Supporting Information

for

Photo-Induced Synthesis of β-Sulfonyl Imides from

Carboxylic Acids

Linwei Zeng^a, Jian Jin^b, Jixiao He^a, and Sunliang Cui^{*a}

^aInstitute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China ^bCAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

Email: slcui@zju.edu.cn

Content

1.	General Information				
2.	Starting Materials				
3.	Reaction Optimization				
4.	Typical Procedure for The Synthesis of 3a				
5.	Gram-Scale Reaction				
6.	Procedures for The Synthesis of 5, 6 and 7				
7.	Mech	Mechanistic Studies			
	7.1	Radical Scavenging Experiments	S8-S9		
	7.2	Step-wise Experiment	S9		
	7.3	Stern–Volmer Quenching Experiments			
	7.4	Light On/Off Experiment	S11		
	7.5	Crossover Reaction	S12		
	7.6	Cyclic Voltammograms	S13		
	7.7	UV Sensitizer Experiments	S13-S14		
	7.8	Determination of The Reaction Quantum Yield	S14-S16		
8.	Characterization of Products				
9.	X-ray Crystallographic Data				
10.	. HPLC Charts				
11.	Copies of NMR Spectra				
12.	References				

1. General Information

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Column chromatography was performed over silica gel (200–300 mesh).

Melting points were measured with X–4 micro melting point apparatus.

HRMS were performed on Agilent Technologies 6546-LC/Q-TOF LC/MS apparatus (ESI-TOF).

The *ee* values of chiral compounds were determined by HPLC analysis on a CHIRALPAK AD-H column (Department of Chemistry, Zhejiang University).

¹H NMR spectra and ¹³C NMR spectra were recorded on a *Bruker AV-500* spectrometer (Pharmaceutical Informatics Institute, Zhejiang University) or a WNMR-I-400 spectrometer (Department of Chemistry, Zhejiang University) in chloroform-*d* (CDCl₃, contain internal TMS) or DMSO-*d*₆. For CDCl₃ as solvent, chemical shifts of ¹H NMR spectra were reported in ppm with the internal TMS signal at 0 ppm as a standard, and chemical shifts of ¹³C NMR spectra were reported in ppm with the chloroform signal at 77.16 ppm as a standard.¹ The data is being reported as (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, hept = heptet, dd = double doublet, dt = double of triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration).

Photocatalysts were purchased from Jiangsu Sinocompound Catalysts Co., Ltd.

Solvents, such as Ethyl acetate (EA), petroleum ether (PE) were obtained commercially and used without further purification unless otherwise noted. Acetonitrile (MeCN) was purified by distilling after treating with CaH₂.

2. Starting Materials

Fig. S1 Starting carboxylic acids and ynamides. Chemical structures of starting materials.

All starting carboxylic acids and ynamides are listed in **Fig. S1**. All starting carboxylic acids, except **1aj**, are commercial available. Carboxylic acid **1aj** was prepared according to the reported procedure.² Starting ynamides are synthesized according to the reported methods. Ynamides **2a-2g**,

2i-2j, **2l-2m**, **2o-2x** were prepared according to the method A;³ Ynamides **2h**, **2k** and **2n** were prepared according to the method B;⁴ and ynamides **2y-2ab** were prepared according to the method C.⁵

Fig. S2 Synthesis of ynamides. Starting ynamides were prepared according to the reported methods.

3. Reaction Optimization

Table S1. Reaction Optimization

Entry	Photocatalyst	Solvent	Yield (%) ^b
1	PC-1	MeCN	67
2	PC-2	MeCN	96
3	PC-3	MeCN	0^{c}
4^d	PC-4	MeCN	85
5 ^d	PC-5	MeCN	0
6^d	PC-6	MeCN	31
5	PC-2	CH_2Cl_2	92
6	PC-2	MeOH	63
7	PC-2	$MeCN:H_2O = 1:1$	19
8	none	MeCN	0^{c}
9	PC-2	MeCN	0 ^{c,e}

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), photocatalyst (0.2 mol %), solvent (2 mL), rt, 3 h, argon; 18 W blue LEDs is used. ^b Yield refers to isolated product. ^c Intermediate **4a** was observed. ^d Photocatalyst (2 mol %) is used. ^e Without light irradiation.

4. Typical Procedure for The Synthesis of 3a

Fig. S3 General reaction apparatus. a. 18 W blue LEDs. **b.** Dissolving carboxylic acids (0.2 mmol), ynamides (0.2 mmol) and $Ir(dF(CF_3)PPy)_2(bPy)(PF_6)$ (0.2 mol %) in 2 mL anhydrous MeCN under argon atmosphere. **c.** Irradiating the reaction by blue LED at rt.

An oven-dried culture tube equipped with a magnetic stirrer bar was charged with benzoic acid **1a** (25 mg, 0.2 mmol), ynamide **2a** (42 mg, 0.2 mmol) and $Ir(dF(CF_3)PPy)_2(bPy)(PF_6)$ (0.4 mg, 0.2 mol %), and then purged with argon three times. Anhydrous MeCN (2 mL) was added as solvent and the reaction was stirred at room temperature for 5 h under the irradiation of 18 W Blue LED lamp. The reaction was concentrated under vacuum to obtain the residue, which was further purified by silica gel column chromatography eluting by PE/ EA (3/1, v/v) to give **3a** (63.5 mg, 96% yield) as a white solid.

5. Gram-Scale Reaction

Fig. S4 Gram-scale reaction. a. Stating materials and photocatalyst. b. 2.09 g of ynamide 2a was weighed. c. 1.22 g of benzoic acid 1a was weighed. d. 20 mg of $Ir(dF(CF_3)PPy)_2(bPy)(PF_6)$ was weighed. e. the mixture was under the argon atmosphere and added 100 mL anhydrous MeCN. f. The reaction was irradiated by 18 W blue LEDs at rt. g. the reaction was analysed by TLC (PE/EA = 3/1, v/v. left: ynamide 2a; middle: reaction; right: product 3a). h. 2.83 g of product 3a was isolated.

An oven-dried flask equipped with a magnetic stirrer bar was charged with benzoic acid **1a** (1.22 g, 10 mmol), ynamide **2a** (2.09 g, 10 mmol) and $Ir(dF(CF_3)PPy)_2(bPy)(PF_6)$ (20 mg, 0.02 mmol), and then purged with argon three times. Anhydrous MeCN (100 mL) was added and the reaction was stirred at room temperature for 5 h under the irradiation of 18 W Blue LED. The reaction was concentrated under vacuum to obtain the residue, which was purified by silica gel column chromatography eluting by PE/ EA (3/1, v/v) to give **3a** (2.83 g, 86% yield) as a white solid.

6. Procedures for The Synthesis of 5, 6 and 7

General procedure for the synthesis 5. An oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with 3a (66 mg, 0.2 mmol) and K₂CO₃ (35 mg, 0.25 mmol), then purged with argon three times. Anhydrous DMF (2 mL) was added as solvent. Alkyl bromides (0.3 mmol, 1.5 equiv.) was added and the reaction was stirred at room temperature for 2 h. The reaction was quenched with aqueous NH₄Cl and extracted with EtOAc (3×10 mL). The combined organic layer was washed by brine, dried over anhydrous Na₂SO₄, filtered, and the filtrate was concentrated under vacuum to obtain the residue, which was purified by silica gel column chromatography eluting by PE/ EA (5/1, v/v) to give corresponding 5.

Procedure for the synthesis of 6: An oven-dried Schlenk tube equipped with a magnetic stirrer

bar was charged with **3a** (66 mg, 0.2 mmol), then purged with argon three times. Anhydrous THF (4 mL) was added as solvent. Then KHMDS (0.3 mL, 1 mol/L in THF) was added and the reaction was stirred at room temperature for 1 h. The reaction was quenched with aqueous NH₄Cl and extracted with EtOAc (3×10 mL). The combined organic layer was washed by brine, dried over anhydrous Na₂SO₄, filtered, and the filtrate was concentrated under vacuum to obtain the residue, which was purified by silica gel column chromatography eluting by PE/ EA (1/1, v/v) to give *N*-methyl-3-oxo-3-phenyl-2-tosylpropanamide **6** (60 mg, 91% yield) as a white solid.

Procedure for the synthesis of 7: An oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with **3a** (66 mg, 0.2 mmol), then purged with argon three times. Anhydrous toluene (2 mL), DMAD (32 mg, 0.3 mmol) and TEA (55 μ L, 0.4 mmol) were added and the reaction was stirred at 80 °C for 12 h. The reaction was concentrated under vacuum to obtain the residue, which was purified by silica gel column chromatography eluting by PE/ EA (2/1, v/v) to give dimethyl 1-methyl-6-oxo-2-phenyl-5-tosyl-1,6-dihydropyridine-3,4-dicarboxylate 7 (80 mg, 88% yield) as a yellow solid.

7. Mechanistic Studies

7.1 Radical Scavenging Experiments

Experiment 1 and 2: An oven-dried culture tube equipped with a magnetic stirrer bar was charged with benzoic acid **1a** (25 mg, 0.2 mmol), ynamide **2a** (42 mg, 0.2 mmol), Ir(dF(CF₃)PPy)₂(bPy)(PF₆) (0.4 mg, 0.2 mol %) and radical scavenger (TEMPO or BHT, 1.5 equiv.), and then purged with argon three times. Anhydrous MeCN (2 mL) was added as solvent and the reaction was stirred at room temperature for 5 h under the irradiation of 18 W Blue LED lamp.

Experiment 3: An oven-dried culture tube equipped with a magnetic stirrer bar was charged with benzoic acid **1a** (25 mg, 0.2 mmol), ynamide **2a** (42 mg, 0.2 mmol) and Ir(dF(CF₃)PPy)₂(bPy)(PF₆)

(0.4 mg, 0.2 mol %), and then purged with oxygen three times. Anhydrous MeCN (2 mL) was added as solvent and the reaction was stirred at room temperature for 5 h under the irradiation of 18 W Blue LED lamp.

The TLC analysis of these reactions showed that TEMPO, BHT and O₂ could completely suppress the imidation reaction, suggesting a radical intermediate was involved in the process.

7.2 Step-wise Experiment

An oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with benzoic acid **1a** (25 mg, 0.2 mmol), ynamide **2a** (42 mg, 0.2 mmol) and then purged with argon three times. Anhydrous CH_2Cl_2 (2 mL) was added and the reaction was stirred at room temperature for 12 h. TLC analysis showed the ynamide was consumed completely. The reaction was concentrated to obtain the product **4a** (67 mg, quant.) as a white solid.

The 4a (67 mg, 0.2 mmol) and $Ir(dF(CF_3)PPy)_2(bPy)(PF_6)$ (0.4 mg, 0.0004 mmol) was dissolved in anhydrous MeCN (2 mL) under argon and then the mixture was stirred under the irradiation of 18 W Blue LED for 5h at room temperature. The reaction was concentrated under vacuum to obtain the residue, which was purified by silica gel column chromatography eluting by PE/ EA (3/1, v/v) to give 3a (62 mg, 92% yield). The step-wise experiment demonstrates that 4a is the intermediate of this photo-induced imidation process.

