Supplementary Information

Cu(OTf)₂ Catalyzed Ugi-type Reaction of *N*,*O*-Acetals with Isocyanides for Synthesis of Pyrrolidinyl and Piperidinyl 2-Carboxamides

Zhuo-Ya Mao,^a Xiao-Di Nie,^a Yi-Man Feng,^a Chang-Mei Si,^a Bang-Guo Wei^{*a} and Guo-Qiang Lin^b

^aSchool of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.

^bShanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

Table of Contents

Mechanism study	S1
Experimental section	S3
NMR Spectra	.S28
ORTEP drawing of the X-ray crystallographic structure	.S108

Mechanism Study:

The "inside attack" model and electronic effects have been proposed to explain the stereoselective reactions of nucleophiles with five-membered-ring oxocarbenium ions (Figure S1a). The "inside attack" model was used to explain the direction of the nuclear attack. The preferred conformation of a five-membered-ring oxocarbenium ion is an envelope conformation where the $C=O^+$ unit resides in the flattened portion of the envelope. Approach of the nucleophile onto the cation can occur from either side. Attack from "inside" the cation forms the all-staggered conformer. Attack from "outside" results in a conformer that suffers from eclipsed interactions. Because the staggered product is lower in energy than the eclipsed product, attack from "inside" the envelope should be favored. The electronic effect was used to explain the stability of the two conformations. When the C-4 alkoxy group in a pseudoaxial orientation, the electrostatic effect can be maximized to stabilize the conformation, placing the partially negatively charged substituent in closest proximity to the cationic carbon of the oxocarbenium ion. On the contrary, due to the lack of electrostatic effect, the conformation with C-4 aryl group in the equatorial orientation is more stable.

In order to verify the applicability of these model in five-membered-ring iminium ion, 4-Ar-*N*,*O*-acetal was carry out under standard conditions and 2,4-*trans* product was obtained in 84% yield with 92:8 diastereoselectivity as expected. This result in good agreement with the theoretical model. Therefore, the theoretical model for oxocarbenium ions is also applicable to iminium ion (Figure S1b).

Stereoselective for Cu(OTf)₂ catalyzed Ugi-type reaction of *N*,*O*-acetals with isocyanides can be explained by the "inside attack" model and electronic effect (Figure S1c). When the C-4 alkoxy group in a pseudoaxial orientation, the electrostatic effect can be maximized to stabilize the conformation. Although there is an syn-butanol interaction when attacking from the "inside", but this interaction is considerably smaller than a syn-pentane interaction, so it is not destabilizing enough to hinder attack from this trajectory to generated the 2,4-*cis* product. When the C-4 alkoxy group is replaced by C-4 aryl group, the electrostatic effect disappears, so the C-4 aryl group will be more

stable in the equatorial orientation. Meanwhile, a C-4 aryl group would experience a syn-pentane interaction upon attack of the C-4 axial conformer, so attack occurs on the analogous equatorial cation, leading to the 2,4-*trans* product.

(a) Stereoselective model for reaction of five-membered-ring oxocarbenium ions with nucleophiles

Figure S1. (a) Stereoselective model for reaction of five-membered-ring oxocarbenium ions with nucleophiles; (b) Experimental results; (c) Stereoselective model for $Cu(OTf)_2$ catalyzed Ugi-type reaction of *N*,*O*-acetals with isocyanides

General: Reactions were monitored by thin layer chromatography (TLC) on glass plates coated with silica gel with fluorescent indicator. Flash chromatography was performed on silica gel (300–400) with petroleum/EtOAc as eluent. Optical rotations were measured on a polarimeter with a sodium lamp. HRMS were measured on a LTQ-Orbitrap-XL apparatus. IR spectra were recorded using film on a Fourier Transform Infrared Spectrometer. NMR spectra were recorded at 400 MHz, and chemical shifts are reported in δ (ppm) referenced to an internal CD₃OD (3.31) standard for ¹H NMR and CD₃OD (49.00) for ¹³C NMR.

General Procedure A: Synthesis of 4

To a solution of imide (2 mmol) in MeOH (5 mL) was added NaBH₄ (3.0 equiv, 227 mg) at 0 °C in one portion. The reaction mixture was stirred for 1 h at the same temperature, and the reaction was quenched with saturated aqueous NaHCO₃ (5 mL) and warmed to room temperature. The mixture was extracted with DCM (20 mL \times 3), and the combined organic layers were washed with brine. Dried, fifiltered , and concentrated to give the *N*,*O*-acetal **4** without further purifications.

General Procedure B: Synthesis of 6

N,*O*-acetal **4** (1.0 mmol), isocyanides **3** (1.0 mmol) were dissolved in THF (5 mL) at room temperature, then Cu(OTf)₂ (0.2 mmol) was added. The reaction was stirred at room temperature overnight then quenched with a saturated NaHCO₃ aqueous solution and extracted with EtOAc (30 mL \times 3). The combined organic layers were washed with brine, dried, filtrated and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 2:1 - 1:1) to give the desired product **6**.

tert-Butyl 2-(cyclohexylcarbamoyl)pyrrolidine-1-carboxylate (6a)

Eluent: PE/EA = 2:1, White Solid (247 mg, 84%); mp 149-150 °C; IR (film): v_{max} 2934, 2419, 1699, 1640, 1451, 1401, 1363, 1161, 1116. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.17-4.06 (m, 1H), 3.68-3.59 (m, 1H), 3.54-3.47 (m, 1H), 3.44-3.36 (m, 1H), 2.26-2.10 (m, 1H), 1.95-1.73 (m, 7H), 1.67-1.60 (m, 1H), 1.46 (s, 2.5H), 1.42 (s, 6.5H), 1.38-1.17 (m, 5H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 174.7, 174.3, 156.4, 156.1, 81.3, 81.2, 61.7, 61.5, 49.8, 48.0, 33.9, 33.8, 32.8, 31.6, 28.7, 26.6, 26.2, 25.4, 24.7 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₈N₂O₃Na⁺: 319.1992, found: 319.1993.

Isopropyl 2-(cyclohexylcarbamoyl)pyrrolidine-1-carboxylate (6b)

Eluent: PE/EA = 2:1, White Solid (260 mg, 92%); mp 120-121 °C; IR (film): v_{max} 2932, 2480, 2426, 1705, 1650, 1449, 1411, 1385, 1115, ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.87-4.83 (m, 1H), 4.20-4.14 (m, 1H), 3.68-3.59 (m, 1H), 3.57-3.50 (m, 1H), 3.48-3.41 (m, 1H), 2.28-2.13 (m, 1H), 1.96-1.73 (m, 7H), 1.67-1.60 (m, 1H), 1.41-1.31 (m, 2H), 1.29-1.17 (m, 9H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 174.5, 174.1, 156.8, 156.4, 70.2, 61.8, 61.5, 49.8, 48.3, 48.0, 33.9, 33.7, 32.7, 31.7, 26.7, 26.2, 25.4, 24.7, 22.6, 22.5 ppm;

HRMS (ESI-Orbitrap) m/z: $[M + Na]^+$ Calcd for C₁₅H₂₆N₂O₃Na⁺: 305.1836, found: 305.1834.

