl)-[4,5'-bi-pyrimidin]-6(1*H*)-one (5h)

Yellow solid (82%, 223 mg); Mp: >300 °C; IR (KBr): 3785, 3403, 2374, 1641, 1532, 1434, 1385, 1106, 695, 616, 555 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): δ = 2.26 (s, 3H, CH₃), 6.70 (s, 1H, ArH), 6.72 (s, 1H, ArH), 7.11 (d, J = 7.9 Hz, 1H, ArH), 7.15-7.17 (m, 1H, ArH), 7.52-7.62 (m, 7H, ArH), 8.12 (d, J = 7.4 Hz, 2H, ArH), 8.24 (d, J = 4.1 Hz, 1H, ArH), 8.40-8.42 (m, 2H, ArH), 8.95 (s, 1H, ArH), 9.97 (s, 1H, ArOH), 13.15 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): δ = 20.0, 118.4, 122.4, 124.0, 124.9, 126.5, 128.3, 128.3, 128.3, 128.4, 128.4, 128.4, 128.4, 129.1, 129.1, 129.1, 129.3, 129.3, 129.3, 130.3, 131.2, 131.5, 132.4, 136.0, 137.2, 138.5, 148.7, 152.3, 153.9, 158.9, 160.9, 162.8 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₂H₂₃ClN₅O₂ [(M+H)⁺], 544.1535; found, 544.1538.

2,2'-Bis(2-chlorophenyl)-4'-(2-hydroxyphenyl)-5-(pyridin-2-yl)-[4,5'-bipyrimidin] -6(1*H*)-one (5i)

Yellow solid (77%, 217 mg); Mp: 240.7–241.8 °C; IR (KBr): 3759, 3402, 2366, 2022, 1605, 1516, 1488, 1387, 1123, 764, 681, 616, 557, 535 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): $\delta = 6.0$ (t, J = 7.4 Hz, 1H, ArH), 6.82 (d, J = 8.2 Hz, 1H, ArH), 6.99 (d, J = 7.4 Hz, 1H, ArH), 7.19 (t, J = 3.7 Hz, 2H, ArH), 7.23-7.26 (m, 1H, ArH), 7.48-7.63 (m, 8H, ArH), 7.77-7.79 (m, 1H, ArH), 8.27 (s, 1H, ArH), 8.56 (s, 1H, ArH), 10.04 (s, 1H, ArOH), 13.27 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): $\delta = 116.5$, 119.7, 122.8, 124.2, 126.5, 127.6, 127.7, 127.7, 130.3, 130.7, 130.7, 130.7, 131.3, 131.4, 131.6, 131.6, 132.0, 132.0, 132.1, 132.2, 132.5, 133.4, 136.2, 137.6, 148.6, 152.1, 155.7, 158.3, 159.0, 161.9, 163.5 ppm. HRMS (TOF ES⁺): *m/z* calcd for C₃₁H₂₀Cl₂N₅O₂ [(M+H)⁺], 564.0989; found, 564.0991.

4'-(5-Chloro-2-hydroxy-4-methylphenyl)-2,2'-bis(2-chlorophenyl)-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6(1*H*)-one (5j)

Yellow solid (80%, 244 mg); Mp: >300 °C; IR (KBr): 3737, 3426, 1695, 1605, 1500, 1385, 1107, 764, 726, 692, 664, 602, 573 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.27 (s, 3H, CH₃), 6.68 (s, 1H, ArH), 6.77 (s, 1H, ArH), 7.11 (d, *J* = 7.9 Hz, 1H, ArH), 7.20 (s, 1H, ArH), 7.49-7.66 (m, 8H, ArH), 7.79 (d, *J* = 7.3 Hz, 1H, ArH), 8.22 (s, 1H, ArH), 8.96 (s, 1H, ArH), 10.11 (s, 1H, ArOH), 13.31 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 20.1, 118.6, 122.5, 123.8, 124.0, 126.5, 127.6, 127.8, 127.8, 130.4, 130.4, 130.6, 130.7, 130.7, 131.5, 131.6, 132.1, 132.1, 132.1, 132.5, 133.4, 136.0, 137.6, 138.9, 148.6, 151.8, 154.1, 158.5, 158.7, 160.1, 163.7 ppm. HRMS (TOF ES⁺): *m*/*z* calcd for C₃₂H₂₁Cl₃N₅O₂ [(M+H)⁺], 612.0755; found, 612.0753.

2,2'-Bis(4-fluorophenyl)-4'-(2-hydroxyphenyl)-5-(pyridin-2-yl)-[4,5'-bipyrimidin] -6(1*H*)-one (5k)

Yellow solid (82%, 218 mg); Mp: 304.3-305.5 °C; IR (KBr): 3759, 3393, 1643, 1606, 1519, 1439, 1384, 1106, 852, 700, 617, 554 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 6.74-6.77$ (m, 2H, ArH), 7.03 (d, J = 7.3 Hz, 1H, ArH), 7.16-7.22 (m, 3H, ArH), 7.33-7.37 (m, 4H, ArH), 7.57-7.60 (m, 1H, ArH), 8.07-8.09 (m, 2H, ArH), 8.31 (d, J = 4.1 Hz, 1H, ArH), 8.44-8.46 (m, 2H, ArH), 8.79 (s, 1H, ArH), 9.87 (s, 1H, ArOH), 13.13 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 116.0, 116.1, 116.1, 116.2, 116.3, 119.7, 122.7, 125.4, 126.5, 129.3, 130.7, 130.8, 130.9, 131.0, 131.1, 131.2, 133.8, 136.3, 148.7, 152.6, 155.3, 158.7, 159.3, 161.7, 162.9, 163.1, 163.7, 163.9, 165.4, 165.6 ppm; ¹⁹F NMR (564 MHz, DMSO-<math>d_6$): $\delta = -110.06, -108.21$ ppm. HRMS (TOF ES⁺): m/z calcd for $C_{31}H_{20}F_2N_5O_2$ [(M+H)⁺], 532.1580; found, 532.1576