7.3 Stern–Volmer Quenching Experiments

Emission intensities were recorded using Hitachi F-2500 fluorescence spectrometer for all experiments. All $Ir(dF(CF_3)PPy)_2(bPy)(PF_6)$ solutions (0.01 mM) were excited at 390 nm and the emission intensity at 485 nm was collected at room temperature (**Fig. S5**). Samples were prepared by rapidly adding solutions of photocatalyst, quencher, and MeCN to obtain a total volume of 1.5 mL under an argon atmosphere. The sample was shaken for 1 min and then the emission of the sample was collected at fluorescence spectrometer immediately. All the experiments are run in three times (**Table S2-S4**). The data show that **4a** could quench the excited state of the photocatalyst, while **1a** and **2a** are

unable to quench this excited state, further verifying that **4a** is the intermediate of this imidation process (**Fig. S6**).

Fig. S5 Absrobance and emission spectra of Ir(dF(CF₃)PPy)₂(bPy)(PF₆). 0.01Mm concentration in MeCN. Left: Absorbance of Ir(dF(CF₃)PPy)₂(bPy)(PF₆). Right: Emission spectra of Ir(dF(CF₃)PPy)₂(bPy)(PF₆).

					, , , , , , , , , , , , , , , , , , ,
4a /mM	Emission 1	Emission 2	Emission 3	Average	I ₀ /I
0	1261	1250	1241	1250.667	1.004264
0.5	1236	1234	1235	1235	1.017004
1	1179	1146	1167	1164	1.079038
2	1150	1124	1135	1136.333	1.105309
4	989	993	989	990.3333	1.26826

Table S2. Stern-Volmer quenching experiment of Ir(dF(CF3)PPy)2(bPy)(PF6) and 4a

Table S3. Stern–Volmer quenching experiment of Ir(dF(CF₃)PPy)₂(bPy)(PF₆) and 1a

1a /mM	Emission 1	Emission 2	Emission 3	Average	I_0/I
0	1278	1273	1268	1273	1
0.5	1261	1266	1259	1262	1.008716
1	1271	1268	1260	1266.333	1.005265
2	1258	1272	1263	1264.333	1.006855
4	1263	1277	1261	1267	1.004736

Table S4. Stern–Volmer quenching experiment of Ir(dF(CF₃)PPy)₂(bPy)(PF₆) and 2a

				, , , ,	
2a /mM	Emission 1	Emission 2	Emission 3	Average	I_0/I
0	1261	1268	1271	1266.667	1
0.5	1259	1263	1255	1259	1.00609
1	1263	1266	1256	1261.667	1.003963
2	1243	1249	1251	1247.667	1.015229
4	1251	1249	1249	1249.667	1.013604

Fig. S6 Results of Stern–Volmer quenching experiment. The data show that 4a could quench the excited state of the photocatalyst, while 1a and 2a are unable to quench this excited state.

7.4 Light On/Off Experiment

An oven-dried 25 mL culture tube equipped with a magnetic stirrer bar was charged with benzoic acid **1a** (74 mg, 0.6 mmol), ynamide **2a** (126 mg, 0.6 mmol) and $Ir(dF(CF_3)PPy)_2(bPy)(PF_6)$ (2.4 mg, 0.2 mol %), and then purged with argon three times. Anhydrous MeCN (12 mL) was added as solvent. The reaction was performed at room temperature under alternating intervals of light and dark (15 mins). The reaction profile is shown below and the yield of product **3a** was determined by ¹H NMR (taking 1mL samples and adding 0.1 mmol 1,3,5-trioxane was used as an internal standard). This experiment indicates that continuous irradiation of blue light is essential for the reaction (**Fig. S7**).

Fig. S7 Light on/off experiment. The result shows the imidation process needs continuous irradiation.

7.5 Crossover Reaction

An oven-dried culture tube equipped with a magnetic stirrer bar was charged with benzoic acid **1a** (49 mg, 0.4 mmol), ynamide **2a** (42 mg, 0.2 mmol), ynamide **2z** (42 mg, 0.2 mmol) and $Ir(dF(CF_3)PPy)_2(bPy)(PF_6)$ (0.8 mg, 0.2 mol %), and then purged with argon three times. Anhydrous MeCN (4 mL) was added as solvent and the reaction was stirred at room temperature for 5h under the irradiation of a Blue LED lamp (18 W). TLC analysis showed that there were four products formed (**3a**, **3ap**, **3bm** and **3bn**). The mixture was concentrated and the yields of four products were determined by ¹H NMR spectroscopy (0.1 mmol of 1,3,5-trioxane as an internal standard, **Fig. S8**).

Fig. S8 ¹H NMR (CDCl₃, 500 MHz) of the crossover reaction. The NMR shows 3a, 3ap, 3bm and 3bn were formed in comparable yields, indicating the intermolecular process in the imidation reaction.

7.6 Cyclic Voltammograms

Cyclic voltammograms were taken on a C-H Instruments 840B potentiostat using a glassy carbon working electrode, a Ag/AgCl reference electrode (SCE), and a Pt wire counter electrode. The pH was not adjusted and voltammograms were taken at room temperature in a 100 mM MeCN solution of tetrabutylammonium hexafluorophosphate containing 10 mM of **4a**. The scan rate was 100 mV/s. The reduction potential of $[Ir(dF(CF_3)ppy)_2](bpy)^+$ ($E_{1/2}[Ir^{IV}/*Ir^{III}] = -1.00$ V vs SCE)⁶ shows not higher than that of intermediate **4a** ($E_{1/2}^{red} = -1.00$ V) (**Fig. S9**), indicating that the reduction of intermediate **4a** by the excited state *Ir^{III} was thermodynamically unfavorable.

Fig. S9 Cyclic voltammograms. The reduction potential of intermediate 4a is $E_{1/2}^{red} = -1.00 \text{ V}$.

7.7 UV Sensitizer Experiments

An oven-dried culture tube equipped with a magnetic stirrer bar was charged with 4a (33 mg, 0.1 mmol) and benzil (22 mg, 0.1 mmol) or Mn powder (110 mg, 0.2 mmol), and then purged with argon three times. Anhydrous MeCN (1 mL) was added as solvent and the reaction was stirred at room temperature for 5h under the irradiation of 18W Blue LED lamp. The reactions were analysed by TLC, showing the benzyl promoted the imidation, while Mn powder failed to deliver the product. The reaction of benzyl was further analysed by ¹H NMR (adding 0.1 mmol 1,3,5-trioxane was used as an internal standard), showing 3a could be formed in 65% yield (Fig. S10).

Fig. S10 ¹H NMR (CDCl₃, 500 MHz) of the benzyl-promoted reaction. The benzil could promote the formation of 3a in 65% yield.

UV Sensitizer could promote this reaction, strongly suggesting that an energy transfer mechanism is indeed involved. Using Mn powder ($E^{o} = -1.42$ V vs. SCE (saturated calomel electrode))⁷ as an external reductant (comparable to [Ir(dF(CF₃)ppy)₂](bpy)⁺ (E_{1/2}[Ir^{IV}/*Ir^{III}] = -1.00 V vs SCE)⁶ failed to promote the desired reaction, indicating that photoredox pathway was not operative for this transformation.

7.8 Determination of The Reaction Quantum Yield

(1) Determination of the light intensity at 452 nm:

Fig. S11. Emission spectrum of blue LED. $\lambda_{max} = 452 \text{ nm}$ (Using Hitachi F-2500 fluorescence spectrometer). Absorbance of samples were recorded using a PERSEE TU-1810 UV-visible spectrophotometer.

According to the procedure of Yoon⁸, the photon flux of the blue LED ($\lambda_{max} = 452 \text{ nm}$) was determined by standard ferrioxalate actinometry. 2.21 g of potassium ferrioxalate hydrate was dissolved in 30 mL of 0.05 M H₂SO₄ to prepare a 0.15 M solution of ferrioxalate. A buffered solution of 1, 10phenanthroline was prepared by dissolving 50 mg of 1,10-phenanthroline and 11.25 g of sodium acetate in 50 mL of 0.5 M H₂SO₄. Both solutions were stored in the dark. To determine the photon flux of the blue LED ($\lambda_{max} = 452 \text{ nm}$, **Fig. S11**), 2.0 mL of the ferrioxalate solution was placed in a 3 ml cuvette and irradiated for 90.0 seconds at. After irradiation, 0.35 mL of the 1,10-phenanthroline solution was added to the cuvette. The solution was then allowed to rest for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-irradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using eq 1.

mol Fe²⁺ =
$$\frac{V \times \Delta A}{l \times \epsilon}$$
 (eq 1)

Where V is the total volume (0.00235 L) of the solution after addition of 1,10-phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions (1.541 – 0.786), 1 is the path length (1.0 cm), and ε is the molar absorptivity at 510 nm (11100 L·mol⁻¹·cm⁻¹). The photon flux can be calculated using eq 2.

photon flux =
$$\frac{\text{mol Fe}^{2+}}{\Phi \times t \times f}$$
 (eq 2)

Where Φ is the quantum yield for the ferrioxalate actinometer (approximate value: 0.845 for a 0.15 M solution at $\lambda = 458 \text{ nm}$)⁹, t is the time (90.0 s).

f is the fraction of light absorbed at $\lambda = 452$ nm, which was calculated using eq 3.

$$f = 1 - 10^{-A(\lambda = 452 \text{ nm})} \quad (\text{eq 3})$$

where A is the measured absorbance of above ferrioxalate solution at 452 nm (1.817). The photon flux calculation:

mol Fe²⁺ =
$$\frac{V \times \Delta A}{l \times \epsilon} = \frac{0.00235 \text{ L} \times (1.541 - 0.786)}{1 \text{ cm} \times 11100 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}} = 1.598423 \times 10^{-7} \text{ mol}$$

f = 1 - 10^{-A (λ = 452 nm) = 1 - 10^{-1.817} = 0.9847595}

photon flux =
$$\frac{\text{mol Fe}^{2+}}{\Phi \times t \times f} = \frac{1.598423 \times 10^{-7} \text{ mol}}{0.845 \times 90 \text{ s} \times 0.9847595} = 2.13 \times 10^{-9} \text{ eisntein} \cdot \text{s}^{-1}$$

(2) Determination of the reaction quantum yield:

$$\begin{array}{c} O \\ Ph \\ Me \\ \textbf{4a} (0.2 \text{ mmol}) \end{array} \xrightarrow{\text{Ir}(dF(CF_3)PPy)_2(bPy)(PF_6) (0.2 \text{ mol }\%)} \\ \hline MeCN (2 \text{ mL}), \text{ argon, blue LED (18 W), rt, 30 mins} \end{array} \xrightarrow{Ph \\ Me \\ \textbf{3a} \end{array}$$

PC-2 Ir(dF(CF₃)PPy)₂(bPy)(PF₆) (6.0mg) was dissolve in 30 mL anhydrous MeCN. An ovendried culture tube equipped with a magnetic stirrer bar was charged with **4a** (66 mg, 0.2 mmol), then purged with argon three times. 2 mL of above **PC** solution was added and the mixture was stirred under the irradiation of 18 W Blue LED for 30 mins (1800 s) at room temperature. The reaction was concentrated under vacuum to obtain the residue, which was analysed by ¹H NMR (adding 0.1 mmol 1,3,5-trioxane was used as an internal standard), showing **3a** could be formed in 30% yield (0.06×10^{-3} mol). The reaction quantum yield (Φ) was determined using eq 4

$$\Phi = \frac{\text{mol of } 3a}{\text{photon flux} \times t \times f} \qquad (\text{eq } 4)$$

where the photon flux is 2.13×10^{-9} einstein s⁻¹ (determined by actinometry as described above), t is the reaction time (1800 s) and f is the fraction of incident light absorbed by the reaction mixture, determined using eq 3. An absorbance of the reaction mixture at 452 nm was measured to be 0.100. The reaction quantum yield (Φ) calculation:

$$\Phi = \frac{\text{mol of } 3a}{\text{photon flux} \times t \times f} = \frac{0.06 \times 10^{-3} \text{ mol}}{2.13 \times 10^{-9} \text{ eisntein} \cdot \text{s}^{-1} \times 1800 \text{ s} \times (1 - 10^{-0.100})} = 76.1$$

The value of quantum yield suggests a radical chain propagation process for the present reaction.