Propyl 2-(cyclohexylcarbamoyl)pyrrolidine-1-carboxylate (6c)

Eluent: PE/EA = 2:1, White Solid (246 mg, 87%); mp 110-111 °C; IR (film): v_{max} 2933, 2421, 1703, 1645, 1446, 1425, 1365, 1120. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.21-4.16 (m, 1H), 4.06-3.92 (m, 2H), 3.67-3.59 (m, 1H), 3.58-3.51 (m, 1H), 3.50-3.43 (m, 1H), 2.27-2.13 (m, 1H), 2.00-1.73 (m, 7H), 1.69-1.56 (m, 3H), 1.37-1.16 (m, 5H), 0.99-0.90 (m, 3H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 174.4, 174.1, 157.2, 156.9, 68.2, 61.8, 61.5, 49.7, 48.1, 33.8, 33.7, 32.8, 31.7, 26.7, 26.2, 25.4, 24.6, 23.5, 10.9, 10.7 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₅H₂₆N₂O₃Na⁺: 305.1836, found: 305.1835.

Isobutyl 2-(cyclohexylcarbamoyl)pyrrolidine-1-carboxylate (6d)

Eluent: PE/EA = 2:1, White Solid (255 mg, 86%); mp 123-125 °C; IR (film): v_{max} 2932, 2855, 1708, 1646, 1449, 1420, 1385, 1359, 1121. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.22-4.16 (m, 1H), 3.89-3.75 (m, 2H), 3.66-3.58 (m, 1H), 3.57-3.51 (m, 1H), 3.50-3.44 (m, 1H), 2.29-2.14 (m, 1H), 1.97-1.72 (m, 8H), 1.68-1.60 (m, 1H), 1.38-1.14 (m, 5H), 0.98-0.89 (m, 6H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 174.3, 174.0, 157.1, 156.8, 72.7, 61.8, 61.4, 49.8, 48.4, 33.7, 32.9, 31.6, 29.3, 26.6, 26.1, 25.3, 24.6, 19.4 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₈N₂O₃Na⁺: 319.1992, found: 319.1998.

Benzyl 2-(cyclohexylcarbamoyl)piperidine-1-carboxylate (6e)

Eluent: PE/EA = 2:1, White Solid (214 mg, 62%); mp 76-77 °C; IR (film): ν_{max} 2930, 2854, 2360, 1699, 1645, 1416, 1254, 1169. ¹H NMR (400 MHz, CD₃OD) δ 7.40-7.25 (m, 5H), 5.19-5.14 (m, 1H), 5.13-5.02 (m, 1H), 4.71-4.65 (m, 1H), 4.05-3.98 (m, 1H), 3.70-3.57 (m, 1H), 3.25-3.15 (m, 1H), 2.19-2.01 (m, 1H), 1.83-1.58 (m, 8H), 1.45-1.28 (m, 4H), 1.26-1.10 (m, 3H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 172.8, 158.2, 138.0,

129.5, 129.1, 128.8, 68.4, 56.2, 49.9, 43.3, 33.7, 33.7, 28.5, 26.6, 25.7, 21.0 ppm; HRMS (ESI-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₂₈N₂O₃Na⁺: 367.1992, found: 367.1992.

tert-Butyl 2-(cyclohexylcarbamoyl)azepane-1-carboxylate (6f)

Eluent: PE/EA = 2:1, White Solid (123 mg, 38%); mp 118-120 °C; IR (film): $v_{max} 2928$, 2854, 1695, 1647, 1448, 1407, 1365, 1163. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.36 (dd, J = 12.4, 6.0 Hz, 0.42H), 4.22 (dd, J = 12.4, 5.2 Hz, 0.58H), 3.96 (dd, J = 14.8, 4.8 Hz, 0.58H), 3.87-3.80 (m, 0.42H), 3.66-3.57 (m, 1H), 3.14-3.02 (m, 1H), 2.23-2.10 (m, 1H), 2.00-1.90 (m, 1H), 1.86-1.60 (m, 8H), 1.47 (s, 3.78H), 1.44 (s, 5.22H), 1.40-1.15 (m, 8H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 174.8, 174.3, 157.8, 157.4, 81.5, 81.2, 62.4, 60.5, 49.6, 45.2, 44.8, 34.0, 33.8, 33.7, 33.5, 32.8, 32.2, 31.3, 30.9, 30.4, 30.3, 28.7, 27.8, 26.9, 26.6, 26.2, 26.0 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₈H₃₂N₂O₃Na⁺: 347.2305, found: 347.2305.

tert-Butyl 2-((2,4,4-trimethylpentan-2-yl)carbamoyl)pyrrolidine-1-carboxylate (6g)

Eluent: PE/EA = 2:1, White Solid (239 mg, 73%); mp 67-68 °C; IR (film): v_{max} 2955, 1702, 1679, 1396, 1366, 1165, 1120. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.15-4.09 (m, 1H), 3.50-3.36 (m, 2H), 2.25-2.07 (m, 1H), 1.97-1.76 (m, 4H), 1.70-1.55 (m, 1H), 1.46 (s, 9H), 1.42 (s, 3H), 1.38 (s, 3H), 1.01 (s, 9H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 174.1, 173.6, 156.5, 156.1, 81.3, 62.0, 56.2, 56.1, 52.3, 48.0, 32.4, 32.0, 30.6, 29.9, 29.6, 29.4, 28.8, 25.4, 24.5 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₈H₃₄N₂O₃Na⁺: 349.2462, found: 349.2458.

tert-Butyl 2-(tert-butylcarbamoyl)pyrrolidine-1-carboxylate (6h)

Eluent: PE/EA = 2:1, White Solid (216 mg, 80%); mp 125-126 °C; IR (film): v_{max} 2972, 2876, 1670, 1678, 1396, 1364, 1250, 1165, 1121.¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.13-4.05 (m, 1H), 3.53-3.45 (m, 1H), 3.44-3.36 (m, 1H), 2.25-2.10 (m, 1H), 1.97-1.78 (m, 3H), 1.44 (s, 9H), 1.35 (s, 9H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 174.8, 174.4, 156.4, 156.1, 81.2, 61.8, 51.9, 48.0, 32.7, 31.4, 29.0, 28.8, 25.3, 24.6 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₄H₂₆N₂O₃Na⁺: 293.1836, found: 293.1834.

tert-Butyl 2-((tosylmethyl)carbamoyl)pyrrolidine-1-carboxylate (6i)

Eluent: PE/EA = 2:1, White Solid (256 mg, 67%); mp 69-71 °C; IR (film): v_{max} 2927, 2883, 2853, 1683, 1521, 1253, 1049, 834.¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.83-7.79 (m, 2H), 7.47-7.41 (m, 2H), 4.96-4.80 (m, 3H), 4.59-4.51 (m, 1H), 4.17-4.10 (m, 1H), 3.47-3.40 (m, 1H), 2.46 (s, 3H), 2.19-2.03 (m, 1H), 1.85-1.63 (m, 3H), 1.47 (s, 3.7H), 1.40 (s, 5.3H) ppm; ¹³C NMR (100 MHz, CDCl₃, mixture of rotamers) δ 175.5, 175.0, 156.4, 155.8, 146.8, 146.7, 136.1, 136.0, 131.0, 130.2, 130.1, 81.6, 81.4, 61.6, 61.4, 61.2, 48.2, 47.8, 32.4, 31.2, 28.8, 28.7, 28.6, 25.2, 24.5, 21.7 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₈H₂₆N₂O₅SNa⁺: 405.1455, found: 405.1455.

tert-Butyl 2-((2-methoxy-2-oxoethyl)carbamoyl)pyrrolidine-1-carboxylate (6j)

