Asymmetric construction of six vicinal stereogenic centers on hexahydroxanthones via organocatalytic one-pot reactions

Min Zhang, ^{a,b} Xue-Wen He, ^{a,b} Ya Xiong, ^a Xiong Zuo, ^a Wei Zhou ^a and Xiong-Li Liu*^a

^a National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.

^b These two authors contributed equally to this work

E-mail: xlliu1@gzu.edu.cn

Table of Contents

Table of contents	S1
1. General experimental information	S2
2. Optimization of reaction conditions.	S2
3. Typical experimental procedures for asymmetric synthesis of compounds 5	
4. Characterization data and HPLC conditions of compounds 5	<u>84</u>
5. Experimental procedures for synthesis of compounds 6	<u>S10</u>
6. Large-scale synthesis of product 5a	S 11
7. Product elaboration	
8. General experimental procedures for in vitro cytotoxicity assay	S13
9. X-Ray crystal data for compound 5m , 6a and 6b	
10. The copies of ¹ H NMR, ¹³ C NMR and HPLC spectra for compounds 5-7	

1. General experimental information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. The ee values were determined by chiral HPLC analysis. The d.r. values were determined by ¹H-NMR analysis. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer.

¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Optical rotations were measured with a polarimer with the solvent indicated. Melting points were measured on an electrothermal digital melting point apparatus.

2. Optimization of reaction conditions

In our initial study, we investigated the three-component one-pot reaction using the substrates propanal **1a**, nitroolefin **2a** and carboxylic acid group-activated chromone **4a**. The first Michael reaction of **1a** and **2a** proceeded in the presence of Hayashi-Jørgensen secondary amine catalyst **C1** (10 mol%) in CH₃CN at room temperature for 8 h. After the removal of solvent, the chromone **4a** and a triethylamine in dichloromethane were added sequentially. To our delight, the tandem reaction proceeded smoothly to afford the desired product **5a** bearing six vicinal stereogenic centers with moderate diastereoselectivity (3:1 dr) and excellent enantioselectivity (97% ee), albeit in 42% yield. Catalyst diarylprolinol **C2** exhibited almost no catalytic activity (entry 2). Catalyst **C3** only afforded the desired product **6a** in 27% yield (entry 3). The screening of other bases in the second Michael step showed that the 1.0 eq of DBU provides the best yield as well as good stereoselectivity (entries 4-7). The further increase in the amount of DBU did not show any improvement in the product yield (entry 8). Further optimization of the reaction conditions by screening different solvents and temperature (entries 9-14) showed that with 10 mol% of catalyst

C1 and 1.0 eq of DBU in CHCl₃ at 40 $^{\circ}$ C provides good yield of 61% and excellent stereoselectivity (5:1 dr, >99% ee, entry 13).

	0 + CH ₃ Ph ⁻ 1a	NO ₂ Ar NO ₂ AcOH, C 2a C1 R = TMS, A C2 R = H, Ar C3 R = TMS, A	Ar $H_{3}CN$ $H_{3}CN$ $Ph^{''}$ Ph $Ar = Ph$ Ph $Ar = 3,5-(CF_{3})_{2}C_{6}H_{3}$	NO2 base, solve a one-pot o	nt, time		
Entry	Cat.	Solvent	Base	Time [h]	Yield [%]	Dr ^b	Ee [%][c]
1	C1	CH_2Cl_2	TEA	3	42	3:1	97
2	C2	CH_2Cl_2	TEA	6	<5	-	-
3	C3	CH_2Cl_2	TEA	4	27	3:1	93
4	C1	CH_2Cl_2	K_2CO_3	4	31	2:1	96
5	C1	CH_2Cl_2	DMAP	4	<10	-	-
6	C1	CH_2Cl_2	DBU	4	47	3:1	98
7 ^d	C1	CH_2Cl_2	DBU	4	55	3:1	96
8e	C1	CH_2Cl_2	DBU	4	50	3:1	96
9 ^d	C1	CHCl ₃	DBU	2	56	3:1	99
10 ^d	C1	CH ₃ OH	DBU	2	23	3:1	93
11 ^d	C1	CH ₃ CN	DBU	4	31	2:1	97
12 ^d	C1	THF	DBU	4	20	2:1	97
13 ^{d,f}	C1	CHCl ₃	DBU	2	61	5:1	>99
14 ^{d,f}	C1	CHCl ₃	DBU	5	52	6:1	98

Table S1: optimization of reaction conditions for synthesis of compound 5a^a

^{*a*} Reactions were performed with **1a** (0.5 mmol), **2a** (0.3 mmol), **C** (10 mol%) and AcOH (0.03 mmol) in the CH₃CN (3 mL) at room temperature for 8 h. After the removal of solvent, **4a** (0.2 mmol) and base (0.1 mmol) in the indicated solvent (2 mL) were added.

^b The diastereomeric ratios values were determined by ¹H NMR.

^c The enantiomeric ratios were determined by chiral HPLC.

^d 1.0 eq of DBU was added.

^{*e*} 1.5 eq of DBU was added.

^fAfter the addition of **4a** and DBU, the reaction was performed at 40 °C.