8. Characterization of Products

N-methyl-N-(2-tosylacetyl)benzamide

3a: White solid (64 mg, 96% yield), m. p. 97 – 98 °C.

TLC: $R_f = 0.20$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.84 – 7.80 (m, 2H), 7.68 – 7.64 (m, 2H), 7.61 – 7.56 (m, 1H), 7.51 – 7.47 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.77 (s, 2H), 3.17 (s, 3H), 2.44 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.4, 164.7, 145.3, 136.3, 133.7, 133.0, 129.9, 128.9 (129.93), 128.9 (128.86), 128.4, 61.9, 35.5, 21.7.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₇H₁₈NO₄S, 332.0957; found, 332.0954.

2-bromo-N-methyl-N-(2-tosylacetyl)benzamide

3b: Light yellow oil (80 mg, 98% yield).

TLC: $R_f = 0.44$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.89 – 7.85 (m, 2H), 7.62 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.5$ Hz, 1H), 7.46 –

7.34 (m, 5H), 4.96 (s, 2H), 3.05 (s, 3H), 2.46 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 171.6, 164.7, 145.4, 137.0, 136.5, 133.3, 131.9, 129.9, 128.7, 128.1, 127.9, 118.6, 63.0, 33.7, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₇H₁₇BrNO₄S, 410.0062; found, 410.0066.

2-iodo-N-methyl-N-(2-tosylacetyl)benzamide

3c: White solid (84 mg, 92% yield), m. p. 87 – 88 °C.

TLC: $R_f = 0.46$ (PE: EA = 3:1, v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.90 – 7.86 (m, 3H), 7.50 – 7.45 (m, 1H), 7.40 – 7.35 (m, 3H), 7.21 –

7.16 (m, 1H), 4.96 (s, 2H), 3.04 (s, 3H), 2.46 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 172.9, 164.9, 145.4, 141.0, 139.8, 136.6, 131.8, 130.0, 128.8, 128.7, 127.5, 91.5, 63.0, 34.1, 21.9.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₇H₁₇INO₄S, 457.9923; found, 457.9919.

N,2-dimethyl-N-(2-tosylacetyl)benzamide

3d: White solid (65 mg, 95% yield), m. p. 97 – 99 °C.

TLC: $R_f = 0.35$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.85 (d, J = 8.5 Hz, 2H), 7.41 – 7.35 (m, 3H), 7.33 – 7.25 (m, 3H),

4.90 (s, 2H), 3.05 (s, 3H), 2.46 (s, 3H), 2.37 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.1, 164.9, 145.3, 136.5, 135.9, 134.5, 131.3, 131.1, 129.9, 128.6, 126.8, 126.3, 62.9, 34.4, 21.8, 19.4.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₈H₂₀NO₄S, 346.1113; found, 346.1110.

3-chloro-N-methyl-N-(2-tosylacetyl)benzamide

3e: White solid (64 mg, 88% yield), m. p. 88 – 89 °C.

TLC: $R_f = 0.42$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.83 – 7.79 (m, 2H), 7.62 (M, 1H), 7.57 – 7.53 (m, 2H), 7.46 – 7.42

(m, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.79 (s, 2H), 3.17 (s, 3H), 2.45 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.0, 164.5, 145.5, 136.2, 135.5, 135.0, 132.8, 130.2, 130.0, 128.8, 128.4, 126.9, 61.9, 35.4, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₇H₁₇ClNO₄S, 366.0567; found, 366.0561.

3-methoxy-N-methyl-N-(2-tosylacetyl)benzamide

3f: Colourless gum (70 mg, 97% yield).

TLC: $R_f = 0.28$ (PE: EA = 3:1, v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.5 Hz, 2H), 7.41 – 7.34 (m, 3H), 7.22 – 7.16 (m, 2H),

7.11 (dd, *J*₁ = 8.0 Hz, *J*₂ = 2.5 Hz, 1H), 4.75 (s, 2H), 3.86 (s, 3H), 3.17 (s, 3H), 2.45 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.2, 164.7, 159.9, 145.4, 136.3, 135.1, 130.0 (130.00), 130.0 (129.97), 128.5, 121.0, 119.0, 113.9, 62.0, 55.6, 35.5, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₈H₂₀NO₅S, 362.1062; found, 362.1058.

3-hydroxy-N-methyl-N-(2-tosylacetyl)benzamide

3g: Colourless gum (62 mg, 89% yield).

TLC: $R_f = 0.10$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.80 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.32 – 7.28 (m, 1H),

7.16 - 7.11 (m, 2H), 7.08 - 7.03 (m, 1H), 6.92 (br, 1H), 4.77 (s, 2H), 3.15 (s, 3H), 2.42 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.3, 164.8, 156.5, 145.7, 136.0 134.8, 130.3, 130.1, 128.5, 120.8,

120.5, 115.6, 62.0, 35.6, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₇H₁₈NO₅S, 348.0906; found, 348.0901.

methyl 3-(methyl(2-tosylacetyl)carbamoyl)benzoate

3h: Colourless gum (72 mg, 93% yield).

TLC: $R_f = 0.15$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 8.33 – 8.29 (m, 1H), 8.27 – 8.23 (m, 1H), 7.89 – 7.85 (m, 1H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.81 (s, 2H), 3.96 (s, 3H), 3.18 (s, 3H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 165.8, 164.5, 145.5, 136.2, 134.2, 133.6, 133.0, 131.0, 130.0, 129.9, 129.2, 128.4, 61.9, 52.6, 35.5, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₉H₂₀NO₆S, 390.1011; found, 390.1015.

N,4-dimethyl-N-(2-tosylacetyl)benzamide

3i: White solid (50 mg, 73% yield), m. p. 97 – 99 °C.

TLC: $R_f = 0.35$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.81 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0

Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.72 (s, 2H), 3.18 (s, 3H), 2.44 (s, 3H), 2.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.4, 164.7, 145.3, 144.1, 136.4, 130.8, 129.9, 129.6, 129.3, 128.5, 61.9, 35.6, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₈H₂₀NO₄S, 346.1113; found, 346.1108.

4-fluoro-N-methyl-N-(2-tosylacetyl)benzamide

3j: White solid (63 mg, 90% yield), m. p. 95 – 96 °C.

TLC: $R_f = 0.28$ (PE: EA = 3:1, v/v).

¹**H NMR** (**400 MHz, CDCl**₃) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.76 – 7.70 (m, 2H), 7.36 (d, *J* = 8.0 Hz,

2H), 7.21 – 7.15 (m, 2H), 4.75 (s, 2H), 3.19 (s, 3H), 2.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 165.5 (d, J = 255.2 Hz), 164.5, 145.5, 136.3, 131.9 (d, J = 9.3

Hz), 130.0, 129.8 (d, *J* = 3.2 Hz), 128.4, 116.2 (d, *J* = 22.2 Hz), 61.8, 35.6, 21.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.50.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₇H₁₇FNO₄S, 350.0862; found, 350.0862.

4-cyano-N-methyl-N-(2-tosylacetyl)benzamide

3k: White solid (65 mg, 92% yield), m. p. 117 – 118 °C.

TLC: $R_f = 0.21$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 – 7.78 (m, 6H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.81 (s, 2H), 3.18 (s, 3H), 2.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 163.3, 144.7, 137.0, 135.1, 131.7, 129.1, 128.3, 127.4, 116.7, 115.1, 60.9, 34.3, 20.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₈H₁₇N₂O₄S, 357.0909; found, 357.0903.

4-formyl-N-methyl-N-(2-tosylacetyl)benzamide

31: White solid (69 mg, 96% yield), m. p. 125 – 126 °C.

TLC: $R_f = 0.14$ (PE: EA = 3:1, v/v).

¹H NMR (500 MHz, CDCl₃) δ 10.11 (s, 1H), 8.03 – 7.99 (m, 2H), 7.86 – 7.79 (m, 4H), 7.40 – 7.35

(m, 2H), 4.82 (s, 2H), 3.18 (s, 3H), 2.46 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 191.3, 173.5, 164.5, 145.6, 139.1, 138.8, 136.2, 130.1, 130.0, 129.3,

128.4, 62.0, 35.3, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₈H₁₈NO₅S, 360.0906; found, 360.0900.

N-methyl-*N*-(2-tosylacetyl)-4-(trifluoromethyl)benzamide

3m: White solid (73 mg, 91% yield), m. p. 68 – 69 °C.

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 – 7.71 (m, 6H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.82 (s, 2H), 3.18 (s, 3H), 2.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 164.4, 145.6, 137.3, 136.2, 134.2 (q, *J* = 32.9 Hz), 130.1, 129.2,

128.4, 126.0 (q, J = 3.5 Hz), 123.5 (q, J = 272.8 Hz), 62.0, 35.4, 21.8.

¹⁹F NMR (**376** MHz, CDCl₃) δ -63.14.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₈H₁₇F₃NO₄S, 400.0830; found, 400.0823.

3,5-dichloro-N-methyl-N-(2-tosylacetyl)benzamide

S21

3n: White solid (74 mg, 93% yield), m. p. 137 – 139 °C.

TLC: $R_f = 0.43$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.80 (d, *J* = 8.4 Hz, 2H), 7.57 – 7.54 (m, 1H), 7.53 – 7.50 (m, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.79 (s, 2H), 3.18 (s, 3H), 2.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 164.4, 145.7, 136.8, 136.2, 135.9, 132.6, 130.1, 128.5, 127.0, 61.9, 35.4, 21.9.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₇H₁₆Cl₂NO₄S, 400.0177; found, 400.0173.

3-bromo-N,2-dimethyl-N-(2-tosylacetyl)benzamide

30: White solid (73 mg, 86% yield), m. p. 164 – 165 °C.