4'-(5-Fluoro-2-hydroxyphenyl)-2,2'-bis(3-fluorophenyl)-5-(pyridin-2-yl)-[4,5'-bi pyrimidin]-6(1*H*)-one (5l)

Yellow solid (79%, 217 mg); Mp: 222.6–223.2 °C; IR (KBr): 3766, 3429, 1650, 1532, 1327, 1131, 711, 608, 559, 502 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): δ = 6.56-6.57 (m, 1H, ArH), 6.65-6.67 (m, 1H, ArH), 6.97-6.99 (m, 1H, ArH), 7.10-7.13 (m, 2H, ArH), 7.32-7.40 (m, 2H, ArH), 7.50-7.57 (m, 3H, ArH), 7.79 (d, J = 10.1 Hz, 2H, ArH), 8.30 (d, J = 3.8 Hz, 1H, ArH), 8.61 (d, J = 8.2 Hz, 2H, ArH), 8.88 (s, 1H, ArH), 9.69 (s, 1H, ArOH), 13.12 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): δ = 114.7 (d, J_2 = 24.0 Hz), 115.0, 115.1, 116.5 (d, J_2 = 22.5 Hz), 117.2, 117.2, 117.8 (d, J_2 = 24.0 Hz), 118.4 (d, J_2 = 21.0 Hz), 119.1, 119.2, 122.7, 124.4, 126.4 (d, J_2 = 22.5 Hz), 126.4, 131.2, 131.3 (d, J_2 = 22.5 Hz), 131.4, 131.6, 136.2, 139.7 (d, J_3 = 7.5 Hz), 148.8, 151.4, 152.2, 155.3, 156.8, 159.0, 161.4, 161.6, 161.8, 163.0 (d, J_1 = 241.5 Hz), 163.4 ppm; ¹⁹F NMR (564 MHz, DMSO- d_6): δ = -125.83, -112.73, -112.34 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₁₉F₃N₅O₂ [(M+H)⁺], 550.1485; found, 550.1487.

2,2'-Bis(3-fluorophenyl)-4'-(2-hydroxyphenyl)-5-(pyridin-2-yl)-[4,5'-bipyrimidin] -6(1*H*)-one (5m)

Yellow solid (75%, 199 mg); Mp: >300 °C; IR (KBr): 3420, 3078, 1647, 1560, 1433, 1365, 1205, 1150, 1010, 896, 760, 615, 525 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 6.78$ (t, J = 5.3 Hz, 2H, ArH), 7.07 (d, J = 7.0 Hz, 1H, ArH), 7.18-7.23 (m, 3H, ArH), 7.38-7.44 (m, 2H, ArH), 7.53-7.62 (m, 3H, ArH), 7.76 (d, J = 10.1 Hz, 1H, ArH), 7.89 (d, J = 7.8 Hz, 1H, ArH), 8.10 (d, J = 9.7 Hz, 1H, ArH), 8.25 (d, J = 7.9 Hz, 1H, ArH), 8.33 (d, J = 4.2 Hz, 1H, ArH), 8.82 (d, J = 13.5 Hz, 1H, ArH), 9.86 (s, 1H, ArOH), 13.16 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 114.6$ (d, $J_2 = 22.5$ Hz), 115.1 (d, $J_2 = 22.5$ Hz), 116.2, 118.2, 118.4, 119.0, 119.1, 119.7, 122.8, 124.4, 124.5, 125.4, 126.5, 131.0, 131.1, 131.1, 131.1, 131.3, 131.4, 135.4, 136.4, 139.8, 139.9, 148.8, 152.5, 155.3, 158.7,

162.2, 162.2 (d, $J_1 = 247.5$ Hz), 162.5 (d, $J_1 = 241.5$ Hz), 163.8 ppm; ¹⁹F NMR (564 MHz, DMSO- d_6): $\delta = -112.76$, -112.43 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₀F₂N₅O₂ [(M+H)⁺], 532.1580; found, 532.1578.

4'-(5-Chloro-2-hydroxy-4-methylphenyl)-2,2'-bis(3-fluorophenyl)-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6(1*H*)-one (5n)

Yellow solid (79%, 229 mg); Mp: >300 °C; IR (KBr): 3422, 2425, 1749, 1594, 1515, 1311, 1270, 1141, 1123, 1056, 856, 788, 619, 555 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): δ = 2.26 (s, 3H, CH₃), 6.69 (s, 1H, ArH), 6.74 (s, 1H, ArH), 7.11 (d, J = 7.9 Hz, 1H, ArH), 7.18-7.20 (m, 1H, ArH), 7.39-7.48 (m, 2H, ArH), 7.56-7.62 (m, 3H, ArH), 7.86 (d, J = 10.1 Hz, 1H, ArH), 8.00 (t, J = 7.7 Hz, 1H, ArH), 8.11 (d, J = 10.3 Hz, 1H, ArH), 8.26 (t, J = 5.2 Hz, 2H, ArH), 8.96 (s, 1H, ArH), 9.94 (s, 1H, ArOH), 13.21 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): δ = 20.0, 114.6 (d, J_2 = 24.0 Hz), 115.1 (d, J_2 = 24.0 Hz), 118.3, 118.4, 118.4, 119.1, 119.2, 122.5, 124.1, 124.4, 124.5, 124.9, 126.4, 130.3, 131.2, 131.3, 131.4, 131.4, 136.2, 138.6, 139.7, 139.8, 148.8, 152.1, 153.8, 159.0, 161.1, 161.7, 162.2, 162.6 (d, J_1 = 243.0 Hz), 163.8 ppm; ¹⁹F NMR (564 MHz, DMSO- d_6): δ = -112.71, -112.32 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₂H₂₁ClF₂N₅O₂ [(M+H)⁺], 580.1346; found, 580.1345.