3. Typical experimental procedures for asymmetric synthesis of compounds 5

Compound 1 (0.5 mmol), 2 (0.3 mmol), C1 (10 mol%) and AcOH (0.03 mmol) in the CH₃CN (3 mL) at room temperature for 8 h. After the removal of solvent, 4 (0.2 mmol) and DBU (0.2 mmol) in the CHCl₃ (2 mL) were added and stirred at 40 °C for 2 h. After the removal of solvent,

purification by flash column chromatography (hexane/ethyl acetate = $8:1\sim5:1$) was carried out to give product **5** as a white solid.

4. Characterization data and HPLC conditions of compounds 5

5a: White solid, m.p. 122.0-122.7 °C; yield 61%, 43.0 mg, >99% ee, 5:1 dr, $[\alpha]_D^{20} = -2.5$ (*c* 2.9, MeOH); The ee was determined by HPLC analysis using a Chiralpak IA column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 28.44$ min; $\tau_{minor} = 52.88$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.90 (d, J = 6.4 Hz, 3H), 2.66-2.75 (m, 2H), 3.19-3.29 (m, 2H), 3.64-3.69 (m, 1H), 4.95-4.96 (m, 1H), 5.00-5.02 (m, 1H), 6.98-7.00 (m, 1H), 7.05-7.09 (m, 1H), 7.14-7.16 (m, 2H), 7.25-7.31 (m, 3H), 7.49-7.54 (m, 1H), 7.89-7.91 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.1, 34.6, 46.1, 49.7, 70.0, 74.5, 87.4, 116.7, 116.9, 118.7, 121.3, 122.0, 126.0, 126.9, 127.0, 127.1, 127.3, 128.0, 128.1, 135.2, 135.3, 135.7, 135.9, 158.8, 191.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₉NNaO₅ [M+Na]⁺: 376.11554; Found: 376.11557.

5b: White solid, m.p. 139.8-140.4 °C; yield 46%, 34.1 mg, >99% ee, 5:1 dr, $[\alpha]_D^{20} = +10.0$ (*c* 2.1, MeOH); The ee was determined by HPLC analysis using a Chiralpak IA column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 21.24$ min; $\tau_{minor} = 33.33$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.89 (d, J = 6.4 Hz, 3H), 2.62-2.76 (m, 2H), 3.19-3.26 (m, 2H), 3.63-3.68 (m, 1H), 4.96-4.99 (m, 2H), 6.97-7.02 (m, 3H), 7.06-7.15 (m, 3H), 7.50-7.54 (m, 1H), 7.89-7.92 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.1, 34.7, 45.3, 49.7, 69.8, 74.5, 87.4, 115.2 (d, $J_{CF} = 21.0$ Hz), 116.8, 118.8, 122.1, 127.0, 128.8, 128.9, 130.9, 131.0, 136.0, 158.8, 161.7 (d, $J_{CF} = 245.2$ Hz), 191.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₈FNNaO₅ [M+Na]⁺: 394.10612; Found: 394.10607.

5c: White solid, m.p. 151.4-152.2 °C; yield 49%, 36.0 mg, 94% ee, 10:1 dr, $[\alpha]_D^{20} = +18.1$ (*c* 1.8, MeOH); The ee was determined by HPLC analysis using a Chiralpak IC column (70/30 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 31.90$ min; $\tau_{minor} = 10.78$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.90 (d, J = 6.4 Hz, 3H), 2.27 (s, 3H), 2.63-2.70 (m, 2H), 3.15-3.20 (m, 1H), 3.25-3.28 (m, 1H), 3.63-3.68 (m, 1H), 4.94-5.00 (m, 2H), 6.98-7.11 (m, 6H), 7.49-7.54 (m, 1H), 7.90-7.92 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 16.2, 21.1, 35.6, 46.7, 50.8, 71.0, 75.6, 88.6, 117.8, 119.8, 123.0, 128.0, 128.1, 129.9, 133.1, 137.0, 137.9, 159.9, 192.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₁NNaO₅ [M+Na]⁺: 390.13119; Found: 390.13125.

5d: White solid, m.p. 146.5-147.2 °C; yield 63%, 46.2 mg, 97% ee, 9:1 dr, $[α]_D^{20} = +7.5$ (*c* 1.6, MeOH); The ee was determined by HPLC analysis using a Chiralpak IC column (80/20 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 38.72$ min; $τ_{minor} = 15.68$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 0.97 (d, J = 6.0 Hz, 3H), 2.36 (s, 3H), 2.72-2.80 (m, 2H), 3.22-3.26 (m, 1H), 3.32-3.36 (m, 1H), 3.70-3.75 (m, 1H), 5.01-5.02 (m, 1H), 5.06-5.08 (m, 1H), 6.99-7.07 (m, 3H), 7.12-7.14 (m, 2H), 7.23-7.26 (m, 1H), 7.56-7.61 (m, 1H), 7.96-7.97 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 16.2, 21.5, 35.6, 47.1, 50.8, 71.0, 75.6, 88.5, 117.8, 119.8, 123.0, 125.1, 127.9, 128.9, 129.0, 129.1, 136.1, 137.0, 138.8, 159.9, 192.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₁NNaO₅ [M+Na]⁺: 390.13119; Found: 390.13121.