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.68 (dd, *J*₁ = 8.0 Hz, *J*₂ = 0.8 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.30 (dd, *J*₁ = 8.0 Hz, *J*₂ = 0.8 Hz, 1H), 7.21 – 7.13 (m, 1H), 4.96 (s, 2H), 3.04 (s, 3H), 2.46 (s, 3H), 2.40 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 164.8, 145.5, 136.9, 136.6, 135.1, 134.9, 130.0, 128.6, 127.8, 126.9, 125.4, 63.1, 34.4, 21.9, 20.0.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₈H₁₉BrNO₄S, 424.0218; found, 424.0213.

N-methyl-N-(2-tosylacetyl)-1-naphthamide

3p: White solid (61 mg, 80% yield), m. p. 145 – 146 °C.

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl₃)** δ 8.00 (d, *J* = 8.0 Hz, 2H), 7.94 – 7.90 (m, 1H), 7.87 (d, *J* = 8.4 Hz, 2H), 7.64 – 7.51 (m, 4H), 7.38 (d, *J* = 8.0 Hz, 2H), 4.99 (s, 2H), 3.07 (s, 3H), 2.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 165.0, 145.4, 136.6, 133.7, 132.4, 131.9, 130.0, 129.6, 128.9, 128.7, 128.2, 127.1, 126.0, 125.0, 124.5, 63.0, 34.8, 21.9.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₁H₂₀NO₄S, 382.1113; found, 382.1107.

N-methyl-N-(2-tosylacetyl)-2-naphthamide

3q: White solid (55 mg, 72% yield), m. p. 174 – 175 °C.

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.98 – 7.88 (m, 3H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.69 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.6 Hz, 1H), 7.66 – 7.56 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 4.79 (s, 2H), 3.25 (s, 3H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.6, 164.8, 145.4, 136.4, 135.4, 132.5, 131.0, 130.6, 130.0, 129.4, 128.9 (128.93), 128.9 (128.86), 128.6, 128.0, 127.4, 124.7, 62.0, 35.7, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₁H₂₀NO₄S, 382.1113; found, 382.1109.

N,1-dimethyl-*N*-(2-tosylacetyl)-1*H*-indole-2-carboxamide

3r: White solid (50 mg, 65% yield), m. p. 127 – 128 °C.

TLC: $R_f = 0.35$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.79 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 4.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.23 – 7.16 (m, 1H), 6.96 (s, 1H), 4.60 (s, 2H), 3.99 (s, 3H), 3.36 (s, 3H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 164.6, 145.5, 140.3, 136.1, 130.3, 130.0, 128.6, 126.4, 125.8, 123.1, 121.5, 111.3, 110.6, 62.4, 35.9, 31.7, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₀H₂₁N₂O₄S, 385.1222; found, 385.1219.

N-methyl-N-(2-tosylacetyl)furan-2-carboxamide

3s: Colourless oil (51 mg, 79% yield).

TLC: $R_f = 0.14$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.64 (dd, *J*₁ = 1.5 Hz, *J*₂ = 1.0 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.30 (dd, *J*₁ = 3.5 Hz, *J*₂ = 0.5 Hz, 1H), 6.61 (dd, *J*₁ = 3.5 Hz, *J*₂ = 1.5 Hz, 1H), 4.71 (s, 2H), 3.33 (s, 3H), 2.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 164.4, 162.2, 147.0, 146.6, 145.3, 136.3, 129.9, 128.6, 121.5, 112.8, 61.9, 34.0, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₅H₁₆NO₅S, 322.0749; found, 322.0749.

N-methyl-N-(2-tosylacetyl)thiophene-2-carboxamide

3t: White solid (61 mg, 91% yield), m. p. 107 – 108 °C.

TLC: $R_f = 0.21$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 4.5 Hz, 1H), 7.63 – 7.59 (m,

1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.17 – 7.15 (m, 1H), 4.70 (s, 2H), 3.37 (s, 3H), 2.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 167.3, 164.4, 145.4, 136.8, 136.3, 134.5, 134.0, 130.0, 128.6, 128.1,

61.8, 35.8, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₅H₁₆NO₄S₂, 338.0521; found, 338.0520.

N-methyl-*N*-(2-tosylacetyl)cyclohex-1-ene-1-carboxamide

3u: Colourless oil (33 mg, 49% yield).

TLC: $R_f = 0.43$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 6.56 – 6.40 (m, 1H), 4.64 (s, 2H), 3.15 (s, 3H), 2.45 (s, 3H), 2.33 – 2.21 (m, 4H), 1.77 – 1.63 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 175.4, 164.6, 145.3, 139.7, 136.4, 134.3, 129.9, 128.6, 61.9, 34.8, 25.7, 24.7, 21.9, 21.8, 21.4.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₇H₂₂NO₄S, 336.1270; found, 336.1273.

N-methyl-3-phenyl-N-(2-tosylacetyl)propanamide

3v: White solid (60 mg, 83% yield), m. p. 105 – 106 °C.

TLC: $R_f = 0.28$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.83 – 7.80 (m, 2H), 7.36 – 7.33 (m, 2H), 7.32 – 7.28 (m, 2H), 7.25 – 7.19 (m, 3H), 4.80 (s, 2H), 3.18 (s, 3H), 2.98 – 2.92 (m, 2H), 2.89 – 2.82 (m, 2H), 2.44 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 175.4, 164.7, 145.3, 140.2, 136.5, 129.9, 128.7, 128.6, 128.5, 126.5, 63.2, 39.1, 31.7, 30.5, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₉H₂₂NO₄S, 360.1270; found, 360.1267.

N-methyl-2-(1-methyl-1H-indol-3-yl)-N-(2-tosylacetyl)acetamide

3w: Colourless oil (63 mg, 79% yield).

TLC: $R_f = 0.14$ (PE: EA = 3:1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.34 – 7.22 (m, 4H), 7.17 – 7.11 (m, 1H), 7.04 (s, 1H), 4.82 (s, 2H), 4.03 (s, 2H), 3.77 (s, 3H), 3.25 (s, 3H), 2.42 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 174.7, 165.0, 145.2, 137.0, 136.7, 129.9, 128.6, 128.0, 127.5, 122.2, 119.6, 118.7, 109.7, 105.4, 63.4, 34.5, 32.9, 32.2, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₁H₂₃N₂O₄S, 399.1379; found, 399.1376.

N-methyl-2-(thiophen-3-yl)-N-(2-tosylacetyl)acetamide

3v: Colourless oil (56 mg, 80% yield).

TLC: $R_f = 0.21$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl₃)** δ 7.80 (d, J = 8.4 Hz, 2H), 7.37 – 7.30 (m, 3H), 7.15 – 7.11 (m, 1H),

6.99 (dd, *J*₁ = 4.8 Hz, *J*₂ = 1.2 Hz, 1H), 4.80 (s, 2H), 3.94 (s, 2H), 3.24 (s, 3H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.9, 164.8, 145.3, 136.5, 132.5, 129.9, 128.6, 128.4, 126.3, 123.5, 63.2, 38.8, 32.0, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₆H₁₈NO₄S₂, 352.0677; found, 352.0673.

5-bromo-N-methyl-N-(2-tosylacetyl)pentanamide

3y: Colourless oil (33 mg, 43% yield).

TLC: $R_f = 0.10$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 4.81 (s, 2H), 3.44 (t, *J* = 6.5 Hz, 2H), 3.23 (s, 3H), 2.61 (t, *J* = 7.0 Hz, 2H), 2.46 (s, 3H), 1.96 – 1.90 (m, 2H), 1.85 – 1.78 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 175.7, 164.7, 145.3, 136.5, 129.9, 128.6, 63.3, 36.2, 33.3, 31.8, 23.0, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₅H₂₁BrNO₄S, 390.0375; found, 390.0377.

4-(benzyloxy)-N-methyl-N-(2-tosylacetyl)butanamide

3z: Colourless oil (50 mg, 62% yield).

TLC: $R_f = 0.21$ (PE: EA = 3:1, v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.79 (m, 2H), 7.36 – 7.26 (m, 7H), 4.80 (s, 2H), 4.49 (s, 2H),

3.53 (t, *J* = 6.0 Hz, 2H), 3.20 (s, 3H), 2.66 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 1.99 – 1.90 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 176.1, 164.7, 145.2, 138.3, 136.6, 129.8, 128.6, 128.5, 127.8, 73.0, 68.7, 63.3, 33.8, 31.7, 24.6, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₁H₂₆NO₅S, 404.1532; found, 404.1531.

N-methyl-*N*-(2-tosylacetyl)pent-4-enamide

3aa: Colourless oil (37 mg, 60% yield).

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.82 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 5.88 – 5.78 (m, 1H), 5.11 – 5.06 (m, 1H) 5.05 – 5.02 (m, 1H) 4.81 (s, 2H) 3.23 (s, 3H) 2.68 – 2.62 (m, 2H) 2.45 (s, 3H)

5.11 – 5.06 (m, 1H), 5.05 – 5.02 (m, 1H), 4.81 (s, 2H), 3.23 (s, 3H), 2.68 – 2.62 (m, 2H), 2.45 (s, 3H), 2.42 – 2.36 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 175.5, 164.7, 145.3, 136.6, 136.4, 129.9, 128.6, 116.1, 63.3, 36.5, 31.7, 28.3, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₅H₂₀NO₄S, 310.1113; found, 310.1109.

N-methyl-N-(2-tosylacetyl)cyclopropanecarboxamide

3ab: Colourless oil (39 mg, 66% yield).

TLC: $R_f = 0.21$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 4.80 (s, 2H), 3.36 (s, 3H), 2.45 (s, 3H), 1.98 – 1.88 (m, 1H), 1.17 – 1.10 (m, 2H), 1.05 – 0.98 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 177.5, 164.4, 145.2, 136.7, 129.9, 128.7, 62.9, 32.1, 21.8, 15.2, 10.9.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₄H₁₈NO₄S, 296.0957; found, 296.0966.

N-methyl-N-(2-tosylacetyl)cyclobutanecarboxamide

3ac: Colourless oil (31 mg, 50% yield).

TLC: $R_f = 0.28$ (PE: EA = 3:1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 4.88 (s, 2H), 3.47 – 3.37 (m, 1H), 3.11 (s, 3H), 2.45 (s, 3H), 2.40 – 2.29 (m, 2H), 2.28 – 2.18 (m, 2H), 2.07 – 1.84 (m, 2H).
¹³C NMR (100 MHz, CDCl₃) δ 177.7, 164.8, 145.2, 136.7, 129.8, 128.6, 63.3, 40.4, 31.2, 25.0, 21.8, 17.6.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₅H₂₀NO₄S, 310.1113; found, 310.1112.

N-methyl-N-(2-tosylacetyl)cyclopentanecarboxamide

3ad: Colourless oil (44 mg, 68% yield).

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.84 (s, 2H), 3.25 (s, 3H), 3.16 – 3.01 (m, 1H), 2.45 (s, 3H), 1.93 – 1.79 (m, 4H), 1.77 – 1.70 (m, 2H), 1.67 – 1.58 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 179.9, 165.2, 145.2, 136.7, 129.9, 128.7, 63.4, 44.9, 32.0, 30.3, 26.2, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₆H₂₂NO₄S, 324.1270; found, 324.1268.