4'-(5-Bromo-2-hydroxyphenyl)-5-(pyridin-2-yl)-2,2'-bis(4-(trifluoromethyl)pheny l)-[4,5'-bipyrimidin]-6(1*H*)-one (50)

Yellow solid (86%, 305 mg); Mp: 174.8–175.4 °C; IR (KBr): 3751, 3434, 2939, 2343, 1651, 1600, 1385, 1327, 1129, 859, 675, 611, 516 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 6.70$ (d, J = 8.7 Hz, 1H, ArH), 6.76 (d, J = 2.0 Hz, 1H, ArH), 7.09(d, J = 7.9 Hz, 1H, ArH), 7.19-7.21 (m, 1H, ArH), 7.34-7.36 (m, 1H,

ArH), 7.57-7.60 (m, 1H, ArH), 7.92-7.94 (m, 4H, ArH), 8.25 (d, J = 4.4 Hz, 1H, ArH), 8.37 (d, J = 8.2 Hz, 2H, ArH), 8.62 (d, J = 8.2 Hz, 2H, ArH), 9.10 (s, 1H, ArH), 10.06 (s, 1H, ArOH), 13.38 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 111.1$, 118.3, 121.9, 122.5, 123.5, 123.7, 125.3, 125.6, 126.0, 126.2, 126.2, 126.3, 126.3, 127.4, 127.5, 129.1, 129.1, 129.1, 129.3, 129.3, 131.2, 131.5, 132.1, 132.6, 133.7, 136.3, 140.9, 148.7, 151.9, 154.3, 159.1, 161.0, 161.6 ppm; ¹⁹F NMR (564 MHz, DMSO- d_6): $\delta = -61.39$, -61.39, -61.39, -61.28, -61.28 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₃H₁₈BrF₆N₅O₂ [(M+H)⁺], 710.0621; found, 710.0624.

4'-(2-Hydroxyphenyl)-5-(pyridin-2-yl)-2,2'-bis(4-(trifluoromethyl)phenyl)-[4,5'bipyrimidin]-6(1*H*)-one (5p)

Yellow solid (84%, 265 mg); Mp: 209.3–210.9 °C; IR (KBr): 3760, 3435, 2367, 1669, 1600, 1327, 1130, 751, 665, 598, 572 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 6.76$ (t, J = 7.9 Hz, 2H, ArH), 7.00 (d, J = 7.4 Hz, 1H, ArH), 7.18-7.23 (m, 3H, ArH), 7.59 (t, J = 7.0 Hz, 1H, ArH), 7.88-7.91 (m, 4H, ArH), 8.23 (d, J = 8.0 Hz, 2H, ArH), 8.30 (d, J = 3.8 Hz, 1H, ArH), 8.61 (d, J = 8.2 Hz, 2H, ArH), 8.91 (s, 1H, ArH), 9.82 (s, 1H, ArOH), 13.31 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 116.2$, 119.8, 122.8, 123.5, 123.7, 125.3, 125.3, 125.5, 125.9, 126.2, 126.4, 129.0, 129.0, 129.0, 129.3, 129.3, 131.0, 131.2, 131.4, 131.7, 131.8, 132.0, 136.4, 137.0, 141.0, 148.7, 152.3, 155.2, 158.8, 161.3, 163.0 ppm. ¹⁹F NMR (564 MHz, DMSO- d_6): $\delta = -61.40$, -61.40, -61.40, -61.28, -61.28, -61.28 ppm. HRMS (TOF ES⁺): m/z calcd for C₃₃H₂₀F₆N₅O₂ [(M+H)⁺], 632.1516; found, 632.1514.

4'-(5-Chloro-2-hydroxyphenyl)-2,2'-dicyclopropyl-5-(pyridin-2-yl)-[4,5'-bipyrimi din]-6(1*H*)-one (5q)

Yellow solid (86%, 197 mg); Mp: 216.3–217.9 °C; IR (KBr): 3808, 3406, 2370, 1632, 1604, 1470, 1387, 1114, 714, 683, 614, 571, 523 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 0.82 (s, 2H, CH₂), 0.96-1.05 (m, 6H, CH₂), 1.91 (t, *J* = 4.0 Hz, 1H, CH), 2.17-2.20 (m, 1H, CH), 6.71 (s, 1H, ArH), 6.74 (d, *J* = 8.7 Hz, 1H, ArH), 7.13-7.21 (m, 3H, ArH), 7.57 (t, *J* = 7.5 Hz, 1H, ArH), 8.26 (d, *J* = 3.6 Hz, 1H, ArH), 8.38 (s, 1H, ArH), 10.07 (s, 1H, ArOH), 12.98 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 10.3, 10.3, 11.1, 11.1, 13.7, 18.3, 117.9, 121.4, 122.3, 123.0, 126.5, 127.0, 129.8, 130.1, 130.4, 136.1, 148.6, 152.7, 154.1, 158.0, 159.1, 160.6, 161.9, 163.5, 170.4 ppm. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₅H₂₁ClN₅O₂ [(M+H)⁺], 458.1378; found, 458.1380.

2,2'-Dicyclopropyl-4'-(2-hydroxyphenyl)-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6(1*H*) -one (5r)

Yellow solid (85%, 180 mg); Mp: 240.7-241.7 °C; IR (KBr): 3858, 3452, 2366, 1642, 1501, 1489, 1376, 1119, 625, 547 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 0.65 (s, 2H, CH₂), 0.86-0.88 (m, 2H, CH₂), 0.97-1.05 (m, 4H, CH₂), 1.83-1.87 (m, 1H, CH), 2.15-2.20 (m, 1H, CH), 6.73-6.77 (m, 2H, ArH), 7.06 (d, *J* = 7.4 Hz, 1H, ArH), 7.14-7.22 (m, 2H, ArH), 7.29 (d, *J* = 7.9 Hz, 1H, ArH), 7.62 (t, *J* = 7.5 Hz, 1H, ArH), 8.22 (s, 1H, ArH), 8.30 (d, *J* = 4.3 Hz, 1H, ArH), 10.12 (s, 1H, ArOH), 12.98 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 10.3, 10.3, 11.0, 11.0, 13.6, 18.2, 116.5, 119.3, 121.6, 122.6, 124.7, 126.6, 129.6, 130.9, 131.0, 136.3, 148.7, 153.0, 155.6, 157.8, 159.5, 162.0, 162.5, 163.5, 170.0 ppm. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₅H₂₂N₅O₂ [(M+H)⁺], 424.1768; found, 424.1766.

