Electronic Supplementary Information

Experimental Section

Materials: Sodium nitrate (NaNO₃, 99.0%), sodium nitrite (NaNO₂, 99.0%), sodium sulfate (Na₂SO₄), ammonium chloride (NH₄Cl), sodium hydroxide (NaOH), sodium salicylate (C7H5NaO3), trisodium citrate dihydrate (C6H5Na3O7·2H2O), pdimethylaminobenzaldehyde $(C_{9}H_{11}NO),$ sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O), Na¹⁵NO₃, deuterium oxide (D₂O), 0.8 wt% sulfamic acid solution (H₃NO₃S) and sodium hypochlorite solution (NaClO) were purchased from Aladdin Ltd. (Shanghai, China). Cobalt chloride hexahydrate (CoCl₂·6H₂O), and ammonium sulfate ((NH4)2SO4) were purchased from Chengdu Kelong Chemical Regent Co. Ltd. Sodium hypophosphite (NaH2PO2) was bought from Shanghai Macklin Biochemical Co., Ltd. Sulfuric acid (H₂SO₄), hydrogen peroxide (H₂O₂), hydrochloric acid (HCl), hydrazine monohydrate (N2H4·H2O) and ethylalcohol (C₂H₅OH) were bought from Beijing Chemical Corporation. (China). chemical Ltd. in Chengdu. Titanium plate (0.2 mm thick) was purchased from Qingyuan Metal Materials Co., Ltd (Xingtai, China). All reagents used in this work were analytical grade without further purification.

Preparation of Co–P/TP: In brief, $CoCl_2 \cdot 6H_2O$ (1.19 g), $(NH_4)_2SO_4$ (3 g), $C_6H_5Na_3O_7 \cdot 2H_2O$ (3 g) and NaH_2PO_2 (3 g) were dissolved in 50 mL ultrapure water as the electroplating solution. Then, a piece of TP (1 × 1 cm²) as the working electrode was polarized at –1.0 V (vs. SCE) in the above solution for 30 min, with the use of a carbon rod as the auxiliary electrode and a SCE as the reference electrode to obtain Co–P/TP.

Characterizations: XRD data were acquired by a LabX XRD-6100 X-ray diffractometer with a Cu K α radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). SEM measurements were carried out on a GeminiSEM 300 scanning electron microscope (ZEISS, Germany) at an accelerating voltage of 5 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance data of

spectrophotometer was measured on UV-Vis spectrophotometer. The ion chromatography data were collected on Metrohm 940 Professional IC Vario. All ¹H nuclear magnetic resonance (¹H NMR) spectra were collected on Varian VNMRS 600 MHz (the USA) with water suppression.

Electrochemical measurements: All electrochemical measurements were carried on the CHI760E electrochemical workstation (Shanghai, Chenhua) using a standard three-electrode setup. Electrolyte solution was Ar-saturated of 0.2 M Na₂SO₄ with 200 ppm NO₃⁻, using Co–P/TP ($1 \times 1 \text{ cm}^2$) as the working electrode, a carbon rod as the counter electrode and SCE as the reference electrode. We use a H-type electrolytic cell separated by a Nafion 117 Membrane which was protonated by boiling in ultrapure water, H₂O₂ (5%) aqueous solution and 0.5 M H₂SO₄ at 80 °C for another 2 h, respectively. All the potentials reported in our work were converted to reversible hydrogen electrode (RHE) scale via calibration with the following equation: E (RHE) = E (vs. SCE) + 0.0591 × pH + 0.2415 V and the presented current density was normalized to the geometric surface area.

Determination of NH₃ using the indophenol blue method: Concentration of produced NH₃ was determined by spectrophotometry measurement with indophenol blue method (the obtained electrolyte was diluted 100 times).¹ In detail, 4 mL electrolyte was obatined from the cathodic chamber and mixed with 50 µL oxidizing solution containing NaClO (4.5%) and NaOH (0.75 M), 500 µL coloring solution containing C₇H₅O₃Na (0.4 M) and NaOH (0.32 M), and 50 µL catalyst solution Na₂Fe(CN)₅NO·2H₂O (1 wt%) for 1 h. The concentration-absorbance curve was calibrated using the standard NH₄Cl solution with NH₃ concentrations of 0.0, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.50 µg mL⁻¹ in 0.2 M Na₂SO₄. These solutions were identified via UV-Vis spectroscopy at the wavelength of 660 nm. The concentration-absorbance curves were calibrated using standard NH₃ solution with a serious of concentrations. The fitting curve (y = 0.62334x + 0.02668, R² = 0.99983) shows good linear relation of absorbance value with NH₃ concentration.