N-methyl-N-(2-tosylacetyl)cyclohexanecarboxamide

3ae: Colourless oil (38 mg, 57% yield).

TLC: $R_f = 0.43$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.84 – 7.80 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.79 (s, 2H), 3.24 (s, 3H), 2.76 – 2.60 (m, 1H), 2.45 (s, 3H), 1.87 – 1.79 (m, 4H), 1.72 – 1.68 (m, 1H), 1.54 – 1.41 (m, 2H), 1.35 – 1.22 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 179.7, 165.2, 145.2, 136.6, 129.8, 128.6, 63.2, 44.3, 31.9, 29.2, 25.7, 25.6, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₇H₂₄NO₄S, 338.1426; found, 338.1428.

4,4-difluoro-N-methyl-N-(2-tosylacetyl)cyclohexane-1-carboxamide

3af: White solid (67 mg, 90% yield), m. p. 94 – 95 °C.

TLC: $R_f = 0.21$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.80 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 4.72 (s, 2H), 3.27

(s, 3H), 2.98 – 2.81 (m, 1H), 2.46 (s, 3H), 2.24 – 2.13 (m, 2H), 1.99 – 1.68 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 178.1, 164.9, 145.5, 136.4, 130.0, 128.5, 122.4 (t, *J* = 242.4 Hz), 63.1,

42.1, 32.8 (t, *J* = 25.3 Hz), 32.2, 25.6, 25.5, 21.8.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -93.29 (d, J = 237.6 Hz), -101.45 (d, J = 237.6 Hz).

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₇H₂₂F₂NO₄S, 374.1238; found, 374.1233.

N-methyl-N-(2-tosylacetyl)tetrahydro-2H-pyran-4-carboxamide

3ag: White solid (62 mg, 92% yield), m. p. 107 – 109 °C.

TLC: $R_f = 0.10$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 4.75 (s, 2H), 4.05 – 3.99 (m, 2H), 3.50 – 3.39 (m, 2H), 3.27 (s, 3H), 3.09 – 2.99 (m, 1H), 2.46 (s, 3H), 1.91 – 1.80 (m, 2H), 1.77 – 1.70 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 178.0, 164.9, 145.4, 136.5, 129.9, 128.5, 67.0, 63.1, 41.7, 32.0, 28.8, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₆H₂₂NO₅S, 340.1219; found, 340.1227.

N-methyl-1-tosyl-N-(2-tosylacetyl)piperidine-4-carboxamide

3ah: White solid (87 mg, 88% yield), m. p. 163 – 164 °C.

TLC: $R_f = 0.15$ (PE: EA = 1:1, v/v).

¹**H NMR (400 MHz, CDCl₃)** δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.38 – 7.31 (m, 4H), 4.64 (s, 2H), 3.84 – 3.73 (m, 2H), 3.20 (s, 3H), 2.83 – 2.70 (m, 1H), 2.44 (s, 6H), 2.41 – 2.30 (m, 2H), 1.93 – 1.77 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 177.7, 164.8, 145.6, 143.8, 136.3, 132.9, 130.0, 129.8, 128.4, 127.8, 63.0, 45.5, 41.9, 32.2, 27.8, 21.8, 21.6.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₃H₂₉N₂O₆S₂, 493.1467; found, 493.1463.

N-methyl-N-(2-tosylacetyl)adamantane-1-carboxamide

3ai: White solid (43 mg, 56% yield), m. p. 90 – 91 °C.

TLC: $R_f = 0.50$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.47 (s, 2H), 3.21 (s, 3H), 2.45 (s, 3H), 2.12 – 2.02 (m, 9H), 1.81 – 1.70 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 185.5, 164.5, 145.3, 136.3, 129.9, 128.6, 61.4, 45.3, 39.0, 36.4, 33.2, 28.2, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₁H₂₈NO₄S, 390.1739; found, 390.1739.

2-((1,3-dioxoisoindolin-2-yl)oxy)-N,2-dimethyl-N-(2-tosylacetyl)propanamide

3aj: White solid (82 mg, 90% yield), m. p. 137 – 138 °C.

TLC: $R_f = 0.21$ (PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 7.87 – 7.77 (m, 6H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.79 (s, 2H), 3.58 (s, 3H), 2.45 (s, 3H), 1.76 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 175.3, 165.6, 164.5, 145.3, 136.4, 135.1, 129.9, 128.8, 128.6, 124.0, 89.7, 62.6, 33.6, 23.9, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₂H₂₃N₂O₇S, 459.1226; found, 459.1222.

2-(1,3-dioxoisoindolin-2-yl)-N-methyl-N-(2-tosylacetyl)acetamide

3ak: White solid (79 mg, 96% yield), m. p. 177 – 178 °C.

TLC: $R_f = 0.10$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 – 7.73 (m, 6H), 7.39 (d, *J* = 8.0 Hz, 2H), 4.74 (s, 2H), 4.60 (s, 2H), 3.35 (s, 3H), 2.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.4, 167.7, 165.0, 145.8, 135.8, 134.4, 132.1, 130.1, 128.7, 123.7, 62.8, 43.3, 31.9, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₀H₁₉N₂O₆S, 415.0964; found, 415.0962.

4-(1,3-dioxoisoindolin-2-yl)-N-methyl-N-(2-tosylacetyl)butanamide

3al: White solid (51 mg, 58% yield), m. p. 150 – 151 °C.

TLC: $R_f = 0.10$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.87 – 7.80 (m, 4H), 7.76 – 7.71 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.77 (s, 2H), 3.77 (t, *J* = 6.5 Hz, 2H), 3.20 (s, 3H), 2.62 (t, *J* = 6.5 Hz, 2H), 2.45 (s, 3H), 2.08 – 1.98 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 175.2, 168.6, 164.7, 145.2, 136.7, 134.2, 132.1, 129.9, 128.7, 123.4, 63.2, 37.0, 34.4, 31.7, 23.6, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₂H₂₃N₂O₆S, 443.1277; found, 443.1272.

(S)-2-(1,3-dioxoisoindolin-2-yl)-N-methyl-N-(2-tosylacetyl)propanamide

3am: Colourless oil (62 mg, 73% yield). Specific optical rotation: $[\alpha]^{20} D = -97.22$ (*c* 0.95, CH₃Cl).

HPLC: The *ee* value was determined by HPLC analysis on a CHIRALPAK AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm) with tr = 22.7 min (minor), 27.5 min (major): > 99% *ee*.

TLC: $R_f = 0.10$ (PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 7.89 – 7.85 (m, 2H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.79 – 7.75 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 5.32 (q, *J* = 7.0 Hz, 1H), 4.76 (d, *J* = 15.0 Hz, 1H), 4.51 (d, *J* = 15.0 Hz, 1H), 3.13 (s, 3H), 2.44 (s, 3H), 1.62 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.7, 167.3, 165.0, 145.2, 136.8, 134.7, 131.6, 129.8, 128.7, 123.9, 62.2, 49.6, 32.1, 21.8, 15.4.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₁H₂₁N₂O₆S, 429.1120; found, 429.1122.

(S)-2-(1,3-dioxoisoindolin-2-yl)-N-methyl-3-phenyl-N-(2-tosylacetyl)propanamide

3an: Colourless oil (61 mg, 61% yield). pecific optical rotation: $[\alpha]^{20} D = -162.32$ (*c* 0.75, CH₃Cl).

HPLC: The *ee* value was determined by HPLC analysis on a CHIRALPAK AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm) with tr = 20.6 min (major), 30.5 min (minor): > 99% *ee*.

TLC: $R_f = 0.10$ (PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.80 – 7.75 (m, 2H), 7.73 – 7.69 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.20 – 7.12 (m, 5H), 5.54 (dd, *J*₁ = 9.5 Hz, *J*₂ = 5.5 Hz, 1H), 4.76 (d, *J* = 15.0 Hz, 1H), 4.52 (d, *J* = 15.0 Hz, 1H), 3.49 – 3.37 (m, 2H), 3.15 (s, 3H), 2.41 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 172.9, 167.4, 165.0, 145.3, 136.5, 136.3, 134.6, 131.3, 129.9, 129.2, 128.8, 128.7, 127.2, 123.8, 62.3, 55.8, 34.8, 32.3, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₇H₂₅N₂O₆S, 505.1433; found, 505.1435.

tert-butyl (S)-2-(methyl(2-tosylacetyl)carbamoyl)pyrrolidine-1-carboxylate

3ao: Colourless oil (80 mg, 94% yield). Specific optical rotation: $[\alpha]^{20} D = -37.99$ (*c* 0.8, CH₃Cl).

HPLC: The *ee* value was determined by HPLC analysis on a CHIRALPAK AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm) with tr = 6.0 min (minor), 9.7 min (major): > 99% *ee*.

TLC: $R_f = 0.14$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃, 2 rotamers see, ratio = 6:4) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.43 – 7.31 (m, 2H), 5.16 (d, *J* = 14.4 Hz, 0.6H), 5.03 (d, *J* = 14.4 Hz, 0.4H), 4.83 – 4.71 (m, 1H), 4.51 (d, *J* = 14.4 Hz, 0.4H), 4.40 (d, *J* = 14.4 Hz, 0.6H), 3.66 – 3.55 (m, 1H), 3.52 – 3.39 (m, 1H), 3.33 and 3.30 (two single peaks, 3H), 2.46 and 2.45 (two single peaks, 3H)2.35 – 2.20 (m, 1H), 2.06 – 1.87 (m, 3H), 1.45 and 1.38 (two single peaks, 9H)

¹³C NMR (100 MHz, CDCl₃, 2 rotamers see) δ 176.2, 176.1, 164.7, 154.5, 153.4, 145.4, 145.2, 136.4 (136.43), 136.4 (136.41), 129.9, 129.8, 128.6, 128.5, 80.1 (80.13), 80.1 (80.10), 63.0 (63.03), 63.0 (62.98), 60.0, 59.9, 46.9, 46.7, 31.7, 31.6, 30.3, 29.4, 28.5, 28.3, 24.1, 23.2, 21.7.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₀H₂₉N₂O₆S, 425.1746; found, 425.1745.

N-benzyl-N-(2-tosylacetyl)benzamide

3ap: White solid (71 mg, 87% yield), m. p. 114 – 115 °C.

TLC: $R_f = 0.43$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.74 (d, *J* = 8.5 Hz, 2H), 7.62 – 7.53 (m, 3H), 7.46 – 7.41 (m, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.25 – 7.19 (m, 3H), 7.10 – 7.06 (m, 2H), 4.94 (s, 2H), 4.59 (s, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.7, 164.6, 145.4, 136.2, 136.1, 134.3, 133.0, 130.0, 129.0, 128.9, 128.6, 128.5, 127.9, 127.8, 62.4, 50.5, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₃H₂₂NO₄S, 408.1270; found, 408.1270.

N-isobutyl-*N*-(2-tosylacetyl)benzamide

3aq: White solid (58 mg, 78% yield), m. p. 123 – 124 °C.