Eluent: PE/EA = 2:1, White Solid (203 mg, 71%); mp 138-139 °C; IR (film): v_{max} 2975, 1755, 1698, 1670, 1453, 1396, 1367, 1207, 1166, 1123. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.29-4.20 (m, 1H), 4.04-3.89 (m, 2H), 3.74 (s, 3H), 3.58-3.51 (m, 1H), 3.47-3.40 (m, 1H), 2.34-2.16 (m, 1H), 2.08-1.85 (m, 3H), 1.49 (s, 2.7H), 1.45 (s, 6.3H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 176.4, 176.0, 171.6, 171.4, 156.5, 156.1, 81.6, 81.4, 61.9, 61.5, 52.6, 47.9, 41.8, 32.4, 31.4, 28.7, 28.6, 25.3, 24.6 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₃H₂₂N₂O₅Na⁺: 309.1421, found: 309.1416. 1-Benzyl-N-(2-bromophenyl)-5-oxopyrrolidine-2-carboxamide (6k)

Eluent: PE/EA = 1:1, White Solid (298 mg, 80%); mp 159-160 °C; IR (film): v_{max} 3030, 1670, 1584, 1527, 1437, 1285, 1177, 752. ¹H NMR (400 MHz, CDCl₃) δ 8.28-8.24 (m, 1H), 7.57-7.53 (m, 1H), 7.35-7.23 (m, 6H), 7.06-7.01 (m, 1H), 5.19 (d, *J* = 14.8 Hz, 1H), 4.03-4.01 (m, 1H), 4.00-3.96 (m, 1H), 2.73-2.64 (m, 1H), 2.53-2.44 (m, 1H), 2.42-2.33 (m, 1H), 2.23-2.14 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 169.6, 169.5, 135.6, 134.8, 134.7, 132.4, 129.1, 128.8, 128.6, 128.2, 126.2, 122.2, 114.1, 114.0, 61.5, 46.1, 29.7, 23.8 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₈H₁₇BrN₂O₂Na⁺: 395.0366, 397.0345, 398.0379, found: 395.0367, 397.0345, 398.0375.

1-Benzyl-N-(tert-butyl)-5-oxopyrrolidine-2-carboxamide (6l)

Eluent: PE/EA = 1:1, White Solid (192 mg, 70%); mp 116-118 °C; IR (film): v_{max} 2968, 2422, 1670, 1431, 1361, 1227, 701. ¹H NMR (400 MHz, CD₃OD) δ 7.36-7.26 (m, 3H), 7.23-7.19 (m, 2H), 4.96 (d, *J* = 14.8 Hz, 1H), 3.93 (dd, *J* = 8.8, 4.4 Hz, 1H), 3.84 (d, *J* = 14.8 Hz, 1H), 2.61-2.51 (m, 1H), 2.43-2.34 (m, 1H), 2.26-2.16 (m, 1H), 1.95-1.86 (m, 1H), 1.31 (s, 9H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 178.3, 172.6, 137.2, 129.8, 129.4, 128.8, 61.8, 52.2, 46.5, 30.9, 28.7, 24.1 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₂N₂O₂Na⁺: 297.1574, found: 297.1579.

1-Benzyl-5-oxo-N-(tosylmethyl)pyrrolidine-2-carboxamide (6m)

Eluent: PE/EA = 1:1, White Solid (340 mg, 88%); mp 152-153 °C; IR (film): v_{max} 3284, 2919, 2850, 1672, 1596, 1265, 1142, 746. ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.77 (m, 2H), 7.38-7.35 (m, 2H), 7.34-7.27 (m, 3H), 7.17-7.14 (m, 2H), 5.02 (d, *J* = 14.8 Hz, 1H), 4.67-4.64 (m, 2H), 3.83 (dd, *J* = 9.2, 3.2 Hz, 1H), 3.76 (d, *J* = 14.8 Hz, 1H), 2.54-2.46 (m, 1H), 2.45 (s, 3H), 2.43-2.35 (m, 1H), 2.25-2.13 (m, 1H), 1.82-1.73 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 171.3, 145.9, 135.6, 134.3, 130.2, 129.1, 128.9, 128.6, 128.2, 60.3, 60.2, 45.8, 29.6, 23.5, 21.9 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₀H₂₂N₂O₄SNa⁺: 409.1193, 410.1223, 411.1151, found: 409.1194, 410.1220, 411.1151.

Methyl (1-benzyl-5-oxopyrrolidine-2-carbonyl)glycinate (6n)

Eluent: PE/EA = 1:1, White Solid (197 mg, 68%); mp 61-63 °C; IR (film): ν_{max} 2952, 1751, 1668, 1452, 1414, 1210, 704. ¹H NMR (400 MHz, CD₃OD) δ 7.36-7.25 (m, 5H), 5.03 (d, *J* = 6.8 Hz, 1H), 4.03 (dd, *J* = 8.8, 4.0 Hz, 1H), 3.96-3.91 (m, 2H), 3.89-3.84 (m, 1H), 3.74 (s, 3H), 2.61-2.51 (m, 1H), 2.46-2.36 (m, 1H), 2.32-2.22 (m, 1H), 2.07-1.98 (m, 1H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 178.2, 174.3, 171.4, 137.1, 129.8, 129.5, 128.8, 61.3, 52.7, 46.3, 41.8, 30.7, 23.9 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₅H₁₈N₂O₄Na⁺: 313.1159, found: 313.1157.

N-([1,1'-biphenyl]-2-yl)-1-benzyl-5-oxopyrrolidine-2-carboxamide (60)

Eluent: PE/EA = 1:1, White Solid (248 mg, 67%); mp 117-119 °C; IR (film): v_{max} 3028, 1667,1482, 1438, 1417, 1356, 752, 701. ¹H NMR (400 MHz, CD₃OD) δ 7.43-7.23 (m, 12H), 7.19-7.13 (m, 2H), 4.91 (d, *J* = 14.8 Hz, 1H), 3.99 (dd, *J* = 8.8, 3.2 Hz, 1H), 3.69 (d, *J* = 14.8 Hz, 1H), 2.48-2.38 (m, 1H), 2.37-2.28 (m, 1H), 2.20-2.09 (m, 1H), 1.84-1.75 (m, 1H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 178.2, 172.5, 140.6, 140.0, 137.0, 134.8, 131.6, 130.1, 129.8, 129.5, 129.1, 128.9, 128.6, 128.2, 61.4, 46.4, 30.6, 24.1 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₄H₂₂N₂O₄Na⁺: 393.1574, found: 393.1574.

1-Benzyl-N-cyclohexyl-5-oxopyrrolidine-2-carboxamide (6p)

Eluent: PE/EA = 1:1, White Solid (228 mg, 76%); mp 140-141 °C; IR (film): v_{max} 2931, 2854, 2422, 1671, 1450, 1416, 1249, 702. ¹H NMR (400 MHz, CD₃OD) δ 7.36-7.26 (m, 3H), 7.23-7.19 (m, 2H), 4.96 (d, *J* = 14.8 Hz, 1H), 3.94 (dd, *J* = 8.8, 4.0 Hz, 1H), 3.83 (d, *J* = 14.8 Hz, 1H), 3.65-3.56 (m, 1H), 2.61-2.52 (m, 1H), 2.44-2.35 (m, 1H), 2.27-2.17 (m, 1H), 1.97-1.88 (m, 1H), 1.85-1.70 (m, 4H), 1.66-1.60 (m, 1H), 1.39-1.28 (m, 2H), 1.23-1.13 (m, 3H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 176.9, 171.0, 135.7, 128.5, 128.1, 127.5, 60.2, 48.5, 45.1, 32.4, 32.1, 29.5,

25.2, 24.7, 22.9 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₈H₂₄N₂O₂Na⁺: 323.1730, found: 323.1728.