5e: White solid, m.p. 134.7-135.2 °C; yield 58%, 44.4 mg, 96% ee, 4:1 dr, $[α]_D^{20} = +17.4$ (*c* 1.9, MeOH); The ee was determined by HPLC analysis using a Chiralpak IC column (70/30 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 41.17$ min; $τ_{minor} = 12.09$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 0.89 (d, J = 6.4 Hz, 3H), 2.60-2.73 (m, 2H), 3.14-3.18 (m, 1H), 3.23-3.27

(m, 1H), 3.62-3.69 (m, 1H), 3.73 (s, 3H), 4.94-4.95 (m, 1H), 4.97-4.99 (m, 1H), 6.81 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.0 Hz, 1H), 7.05-7.09 (m, 3H), 7.49-7.53 (m, 1H), 7.89-7.91 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.1, 34.8, 45.3, 49.7, 54.2, 70.0, 74.5, 87.6, 113.5, 116.8, 118.8, 122.0, 126.9, 127.1, 128.3, 135.9, 158.3, 158.9, 191.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₁NNaO₆ [M+Na]⁺: 406.12611; Found: 406.12613.

5f: White solid, m.p. 152.6-153.2 °C; yield 61%, 46.4 mg, 96% ee, 4:1 dr, $[α]_D^{20} = +8.5$ (*c* 1.1, MeOH); The ee was determined by HPLC analysis using a Chiralpak IF column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 40.23$ min; $τ_{minor} = 46.37$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 0.89 (d, J = 6.4 Hz, 3H), 2.26 (s, 3H), 2.28 (s, 3H), 2.65-2.72 (m, 1H), 3.31-3.34 (m, 1H), 3.59-3.65 (m, 1H), 3.68-3.72 (m, 1H), 4.92-4.94 (m, 1H), 4.97-4.98 (m, 1H), 6.85 (d, J = 7.2 Hz, 1H), 7.00-7.04 (m, 3H), 7.09-7.11 (m, 1H), 7.50-7.55 (m, 1H), 7.91-7.93 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 13.7, 15.1, 20.3, 34.8, 41.0, 49.9, 70.3, 74.5, 85.8, 116.9, 118.9, 122.1, 123.6, 125.1, 126.9, 128.6, 132.6, 133.5, 135.9, 136.5, 158.9, 191.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₃NNaO₅ [M+Na]⁺: 404.14684; Found: 404.14683.

5g: White solid, m.p. 149.1-149.8 °C; yield 60%, 45.7 mg, 97% ee, 6:1 dr, $[\alpha]_D^{20} = +152.9$ (*c* 4.2, MeOH); The ee was determined by HPLC analysis using a Chiralpak IC column (80/20 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 38.55$ min; $\tau_{minor} = 16.49$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.87 (d, J = 6.4 Hz, 3H), 2.22 (s, 3H), 2.32 (s, 3H), 2.62-2.69 (m, 1H), 2.76 (s, 1H), 3.29-3.33 (m, 1H), 3.45-3.50 (m, 1H), 3.65-3.70 (m, 1H), 4.91-4.96 (m, 2H), 6.85 (d, J = 8.0 Hz, 1H), 6.91 (d, J = 6.8 Hz, 1H), 6.97-6.99 (m, 2H), 7.05-7.09 (m, 1H), 7.48-7.52 (m, 1H), 7.89-7.91 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.0, 18.3, 20.0, 34.7, 40.6, 49.8, 70.2, 74.5, 85.7, 116.8, 118.8, 122.0, 125.7, 126.6, 126.9, 129.8, 130.8, 134.7, 135.9, 136.3, 158.8, 191.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₃NNaO₅ [M+Na]⁺: 404.14684; Found: 404.14684.

5h: White solid, m.p. 124.7-125.3 °C; yield 53%, 40.4 mg, 98% ee, 5:1 dr, $[\alpha]_D^{20} = -36.5$ (*c* 2.3, MeOH); The ee was determined by HPLC analysis using a Chiralpak IF column (80/20 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 15.47$ min; $\tau_{minor} = 20.15$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.96 (d, J = 6.4 Hz, 3H), 2.34 (s, 6H), 2.71-2.76 (m, 1H), 2.84 (s, 1H), 3.22-3.26 (m, 1H), 3.28-3.32 (m, 1H), 3.68-3.73 (m, 1H), 4.97-4.98 (m, 1H), 5.03-5.05 (m, 1H), 6.95 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.1 Hz, 2H), 7.37-7.40 (m, 1H), 7.75 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 16.2, 20.5, 21.1, 35.6, 46.8, 50.8, 71.1, 75.5, 117.6, 119.4, 127.5, 128.1, 129.8, 132.6, 133.2, 137.8, 138.0, 158.0, 192.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₃NNaO₅[M+Na]⁺: 404.14684; Found: 404.14689.