Determination of NH₃ using the ¹H NMR spectroscopy: The amount of produced NH₃ was also determined by the ¹H NMR spectroscopy. After chronoamperometry tests in Ar-saturated 0.2 M Na₂SO₄ with 200 ppm NO₃⁻ at -0.6 V vs. RHE for 2h, the pH of the post-electrolysis electrolyte was adjusted to be 2 with a 0.5 M HCl solution. Then, 0.5 mL of electrolyte and 0.05 mL of deuterium oxide (D₂O) were added into the NMR tube for further NMR (600 MHz) detection. The isotopic labeling experiment was conducted to confirm the origin of ammonium using Ar-saturated 0.2 M Na₂SO₄ with 200 ppm ¹⁵NO₃⁻ as the electrolyte in the same operation described above.

Determination of NO₃⁻: The amount of NO₃⁻ was analyzed by spectrophotometry.² Firstly, 1.0 mL electrolyte was taken out from the electrolytic cell and diluted to 5 mL to detection range. Then, 0.1 mL 1 M HCl and 0.01 mL 0.8 wt% H₃NO₃S solution were added into the aforementioned solution. After 15 minutes, the absorbance was detected by UV-Vis spectrophotometry at a wavelength of 220 nm and 275 nm. The final absorbance of NO₃⁻ was calculated based on the following equation: $A=A_{220nm} - 2A_{275nm}$. The calibration curve can be obtained through different concentrations of NaNO₃ solutions and the corresponding absorbance. The fitting curve (y = 0.05841x + 0.0027, R² = 0.99936) shows good linear relation of absorbance value with NO₃⁻ concentration.

Determination of N₂H₄: In this work, we used the method of Watt and Chrisp³ to estimate whether N₂H₄ produced. The chromogenic reagent was a mixed solution of 5.99 g C₉H₁₁NO, 30 mL HCl and 300 mL C₂H₅OH. In detail, 1 mL electrolyte was added into 1 mL prepared color reagent and stirred 15 min in the dark. The absorbance at 455 nm was measured to quantify the N₂H₄ concentration with a standard curve of hydrazine (y = 0.65546x + 0.0556, $R^2 = 0.99998$).

Calculations of the conversion rate, FE and NH₃ yield rate:

The conversion rate of NO₃⁻ is calculated using the following equation:

Conversion rate =
$$\Delta$$
[NO₃⁻] / [NO₃⁻] × 100% (1)

FE toward NH_3 via NO_3^- reduction reaction (NO_3^-RR) was calculated by the following equation:

$$FE = (8 \times F \times [NH_3] \times V) / (M_{NH3} \times Q) \times 100\% (2)$$

FE toward NH₃ via NO₂⁻RR was calculated by the following equation:

$$FE = (6 \times F \times [NH_3] \times V) / (M_{NH3} \times Q) \times 100\% (3)$$

(Note that the reduction of NO_3^- / NO_2^- to NH_3 consumes eight / six electrons.)

NH₃ yield rate is calculated using the following equation:

NH₃ yield rate = ([NH₃] × V) / (
$$M_{NH3}$$
 × t × A) (4)

Where F is the Faradic constant (96485 C mol⁻¹), [NH₃] is the measured NH₃ concentration, [NO₃⁻] is the initial concentration of NO₃⁻, Δ [NO₃⁻] is the concentration difference of NO₃⁻ before and after electrolysis, V is the volume of electrolyte in the anode compartment (35 mL), M_{NH3} is the molar mass of NH₃, Q is the total quantity of applied electricity; t is the electrolysis time and A is the loaded area of catalyst (1 × 1 cm²).

Fig. S1. SEM and EDX elemental mapping images of Co-P/TP.

Fig. S2. (a) UV-Vis absorption spectra and corresponding (b) calibration curve used for calculation of NH₃ concentration.

Fig. S3. (a) UV-Vis absorption spectra and corresponding (b) calibration curve used for calculation of N_2H_4 concentration.

Fig. S4. (a) UV-Vis absorption spectra and corresponding (b) calibration curve used for calculation of NO_3^- concentration.

Fig. S5. LSV curves of Co–P/TP tested in 0.2 M Na₂SO₄ with and without 200 ppm NO₃⁻.

Fig. S6. ¹H NMR spectrum for the products using Na¹⁴NO₃ and Na¹⁵NO₃ as nitrogen sources.