1-Benzyl-N-cyclohexyl-6-oxopiperidine-2-carboxamide (6q)

Eluent: PE/EA = 1:1, White Solid (257 mg, 82%); mp 113-115 °C; IR (film): v_{max} 2931, 2854, 1626, 1450, 1330, 1249, 701. ¹H NMR (400 MHz, CD₃OD) δ 7.36-7.27 (m, 3H), 7.26-7.21 (m, 2H), 5.44 (d, *J* = 15.2 Hz, 1H), 3.96 (dd, *J* = 4.8, 4.0 Hz, 1H), 3.70-3.62 (m, 2H), 2.56-2.41 (m, 2H), 1.97-1.94 (m, 2H), 1.93-1.70 (m, 6H), 1.70-1.63 (m, 1H), 1.42-1.31 (m, 2H), 1.28-1.14 (m, 3H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 173.5, 172.2, 137.9, 129.7, 129.2, 128.6, 60.6, 50.0, 49.9, 33.7, 33.5, 32.7, 28.4, 26.6, 26.1, 19.1 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₉H₂₆N₂O₂Na⁺: 337.1887, found: 337.1887.

1-Benzyl-N-cyclohexyl-4,4-dimethyl-6-oxopiperidine-2-carboxamide (6r)

Eluent: PE/EA = 1:1, White Solid (246 mg, 72%); mp 126-128 °C; IR (film): v_{max} 2931, 2855, 2412, 1625, 1449, 1345, 1306, 1249. ¹H NMR (400 MHz, CD₃OD) δ 7.38-7.30 (m, 3H), 7.28-7.24 (m, 2H), 5.62 (d, *J* = 14.8 Hz, 1H), 3.85 (dd, *J* = 10.8, 6.4 Hz, 1H), 3.75-3.67 (m, 1H), 3.62 (d, *J* = 14.8 Hz, 1H), 2.37 (d, *J* = 16.8 Hz, 1H), 2.24 (dd, *J* = 16.8, 2.8 Hz, 1H), 2.00-1.93 (m, 1H), 1.85-1.73 (m, 5H), 1.70-1.65 (m, 1H), 1.45-1.33 (m, 2H), 1.30-1.15 (m, 3H), 1.03 (s, 3H), 0.87 (s, 3H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 173.0, 172.9, 137.8, 129.8, 129.7, 128.9,

59.3, 50.0, 48.3, 46.4, 40.8, 33.8, 33.5, 30.9, 30.5, 26.6, 26.1, 26.0, 24.7 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₁H₃₀N₂O₂Na⁺: 365.2200, found: 365.2199.

8-Benzyl-N-cyclohexyl-9-oxo-8-azaspiro[4.5]decane-7-carboxamide (6s)

Eluent: PE/EA = 1:1, White Solid (269 mg, 73%); mp 111-112 °C; IR (film): ν_{max} 2930, 2854, 2413, 1623, 1448, 1344, 709. ¹H NMR (400 MHz, CD₃OD) δ 7.35-7.25 (m, 3H), 7.24-7.19 (m, 2H), 5.59 (d, *J* = 14.8 Hz, 1H), 3.85 (dd, *J* = 10.4, 6.4 Hz, 1H), 3.72-3.63 (m, 1H), 3.59 (d, *J* = 14.8 Hz, 1H), 2.45 (d, *J* = 16.8 Hz, 1H), 2.34 (dd, *J* = 16.8, 2.4 Hz, 1H), 1.96-1.89 (m, 1H), 1.87-1.72 (m, 5H), 1.70-1.61 (m, 5H), 1.50-1.44 (m, 2H), 1.40-1.28 (m, 4H), 1.26-1.12 (m, 3H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 173.3, 172.5, 137.8, 129.7, 129.6, 128.8, 59.8, 50.0, 45.2, 42.0, 40.8, 39.2, 35.8, 33.8, 33.5, 26.6, 26.1, 26.1, 25.5, 24.8 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₃H₃₂N₂O₂Na⁺: 391.2356, found: 391.2358.

(1S,3aR,7aS)-2-Benzyl-N-cyclohexyl-3-oxooctahydro-1H-isoindole-1-carboxamide (6t)

Eluent: PE/EA = 1:1, White Solid (322 mg, 91%); mp 131-133 °C; IR (film): v_{max} 2929, 2853, 1669, 1446, 1349, 1302, 1248. ¹H NMR (400

MHz, CD₃OD) δ 7.39-7.30 (m, 3H), 7.26-7.22 (m, 2H), 5.02 (d, *J* = 14.8 Hz, 1H), 3.81 (d, *J* = 14.4 Hz, 1H), 3.68-3.59 (m, 1H), 3.45 (d, *J* = 2.8 Hz, 1H), 2.80 (dd, *J* = 10.8, 6.4 Hz, 1H), 3.34-3.27 (m, 1H), 1.98-1.90 (m, 1H), 1.87-1.72 (m, 5H), 1.68-1.60 (m, 2H), 1.55-1.48 (m, 2H), 1.40-1.31 (m, 2H), 1.27-1.14 (m, 5H), 1.13-1.02 (m, 1H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 179.0, 171.4, 137.3, 129.9, 129.7, 129.0, 65.6, 50.0, 46.8, 41.7, 39.5, 33.8, 33.6, 29.1, 26.6, 26.1, 24.5, 24.4, 24.0 ppm; HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₂H₃₀N₂O₂Na⁺: 377.2200, found: 377.2198.

General Procedure C: Synthesis of 7

To a solution of *trans*- 4-hydroxy-5-substituted 2-pyrrolidinones¹ (2 mmol) in dry THF (8 mL) was added a solution of LiHBEt₃ in THF (1 M, 1.1 equiv, 2.2 mL) at -78 °C. The reaction mixture was stirred for 1 h at the same temperature, and the reaction was quenched with water (5 mL) and warmed to room temperature. To the mixture were added saturated aqueous NaHCO₃ (20 mL) and 30% H₂O₂ solution (5 mL). After stirring for 1 h, the mixture was extracted with ethyl acetate (20 mL × 3), and the combined organic layers were washed with brine. Dried, fifiltered , and concentrated to give the *N*,*O*-acetal 7 without further purifications².

General Procedure D: Synthesis of 8

N,*O*-acetal 7 (1.0 mmol), isocyanides **3** (1.0 mmol) were dissolved in THF (5 mL) at -78°C, then Cu(OTf)₂ (0.2 mmol) was added. The reaction was stirred at -78 °C to room temperature overnight then quenched with a saturated NaHCO₃ aqueous solution and extracted with EtOAc (30 mL \times 3). The combined organic layers were washed with brine, dried, filtrated and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA =2:1 - 1:1) to give the desired product **8**.

tert-butyl (2*S*,4*S*)-2-(cyclohexylcarbamoyl)-4-hydroxypyrrolidine-1-carboxylate (8a)

Eluent: PE/EA = 1:1, White Solid (237 mg, 76%); mp 129-131 °C; $[\alpha]_D^{22} = -49.2$ (*c* 2.00, CHCl₃), IR (film): v_{max} 2933, 1701, 1677, 1646, 1452, 1396, 1367, 1163, 1125, 1085. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.33-4.25 (m, 1H), 4.20-4.10 (m, 1H), 3.58-3.51 (m, 1H), 3.50-3.43 (m, 1H), 2.47-2.30 (m, 1H), 2.00-1.86 (m, 1H), 1.48 (s, 9H), 1.37 (s, 9H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 175.2, 174.9, 156.3, 156.1, 81.8, 81.5, 71.3, 70.5, 61.4, 56.8, 56.3, 52.1, 39.7, 38.7, 30.3, 28.8, 28.7. HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₈N₂O₄Na⁺: 335.1941, found: 335.1938.