TLC: $R_f = 0.57$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.83 – 7.75 (m, 2H), 7.71 – 7.66 (m, 2H), 7.62 – 7.57 (m, 1H), 7.52 – 7.46 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.60 (s, 2H), 3.57 (d, *J* = 6.8 Hz, 2H), 2.45 (s, 3H), 2.01 – 1.83 (m, 1H), 0.76 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 175.4, 164.4, 145.4, 136.3, 134.2, 133.1, 130.0, 129.3, 129.0, 128.5, 62.0, 55.0, 28.5, 21.8, 20.1.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₀H₂₄NO₄S, 374.1426; found, 374.1442.

N-isopropyl-N-(2-tosylacetyl)benzamide

3ar: White solid (60 mg, 83% yield), m. p. 113 – 115 °C.

TLC: $R_f = 0.50$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 4H), 7.64 – 7.58 (m, 1H), 7.53 – 7.47 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.36 – 4.22 (m, 3H), 2.45 (s, 3H), 1.38 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 175.3, 164.3, 145.4, 136.1, 135.0, 133.4, 129.9, 129.2, 129.1, 128.5,

63.0, 52.6, 21.8, 20.0.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₉H₂₂NO₄S, 360.1270; found, 360.1279.

N-cyclopropyl-N-(2-tosylacetyl)benzamide

3as: White solid (56 mg, 78% yield), m. p. 91 – 92 °C.

TLC: $R_f = 0.28$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.84 – 7.80 (m, 2H), 7.79 – 7.75 (m, 2H), 7.61 – 7.56 (m, 1H), 7.50 – 7.45 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 4.73 (s, 2H), 2.88 – 2.79 (m, 1H), 2.43 (s, 3H), 0.87 – 0.76 (m, 2H), 0.55 – 0.47 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 174.3, 164.6, 145.4, 136.4, 134.7, 133.1, 130.0, 129.25, 128.7, 128.6, 61.5, 30.3, 21.8, 10.1.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₉H₂₀NO₄S, 358.1113; found, 358.1124.

N-cyclopentyl-*N*-(2-tosylacetyl)benzamide

3at: White solid (75 mg, 97% yield), m. p. 99 – 100 °C.

TLC: $R_f = 0.57$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.82 – 7.73 (m, 4H), 7.64 – 7.59 (m, 1H), 7.55 – 7.47 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.45 (s, 2H), 4.24 – 4.14 (m, 1H), 2.44 (s, 3H), 2.10 – 1.97 (m, 2H), 1.90 – 1.74 (m, 4H), 1.49 – 1.38 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 175.6, 163.6, 145.3, 136.3, 134.5, 133.4, 129.9, 129.4, 129.0, 128.5, 62.6, 61.4, 29.2, 25.3, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₁H₂₄NO₄S, 386.1426; found, 386.1440.

N-cyclohexyl-N-(2-tosylacetyl)benzamide

3au: White solid (74 mg, 93% yield), m. p. 99 – 100 °C.

TLC: $R_f = 0.58$ (PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 7.79 – 7.73 (m, 4H), 7.64 – 7.59 (m, 1H), 7.53 – 7.47 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.23 (s, 2H), 4.01 – 3.87 (m, 1H), 2.44 (s, 3H), 2.07 – 1.93 (m, 2H), 1.80 – 1.71 (m, 4H), 1.58 – 1.49 (m, 1H), 1.21 – 1.06 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 175.1, 164.0, 145.3, 136.0, 135.1, 133.6, 129.9, 129.3, 129.2, 128.6, 63.0, 60.4, 29.8, 26.3, 25.1, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₂H₂₆NO₄S, 400.1583; found, 400.1590.

N-(3-chloropropyl)-N-(2-tosylacetyl)benzamide

3av: White solid (63 mg, 80% yield), m. p. 119 – 120 °C.

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.80 – 7.77 (m, 2H), 7.70 – 7.66 (m, 2H), 7.63 – 7.59 (m, 1H), 7.53 – 7.48 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.58 (s, *J* = 7.0 Hz, 2H), 3.85 (t, 2H), 3.45 (t, *J* = 6.0 Hz, 2H), 2.45 (s, 3H), 2.08 – 1.99 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 174.7, 164.7, 145.5, 136.2, 133.8, 133.2, 130.0, 129.1, 129.0, 128.5, 62.2, 45.5, 42.0, 31.2, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₉H₂₁ClNO₄S, 394.0880; found, 394.0873.

N-(2-((tert-butyldimethylsilyl)oxy)ethyl)-N-(2-tosylacetyl)benzamide

3aw: White solid (60 mg, 63% yield), m. p. 83 – 84 °C.

TLC: $R_f = 0.64$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.71 – 7.66 (m, 2H), 7.59 – 7.53 (m, 1H), 7.49 – 7.44 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.65 (s, 2H), 3.90 (t, *J* = 5.2 Hz, 2H), 3.70 (t, *J* = 5.2 Hz, 2H), 2.44 (s, 3H), 0.79 (s, 9H), -0.05 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.8, 164.7, 145.4, 136.3, 134.2, 132.7, 130.0, 129.4, 128.8, 128.5, 61.9, 61.3, 50.2, 25.9, 21.8, 18.4, -5.5.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₄H₃₄NO₅SSi, 476.1927; found, 476.1930.

(S)-N-(1-phenylethyl)-N-(2-tosylacetyl)benzamide

3ax: White solid (67 mg, 80% yield), m. p. 141 – 142 °C, Specific optical rotation: $[\alpha]^{20} D = -14.44$ (*c* 0.5, CH₃Cl).

HPLC: The *ee* value was determined by HPLC analysis on a CHIRALPAK AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm) with tr = 12.4 min (major), 15.0 min (minor): > 95% *ee*.

TLC: $R_f = 0.43$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.71 – 7.67 (m, 2H), 7.65 – 7.62 (m, 2H), 7.60 – 7.56 (m, 1H), 7.49 – 7.43 (m, 2H), 7.35 – 7.67 (m, 2H), 7.30 – 7.26 (m, 4H), 7.25 – 7.20 (m, 1H), 5.54 (q, *J* = 7.5 Hz, 1H), 4.35 (d, *J* = 14.0 Hz, 1H), 4.13 (d, *J* = 14.0 Hz, 1H), 2.43 (s, 3H), 1.78 (d, *J* = 7.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 175.0, 164.0, 145.4, 139.8, 135.9, 135.4, 133.4, 129.9, 129.2, 129.1, 128.6, 128.4, 127.6, 127.5, 63.2, 57.4, 21.8, 17.4.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₄H₂₄NO₄S, 422.1426; found, 422.1422.

methyl N-benzoyl-N-(2-tosylacetyl)-L-alaninate

3ay: Colourless oil (44 mg, 55% yield). Specific optical rotation: $[\alpha]^{20} D = -19.08$ (*c* 0.5, CH₃Cl).

HPLC: The *ee* value was determined by HPLC analysis on a CHIRALPAK AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm) with tr = 11.2 min (major), 11.9 min (minor): 99% *ee*.

TLC: $R_f = 0.28$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 – 7.75 (m, 4H), 7.65 – 7.60 (m, 1H), 7.55 – 7.49 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.67 (q, *J* = 6.8 Hz, 1H), 4.50 (d, *J* = 14.0 Hz, 1H), 4.30 (d, *J* = 14.0 Hz, 1H), 3.71 (s, 3H), 2.44 (s, 3H), 1.56 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.9, 170.4, 164.3, 145.6, 136.0, 134.3, 133.5, 130.0, 129.4, 129.0, 128.6, 62.6, 56.5, 52.8, 21.8, 14.7.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₀H₂₂NO₆S, 404.1168; found, 404.1174.

N-phenyl-N-(2-tosylacetyl)benzamide

3az: White solid (56 mg, 72% yield), m. p. 127 – 128 °C.

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.87 – 7.83 (m, 2H), 7.67 – 7.63 (m, 2H), 7.42 – 7.37 (m, 1H), 7.36 – 7.22 (m, 7H), 7.18 – 7.12 (m, 2H), 4.75 (s, 2H), 2.42 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.1, 165.3, 145.5, 138.6, 136.4, 133.7, 132.6, 130.0, 129.9, 129.6, 128.6, 128.5, 128.3, 62.2, 21.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₂H₂₀NO₄S, 394.1113; found, 394.1110.

N-(*o*-tolyl)-*N*-(2-tosylacetyl)benzamide

3ba: White solid (55 mg, 68% yield), m. p. 140 – 141 °C.

TLC: $R_f = 0.43$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.83 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 7.6 Hz, 2H), 7.45 – 7.39 (m, 1H), 7.35 – 7.28 (m, 4H), 7.23 – 7.10 (m, 4H), 4.74 (d, *J* = 14.4 Hz, 1H), 4.63 (d, *J* = 14.4 Hz, 1H), 2.42 (s, 3H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 165.0, 145.4, 137.4, 136.4, 136.3, 134.0, 132.5, 131.7, 130.0, 129.4, 129.3, 129.2, 128.7, 128.3, 127.3, 62.2, 21.8, 18.2.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₃H₂₂NO₄S, 408.1270; found, 408.1270.

N-(3-fluorophenyl)-N-(2-tosylacetyl)benzamide

3bb: White solid (37 mg, 45% yield), m. p. 143 – 144 °C.

TLC: $R_f = 0.43$ (PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.5 Hz, 2H), 7.68 – 7.62 (m, 2H), 7.46 – 7.41 (m, 1H),

7.37 (d, J = 8.0 Hz, 2H), 7.34 – 7.23 (m, 3H), 7.00 – 6.87 (m, 3H), 4.76 (s, 2H), 2.44 (s, 3H).

¹³**C NMR (125 MHz, CDCl₃)** δ 172.8, 165.3, 162.9 (d, *J* = 248.9 Hz), 145.7, 139.9 (d, *J* = 9.8 Hz), 136.3, 133.3, 132.9, 130.7 (d, *J* = 9.0 Hz), 130.1, 129.9, 128.6, 128.5, 124.4 (d, *J* = 3.3 Hz), 116.0 (d, *J* = 23.3 Hz), 115.8 (d, *J* = 21.0 Hz), 62.3, 21.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -110.95.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₂H₁₉FNO₄S, 412.1019; found, 412.1014.

N-(p-tolyl)-N-(2-tosylacetyl)benzamide

3bc: White solid (57 mg, 70% yield), m. p. 146 – 147 °C.

TLC: $R_f = 0.40$ (PE: EA = 3:1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.6 Hz, 2H), 7.66 (d, J = 7.6 Hz, 2H), 7.44 – 7.37 (m, 1H), 7.36 – 7.24 (m, 4H), 7.14 – 7.08 (m, 2H), 7.05 – 7.00 (m, 2H), 4.72 (s, 2H), 2.41 (s, 3H), 2.28 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 173.1, 165.4, 145.4, 138.7, 136.4, 135.8, 133.8, 132.5, 130.3, 130.0, 129.9, 128.6, 128.3, 128.2, 62.2, 21.8, 21.2.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₃H₂₂NO₄S, 408.1270; found, 408.1278.

N-(4-methoxyphenyl)-N-(2-tosylacetyl)benzamide

3bd: Colourless gum (68 mg, 80% yield).