2,2'-Di-tert-butyl-4'-(5-fluoro-2-hydroxyphenyl)-5-(pyridin-2-yl)-[4,5'-bipyrimidi n]-6(1*H*)-one (5s)

Yellow solid (85%, 201 mg); Mp: 274.3–275.4 °C; IR (KBr): 3692, 3412, 2405, 1653, 1582, 1486, 1385, 1121, 873, 744, 680, 615, 567, 521 cm⁻¹; ¹H NMR (600

MHz, DMSO-*d*₆): δ = 1.16 (s, 9H, C(CH₃)₃), 1.35 (s, 9H, C(CH₃)₃), 6.78 (t, 1H, *J* = 4.7 Hz, ArH), 6.82-6.84 (m, 1H, ArH), 7.08 (s, 1H, ArH), 7.21 (d, *J* = 1.6 Hz, 1H, ArH), 7.31 (d, *J* = 7.9 Hz, 1H, ArH), 7.66 (d, *J* = 1.7 Hz, 1H, ArH), 8.33 (d, *J* = 4.4 Hz, 1H, ArH), 8.45 (s, 1H, ArH), 10.09 (s, 1H, ArOH), 12.45 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 28.0, 28.0, 28.0, 29.8, 29.8, 29.8, 37.6, 39.5, 116.7 (d, *J*₂ = 24.0 Hz), 117.4, 117.4, 117.6 (d, *J*₂ = 22.5 Hz), 122.8, 125.9, 126.6, 129.6, 136.3, 148.8, 152.1, 152.9, 154.9, 157.3 (d, *J*₁ = 241.5 Hz), 157.9, 160.9, 162.7, 167.1, 175.3 ppm. ¹⁹F NMR (564 MHz, DMSO-*d*₆): δ = -126.34 ppm. HRMS (TOF ES⁺): *m*/*z* calcd for C₂₇H₂₉FN₅O₂ [(M+H)⁺], 474.2300; found, 474.2296.

2,2'-Di-tert-butyl-4'-(2-hydroxyphenyl)-5-(pyridin-2-yl)-[4,5'-bipyrimidin]-6(1*H*) -one (5t)

Yellow solid (84%, 191 mg); Mp: >300 °C; IR (KBr): 3766, 3422, 2969, 2374, 1656, 1582, 1487, 1436, 1386, 1105, 1015, 754, 607, 560, 517 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 1.12$ (s, 9H, C(CH₃)₃), 1.35 (s, 9H, C(CH₃)₃), 6.76-6.80 (m, 2H, ArH), 7.20-7.24 (m, 3H, ArH), 7.36 (d, J = 7.9 Hz, 1H, ArH), 7.65-7.67 (m, 1H, ArH), 7.66 (d, J = 1.7 Hz, 1H, ArH), 8.34 (d, J = 4.4 Hz, 1H, ArH), 8.37 (s, 1H, ArH), 10.47 (s, 1H, ArOH), 12.44 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 28.0$, 28.0, 28.0, 29.8, 29.8, 29.8, 37.6, 39.4, 116.6, 119.2, 119.2, 122.8, 124.1, 126.6, 129.2, 131.2, 131.3, 136.3, 148.8, 153.0, 156.3, 157.9, 158.4, 162.3, 162.8, 167.1, 174.9 ppm. HRMS (TOF ES⁺): m/z calcd for C₂₇H₃₀N₅O₂ [(M+H)⁺], 456.2394; found, 456.2393.

5-(6-Ethylpyridin-2-yl)-4'-(2-hydroxy-5-nitrophenyl)-2,2'-diphenyl-[4,5'-bipyrimi din]-6(1*H*)-one (5u)

Yellow solid (83%, 236 mg); Mp: >300 °C; IR (KBr): 3708, 3433, 2368, 1656, 1506, 1433, 1355, 1104, 823, 735, 695, 606, 544 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.74 (s, 2H, CH₂), 2.89 (s, 3H, CH₃), 6.71 (d, *J* = 8.7 Hz , 1H, ArH), 6.83 (d, *J* = 1.56 Hz, 1H, ArH), 7.12 (d, *J* = 7.9 Hz, 1H, ArH), 7.19 (s, 1H, ArH), 7.33-7.35 (m, 1H, ArH), 7.54-7.62 (m, 5H, ArH), 7.96 (s, 1H, ArH), 8.13 (d, *J* = 7.5 Hz, 2H, ArH), 8.26 (d, *J* = 4.0 Hz , 1H, ArH), 8.42 (t, *J* = 4.5 Hz, 2H, ArH), 8.98 (s, 1H, ArH), 10.10 (s, 1H, ArOH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 31.3, 36.3, 111.0, 118.3, 122.4, 126.4, 127.8, 128.3, 128.3, 128.4, 128.4, 129.1, 129.1, 129.1, 129.3, 129.3, 129.3, 131.4, 131.6, 132.4, 132.7, 133.5, 136.2, 137.0, 137.2, 148.7, 152.2, 154.4, 158.9, 160.9, 162.8, 162.9 ppm. HRMS (TOF ES⁺): *m*/*z* calcd for C₃₃H₂₅N₆O₄ [(M+H)⁺], 569.1932; found, 569.1929.