tert-butyl (2S,4S)-2-(tert-butylcarbamoyl)-4-hydroxypyrrolidine-1-carboxylate (8b)

Eluent: PE/EA = 1:1, White Solid (188 mg, 66%); mp 139-142 °C; $[\alpha]_D^{22} = -68.1$ (*c* 1.00, CD₃OD, mixture of rotamers), IR (film): v_{max} 2972, 1701, 1651, 1394, 1365, 1162, 1123. ¹H NMR (400 MHz, CD₃OD) δ 4.37-4.27 (m, 1H), 4.23-4.15 (m, 1H), 3.72-3.63 (m, 1H), 3.60-3.53 (m, 1H), 3.50-3.43 (m, 1H), 2.50-2.35 (m, 1H), 1.95-1.63 (m, 6H), 1.46 (s, 9H), 1.43-1.34 (m, 2H), 1.32-1.21 (m, 3H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 175.0, 174.7, 156.4, 156.1, 81.8, 81.5, 71.3, 70.5, 61.5, 56.8, 56.2, 39.9, 38.9, 33.7, 28.7, 26.6, 26.0 ppm. HRMS (ESI-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₄H₂₆N₂O₄Na⁺: 309.1785, found: 309.1784.

tert-butyl (2*S*,4*S*)-2-((4-bromobenzyl)carbamoyl)-4-hydroxypyrrolidine-1-carboxylate (8c)

Eluent: PE/EA = 1:1, White Solid (259 mg, 65%); mp 109-111 °C; $[\alpha]_D^{23}$ = -12.6 (*c* 0.50, CD₃OD, mixture of rotamers), IR (film): v_{max} 2977, 1653, 1488, 1403, 1162, 1125. ¹H NMR (400 MHz, CD₃OD) δ 6.73-6.59 (m, 2H), 6.53-6.39 (m, 2H), 3.65-3.40 (m, 4H), 2.82-2.75 (m, 1H), 2.67-2.60 (m, 1H), 1.69-1.56 (m, 1H), 1.25-1.17 (m, 1H), 0.68 (s, 3.5H), 0.55 (s, 5.5H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 173.1, 151.3, 136.5, 129.8, 128.2, 127.6, 79.1, 78.9, 68.5, 67.7, 58.5, 58.4, 53.9, 53.4, 40.8, 40.7, 37.2, 36.2, 25.8 ppm. HRMS (ESI-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₃H₂₇BrN₂O₄Na⁺: 421.0733, 427.0717, found: 421.0735, 423.0714.

tert-butyl (2R,3S,5S)-5-(tert-butylcarbamoyl)-3-hydroxy-2-phenylpyrrolidine-1-carboxylate (8d)

Eluent: PE/EA = 2:1, White Solid (235 mg, 65%); mp 138-140 °C; $[\alpha]_D^{21} = +78.7$ (*c* 2.00, CHCl₃), IR (film): ν_{max} 2793, 1701, 1681, 1651, 1450, 1390, 1366, 1163, 1126. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 7.40-7.34 (m, 2H), 7.30-7.23 (m, 1H), 7.20-7.15 (m, 2H), 5.10-5.03 (m, 0.59H), 4.94-4.92 (m, 0.41H), 4.54-4.49 (m, 0.41H), 4.49-4.44 (m, 0.59H), 4.06-4.00 (m, 1H), 2.47-2.37 (m, 1H), 1.90-1.79 (m, 1H), 1.49 (s, 5.31H), 1.42 (s, 5.31H), 1.39 (s, 3.69H), 1.21 (s, 3.69H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 175.6, 175.1,

156.0, 155.7, 142.5, 141.4, 129.8, 129.7, 128.39, 128.36, 126.3, 82.2, 81.5, 79.4, 78.8, 73.7, 73.1, 62.8, 62.7, 52.30, 52.26, 36.3, 35.6, 28.9, 28.8, 28.7, 28.4 ppm. HRMS (ESI-Orbitrap) *m*/*z*: [M + Na]⁺ Calcd for C₂₀H₃₀N₂O₄Na⁺: 385.2098, found: 385.2095.

tert-butyl (2R,3S,5S)-5-((4-bromobenzyl)carbamoyl)-3-hydroxy-2-phenylpyrrolidine-1-carboxylate (8e)

Eluent: PE/EA = 2:1, White Solid (314 mg, 66%); mp 111-113 °C; $[\alpha]_D^{24} = -28.9$ (*c* 1.00, CHCl₃), IR (film): v_{max} 2977, 1650, 1488, 1390, 1162, 1129, 1067, 750, 700. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 7.61-7.41 (m, 2H), 7.40-7.23 (m, 5H), 7.22-7.10 (m, 2H), 5.12-4.88 (m, 1H), 4.68-4.54 (m, 1H), 4.52-4.33 (m, 2H), 4.12-4.02 (m, 1H), 2.57-2.39 (m, 1H), 1.98-1.87 (m, 1H), 1.36 (s, 4H), 1.20 (s, 5H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 174.7, 174.5, 154.8, 154.1, 141.2, 140.0, 137.7, 131.3, 131.1, 129.7, 129.0, 128.3, 128.2, 127.0, 125.1, 124.9, 120.8, 120.4, 80.8, 80.2, 78.0, 77.4, 72.2, 71.6, 61.0, 60.8, 42.5, 42.2, 35.0, 34.4, 27.1, 26.9 ppm. HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₃H₂₇BrN₂O₄Na⁺: 497.1046, 499.1026 found: 497.1045, 499.1024.

tert-butyl (2R,3S,5S)-5-(cyclohexylcarbamoyl)-3-hydroxy-2-phenylpyrrolidine-1-carboxylate (8f)

Eluent: PE/EA = 2:1, White Solid (217 mg, 56%); mp 127-129 °C; $[\alpha]_{D}^{23}$ = -41.2 (*c* 1.00, CHCl₃), IR (film): v_{max} 2931, 2855, 2435, 1700, 1645, 1452, 1386, 1162, 1127. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 7.41-7.34 (m, 2H), 7.31-7.24 (m, 1H), 7.20-7.15 (m, 2H), 5.10-5.04 (m, 0.54H), 4.96-4.90 (m, 0.46H), 4.60-4.54 (m, 0.46H), 4.54-4.49 (m, 0.54H), 4.07-4.02 (m, 1H), 3.76-3.67 (m, 1H), 2.52-2.37 (m, 1H), 2.00-1.75 (m, 5H), 1.72-1.63 (m, 1H), 1.46 (s, 4.86H), 1.43-1.24 (m, 5H), 1.21 (s, 4.14H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 175.4, 174.8, 156.0, 155.6, 142.5, 141.4, 129.8, 129.7, 128.39, 128.36, 126.5, 126.3, 82.3, 81.5, 79.4, 78.8, 73.6, 73.1, 62.3, 62.1, 50.2, 50.0, 36.5, 35.7, 33.72, 33.69, 33.5, 33.3, 28.7, 28.3, 26.7, 26.6, 26.0, 25.9 ppm. HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₂H₃₂N₂O₄Na⁺: 411.2254, found: 411.2253.

tert-Butyl (2R,3S,5S)-3-hydroxy-5-((2-methoxy-2-oxoethyl)carbamoyl)-2-phenylpyrrolidine-1-carboxylate (8g)