TLC: $R_f = 0.25$ (PE: EA = 3:1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.76 – 7.66 (m, 2H), 7.48 – 7.41 (m, 1H), 7.39 – 7.28 (m, 4H), 7.14 – 7.08 (m, 2H), 6.89 – 6.82 (m, 2H), 4.75 (s, 2H), 3.78 (s, 3H), 2.46 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 173.1, 165.5, 159.4, 145.5, 136.4, 133.8, 132.5, 131.1, 130.0, 129.8, 129.6, 128.6, 128.4, 114.9, 62.1, 55.5, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₃H₂₂NO₅S, 424.1219; found, 422.1233.

N-(naphthalen-1-yl)-N-(2-tosylacetyl)benzamide

3be: White solid (47 mg, 53% yield), m. p. 179 – 180 °C.

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 8.5 Hz, 1H), 7.88 – 7.79 (m, 4H), 7.73 – 7.68 (m, 2H), 7.65 – 7.59 (m, 1H), 7.56 – 7.51 (m, 1H), 7.41 – 7.29 (m, 5H), 7.25 – 7.19 (m, 2H), 4.79 (d, J = 14.0 Hz, 1H), 4.60 (d, J = 14.0 Hz, 1H), 2.41 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.6, 165.3, 145.5, 136.3, 134.8, 134.6, 134.0, 132.7, 130.5, 130.1, 130.0, 129.0, 128.8, 128.7, 128.3, 128.1, 127.5, 126.9, 125.5, 122.5, 62.3, 21.8.
HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₆H₂₂NO₄S, 444.1270; found, 444.1272.

N-(naphthalen-2-yl)-*N*-(2-tosylacetyl)benzamide

3bf: White solid (59 mg, 67% yield), m. p. 137 – 138 °C.

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.83 (d, *J* = 8.5 Hz, 1H), 7.81 – 7.77 (m, 1H), 7.73 – 7.68 (m, 3H), 7.52 (d, *J* = 1.5 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.39 – 7.32 (m, 4H), 7.28 – 7.22 (m, 2H), 4.79 (s, 2H), 2.42 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 173.2, 165.5, 145.6, 136.4, 136.0, 133.6, 133.4, 132.7, 132.7, 130.1, 130.0, 129.8, 128.6, 128.4, 128.1, 127.9, 127.4, 127.2, 126.9, 125.9, 62.3, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₆H₂₂NO₄S, 444.1270; found, 444.1272.

N-benzyl-*N*-(2-(phenylsulfonyl)acetyl)benzamide

3bg: White solid (68 mg, 87% yield), m. p. 113 – 114 °C.

TLC: $R_f = 0.35$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.91 – 7.84 (m, 2H), 7.69 – 7.63 (m, 1H), 7.62 – 7.51 (m, 5H), 7.49 – 7.42 (m, 2H), 7.26 – 7.20 (m, 3H), 7.11 – 7.04 (m, 2H), 4.94 (s, 2H), 4.62 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 174.7, 164.5, 139.1, 136.2, 134.3 (134.32), 134.3 (134.29), 133.1, 129.4, 129.0, 128.9, 128.7, 128.5, 127.9, 127.8, 62.3, 50.6.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₂H₂₀NO₄S, 394.1113; found, 394.1115.

N-benzyl-N-(2-((2-fluorophenyl)sulfonyl)acetyl)benzamide

3bh: Colourless oil (28 mg, 34% yield).

TLC: $R_f = 0.36$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.90 – 7.85 (m, 1H), 7.69 – 7.55 (m, 4H), 7.48 – 7.43 (m, 2H), 7.34 – 7.29 (m, 1H), 7.27 – 7.19 (m, 4H), 7.08 – 7.02 (m, 2H), 4.91 (s, 2H), 4.78 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 174.6, 164.5, 159.7 (d, *J* = 256.1 Hz), 136.8 (d, *J* = 8.6 Hz), 136.2, 134.2, 133.2, 130.7, 129.1, 129.0, 128.7, 127.9, 127.8, 127.0 (d, *J* = 14.2 Hz), 124.9 (d, *J* = 3.7 Hz), 117.3 (d, *J* = 21.1 Hz), 61.7 (d, *J* = 2.6 Hz), 50.5.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -109.44.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₂H₁₉FNO₄S, 412.1019; found, 412.1030.

N-benzyl-N-(2-((3-(trifluoromethyl)phenyl)sulfonyl)acetyl)benzamide

3bi: White solid (60 mg, 65% yield), m. p. 80 – 81 °C.

TLC: $R_f = 0.43$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 8.19 (s, 1H), 8.06 (d, *J* = 9.0 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.63 – 7.57 (m, 3H), 7.49 – 7.43 (m, 2H), 7.26 – 7.21 (m, 3H), 7.09 – 7.02 (m, 2H), 4.94 (s, 2H), 4.66 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 174.6, 164.3, 140.3, 136.0, 134.0, 133.3, 132.2, 132.0 (q, *J* = 33.7 Hz), 131.0 (q, *J* = 3.4 Hz), 130.2, 129.1, 128.9, 128.8, 127.9, 127.8, 125.8 (q, *J* = 3.8 Hz), 123.2 (q, *J* = 273.0 Hz), 62.3, 50.6.

¹⁹F NMR (**376** MHz, CDCl₃) δ -110.95.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₃H₁₉F₃NO₄S, 462.0987; found, 462.0981.

N-benzyl-*N*-(2-((4-methoxyphenyl)sulfonyl)acetyl)benzamide

3bj: White solid (73 mg, 86% yield), m. p. 78 – 79 °C.

TLC: $R_f = 0.27$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.81 – 7.76 (m, 2H), 7.62 – 7.54 (m, 3H), 7.48 – 7.40 (m, 2H), 7.27 – 7.19 (m, 3H), 7.13 – 7.05 (m, 2H), 7.01 – 6.94 (m, 2H), 4.94 (s, 2H), 4.57 (s, 2H), 3.86 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.6, 164.7, 164.2, 136.3, 134.3, 133.0, 130.8, 130.4, 129.0, 128.9, 128.6, 127.9, 127.7, 114.5, 62.6, 55.8, 50.5.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₃H₂₂NO₅S, 424.1219; found, 424.1215.

N-benzyl-N-(2-((4-chlorophenyl)sulfonyl)acetyl)benzamide

3bk: White solid (70 mg, 82% yield), m. p. 113 – 114 °C.

TLC: $R_f = 0.50$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.82 – 7.76 (m, 2H), 7.62 – 7.55 (m, 3H), 7.50 – 7.43 (m, 4H), 7.27 – 7.21 (m, 3H), 7.08 – 7.04 (m, 2H), 4.93 (s, 2H), 4.61 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 174.6, 164.4, 141.1, 137.4, 136.1, 134.1, 133.2, 130.1, 129.6, 129.1, 128.9, 128.7, 127.9, 62.3, 50.6.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₂H₁₉ClNO₄S, 428.0723; found, 428.0721.

N-(2-([1,1'-biphenyl]-4-ylsulfonyl)acetyl)-*N*-benzylbenzamide

3bl: White solid (63 mg, 67% yield), m. p. 93 – 94 °C.

TLC: $R_f = 0.28$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.96 – 7.89 (m, 2H), 7.78 – 7.69 (m, 2H), 7.63 – 7.54 (m, 5H), 7.51 – 7.40 (m, 5H), 7.26 – 7.19 (m, 3H), 7.12 – 7.05 (m, 2H), 4.96 (s, 2H), 4.66 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 174.7, 164.6, 147.2, 139.1, 137.6, 136.2, 134.3, 133.1, 129.2, 129.1, 129.0, 128.9 (128.92), 128.9 (128.87), 128.7, 128.0, 127.9, 127.8, 127.5, 62.4, 50.6.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₈H₂₄NO₄S, 470.1426; found, 470.1424.

N-benzyl-N-(2-(methylsulfonyl)acetyl)benzamide

3bm: White solid (47 mg, 71% yield), m. p. 99 – 100 °C.

TLC: Rf = 0.21 (PE: EA = 3:1, v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.65 – 7.56 (m, 3H), 7.49 – 7.43 (m, 2H), 7.30 – 7.22 (m, 3H), 7.15 –

7.10 (m, 2H), 4.99 (s, 2H), 4.42 (d, *J* = 0.5 Hz, 2H), 3.11 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.5, 165.7, 136.1, 133.8, 133.4, 129.1, 129.0, 128.8, 127.9, 127.7, 60.8, 50.6, 42.3.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₇H₁₈NO₄S, 332.0957; found, 332.0958.

N-benzyl-*N*-(2-(methylsulfonyl)acetyl)benzamide

3bn: Colourless oil (36 mg, 70% yield).

TLC: $R_f = 0.15$ (PE: EA = 3:1, v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.66 (m, 2H), 7.61 – 7.56 (m, 1H), 7.52 – 7.46 (m, 2H), 4.62 (s,

2H), 3.22 (s, 3H), 3.17 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.0, 165.6, 133.4, 133.0, 128.0 (128.81), 128.8 (128.80), 60.2, 42.2, 35.2.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₁H₁₄NO₄S, 256.0644; found, 256.0646.

N-benzyl-N-(2-(ethylsulfonyl)acetyl)benzamide

3bo: White solid (50 mg, 72% yield), m. p. 85 – 86 °C.

TLC: $R_f = 0.30$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.66 – 7.62 (m, 2H), 7.60 – 7.55 (m, 1H), 7.49 – 7.43 (m, 2H), 7.30 – 7.22 (m, 3H), 7.15 – 7.11 (m, 2H), 4.99 (s, 2H), 4.39 (s, 2H), 3.24 (q, *J* = 7.5 Hz, 2H), 1.40 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.6, 165.6, 136.2, 134.0, 133.3, 129.1, 129.0, 128.8, 127.9, 127.7, 58.0, 50.7, 48.7, 6.8.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₈H₂₀NO₄S, 346.1113; found, 346.1109.

N-benzyl-N-(2-(cyclopropylsulfonyl)acetyl)benzamide

3bp: White solid (56 mg, 78% yield), m. p. 107 – 108 °C.

TLC: $R_f = 0.28$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.66 – 7.61 (m, 2H), 7.60 – 7.55 (m, 1H), 7.49 – 7.42 (m, 2H), 7.30 – 7.21 (m, 3H), 7.18 – 7.10 (m, 2H), 5.00 (s, 2H), 4.47 (s, 2H), 2.82 – 2.70 (m, 1H), 1.31 – 1.20 (m, 2H), 1.11 – 1.00 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 174.7, 165.4, 136.3, 134.2, 133.2, 129.1, 129.0, 128.8, 127.9, 127.8, 60.1, 50.6, 31.2, 5.6.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₉H₂₀NO₄S, 358.1113; found, 358.1117.

2-(methyl(2-tosylacetyl)carbamoyl)phenyl acetate

3bq: White solid (68 mg, 87% yield), m. p. 108 – 110 °C.

TLC: $R_f = 0.20$ (PE: EA = 3:1, v/v).