4'-(5-Bromo-2-hydroxyphenyl)-5-(6-ethylpyridin-2-yl)-2,2'-diphenyl-[4,5'-bipyri midin]-6(1*H*)-one (5v)

Yellow solid (83%, 249 mg); Mp: >300 °C; IR (KBr): 3749, 3451, 2343, 1651, 1533, 1402, 1367, 1105, 879, 688, 606, 544 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 1.16-1.22 (m, 3H, CH₃), 2.58-2.62 (m, 2H, CH₂), 6.70 (d, *J* = 8.7 Hz, 1H, ArH), 6.78 (d, *J* = 1.7 Hz, 1H, ArH), 7.03 (d, *J* = 8.1 Hz, 1H, ArH), 7.32-7.34 (m, 1H, ArH), 7.42-7.44 (m, 1H, ArH), 7.53-7.62 (m, 6H, ArH), 8.11 (s, 1H, ArH), 8.15 (d, *J* = 7.5 Hz, 2H, ArH), 8.41-8.42 (m, 2H, ArH), 9.01 (s, 1H, ArH), 10.06 (s, 1H, ArOH), 13.09 (s, 1H, NH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 15.4, 25.6, 111.0, 118.2, 125.9, 127.8, 128.3, 128.3, 128.3, 128.4, 128.4, 128.4, 128.4, 129.1, 129.3, 131.5, 131.5, 131.5, 131.6, 131.6, 131.6, 132.3, 132.6, 133.4, 135.4, 137.2, 137.8, 148.1, 149.7, 154.4, 158.9, 160.8, 162.8 ppm. HRMS (TOF ES⁺): *m/z* calcd for C₃₃H₂₅BrN₅O₂ [(M+H)⁺], 602.1186; found, 602.1186.

The Proposed Mechanism of the Cascade Reaction

Scheme S1. The proposed mechanism of the cascade reaction.

The proposed mechanism of the multi-component cascade reaction is shown in Scheme S1 of the supporting information. First, the ethyl 2-(pyridine-2-yl)acetate derivatives **2** underwent base-catalyzed imine-enamine tautomerization to form the enamine ester intermediate **6**. Then, the α -carbon of intermediates **6** attacked the double bonds of 3-formylchromones **1** and formed the intermediates **7** through a Michael addition. The intermediate **7** produced intermediate **9** via an intramolecular condensation with the concomitant loss of one molecule of water. Intermediate **9** then underwent a reversible ring-opening tautomerization to generate intermediate **10**. Upon the deprotonation of the amidine hydrochloride **3** by the base promoter, intermediate **11** attacked the double bond of pyridinium salts through a site-selective dearomatization reaction to produce intermediate **12**. Next, intermediate **13** was formed through an intramolecular condensation-cyclization of intermediate **11**. The amine of intermediate **11** underwent Michael addition to the double bond of

intermediate 14 to form intermediate 15, which then underwent reversible tautomerization and subsequent intramolecular condensation reaction to form the target compound 4. Finally, compound 4 formed target compound 5 via an oxidation reaction facilitated by heat.

To verify the mechanism of this reaction, 3-formylchromone 1f, 2-(pyridine-2 -yl)acetate 2a and benzimidamide hydrochloride 3b and DMF were charged in round-bottom flask, and then Cs₂CO₃ were added to the mixture. The mixture was stirred at 110 °C for approximately 35 minutes. Subsequently, the reaction mixture was analyzed by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). The molecular ion peaks that appeared in the high-resolution mass spectrum were: HRMS (TOF ES⁺): m/z calcd. for C₁₀H₇O₃ $[M+H]^+$, 175.0390; found, 175.0383, which is the HRMS spectrum of **1f** (SI, Figure S84); HRMS (TOF ES⁺): m/z calcd. for C₉H₁₂NO₂ [M+H]⁺, 166.0863; found, 166.0857, which is the HRMS spectra of **2a/6a** (SI, Figure S85); HRMS (TOF ES⁺): m/z calcd. for C₁₉H₁₈NO₅ [M+H]⁺, 340.1179; found, 340.1174, which is the HRMS spectra of intermediate **7f/8f** (SI, Figure S86); HRMS (TOF ES⁺): m/z calcd. for $C_{19}H_{16}NO_4 [M+H]^+$, 322.1074; found, 322.1069. HRMS (TOF ES⁺): m/z calcd. for $C_{19}H_{16}NO_4 [M+H]^+$, 322.1074; found, 322.1068. There are the HRMS spectra of intermediates 9f/10f (SI, Figure S87-S88); HRMS (TOF ES⁺): m/z calcd. for $C_{26}H_{24}N_{3}O_{4}[M+H]^{+}$, 442.1761; found, 442.1755. HRMS (TOF ES⁺): m/z calcd. for $C_{26}H_{24}N_{3}O_{4}[M+H]^{+}$, 442.1761; found, 442.1750. There are the HRMS spectra of intermediates 12f/13f (SI, Figure S89-S90); HRMS (TOF ES⁺): m/z calcd. for $C_{26}H_{22}N_3O_3$ [M+H]⁺, 424.1656; found, 424.1647, which is the HRMS spectrum of intermediate 14f (SI, Figure S91). HRMS (TOF ES⁺): m/z calcd. for C₃₃H₃₀N₅O₃ $[M+H]^+$, 544.2343; found, 544.2332. HRMS (TOF ES⁺): m/z calcd. for C₃₃H₃₀N₅O₃ $[M+H]^+$, 544.2343; found, 544.2349, which are the HRMS spectrum of the target compound 15f/16f (SI, Figure S92–93). HRMS (TOF ES^+): m/z calcd. for $C_{31}H_{24}N_5O_2[M+H]^+$, 498.1925; found, 498.1932, which is the HRMS spectrum of 4 (SI, Figure S95); HRMS (TOF ES⁺): m/z calcd. for C₃₁H₂₂N₅O₂ [M+H]⁺, 496.1768; found, 496.1774, which is the HRMS spectrum of 5f (SI, Figure S96); Based on the molecular ion peaks of intermediates 7f-16f, the proposed mechanism of the cascade reaction is reasonable (Scheme S1).

Control Experiments

Scheme S2. Control experiments

First, 3-formylchromone **1f** (1.0 mmol) and 2-(pyridine-2-yl)acetate **2a** (1.0 mmol) were charged into a round-bottom flask. Then, acetonitrile (6 ml) was added to the mixture. The mixture was stirred at reflux for approximately 3 hours and monitored by TLC until the intermediate was completely consumed. The reaction mixture was cooled to room temperature and was extracted with ethyl acetate (3×15 mL). The organic layer was washed with water and brine, and the combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford the crude product. Finally, product **9f** was purified from the crude mixture by flash column chromatography.