5i: White solid, m.p. 167.4-167.9 °C; yield 52%, 41.3 mg, >99% ee, 8:1 dr, $[\alpha]_D^{20} = +1.8$ (*c* 1.7, MeOH); The ee was determined by HPLC analysis using a Chiralpak IF column (93/7 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 63.70$ min; $\tau_{minor} = 93.51$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.96 (d, J = 6.4 Hz, 3H), 2.34 (s, 3H), 2.68-2.74 (m, 1H), 2.78 (s, 1H), 3.20-3.25 (m, 1H), 3.27-3.31 (m, 1H), 3.67-3.73 (m, 1H), 3.81 (s, 3H), 4.97-4.98 (m, 1H), 5.03-5.05 (m, 1H), 6.88 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.4 Hz, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.38-7.40 (m, 1H), 7.75 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.1, 18.5, 33.8, 44.3, 48.7, 53.2, 69.1, 73.5, 86.7, 112.5, 115.5, 117.4, 125.4, 126.1, 127.3, 130.7, 136.0, 156.0, 157.2, 190.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₃NNaO₆ [M+Na]⁺: 420.14176; Found: 420.14179.

5j: White solid, m.p. 142.4-143.2 °C; yield 60%, 46.2 mg, 93% ee, 6:1 dr, $[\alpha]_D^{20} = -9.5$ (*c* 2.1, MeOH); The ee was determined by HPLC analysis using a Chiralpak IC column (93/7 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 107.07$ min; $\tau_{minor} = 41.26$ min); ¹H NMR

(CDCl₃, 400 MHz) δ : 0.93 (d, J = 6.4 Hz, 3H), 2.27 (s, 3H), 2.63-2.72 (m, 1H), 2.77-2.80 (m, 1H), 3.18-3.22 (m, 1H), 3.65-3.70 (m, 2H), 4.93-4.94 (m, 1H), 5.04-5.05 (m, 1H), 6.91 (d, J = 8.4 Hz, 1H), 7.03-7.11 (m, 3H), 7.21-7.28 (m, 1H), 7.31-7.33 (m, 1H), 7.67 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.0, 19.5, 33.9, 49.7, 69.9, 74.4, 85.6, 114.7 (d, J_{CF} = 22.1 Hz), 116.7, 116.8, 118.4, 122.0 (d, J_{CF} = 14.5 Hz), 123.8, 125.6, 126.4, 128.6 (d, J_{CF} = 3.6 Hz), 131.7, 137.0, 157.0, 160.5 (d, J_{CF} = 244.3 Hz), 191.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀FNNaO₅ [M+Na]⁺: 408.12177; Found: 408.12177.

5k: White solid, m.p. 156.5-157.4 °C; yield 48%, 37.9 mg, 97% ee, 10:1 dr, $[α]_D^{20} = +9.0$ (*c* 1.7, MeOH); The ee was determined by HPLC analysis using a Chiralpak IC column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 57.50$ min; $τ_{minor} = 35.05$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 0.90 (d, J = 6.4 Hz, 3H), 2.24 (s, 6H), 2.28 (s, 3H), 2.62-2.69 (m, 2H), 3.09-3.14 (m, 1H), 3.21-3.24 (m, 1H), 3.59-3.65 (m, 1H), 4.89-4.90 (m, 1H), 4.97-4.98 (m, 1H), 6.74 (s, 2H), 6.87 (s, 2H), 7.31-7.33 (m, 1H), 7.69 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 15.2, 19.5, 20.3, 34.5, 45.9, 49.7, 70.1, 74.5, 87.6, 116.5, 118.4, 125.0, 126.4, 128.8, 131.6, 135.0, 137.0, 137.5, 157.0, 191.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₅NNaO₅ [M+Na]⁺: 418.16249; Found: 418.16251.

5I: White solid, m.p. 146.5-147.3 °C; yield 52%, 41.1 mg, 97% ee, 10:1 dr, $[\alpha]_D^{20} = +6.3$ (*c* 1.1, MeOH); The ee was determined by HPLC analysis using a Chiralpak IC column (80/20 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 47.64$ min; $\tau_{minor} = 18.47$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.87 (d, J = 6.4 Hz, 3H), 2.23 (s, 3H), 2.32 (s, 3H), 2.34 (s, 3H), 2.62-2.74 (m, 2H), 3.25-3.29 (m, 1H), 3.44-3.48 (m, 1H), 3.63-3.68 (m, 1H), 4.90-4.94 (m, 2H), 6.81 (s, 1H), 6.85-6.94 (m, 3H), 6.99 (s, 1H), 7.79 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.0, 18.3, 20.0, 21.0, 34.6, 40.5, 49.7, 70.3, 74.4, 85.8, 116.5, 116.8, 123.4, 125.7, 126.6, 126.8, 129.9,

130.8, 134.7, 136.3, 147.8, 158.9, 191.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₅NNaO₅ [M+Na]⁺: 418.16249; Found: 418.16255.