Eluent: PE/EA = 2:1, White Solid (197 mg, 52%); mp 107-109 °C; $[\alpha]_D^{23}$ = -22.2 (*c* 1.00, CHCl₃), IR (film): v_{max} 2976, 1650, 1488, 1390, 1162, 1129, 1067, 750, 700. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 7.46-7.42 (m, 2H), 7.38-7.33 (m, 1H), 7.29-7.24 (m, 2H), 5.15-5.00 (m, 1H), 4.75-4.65 (m, 1H), 4.15-4.00 (m, 4H), 3.84 (s, 1.47H), 3.83 (s, 1.53H), 2.65-2.47 (m, 1H), 2.12-1.98 (m, 1H), 1.52 (s, 4.6H), 1.27 (s, 4.4H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 176.9, 176.3, 156.2, 155.6, 142.6, 142.4, 129.8, 129.7, 128.4, 128.0, 126.5, 126.4, 82.4, 81.6, 79.4, 78.8, 62.2, 61.9, 52.6, 42.2, 42.1, 36.3, 36.7, 28.6, 28.3 ppm. HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₉H₂₆N₂O₆Na⁺: 401.1683 found: 401.1685.

tert-butyl (2R,3S,5S)-5-(tert-butylcarbamoyl)-3-hydroxy-2-(m-tolyl)pyrrolidine-1-carboxylate (8h)

Eluent: PE/EA = 2:1, White Solid (229 mg, 61%); mp 153-155 °C; $[\alpha]_D^{22} = +54.0$ (*c* 1.00, CHCl₃), IR (film): v_{max} 2972, 2436, 1652, 1607, 1390, 1366, 1165, 1124. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 7.27-7.21 (m, 1H), 7.13-7.06 (m, 1H), 7.01-6.92 (m, 2H), 5.04-5.00 (m, 1H), 4.52-4.43 (m, 1H), 4.05-3.98 (m, 1H), 2.47-2.38 (m, 1H), 2.36-2.34 (m, 3H), 1.89-1.78 (m, 1H), 1.49 (s, 5.13H), 1.41 (s, 5.13H), 1.39 (s, 3.87H), 1.22 (s, 3.87H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 178.1, 177.6, 158.6, 158.2, 145.0, 143.9, 142.1, 142.0, 132.2, 132.1, 131.6, 131.5, 129.6, 129.5, 126.0, 125.8, 84.7, 84.0, 81.9, 81.3, 76.2, 75.6, 65.4, 65.2, 54.81, 54.77, 38.9, 38.1, 31.7, 31.4, 31.3, 31.2, 30.9, 24.1, 24.0 ppm. HRMS (ESI-Orbitrap) *m*/*z*: [M + Na]⁺ Calcd for C₂₁H₃₂N₂O₄Na⁺: 399.2254, found: 399.2255.

tert-butyl (2R,3S,5S)-5-(tert-butylcarbamoyl)-2-cyclopropyl-3-hydroxypyrrolidine-1-carboxylate (8i)

Eluent: PE/EA = 2:1, White Solid (235 mg, 72%); mp 135-136 °C; $[\alpha]_D^{21} = -41.5$ (*c* 0.20, CHCl₃), IR (film): v_{max} 2972, 1698, 1650, 1388, 1366, 1171, 1121. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 4.20-4.15 (m, 1H), 4.14-4.08 (m, 1H), 3.53-3.47 (m, 0.63H), 3.33-3.28 (m, 0.41H), 2.65-2.52 (m, 1H), 1.90-1.80 (m, 1H), 1.49 (s, 3.33H), 1.47 (s, 5.67H), 1.37 (s, 5.67H), 1.34 (s, 3.33H), 0.75-0.66 (m, 1H), 0.64-0.42 (m, 0.41H), 2.65-2.52 (m, 1H), 1.90-1.80 (m, 1H), 1.49 (s, 3.33H), 1.47 (s, 5.67H), 1.37 (s, 5.67H), 1.34 (s, 3.33H), 0.75-0.66 (m, 1H), 0.64-0.42 (m, 0.41H), 2.65-2.52 (m, 1H), 1.90-1.80 (m, 1H), 1.49 (s, 3.33H), 1.47 (s, 5.67H), 1.37 (s, 5.67H), 1.34 (s, 3.33H), 0.75-0.66 (m, 1H), 0.64-0.42 (m, 0.41H), 0.6

3H), 0.30-0.22 (m, 1H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) *δ* 173.9, 173.3, 154.2, 154.0, 79.5, 79.3, 74.8, 73.9, 71.1, 70.6, 59.9, 50.0, 35.5, 34.3, 26.7, 26.6, 26.5, 13.0, 12.8, 3.5, 2.6 ppm. HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₇H₃₀N₂O₄Na⁺: 349.2098, found: 349.2098.

tert-butyl (2R,3S,5S)-2-allyl-5-(tert-butylcarbamoyl)-3-hydroxypyrrolidine-1-carboxylate (8j)

Eluent: PE/EA = 2:1, White Solid (238 mg, 73%); mp 131-133 °C; $[\alpha]_D^{23}$ = -29.2 (*c* 0.50, CHCl₃), IR (film): v_{max} 2974, 2430, 1698, 1679, 1650, 1440, 1392, 1366, 1171, 1127. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 5.09-4.96 (m, 1H), 4.35-4.26 (m, 2H), 3.36-3.28 (m, 1H), 3.27-3.20 (m, 1H), 3.16-3.04 (m, 1H), 1.75-1.57 (m, 2H), 1.33-1.21 (m, 1H), 1.06-0.98 (m, 1H), 0.69 (s, 2.8H), 0.67 (s, 6.2H), 0.56 (s, 6.2H), 0.54 (s, 2.8H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 173.1, 172.7, 153.0, 152.9, 133.0, 132.9, 115.44, 115.38, 79.1, 78.8, 72.4, 71.5, 66.3, 66.1, 59.43, 59.38, 49.44, 49.40, 35.5, 34.7, 34.4, 33.6, 26.1, 26.0 ppm. HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₁₇H₃₀N₂O4Na⁺: 349.2098, found: 349.2098.

tert-butyl (2R,3S,5S)-2-allyl-5-((4-bromobenzyl)carbamoyl)-3-hydroxypyrrolidine-1-carboxylate (8k)

Eluent: PE/EA = 2:1, White Solid (285 mg, 65%); mp 121-123 °C; $[\alpha]_D^{24}$ = +13.0 (*c* 1.00, CHCl₃), IR (film): v_{max} 2977, 1651, 1391, 1254, 1168, 1130, 772, 631. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 6.73-6.60 (m, 2H), 6.51-6.41 (m, 2H), 5.10-4.95 (m, 1H), 4.38-4.26 (m, 2H), 3.63-3.40 (m, 3H), 3.31-3.24 (m, 1H), 3.19-3.04 (m, 1H), 1.80-1.60 (m, 2H), 1.37-1.25 (m, 1H), 1.15-1.05 (m, 1H), 0.70 (s, 3.7H), 0.54 (s, 5.3H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 173.7, 173.5, 153.2, 152.8, 136.31, 136.29, 132.92, 132.86, 130.0, 129.8, 128.4, 127.7, 119.4, 119.1, 115.5, 79.2, 79.0, 72.5, 71.5, 66.2, 66.0, 59.0, 58.8, 41.1, 40.8, 35.4, 34.8, 34.3, 33.8, 26.0, 25.8 ppm. HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₀H₂₇BrN₂O₄Na⁺: 461.1046, 463.1026, found: 461.1049, 463.1028.

tert-butyl (2R,3S,5S)-5-((3-(benzyloxy)-3-oxopropyl)carbamoyl)-2-((benzyloxy)methyl)-3-hydroxypyrrolidine-1-carboxylate (8l)