A round-bottom flask were charged with compound **9f** (0.5 mmol), benzimidamide hydrochlorides **3b** (0.5 mmol) and DMF (3 mL), and the mixture was stirred under reflux for approximately 10 hours while monitoring the reaction by TLC until the compound **9f** was completely consumed. After cooling the reaction to room temperature, the mixture was extracted with ethyl acetate (3×15 mL). The organic layer was washed with water and brine, and the combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford the crude product. Finally, product **5f** was purified from the crude mixture by flash column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (2:1, v/v) as the eluent.

Ethyl 13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carboxylate (9f)

Red solid (83%, 133 mg); Mp: 231.5-232.3 ℃; IR (KBr): 2928, 1674, 1641, 1593, 1526, 1489, 1384, 1338, 1222, 1192, 1043, 773 cm⁻¹; ¹H NMR (600 MHz,

DMSO-*d*₆): $\delta = 1.27$ (t, J = 6.9 Hz, 3H, CH₃), 4.16-4.19 (m, 2H, CH₂), 7.10-7.13 (m, 2H, ArH), 7.19 (t, J = 6.3 Hz, 1H, ArH), 7.47 (s, 1H, ArH), 7.63 (t, J = 7.0 Hz, 1H, ArH), 7.80-7.83 (m, 2H, ArH), 7.91 (s, 1H, ArH), 8.34 (d, J = 5.9 Hz, 1H, ArH), 8.81 (d, J = 8.9 Hz, 1H, ArH) ppm; ¹³C NMR (150 MHz, DMSO-*d*₆): $\delta = 14.9$, 59.6, 89.0, 90.8, 107.3, 116.3, 118.5, 122.0, 123.2, 124.2, 127.1, 133.0, 136.2, 139.3, 139.6, 148.0, 154.8, 165.3, 178.4 ppm. HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₆NO₄ [(M+H)⁺], 322.1074; found, 322.1071.

X-ray Structure and Data of 4j and 5d.

Figure S1. X-Ray crystal structure of 4j

Identification code	1	
Empirical formula	$C_{27}H_{30}FN_5O_{2.5}$	
Formula weight	483.56	
Temperature	296.15 K	
Crystal system	triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.2453(13) Å b = 11.7271(13) Å c = 12.9426(16) Å	$\alpha = 92.075(2)^{\circ}$. $\beta = 114.267(2)^{\circ}$. $\alpha = 104.496(2)^{\circ}$
Volume	$1/187 7(3) Å^{3}$	<i>y</i> = 101.190(2) .
Z	2	
Density (calculated)	1.079 g/cm^3	
Absorption coefficient	0.075 mm^{-1}	
F(000)	512	
Theta range for data collection	4.654 to 55.29 °.	
Index ranges	-14<=h<=14, -6<=k<=15,	-16<=l<=16
Reflections collected	9078	
Independent reflections	6522 [R(int) = 0.0207, R(s)]	sigma) = 0.0549]
Refinement method Data / restraints / parameters	Full-matrix least-squares of 6522 / 90 / 372	$\operatorname{pn} \operatorname{F}^2$
Goodness-of-fit on F^2	1.014	
Final R indexes [I>=2sigma(I)]	$R_1 = 0.0884, wR_2 = 0.242$	1
Final R indexes (all data)	$R_1 = 0.1587, wR_2 = 0.307'$	7
Extinction coefficient	n/a	
Largest diff. peak and hole	0.78 /-0.31e.Å ⁻³	

Table S2. Crystal data and structure refinement for 4j

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C10	1.370(4)	C4	C11	1.508(4)
01	C9	1.215(4)	C5	C10	1.367(4)
O2	C7	1.356(4)	C7	C16	1.390(4)
N1	C6	1.458(4)	C8	C15	1.524(5)
N1	C8	1.269(4)	C10	C13	1.371(5)
N2	C2	1.360(4)	C11	C18	1.384(5)
N2	C14	1.327(4)	C13	C16	1.365(5)
N3	C8	1.405(4)	C14	C19	1.515(5)
N3	C9	1.350(4)	C15	C21	1.531(6)
N4	C12	1.332(4)	C15	C22	1.538(6)
N4	C14	1.341(4)	C15	C24	1.505(6)
N5	C11	1.324(4)	C17	C20	1.326(6)
N5	C17	1.340(5)	C18	C23	1.403(7)
C1	C2	1.488(4)	C19	C25	1.533(15)
C1	C5	1.397(4)	C19	C26	1.497(12)
C1	C7	1.398(4)	C19	C27	1.617(13)
C2	C3	1.392(4)	C19	C25A	1.46(2)
C3	C6	1.514(4)	C19	C27A	1.333(14)
C3	C12	1.383(4)	C19	C26A	1.78(2)
C4	C6	1.538(4)	C20	C23	1.368(7)
C4	C9	1.516(4)			

Table S3. Bond Lengths for 4j

Table S4. Bond Angles for 4j

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C8	N1	C6	117.0(3)	C5	C10	C13	123.0(3)
C14	N2	C2	119.2(2)	N5	C11	C4	116.2(3)
C9	N3	C8	124.1(3)	N5	C11	C18	122.4(3)
C12	N4	C14	114.9(3)	C18	C11	C4	121.4(3)
C11	N5	C17	117.7(3)	N4	C12	C3	125.6(3)
C5	C1	C2	120.0(2)	C16	C13	C10	118.0(3)
C5	C1	C7	118.3(3)	N2	C14	N4	124.4(3)
C7	C1	C2	121.5(3)	N2	C14	C19	118.1(3)
N2	C2	C1	115.0(2)	N4	C14	C19	117.5(3)
N2	C2	C3	119.9(2)	C8	C15	C21	110.0(3)
C3	C2	C1	125.1(2)	C8	C15	C22	108.8(3)
C2	C3	C6	124.5(2)	C21	C15	C22	108.0(4)
C12	C3	C2	114.8(2)	C24	C15	C8	109.3(3)
C12	C3	C6	120.6(2)	C24	C15	C21	111.1(4)
C9	C4	C6	109.3(2)	C24	C15	C22	109.6(4)
C11	C4	C6	112.3(2)	C13	C16	C7	121.3(3)
C11	C4	C9	112.4(3)	C20	C17	N5	125.0(5)