5m: White solid, m.p. 144.3-144.9 °C; yield 51%, 37.4 mg, 99% ee, 12:1 dr, $[\alpha]_D^{20} = -0.3$ (*c* 3.3, MeOH); The ee was determined by HPLC analysis using a Chiralpak IE column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 22.71$ min; $\tau_{minor} = 28.63$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.97 (d, J = 6.4 Hz, 3H), 2.41 (s, 3H), 2.72-2.80 (m, 1H), 2.87 (s, 1H), 3.24-3.33 (m, 2H), 3.69-3.73 (m, 1H), 4.99-5.00 (m, 1H), 5.05-5.07 (m, 1H), 6.87 (s, 1H), 6.95 (d, J = 8.0 Hz, 1H), 7.21-7.23 (m, 2H), 7.32-7.37 (m, 3H), 7.85 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.2, 21.1, 34.5, 46.1, 49.6, 70.1, 74.5, 87.5, 116.5, 116.7, 123.4, 126.8, 127.1, 127.3, 128.1, 135.2, 147.9, 158.9, 191.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₁NNaO₅ [M+Na]⁺: 390.13119; Found: 390.13125.

5n: White solid, m.p. 113.2-113.8 °C; yield 60%, 45.7 mg, 95% ee, 6:1 dr, $[\alpha]_D^{20} = -1.3$ (*c* 1.4, MeOH); The ee was determined by HPLC analysis using a Chiralpak IF column (80/20 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 20.20$ min; $\tau_{minor} = 42.13$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.89 (d, J = 6.4 Hz, 3H), 2.27 (s, 3H), 2.34 (s, 3H), 2.62-2.71 (m, 2H), 3.13-3.17 (m, 1H), 3.20-3.23 (m, 1H), 3.60-3.65 (m, 1H), 4.91-4.92 (m, 1H), 4.93-4.98 (m, 1H), 6.79 (s, 1H), 6.88-6.90 (m, 1H), 7.02 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.2, 20.1, 21.1, 34.5, 45.7, 49.6, 70.1, 74.5, 87.6, 116.5, 116.7, 123.4, 126.8, 126.9, 127.1, 128.3, 128.8, 132.1, 136.8, 147.8, 158.9, 191.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₃NNaO₅ [M+Na]⁺: 404.14684; Found: 404.14687.

50: White solid, m.p. 156.0-156.8 °C; yield 54%, 41.6 mg, 98% ee, 4:1 dr, $[\alpha]_D^{20} = +43.5$ (c 3.0,

MeOH); The ee was determined by HPLC analysis using a Chiralpak IC column (75/25 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 45.98$ min; $\tau_{minor} = 83.40$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.88 (d, J = 6.4 Hz, 3H), 2.34 (s, 3H), 2.59-2.65 (m, 1H), 2.78 (d, J = 3.2 Hz, 1H), 3.16-3.21 (m, 2H), 2.59-3.65 (m, 1H), 4.92-4.97 (m, 2H), 6.79 (s, 1H), 6.88-6.90 (m, 1H), 6.96-7.01 (m, 2H), 7.10-7.14 (m, 2H), 7.78 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 15.1, 21.1, 34.7, 45.3, 49.5, 70.0, 74.4, 87.5, 115.1 (d, $J_{CF} = 21.0$ Hz), 116.5, 116.7, 123.5, 126.8, 128.8 (d, $J_{CF} = 7.2$ Hz), 131.0, 147.9, 158.8, 161.4 (d, $J_{CF} = 245.4$ Hz), 191.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀FNNaO₅ [M+Na]⁺: 408.12177; Found: 408.12174.

5p: White solid, yield 56%, 48.0 mg, 96% ee, 7:1 dr; The ee was determined by HPLC analysis using a Chiralpak IA column (97/3 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 92.64$ min; $\tau_{minor} = 40.90$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.80 (d, J = 6.4 Hz, 3H), 1.15 (s, 3H), 1.17 (s, 3H), 1.74-1.81 (m, 1H), 2.54 (br s, 1H), 2.68-2.71 (m, 1H), 2.80-2.87 (m, 1H), 3.47-3.53 (m, 1H), 3.66-3.71 (m, 1H), 4.88-4.92 (m, 1H), 5.14-5.15 (m, 1H), 6.88 (d, J = 8.4 Hz, 1H), 7.17-7.19 (m, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.36-7.39 (m, 1H), 7.71 (d, J = 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.3, 22.8, 22.9, 32.4, 42.0, 44.1, 52.5, 69.0, 87.8, 117.1, 118.1, 123.6, 128.1, 132.6, 135.0, 135.8, 142.8, 156.9, 190.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₄ClNNaO₅ [M+Na]⁺: 452.1235; Found: 452.1238.

5. Experimental procedures for synthesis of compounds 6

Compound **3a'** (0.2 mmol), **4** (0.2 mmol) and DBU (0.2 mmol) in the CHCl₃ (2 mL) were added and stirred at 40 °C for 2 h. After the removal of solvent, purification by flash column chromatography (hexane/ethyl acetate = $10:1\sim8:1$) was carried out to give product **6** as a light yellow solid.

6a: Light yellow solid, yield 54%, 15.8 mg,; ¹H NMR (CDCl₃, 400 MHz) δ : 6.84-6.88 (m, 1H), 6.91-6.93 (m, 1H), 7.38-7.45 (m, 4H), 7.61-7.66 (m, 1H), 7.93-7.96 (m, 1H), 8.13 (s, 1H), 8.21-8.23 (m, 1H), 8.72 (d, J = 13.2 Hz, 1H), 12.74 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 116.2, 116.4, 117.0, 117.3, 118.0, 122.3, 122.4, 124.1, 124.3, 128.3, 132.2, 134.2, 134.5, 153.4, 157.5, 161.6, 174.3, 192.5; HRMS (ESI-TOF) m/z: Calcd. for C₁₈H₁₂NaO₄ [M+Na]⁺: 315.0628; Found: 315.0632.