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 – 7.83 (m, 2H), 7.62 – 7.53 (m, 2H), 7.42 – 7.34 (m, 3H), 7.23 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.8$ Hz, 1H), 4.85 (s, 2H), 3.16 (s, 3H), 2.47 (s, 3H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 171.2, 169.5, 164.8, 148.1, 145.3, 136.6, 133.0, 130.0, 128.9, 128.6, 127.7, 126.3, 123.3, 62.4, 34.5, 21.8, 21.1.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₁₉H₂₀NO₆S, 390.1011; found, 390.1008.

(S)-2-(6-methoxynaphthalen-2-yl)-N-methyl-N-(2-tosylacetyl)propanamide

3br: Colourless oil (42 mg, 48% yield).

TLC: $R_f = 0.21$ (PE: EA = 3:1, v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.60 (s, 1H), 7.33 – 7.27 (m, 3H), 7.19 – 7.10 (m, 2H), 5.01 (d, *J* = 14.8 Hz, 1H), 4.76 (d, *J* = 14.8 Hz, 1H), 4.19 (q, *J* = 6.8 Hz, 1H), 3.91 (s, 3H), 3.11 (s, 3H), 2.42 (s, 3H), 1.53 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.3, 165.2, 158.1, 145.2, 136.7, 134.7, 133.9, 129.8, 129.4, 129.2, 128.7, 128.1, 126.0, 125.8, 119.6, 105.7, 63.6, 55.5, 47.0, 31.9, 21.8, 20.9.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₄H₂₆NO₅S, 440.1532; found, 440.1529.

1-((N,4-dimethylphenyl)sulfonamido)vinyl benzoate

4a: White solid (67 mg, quant.), m. p. 100 – 102 °C.

TLC: $R_f = 0.35$ (PE: EA = 5:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.89 – 7.84 (m, 2H), 7.77 – 7.72 (m, 2H), 7.61 – 7.56 (m, 1H), 7.44 – 7.38 (m, 2H), 7.29 – 7.24 (m, 2H), 5.03 (d, *J* = 2.5 Hz, 1H), 4.89 (d, *J* = 2.5 Hz, 1H), 3.10 (s, 3H), 2.39 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 164.1, 147.0, 144.1, 134.4, 133.9, 130.3, 129.7, 128.7, 128.6, 128.1,

101.8, 37.3, 21.6.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₇H₁₈NO₄S, 332.0957; found, 332.0951.

N-methyl-N-(3-phenyl-2-tosylpropanoyl)benzamide

5a: Colorless oil (63 mg, 75%).

TLC: $R_f = 0.34$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.82 – 7.77 (m, 2H), 7.54 – 7.48 (m, 1H), 7.41 – 7.33 (m, 6H), 7.25 – 7.17 (m, 3H), 7.16 – 7.08 (m, 2H), 5.70 (dd, $J_1 = 11.0$ Hz, $J_2 = 4.0$ Hz, 1H), 3.34 (dd, $J_1 = 13.5$ Hz, $J_2 = 11.5$ Hz, 1H), 3.23 (dd, $J_1 = 13.5$, $J_2 = 4.0$ Hz, 1H), 3.04 (s, 3H), 2.46 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.3, 167.6, 145.5, 135.8, 134.3, 134.0, 132.7, 129.8, 129.6, 129.2, 128.8, 128.7, 127.1, 69.2, 35.7, 34.1, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₄H₂₄NO₂S, 422.1426; found, 422.1421.

N-methyl-N-(2-tosylpent-4-enoyl)benzamide

5b: Colorless oil (51 mg, 68%).

TLC: $R_f = 0.35$ (PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.69 – 7.65 (m, 2H), 7.61 – 7.56 (m, 1H), 7.52 – 7.46 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.77 – 5.67 (m, 1H), 5.46 (dd, *J*₁ = 11.0, *J*₂ = 4.0 Hz, 1H), 5.14 (dd, *J*₁ = 17.0 Hz, *J*₂ = 1.0 Hz, 1H), 5.08 (dd, *J*₁ = 10.0 Hz, *J*₂ = 1.0 Hz, 1H), 3.19 (s, 3H), 2.86 – 2.76 (m, 1H), 2.68 – 2.60 (m, 1H), 2.46 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 174.7, 167.9, 145.5, 134.1, 134.0, 132.9, 132.2, 129.8, 129.6, 129.0, 128.9, 118.9, 67.6, 35.9, 32.2, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₀H₂₂NO₄S, 372.1270; found, 372.1273.

N-methyl-*N*-(2-tosylpent-4-ynoyl)benzamide

5c: Colorless oil (55 mg, 75%).

TLC: $R_f = 0.35$ (PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 7.75 – 7.69 (m, 4H), 7.62 – 7.57 (m, 1H), 7.52 – 7.48 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.64 (dd, *J*₁ = 10.0, *J*₂ = 4.0 Hz, 1H), 3.25 (s, 3H), 3.04 (ddd, *J*₁ = 16.5 Hz, *J*₂ = 10.0 Hz, *J*₃ = 2.5 Hz, 1H), 2.71 (ddd, *J*₁ = 16.5 Hz, *J*₂ = 4.0 Hz, *J*₃ = 2.5 Hz, 1H), 2.45 (s, 3H), 2.01 (t, *J* = 2.5 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 174.5, 166.8, 145.9, 134.1, 133.8, 132.9, 130.0, 129.5, 129.0, 128.9, 78.3, 71.3, 66.5, 36.1, 21.8, 18.2.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₀H₂₀NO₄S, 370.1113; found, 370.1117.

tert-butyl (S)-4-(N-methylbenzamido)-4-oxo-3-tosylbutanoate

5d: White solid (45 mg, 51% yield), m. p. 160 – 162 °C.

TLC: $R_f = 0.4$ (PE: EA = 3:1, v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 7.76 – 7.71 (m, 4H), 7.59 – 7.54 (m, 1H), 7.51 – 7.46 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.00 (d, *J* = 11.0 Hz, 1H), 3.25 (s, 3H), 3.19 (dd, *J*₁ = 17.0 Hz, *J*₂ = 11.0 Hz, 1H), 2.71 (dd, *J*₁ = 17.0 Hz, *J*₂ = 3.5 Hz, 1H), 2.44 (s, 3H), 1.39 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 174.6, 168.8, 167.1, 145.7, 134.8, 134.0, 132.5, 130.0, 129.4, 128.9, 128.7, 82.2, 63.9, 36.2, 34.1, 28.0, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₂₃H₂₈NO₆S, 446.1637; found, 446.1633.

N-methyl-3-oxo-3-phenyl-2-tosylpropanamide

6: White solid (60 mg, 91% yield), m. p. 160 – 162 °C.

TLC: $R_f = 0.15$ (PE: EA = 3:1, v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.94 – 7.89 (m, 2H), 7.80 – 7.74 (m, 2H), 7.64 – 7.58 (m, 1H), 7.50 – 7.39 (m, 3H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.00 (s, 1H), 2.86 (d, *J* = 5.0 Hz, 3H), 2.41 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 188.6, 159.8, 146.2, 136.2, 134.8, 134.4, 130.0, 129.3 (129.33), 129.3 (129.32), 129.0, 75.7, 27.2, 21.8.

HRMS (ESI-TOF) *m/z*: (M+H)⁺ calcd. For C₁₇H₁₈NO₄S, 332.0957; found, 332.0965.

dimethyl 1-methyl-6-oxo-2-phenyl-5-tosyl-1,6-dihydropyridine-3,4-dicarboxylate

7: White solid (80 mg, 88% yield), m. p. 231 – 232 °C.

TLC: $R_f = 0.30$ (PE: EA = 1:1, v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 8.09 (d, *J* = 8.0 Hz, 2H), 7.54 – 7.46 (m, 3H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.25 – 7.17 (m, 2H), 4.03 (s, 3H), 3.37 (s, 3H), 3.21 (s, 3H), 2.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 165.0, 164.7, 157.5, 157.0, 145.8, 144.9, 136.5, 132.9, 130.5, 129.5, 129.4, 129.2, 127.4, 125.3, 110.5, 53.6, 52.6, 35.2, 21.9.

HRMS (ESI-TOF) m/z: (M+H)⁺ calcd. For C₂₃H₂₂NO₇S, 456.1117; found, 456.1133.

9. X-ray Crystallographic Data

Crystals suitable for X-ray diffraction experiments were obtained by following methods: compound **3t** and **3bj** were crystallized from their solution in PE/EA. Intensity data for compounds was collected on 'Bruke Apex2' diffractometer at 296(2) (MoK/ α radiation, radiation wavelength = 0.7107). The structures were solved by direct methods and refined by the full-matrix least-squares

method using the SHELX-97 program package.¹⁰ The geometrical parameters and the figures were analyzed using the program OLEX2.¹¹

Fig. S12 X-ray analysis of 3t. Detail X-ray crystallographic data of 3t (CCDC 2045517).

Fig. S13 X-ray analysis of 3aj. Detail X-ray crystallographic data of 3aj (CCDC 2045518).

10.HPLC Charts

HPLC analysis was conducted on a CHIRALPAK AD-H column (hexane/isopropanol, 254 nm).

3am: AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm).

3an: AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm).

3ao: AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm).

3ax: AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm).

3ay: AD-H column (hexane/isopropanol = 55/45, flow = 1.0 mL/min, 254 nm).

11.Copies of NMR Spectra

5.0 4.5 fl (ppm)

4.0

3.5

3. 0

2.5

2.0 1.5

1.0 0.5

0.0

5.5

0.0 9.5 9.0 8.5

8.0

7.5 7.0

6.5

6.0

--3.148

--2.420

---63.139

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

S85

Me 3t

S117

--4.790

3.576

÷

-1.760

-2.450

2.427

S159

2.419

-2.440

S168

2.412

2.424

--63.275

12.References

- 1. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
- 2. Park, H.-S.; Fan, Z.-L.; Zhu, R. -Y.; Yu, J.-Q. Angew. Chem., Int. Edit. 2020, 59, 12853.
- 3. Mansfield, S. J.; Campbell, C. D.; Jones, M. W.; Anderson, E. A. Chem. Commun. 2015, 51, 3316.
- 4. Witulski, B.; Gossmann, M. Chem. Commun. 1999, 1879.
- 5. Clavier, H.; Lepronier, A.; Bengobesse-Mintsa, N.; Gatineau, D.; Pellissier, H.; Giordano, L.; Tenaglia, A.; Buono, G. Adv. Synth. Catal. 2013, 35, 403.
- 6. Singh, A.; Teegardin, K.; Kelly, M.; Prasad, K. S.; Krishnan, S.; Weaver, J. D. J. Organomet. Chem. 2015, 776, 51.
- 7. D. C. Harris, Quantitative Chemical Analysis, Freeman, 9th edn, 2015.
- 8. Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 6019.
- 9. Monalti, M., et. al. Handbook of Photochemistry, 3rd Ed; Taylor & Francis Group, LLC. Boca Raton, FL, 2006, 601.
- 10. Sheldrick, G. M. Acta Crystallographica Section A: Foundations of Crystallography 2008, 64, 112-122.
- 11. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. J. Appl. Crystallogra. 2009, 42, 339-341.