C10	C5	C1	119.3(3)	C11	C18	C23	117.1(4)
N1	C6	C3	112.3(2)	C14	C19	C25	112.3(8)
N1	C6	C4	113.3(2)	C14	C19	C27	104.2(6)
C3	C6	C4	111.3(2)	C14	C19	C26A	101.3(7)
O2	C7	C1	122.5(3)	C25	C19	C27	111.8(8)
O2	C7	C16	117.5(3)	C26	C19	C14	108.5(5)
C16	C7	C1	120.0(3)	C26	C19	C25	110.6(9)
N1	C8	N3	122.9(3)	C26	C19	C27	109.2(8)
N1	C8	C15	121.3(3)	C25A	C19	C14	111.6(11)
N3	C8	C15	115.7(3)	C25A	C19	C26A	102.4(13)
01	C9	N3	122.1(3)	C27A	C19	C14	118.7(7)
01	C9	C4	123.0(3)	C27A	C19	C25A	119.7(14)
N3	C9	C4	114.8(3)	C27A	C19	C26A	98.3(12)
F1	C10	C13	118.7(3)	C17	C20	C23	117.8(4)
C5	C10	F1	118.3(3)	C20	C23	C18	120.0(4)

Figure S2. X-Ray crystal structure of 5d

		0100
Identification code	1	
Empirical formula	$C_{31}H_{20}ClN_5O_2$	
Formula weight	529.97	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, P 21/n	
Unit cell dimensions	a = 15.007(3) Å	$\alpha = 90.0$ °.
	b = 15.204(3) Å	$\beta = 113.696(4)$ °.
	c = 16.146(3) Å	$\gamma = 90.0$ °.
Volume	$3373.3(12) \text{\AA}^3$	
Z	4	
Density (calculated)	1.044 Mg/m^3	
Absorption coefficient	0.143 mm^{-1}	
F(000)	1096	
Theta range for data collection	1.566 to 25.150 °.	
Crystal size	0.220 x 0.200 x 0.180 r	nm
Limiting indices	-17<=h<=17, -18<=k<=	=14, -19<=l<=19
Reflections collected / unique	15794 / 6022 [R(int) =	0.0618]
Independent reflections	6522 [R(int) = 0.0207,	R(sigma) = 0.0549]
Completeness to theta $= 25.242$	98.6 %	
Absorption correction	Semi-empirical from ec	quivalents
Refinement method	Full-matrix least-square	es on F^2
Data / restraints / parameters	6022 / 0 / 342	
Goodness-of-fit on F^2	1.013	
Final R indexes [I>=2sigma(I)]	$R_1 = 0.0871, wR_2 = 0.2$	178
Final R indexes (all data)	$R_1 = 0.1644, wR_2 = 0.2$.813
Extinction coefficient	0.0028(9)	
Largest diff. peak and hole	0.624 and -0.415 e Å ⁻³	

 Table S5. Crystal data and structure refinement for 5d

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C11	C12	1.3900	C2	C3	1.382(8)
C11	C16	1.3900	C3	C4	1.380(8)
C11	C10	1.476(6)	C4	C5	1.365(7)
C12	C13	1.3900	C5	C6	1.397(7)
C13	C14	1.3900	C6	C7	1.478(7)
C14	C15	1.3900	C7	C8	1.390(7)
C15	C16	1.3900	C8	C9	1.380(7)
Cl1	C4	1.733(6)	C8	C17	1.466(7)
N1	C7	1.350(4)	C17	C18	1.371(7)
N1	C10	1.337(6)	C18	C19	1.436(7)
N2	C9	1.329(6)	C18	C21	1.481(7)
N2	C10	1.330(6)	C20	C26	1.463(7)
N3	C20	1.306(6)	C21	C22	1.381(7)
N3	C17	1.381(6)	C22	C23	1.370(7)
N4	C20	1.356(6)	C23	C24	1.371(8)
N4	C19	1.377(6)	C24	C25	1.370(8)
N5	C21	1.327(6)	C26	C27	1.342(8)
N5	C25	1.353(6)	C26	C31	1.414(8)
O1	C1	1.380(6)	C27	C28	1.383(8)
O2	C19	1.247(6)	C28	C29	1.311(9)
C1	C2	1.383(7)	C29	C30	1.423(10)
C1	C6	1.381(7)	C30	C31	1.382(9)

Table S6. Bond Lengths [Å] for 5d

Table S7. Bond Angles for 5d

Atom	Atom	Atom	Angle/°	Ato	m Atom	Atom	Angle/°
C12	C11	C16	120.0	NZ	2 C9	C8	123.8(5)
C12	C11	C10	119.5(3)	NZ	2 C10	N1	117.4(4)
C16	C11	C10	120.5(3)	N	C10	C11	117.3(4)
C11	C12	C13	120.0	C1	8 C17	N3	123.1(5)
C14	C13	C12	120.0	C1	8 C17	C8	125.4(4)
C13	C14	C15	120.0	Nä	3 C17	C8	111.4(4)
C16	C15	C14	120.0	C1	7 C18	C19	117.6(5)
C15	C16	C11	120.0	C1	7 C18	C21	124.3(5)
C7	N1	C10	117.9(4)	C1	9 C18	C21	118.1(4)
C9	N2	C10	116.1(4)	02	2 C19	N4	118.7(5)
C20	N3	C17	118.6(4)	Oź	2 C19	C18	125.5(5)