Eluent: PE/EA = 2:1, White Solid (246 mg, 48%), $[\alpha]_D^{22} = -16.7$ (*c* 1.00, CHCl₃), IR (film): v_{max} 2975, 1734, 1658, 1454, 1389, 1255, 1171, 1127, 1085, 739, 698. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 7.40-7.29 (m, 10H), 5.17-5.12 (m, 2H), 4.56-4.46 (m, 2H), 4.27-4.17 (m, 2H), 4.07-3.92 (m, 1H), 3.61-3.56 (m, 2H), 3.52-3.40 (m, 2H), 2.65-2.53 (m, 3H), 1.85-1.77 (m, 1H), 1.42 (s, 5.3H), 1.40 (s, 3.7H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 176.8, 176.3, 173.2, 173.0, 155.8, 155.5, 139.7, 139.6, 137.6, 137.5, 129.6, 129.5, 129.4, 129.33, 129.28, 129.25, 129.2, 128.8, 128.71, 128.68, 82.0, 81.8, 75.3, 74.4, 74.35, 74.27, 70.1, 69.5, 68.9, 68.8, 67.5, 67.4, 62.1, 62.0, 38.4, 37.3, 36.44, 36.38, 34.8, 34.7, 28.7 ppm. HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₈H₃₆N₂O₇Na⁺: 535.2415, found: 535.2418.

(±) tert-Butyl (2R,4R)-2-(tert-butylcarbamoyl)-4-(4-chlorophenyl)pyrrolidine-1-carboxylate (14)

(±) *tert*-butyl (4R)-4-(4-chlorophenyl)-2-hydroxypyrrolidine-1-carboxylate (**13**) was synthesized according to the General Procedure C from (±) *tert*-butyl (R)-4-(4-chlorophenyl)-2-oxopyrrolidine-1-carboxylate³. **14** was synthesized from *N*,*O*-acetal **13** according to the General Procedure D. Eluent: PE/EA = 4:1, White Solid (320 mg, 84%), mp 121-123 °C; IR (film): v_{max} 2813, 2071, 1906, 1762, 1594, 1423. ¹H NMR (400 MHz, CD₃OD) δ 7.36-7.30 (m, 2H), 7.29-7.24 (m, 2H), 4.36-4.25 (m, 1H), 3.98-3.88 (m, 1H), 3.63-3.53 (m, 1H), 3.40-3.33 (m, 1H), 2.41-2.18 (m, 2H), 1.48 (s, 9H), 1.38 (s, 9H) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 174.4, 155.9, 141.2, 133.7, 129.8, 81.6, 61.8, 54.1, 52.0, 42.3, 39.7, 29.0, 28.7 ppm. HRMS (ESI-Orbitrap) *m/z*: [M + H]⁺ Calcd for C₂₀H₃₀ClN₂O₃⁺: 381.1940, found: 381.1940.

tert-Butyl (2S,4R)-2-((4-bromobenzyl)carbamoyl)-4-fluoropyrrolidine-1-carboxylate (9)

A solution of **8c** (400 mg, 1.0 mmol) in DCM (3 mL) was added DAST (0.67 mL, 5 mmol) at 0°C. After been stirred at 0°C to room temperature for 4 h, saturated NaHCO₃ aqueous solution was added and extracted with DCM (10 mL \times 3). The combined organic layers were washed with

brine, dried, filtrated and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 1:1) to give the desired product 9.

White Solid (188 mg, 47%); mp 130-131 °C; $[\alpha]_D^{22} = -36.8$ (*c* 0.50, CHCl₃), IR (film): v_{max} 2978, 1663, 1554, 1488, 1406, 1367, 1162, 1128, 773. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 7.51-7.44 (m, 2H), 7.30-7.21 (m, 2H), 5.35-5.15 (m, 1H), 4.45-4.27 (m, 3H), 3.90-3.78 (m, 1H), 3.72-3.53 (m, 1H), 2.64-2.48 (m, 1H), 2.24-2.01 (m, 1H), 1.50 (s, 3.5H), 1.36 (s, 5.5H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 173.5, 173.3, 154.8, 154.5, 137.7, 131.2, 131.1, 130.9, 129.6, 128.9, 128.6, 120.7, 120.3, 91.0 (d, ¹*J*_{C-F} = 174.8 MHz), 91.2 (d, ¹*J*_{C-F} = 175.5 MHz), 80.6, 80.4, 58.9, 58.7, 53.6 (d, ²*J*_{C-F} = 22.4 MHz), 53.1 (d, ²*J*_{C-F} = 22.5 MHz), 43.1, 42.2, 41.9, 40.8, 37.7 (d, ²*J*_{C-F} = 22.0 MHz), 36.7 (d, ²*J*_{C-F} = 22.3 MHz), 27.2, 27.0 ppm; ¹⁹F NMR (376 MHz, CD₃OD, mixture of rotamers) δ -180.4, -180.9 ppm. HRMS (ESI-Orbitrap) *m*/*z*: [M + Na]⁺ Calcd for C₁₇H₂₂BrFN₂O₃Na⁺: 423.0690, 425.0670, found: 423.0690, 425.0668.

tert-butyl ((S)-1-((2S,4R)-2-((4-bromobenzyl)carbamoyl)-4-fluoropyrrolidin-1-yl)-3,3-dimethyl-1-oxobutan-2-yl)carbamate (10)

A solution of **9** (150 mg, 0.37 mmol) in TFA/DCM (1/1 mL) was stirred at room temperature for 1 h. The mixture was evaporated under reduced pressure to give the corresponding intermediate further purification. The corresponding intermediate was dissolved in DMF (1 mL), Boc-*L*-*ter*t-Leu (86 mg, 0.37 mmol), HATU (156 mg, 0.41 mmol) and DIPEA (0.26 mL, 1.48 mmol) were added. After been stirred at room

temperature for 3 h, water was added and extracted with EtOAc (10 mL × 3). The combined organic layers were washed with brine, dried, filtrated and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 1:1) to give the desired product **10**. White Foam (158 mg, 83%) [α] $_{D}^{22}$ = -23.0 (*c* 0.50, CHCl₃), IR (film): v_{max} 2972, 1674, 1641, 1492, 1402, 1362, 1166. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 7.49-7.43 (m, 2H), 7.33-7.24 (m, 2H), 5.46-5.26 (m, 1H), 4.61-4.53 (m, 1H), 4.51-4.43 (m, 1H), 4.35-4.20 (m, 3H), 3.95-3.78 (m, 1H), 2.63-2.48 (m, 1H), 2.28-2.08 (m, 1H), 1.46 (s, 9H), 1.03 (s, 9H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 173.8, 173.0, 157.9, 139.1, 132.5, 130.4, 121.8, 93.5 (d, ¹J_{C-F} = 178.4 MHz), 80.8, 60.5, 56.2 (d, ²J_{C-F} = 22.3 MHz), 43.5, 38.9, 37.2 (d, ²J_{C-F} = 21.8 MHz), 36.6, 28.8, 28.7, 26.9, 26.7 ppm; ¹⁹F NMR (376 MHz, CD₃OD, mixture of rotamers) δ -178.8, -179.0 ppm. HRMS (ESI-Orbitrap) *m*/*z*: [M + Na]⁺ Calcd for C₂₃H₃₃BrFN₃O₄Na⁺: 536.1531, 538.1510, found: 536.1536, 538.1513.