6b: Light yellow solid, yield 45%, 20.1 mg,; ¹H NMR (CDCl₃, 400 MHz) δ : 6.85 (d, J = 8.8 Hz, 1H), 7.36 (d, J = 9.2 Hz, 1H), 7.47 (d, J = 15.2 Hz, 1H), 7.50-7.52 (m, 1H), 7.74-7.77 (m, 1H), 8.03 (d, J = 2.4 Hz, 1H), 8.17 (s, 1H), 8.38 (d, J = 2.4 Hz, 1H), 8.62 (d, J = 15.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 109.7, 118.4, 118.8, 119.1, 119.4, 120.1, 123.2, 128.0, 131.3, 135.6, 136.3, 138.2, 153.2, 158.6, 161.5, 173.9, 192.5; HRMS (ESI-TOF) m/z: Calcd. for C₁₈H₁₀Br₂NaO₄ [M+Na]⁺: 470.8838; Found: 470.8843.

6. Large-scale synthesis of product 5a

Compound **1a** (2.5 mmol), **2a** (1.5 mmol), **C1** (10 mol%) and AcOH (0.15 mmol) in the CH₃CN (12 mL) at room temperature for 10 h. After the removal of solvent, **4a** (1.0 mmol) and DBU (1.0 mmol) in the CHCl₃ (7 mL) were added and stirred at 40 °C for 2 h. After the removal of solvent, purification by flash column chromatography (hexane/ethyl acetate = $8:1\sim5:1$) was carried out to give product **5a** as a white solid (0.18 g, 52% yield, 5:1 dr, 99% ee).

7. Product elaboration

Compound **5** (0.2 mmol) and NaBH₄ (0.1 mmol) in the EtOH (3 mL) were added and stirred at 0 °C for 1 h. After the removal of solvent, purification by flash column chromatography (hexane/ethyl acetate = $10:1 \sim 8:1$) was carried out to give product **7** as a white solid.

7h: White solid; yield 57%, 43.7 mg, 96% ee, 8:1 dr; The ee was determined by HPLC analysis using a Chiralpak IB column (98/2 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 34.96$ min; $\tau_{minor} = 23.10$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 0.80 (d, J = 6.4 Hz, 3H), 2.25 (s, 3H), 2.26 (s, 3H), 2.68-2.75 (m, 1H), 2.92-2.96 (m, 1H), 3.02-3.06 (m, 1H), 3.27 (br s, 1H), 3.67-3.72 (m, 1H), 4.48 (br s, 1H), 4.62-4.63 (m, 1H), 4.89-4.91 (m, 1H), 5.14 (d, J = 4.4 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 7.35 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 14.6, 19.7, 20.1, 35.4, 37.7, 44.9, 67.8, 72.2, 73.0, 88.6, 114.3, 122.8, 126.2, 127.2, 127.8, 128.6, 128.7, 129.9, 130.3, 132.4, 136.6, 148.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₅NNaO₅ [M+Na]⁺: 406.1625; Found: 406.1621.

7m: White solid; yield 61%, 45.0 mg, 96% ee, 12:1 dr; The ee was determined by HPLC analysis using a Chiralpak IE column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 22.58 min; τ_{minor} = 45.25 min); ¹H NMR (CDCl₃, 400 MHz) δ : 0.80 (d, *J* = 6.4 Hz, 3H), 2.26 (s, 3H), 2.69-2.79 (m, 1H), 2.90-2.93 (m, 1H), 3.05-3.09 (m, 1H), 3.63 (br s, 1H), 3.68-3.73 (m, 1H), 4.62 (br s, 1H), 4.63 (s, 1H), 4.91-4.93 (m, 1H), 5.15 (d, *J* = 4.4 Hz, 1H), 6.61 (s, 1H),

6.79 (d, J = 7.6 Hz, 1H), 7.13 (d, J = 7.2 Hz, 2H), 7.21-7.29 (m, 3H), 7.40 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.6, 20.1, 35.2, 37.7, 45.3, 67.7, 72.0, 73.0, 88.5, 115.0, 120.1, 121.9, 125.8, 126.9, 127.4, 127.8, 128.0, 129.9, 135.5, 138.2, 150.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₃NNaO₅ [M+Na]⁺: 392.1468; Found: 392.1468.

8. General experimental procedures for in vitro cytotoxicity assay

Two human cancer cell lines, K562 and A549 were purchased from Chinese Academy of Sciences. All the cells were cultured in RPMI-1640 medium (GIBICO, USA), supplemented with 10% fetal bovine serum (Hyclone, USA) and Penicillin-Streptomycin (respectively 100 U/mL) in 5% CO₂ at 37°C. The cytotoxicity assay was performed according to the MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) method in 96-well microplates. Briefly, 5000 cells were seeded into each well of 96-well cell culture plates and allowed to grow for 24 h before drug addition. The K562 tumor cell line was exposed to test compounds **5c**, **5h**, **5i**, **5k**, **5l** and **5q** at the concentrations of 10, 20, 40, 80, and 100 μ mol·L⁻¹ in triplicates for 48 h, comparable to cisplatin (Aladdin, China). Then the MTT reagent was added to reaction with the cancer cells for 4 hours. At least, measure the OD value at 490 wavelengths. IC₅₀ of all the compounds were calculated by IBM SPSS Statistics (version 19).