N4	C19	123.6(4)	N4	C19	C18	115.8(5)
N5	C25	117.7(5)	N3	C20	N4	121.1(5)
C1	C2	121.1(5)	N3	C20	C26	119.5(4)
C1	C6	117.4(5)	N4	C20	C26	119.3(5)
C1	C6	121.4(5)	N5	C21	C22	122.4(5)
C2	C1	120.2(5)	N5	C21	C18	116.2(4)
C3	C2	118.7(5)	C22	C21	C18	121.4(5)
C4	C3	121.0(5)	C23	C22	C21	119.3(5)
C4	Cl1	119.7(5)	C24	C23	C22	119.1(5)
C4	Cl1	119.3(4)	C23	C24	C25	118.7(6)
C5	C6	121.1(5)	N5	C25	C24	122.8(5)
C6	C1	117.5(5)	C27	C26	C31	118.8(6)
C6	C7	118.2(5)	C27	C26	C20	124.6(5)
C6	C7	124.3(5)	C31	C26	C20	116.5(5)
C7	C8	120.4(4)	C26	C27	C28	121.5(6)
C7	C6	114.6(4)	C29	C28	C27	121.6(6)
C7	C6	125.0(5)	C28	C29	C30	118.7(7)
C8	C9	116.3(5)	C31	C30	C29	120.0(7)
C8	C17	126.9(4)	C30	C31	C26	118.7(7)
C8	C17	116.7(4)				
	N4 N5 C1 C1 C1 C2 C3 C4 C4 C4 C4 C4 C5 C6 C6 C6 C6 C6 C7 C7 C7 C7 C7 C7 C7 C8 C8 C8	N4 C19 N5 C25 C1 C2 C1 C6 C1 C6 C1 C6 C2 C1 C3 C2 C4 C3 C4 C11 C5 C6 C6 C7 C6 C7 C7 C8 C7 C6 C8 C17 C8 C17	N4C19 $123.6(4)$ N5C25 $117.7(5)$ C1C2 $121.1(5)$ C1C6 $117.4(5)$ C1C6 $121.4(5)$ C2C1 $120.2(5)$ C3C2 $118.7(5)$ C4C3 $121.0(5)$ C4C11 $119.7(5)$ C4C11 $119.3(4)$ C5C6 $121.1(5)$ C6C7 $118.2(5)$ C6C7 $118.2(5)$ C6C7 $124.3(5)$ C7C8 $120.4(4)$ C7C6 $114.6(4)$ C7C6 $114.3(5)$ C8C17 $126.9(4)$ C8C17 $116.7(4)$	N4C19123.6(4)N4N5C25117.7(5)N3C1C2121.1(5)N3C1C6117.4(5)N4C1C6121.4(5)N5C2C1120.2(5)N5C3C2118.7(5)C22C4C3121.0(5)C23C4C11119.7(5)C24C4C11119.3(4)C23C5C6121.1(5)N5C6C1117.5(5)C27C6C7124.3(5)C31C7C8120.4(4)C26C7C6114.6(4)C29C7C6125.0(5)C28C8C9116.3(5)C31C8C17126.9(4)C30C8C17116.7(4)C30	N4C19123.6(4)N4C19N5C25117.7(5)N3C20C1C2121.1(5)N3C20C1C6117.4(5)N4C20C1C6121.4(5)N5C21C2C1120.2(5)N5C21C3C2118.7(5)C22C21C4C3121.0(5)C23C22C4C11119.7(5)C24C23C4C11119.3(4)C23C24C5C6121.1(5)N5C25C6C1117.5(5)C27C26C6C7118.2(5)C27C26C6C7124.3(5)C31C26C7C6125.0(5)C28C29C8C9116.3(5)C31C30C8C17126.9(4)C30C31C8C17116.7(4)C30C31	N4C19123.6(4)N4C19C18N5C25117.7(5)N3C20N4C1C2121.1(5)N3C20C26C1C6117.4(5)N4C20C26C1C6121.4(5)N5C21C22C2C1120.2(5)N5C21C18C3C2118.7(5)C22C21C18C4C3121.0(5)C23C22C21C4C11119.7(5)C24C23C22C4C11119.3(4)C23C24C25C5C6121.1(5)N5C25C24C6C1117.5(5)C27C26C31C6C7124.3(5)C31C26C20C7C6114.6(4)C29C28C27C7C6125.0(5)C28C29C30C8C9116.3(5)C31C30C29C8C17126.9(4)C30C31C26

Figure S4. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound 4a

Figure S5. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4b

Figure S6. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound 4b

Figure S8. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 4c

Figure S10. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 4d

Figure S11. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4e

Figure S16. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 4g

Figure S18. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 4h

Figure S20. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 4i

Figure S21. ¹⁹F NMR (564 MHz, DMSO-*d*₆) spectra of compound 4i

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLC-06 Jun14-2021-chenli F19CPD CDCl3

Figure S26. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 4k

Figure S32. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 5b

S73

S75

Figure S52. ¹⁹F NMR (564 MHz, DMSO- d_6) spectra of compound **5**k

Figure S53. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **5**

S87

Figure S61. ¹⁹F NMR (564 MHz, DMSO- d_6) spectra of compound **5n**

Figure S64. ¹⁹F NMR (564 MHz, DMSO-*d*₆) spectra of compound 50

Figure S68. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **5**q

S108

Figure S77. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **5**u

Figure S79. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **5v**

Figure S81. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of intermediate **9f**

Figure S83. HPLC of the reaction mixture

Figure S84. HRMS of intermediate 1f

Figure S85. HRMS of intermediate 2a/6a

Figure S86. HRMS of intermediate 7f/8f

Figure S87. HRMS of intermediate 9f/10f

Figure S88. HRMS of intermediate 9f/10f

Figure S89. HRMS of intermediate 12f/13f

Figure S90. HRMS of intermediate 12f/13f

Figure S91. HRMS of intermediate 14f

CL-20210619 #54 RT: 1.12 AV: 1 NL: 7.38E3 T: FTMS + c ESI Full ms [200.00-700.00]

Figure S92. HRMS of intermediate 15f/16f

Figure S93. HRMS of intermediate 15f/16f

Figure S94. HPLC of the reaction mixture

Figure S95. HRMS of intermediate 4

Figure S96. HRMS of intermediate 5f