Fig. S7. (a) fon chromatograms of NH_4^+ with different concentrations in 0.2 M Na_2SO_4 and (b) corresponding standard curve. (c) Ion chromatograms for the electrolytes at a series of potentials after 2 h electrolysis. (d) NH_3 yield rates and FEs of Co–P/TP at corresponding potentials.

Fig. S8. UV-Vis absorption spectra of the electrolytes estimated by the method of Watt and Chrisp after 2 h electrolysis at each given potential under ambient conditions.

Fig. S9. (a) Time-dependent current density curves of Co–P/TP and bare TP for NO_3^- RR at –0.3 V vs. RHE in 0.2 M Na₂SO₄ with 200 ppm NO_3^- . (b) UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after NO_3^- RR electrolysis.

Fig. S10. (a) UV-Vis absorption spectra and corresponding (b) calibration curve used for calculation of NH₃ concentration. Electrochemical tests of Co–P/TP in a two-compartment cell toward NO₃⁻RR in 0.2 M PBS with 200 ppm NO₃⁻ (c) UV-Vis absorption spectra of NH₃. (d) Calculated FEs and NH₃ yield rates of Co–P/TP toward NO₃⁻RR at different given potentials.

Fig. S11. LSV curves of Co–P/TP tested in 0.2 M Na₂SO₄ with and without 200 ppm NO_2^- .

Fig. S12. (a) Time-dependent current density curves of Co–P/TP and bare TP for NO_2^-RR at -0.2 V in 0.2 M Na_2SO_4 with 200 ppm NO_2^- . (b) UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after NO_2^-RR electrolysis.

Fig. S13. UV-Vis absorption spectra for different operating conditions.

Figure S14. (a) Chronoamperometry curves for Co–P/TP during recycling tests toward NO₃⁻RR at -0.3 V in 0.2 M Na₂SO₄ with 200 ppm NO₃⁻. (b) UV-Vis absorption spectra for NH₃ and during recycling tests for NO₃⁻RR at -0.3 V in 0.2 M Na₂SO₄ with 200 ppm NO₃⁻.

Fig. S15. Photographs of pH test strips with 0.5 h of bulk electrolysis and 16 h of bulk electrolysis.

Fig. S16. XRD patterns for Co–P/TP before and after NO₃⁻RR.

Fig. S17. XPS spectra in the Co 2p and P 2p regions for Co–P/TP before and after NO₃⁻RR.

Catalyst	Electrolyte	Performance	Ref.
Co-P/TP	0.2 M Na ₂ SO ₄ (200 ppm NO ₃ ⁻)	NH ₃ yield rate: $416.0 \pm 7.2 \ \mu g \ h^{-1}$ cm ⁻² (-0.6 V), FE _{NH3} : $93.6 \pm 3.3\%$ (-0.3 V), Conversion rate _{NH3} : 86.9% (-0.3 V, 10 h)	This work
Cu nanosheets	0.1 M KOH	NH ₃ yield rate: 390.1 μ g h ⁻¹ mg ⁻¹ FE _{NH3} : 99.7%	4
PTCDA/O-Cu	0.1 M PBS (500 ppm NO ₃ ⁻)	NH ₃ yield rate: $436 \pm 85 \ \mu g \ h^{-1}$ cm ⁻² FE _{NH3} : 85.9%	5
Pd-In/c-Al ₂ O ₃	3.28 mM NaHCO ₃ with nitrate-reservoir	FE _{NH3} : 71.5%	6
Co ₃ O ₄ @NiO HNTs	0.5 M Na ₂ SO ₄ (200 ppm NO ₃ ⁻)	NH ₃ yield rate: 6.93 mmol $h^{-1} g^{-1}$ FE _{NH3} : 54.97%	7
NiPc complex	0.1 M KOH, in the presence of NO ₃ ⁻	FE _{NH3} :85%	8
Cu	1 M NaOH (0.1 M NaNO3)	FE _{NH3} :79%	9
Cu50Ni50	1 M KOH (10 mM KNO ₃)	FE _{NH3} :84 ± 2%	10
Ti/GC	KOH (~0.1 to 0.6 M NO ₃ ⁻)	FE _{NH3} :82%	11
NTEs	NaCl (0.65 mM NaNO3)	FE _{NH3} :5.6%	12

Table S1. Comparison of catalytic performances of Co-P/TP with other reportedNO3⁻RR electrocatalysts.