9. X-Ray crystal data for compound 5m, 6a and 6b

Table S1 Crystal data and stru	cture refinement for 5m
Identification code	5m
Empirical formula	$C_{21}H_{21}NO_5$
Formula weight	367.39
Temperature/K	293(2)
Crystal system	monoclinic
Space group	12
a/Å, b/Å, c/Å	21.9574(10), 5.9872(3), 14.5153(8)
$\alpha/^{\circ}, \ \beta/^{\circ}, \ \gamma/^{\circ}$	90, 92.023(5), 90.
Volume/Å ³	1907.05(16)
Ζ	4
$\rho_{calc}g/cm^3$	1.280
μ/mm^{-1}	0.754
F(000)	776.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
2Θ range for data collection/°	7.186 to 146.89
Index ranges	$-26 \le h \le 25, -7 \le k \le 6, -18 \le l \le 17$
Reflections collected	6212
Independent reflections	3225 [$R_{int} = 0.0181$, $R_{sigma} = 0.0225$]
Data/restraints/parameters	3225/1/248
Goodness-of-fit on F ²	1.083
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0636, wR_2 = 0.1766$
Final R indexes [all data]	$R_1 = 0.0713$, $wR_2 = 0.1874$
Largest diff. peak/hole / e Å-3	0.20/-0.24
Flack/Hooft parameter	0.02(15)/0.08(13)

Crystal Data for C₂₁H₂₁NO₅ (M = 367.39 g/mol): monoclinic, space group I2 (no. 5), a = 21.9574(10) Å, b = 5.9872(3) Å, c = 14.5153(8) Å, $\beta = 92.023(5)^{\circ}$, V = 1907.05(16) Å³, Z = 4, T = 293(2) K, μ (Cu K α) = 0.754 mm⁻¹, *Dcalc* = 1.280 g/cm³, 6212 reflections measured (7.186° $\leq 2\Theta \leq 146.89^{\circ}$), 3225 unique ($R_{int} = 0.0181$, $R_{sigma} = 0.0225$) which were used in all calculations. The final R_1 was 0.0636 (I > 2 σ (I)) and wR_2 was 0.1874 (all data).

Table S2 Crystal data and structure refinement for 6a

Identification code	6a
Empirical formula	$C_{18}H_{12}O_4$
Formula weight	292.28
Temperature/K	149.99(10)
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å, b/Å, c/Å	23.3436(14), 4.9735(3), 11.5943(5)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90.
Volume/Å ³	1346.09(13)
Z	4
$\rho_{calc}g/cm^3$	1.442
μ/mm^{-1}	0.845
F(000)	608.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	$0.13\times0.12\times0.1$
2Θ range for data collection/°	7.574 to 147.238
Index ranges	$-20 \le h \le 28, -5 \le k \le 4, -12 \le l \le 14$
Reflections collected	2876
Independent reflections	1857 [$R_{int} = 0.0170, R_{sigma} = 0.0288$]
Data/restraints/parameters	1857/1/201
Goodness-of-fit on F ²	1.074
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0348, wR_2 = 0.0876$
Final R indexes [all data]	$R_1 = 0.0364, wR_2 = 0.0900$
Largest diff. peak/hole / e Å ⁻³	0.13/-0.20
Flack parameter	0.1(3)

Crystal Data for C₁₈H₁₂O₄ (M =292.28 g/mol): orthorhombic, space group Pna2₁ (no. 33), a = 23.3436(14) Å, b = 4.9735(3) Å, c = 11.5943(5) Å, V = 1346.09(13) Å³, Z = 4, T = 149.99(10) K, μ (Cu K α) = 0.845 mm⁻¹, *Dcalc* = 1.442 g/cm³, 2876 reflections measured (7.574° $\leq 2\Theta \leq 147.238°$), 1857 unique ($R_{int} = 0.0170$, $R_{sigma} = 0.0288$) which were used in all calculations. The final R_1 was 0.0348 (I > 2 σ (I)) and wR_2 was 0.0900 (all data).