Table S2. Comparison of the catalytic performances of Co–P/TP with other reported NO₂⁻RR electrocatalysts under ambient conditions.

Catalyst	Electrolyte	Performance	Ref.
Co-P/TP	0.2 M Na ₂ SO ₄ (200 ppm NO ₂ ⁻)	NH ₃ yield rate: $661.0 \pm 20.1 \ \mu g \ h^{-1} \ cm^{-2} \ (-0.6 \ V), FE_{NH3}: 93.3 \pm 3.2\% \ (-0.2 \ V)$	This work
MnO2 nanoarrays	0.1 M Na ₂ SO ₄ (NaNO ₂)	NH ₃ yield rate: 3.09×10^{-11} mol s ⁻¹ cm ⁻² , FE _{NH3} : 6%	13
Cobalt-tripeptide complex	1.0 M MOPS (1.0 M NaNO ₂)	NH ₃ yield rate: 3.01×10^{-10} mol s ⁻¹ cm ⁻² , FE _{NH3} : $90 \pm 3\%$	14
Poly-NiTRP complex	0.1 M NaClO ₄ (NaNO ₂)	NH ₃ yield rate: 1.1 mM	15
Cu phthalocyanine complexes	0.1 M KOH (NaNO ₂)	FE _{NH3} : 78%	16
[Co(DIM)Br ₂] ⁺ (Carbon rod working electrode)	0.1 M solution of NaNO ₂	FE _{NH3} : 88%	17
Cu ₈₀ Ni ₂₀	1.0 M NaOH (20 mM NaNO ₂)	FE _{NH3} : 87.6%	18

References

- 1 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836–841.
- Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, *Angew. Chem. Int. Ed.*, 2020, 132, 5388–5392.
- 3 G. W. Watt and J. D. Chrisp, *Anal. Chem.*, 1952, **24**, 2006–2008.
- 4 X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M. Wasielewski and Y. Kang, *Appl. Mater. Today*, 2020, **19**, 100620.
- 5 G. Chen, Y. Yuan, H. Jiang, S. Ren, L. Ding, L. Ma, T. Wu, J. Lu and H Wang, *Nat. Energy*, 2020, 5, 605–613.
- 6 B. P. Chaplin, J. R. Shapley and C. J. Werth, *Catal. Lett.*, 2009, **130**, 56–62.
- Y. Wang, C. Liu, B. Zhang and Y. Yu, Sci. China Mater., 2020, 63, 2530– 2538.
- 8 N. Chebotareva and T. Nyokong, J. Appl. Electrochem., 1997, 27, 975–981.
- D. Reyter, G. Chamoulaud, D. Bélanger and L. Roué, J. Electroanal. Chem.,
 2006, 596, 13–24.
- Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. H.
 Nam, C. Tan, Y. Ding, J. Wu, Y. Lum, C. T. Dinh, D. Sinton, G. Zheng and E.
 H. Sargent, *J. Am. Chem. Soc.*, 2020, 142, 5702–5708.
- J. M. McEnaney, S. J. Blair, A. C. Nielander, J. A. Schwalbe, D. M. Koshy, M. Cargnello and T. F. Jaramillo, ACS Sustainable Chem. Eng., 2020, 8, 2672–2681.
- X. Ma, M. Li, C. Feng, W. Hu, L. Wang and X. Liu, J. Electroanal. Chem., 2016, 782, 270–277.
- R. Wang, Z. Wang, X. Xiang, R. Zhang, X. Shi and X. Sun, *Chem. Commun.*, 2018, 54, 10340–10342.
- Y. Guo, J. R. Stroka, B. Kandemir, C. E. Dickerson and K. L. Bren, *J. Am. Chem. Soc.*, 2018, 140, 16888–16892.
- 15 P. Dreyse, M. Isaacs, K. Calfumán, C. Cáceres, A. Aliaga, M. J. Aguirre and

D. Villagra, *Electrochim. Acta*, 2011, 56, 5230–5237.

- 16 N. Chebotareva and T. Nyokong, J. Appl. Electrochem., 1997, 27, 975–981.
- 17 S. Xu, H. Y. Kwon, D. C. Ashley, C. H. Chen, E. Jakubikova and J. M. Smith, *Inorg. Chem.*, 2019, **58**, 9443–9451.
- L. Mattarozzi, S. Cattarin, N. Comisso, P. Guerriero, M. Musiani, L. Vázquez-Gómez and E. Verlato, *Electrochim. Acta*, 2013, 89, 488–496.