Table S3 Crystal data and structure refinement for 6b

Identification code	6b
Empirical formula	$C_{18}H_{10}Br_2O_4$
Formula weight	450.08
Temperature/K	149.99(10)
Crystal system	orthorhombic
Space group	Pnma
a/Å, b/Å, c/Å	12.5529(7), 6.6080(5), 19.3655(12)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90.
Volume/Å ³	1606.36(18)
Ζ	4
$\rho_{calc}g/cm^3$	1.861
µ/mm ⁻¹	6.584
F(000)	880.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	$0.14\times0.11\times0.09$
2Θ range for data collection/°	78.394 to 147.074
Index ranges	$-14 \le h \le 15, -4 \le k \le 7, -22 \le l \le 23$
Reflections collected	3861
Independent reflections	1716 [$R_{int} = 0.0488$, $R_{sigma} = 0.0442$]
Data/restraints/parameters	1716/0/145
Goodness-of-fit on F ²	1.097
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0995, wR_2 = 0.2587$
Final R indexes [all data]	$R_1 = 0.1041, wR_2 = 0.2644$
Largest diff. peak/hole / e Å ⁻³	1.33/-1.17

Crystal Data for $C_{18}H_{10}Br_2O_4$ (*M* =450.08 g/mol): orthorhombic, space group Pnma (no. 62), a = 12.5529(7) Å, b = 6.6080(5) Å, c = 19.3655(12) Å, V = 1606.36(18) Å³, Z = 4, T = 149.99(10) K, μ (Cu K α) = 6.584 mm⁻¹, *Dcalc* = 1.861 g/cm³, 3861 reflections measured (8.394° $\leq 2\Theta \leq 147.074^\circ$), 1716 unique ($R_{int} = 0.0488$, $R_{sigma} = 0.0442$) which were used in all calculations. The final R_1 was 0.0995 (I > 2 σ (I)) and wR_2 was 0.2644 (all data).

10. The copies of ¹H NMR, ¹³C NMR and HPLC spectra for compounds 5-7 ¹H and ¹³C NMR of **5**a

80 70

ίO

#	Time	Area	Height	Width	Area%	Symmetry
1	21.391	17087.1	216.9	1.0861	49.928	0.344
2	33.273	17136.3	164.5	1.7357	50.072	0.437

#	Time	Area	Height	Width	Area%	Symmetry
1	21.241	35971.4	468.5	1.2797	99.505	0.364
2	33.331	178.8	2.9	1.0161	0.495	1.287

S21

#	Time	Area	Height	Width	Area%	Symmetry
1	10.555	140331	3584.6	0.6525	49.907	0.527
2	31.449	140856.3	1474.7	1.5919	50.093	0.345

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR of $\mathbf{5d}$

¹H and ¹³C NMR of **5e**

-	#	Time	Area	Height	Width	Area%	Symmetry
	1	12.854	93392.8	2667.5	0.5835	50.790	0.634
	2	41.539	90487.3	715.4	2.108	49.210	0.392

#	Time	Area	Height	Width	Area%	Symmetry
1	12.094	3893.3	103	0.6298	2.005	1.613
2	41.178	190260.4	1268.3	2.5003	97.995	0.319

#	Time	Area	Height	Width	Area%	Symmetry
1	16.384	56655.2	1509.3	0.6256	50.631	0.622
2	40.355	55242.1	526.9	1.7474	49.369	0.472

#	Time	Area	Height	Width	Area%	Symmetry
1	16.493	3380	100.4	0.5614	1.483	0.854
2	38.559	224477.4	1755.8	2.1309	98.517	0.284

S31

#	Time	Area	Height	Width	Area%	Symmetry
1	15.004	101405.1	2789	0.606	49.267	0.601
2	20.718	104422.5	2153.8	0.8081	50.733	0.328

#	Time	Area	Height	Width	Area%	Symmetry
1	64.198	60475.6	416.5	2.4199	49.552	0.441
2	92.684	61568	255	4.0235	50.448	0.292

#	Time	Area	Height	Width	Area%	Symmetry
1	63.709	148904.5	1021.5	2.4296	99.805	0.368
2	93.518	290.9	2.3	2.1139	0.195	5.91

S35

HPLC of 5j

#	Time	Area	Height	Width	Area%	Symmetry
1	39.89	177382.1	1869.1	1.5817	50.618	0.413
2	104.994	173049.5	580.5	4.9686	49.382	0.247

#	Time	Area	Height	Width	Area%	Symmetry
1	41.264	2598.7	35.2	1.2321	3.463	0.883
2	107.074	72443.4	289.1	4.1768	96.537	0.34

33	#	Time	Area	Height	Width	Area%	Symmetry
	1	35.139	40130.5	530.4	1.2609	49.913	0.571
	2	58.477	40269.7	290.6	2.3092	50.087	0.502

	#	Time	Area	Height	Width	Area%	Symmetry
	1	35.059	1152	20.1	0.9545	1.297	1.044
Γ	2	57.505	87666.1	578.5	2.5255	98.703	0.341

¹H and ¹³C NMR of **5**I

#	Time	Area	Height	Width	Area%	Symmetry
1	18.231	67802.2	1629.6	0.6934	49.887	0.605
2	48.431	68108.8	538.3	2.1089	50.113	0.504

#	Time	Area	Height	Width	Area%	Symmetry
1	18.474	2186.8	52.5	0.6936	1.589	0.761
2	47.642	135457.6	1007.2	2.2415	98.411	0.339

¹H and ¹³C NMR of **5m**

¹H and ¹³C NMR of 50

¹H and ¹³C NMR of **6b**

#	Time	Area	Height	Width	Area%	Symmetry
1	23.107	478.5	8.8	0.9024	2.263	0.389
2	34.966	20665.4	144.1	2.3894	97.737	0.204