(2S,4R)-1-((S)-2-acetamido-3,3-dimethylbutanoyl)-N-(4-bromobenzyl)-4-fluoropyrrolidine-2-carboxamide (11)

A solution of **10** (150 mg, 0.29 mmol) in TFA/DCM (1/1 mL) was stirred at room temperature for 1 h. The mixture was evaporated under reduced pressure to give the corresponding intermediate further purification. The corresponding intermediate was dissolved in DCM (2 mL), and triethylamine (120 μ L, 0.88 mmol) was added to the solution. After stirring the mixture for 10 min at room temperature, acetic anhydride (41 μ L, 0.44 mmol) was added and the reaction was stirred 3 h at room temperature then the solvents were evaporated. The residue was purified by flash

chromatography on silica gel (PE/EA = 1:1) to give the desired product 11.

White Foam (112 mg, 85%) $[\alpha]_{D}^{22} = -22.0$ (*c* 0.25, CHCl₃), IR (film): v_{max} 1633, 1582, 1535, 1425, 1280, 1120. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 7.52-7.43 (m, 2H), 7.32-7.27 (m, 2H), 5.43-5.25 (m, 1H), 4.60-4.45 (m, 3H), 4.38-4.24 (m, 2H), 3.95-3.78 (m, 1H), 2.59-2.46 (m, 1H), 2.27-2.09 (m, 1H), 2.02 (s, 3H), 1.06 (s, 9H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 175.2, 173.8, 173.3, 173.1, 172.5, 172.3, 139.2, 138.9, 132.7, 132.5, 131.0, 130.5, 122.1, 121.8, 93.5 (d, ¹*J*_{C-F} = 176.7 MHz), 91.9 (d, ¹*J*_{C-F} = 175.1 MHz), 60.5, 60.4, 59.5, 58.5, 56.3 (d, ²*J*_{C-F} = 22.5 MHz), 54.7 (d, ²*J*_{C-F} = 23.6 MHz), 44.1, 43.5, 39.7 (d, ²*J*_{C-F} = 22.3 MHz), 38.9, 37.5, 37.3 (d, ²*J*_{C-F} = 21.8 MHz), 36.2, 27.0, 26.9, 22.6, 22.2 ppm; ¹⁹F NMR (376 MHz, CD₃OD, mixture of rotamers) δ -178.7, -178.8 ppm. HRMS (ESI-Orbitrap) *m*/*z*: [M + Na]⁺ Calcd for C₂₀H₂₇BrFN₃O₃Na⁺: 478.1112, 480.1092, found: 478.1112, 480.1091.

(2S,4R)-1-((S)-2-acetamido-3,3-dimethylbutanoyl)-4-fluoro-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (12)

To a solution of **11** (100 mg, 0.22 mmol) and Pd(OAc)₂ (1 mg, 2 mol %) in DMAc (2 mL) were added KOAc (43 mg, 0.44 mmol) and 4-methylthiazole (44 mg, 0.44 mmol). The resulting mixture was heated to 150 °C and stirred for 12 h. The mixture was diluted with water and extracted with DCM (3×10 mL). The combined organic phases were dried over MgSO₄ and evaporated under reduced pressure. The residue was

purified by flash chromatography on silica gel (PE/EA = 1:1) to give the desired product 12.

White Foam (70 mg, 67%) $[\alpha]_D^{22} = -8.4$ (*c* 0.25, CHCl₃), IR (film): v_{max} 1635, 1544, 1425, 1370, 1283, 1118, 769. ¹H NMR (400 MHz, CD₃OD, mixture of rotamers) δ 8.89 (s, 1H), 7.54-7.40 (m, 4H), 5.45-5.28 (m, 1H), 4.62-4.55 (m, 3H), 4.40-4.28 (m, 2H), 3.96-3.81 (m, 1H), 2.65-2.52 (m, 1H), 2.49 (s, 3H), 2.29-2.12 (m, 1H), 2.02 (s, 3H), 1.07 (s, 9H) ppm; ¹³C NMR (100 MHz, CD₃OD, mixture of rotamers) δ 173.9, 173.4, 172.5, 152.8, 149.1, 140.2, 131.6, 130.4, 129.0, 93.5 (d, ¹*J*_{C-F} = 176.7 MHz), 60.5, 59.6, 56.3 (d, ²*J*_{C-F} = 22.4 MHz), 43.8, 37.3 (d, ²*J*_{C-F} = 20.0 MHz), 36.2, 27.0, 22.2, 15.8 ppm; ¹⁹F NMR (376 MHz, CD₃OD) δ -178.8 ppm. HRMS (ESI-Orbitrap) *m/z*: [M + Na]⁺ Calcd for C₂₄H₃₁FN₄O₃SNa⁺: 497.1993, found: 497.1995.

References:

1 C.-M. Si, Z.-Y. Mao, Y.-W. Liu, Z.-T. Du, B.-G. Wei and G.-Q. Lin, Org. Chem. Front., 2015, 2, 1485-1499.

2 (a) Y. X. Zhang, L. Y. Chen, J. T. Sun, C. M. Si and B. G. Wei, *J. Org. Chem.*, 2020, 85, 12603-12613; (b) X.-M. Wang, Y.-W. Liu, Q.-E. Wang, Z. Zhou, C.-M. Si and B.-G. Wei, *Tetrahedron*, 2019, 75, 260-268; (c) W. Huang, J.-Y. Ma, M. Yuan, L.-F. Xu and B.-G. Wei, *Tetrahedron*, 2011, 67, 7829-7837.

3 A. Greb, J.-S. Poh, S. Greed, C. Battilocchio, P. Pasau, D. C. Blakemore and S. V. Ley, Angew. Chem. Int. Ed., 2017, 56, 16602-16605.

Т

220

220 f1 (ppm) -10 S31

220 f1 (ppm) -10

f1 (ppm) -10

S39

30 f1 (ppm) -10

-10

(¹H NMR, 400 MHz, CDCk)

f1 (ppm) -10 S49

—52.201 —46.458 ~30.870 ~28.741 ~24.148 -61.771

) 100 f1 (ppm) -10 -20 -30 -40

- O O O U - L O & C & A & O	4 ~ ~ 4 0	0-0-8-	► 0 4 N ► 0 0 N N 0 0 0 0 N N 0 0 0 0 0 0 0 0
	ແ ວັດ ບິດ ບິດ	***	<u> </u>
	04444	က္က္က္က္က္	

	$-137.120 \\ -129.807 \\ -129.507 \\ -128.849 $	61.255	_52.672 _46.274 _41.767	
	$(^{13}C NMR, 100 MHz, CD_3OD)$			

Т Т f1 (ppm) -10 S55

8900197999999404	4 M	030201	い 4 く 0 ふ 0 ぬ 0 く 0 ら 0 ら 0 ら 0 ら 0 ら 0 ら 0 ら 0 ら 0 ら
00008888800997777777000888888000	~ ~ ~	008777	000000000000000000000000000000000000000
440000000000000000000000000000000000000	တထ	0000N0	444000000000000000000000000000000000000
		<u> പ്</u> ന്ന്ന്ന്	
	<u> </u>	400000	

220 f1 (ppm) -10

の 0 4 8 0 5 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-00000000	N44080N600N		909509408
$4 \times 2 \times $	<u> 2 4 7 7 7 7 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</u>	22266666666777	0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 x x x x x x 1 x 2 x 2 x 2 x 2 x 2 x 2 x
	<u>, , , , , , , , , , , , , , , , , , , </u>	\circ \circ \circ \sim		$\overline{}$

· 1		'	·				'	'	'	1						'	1	· ·		·			· · · ·		·	'	'	
240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40
														fl (ppm)													·	`E0

~173.471 ~172.175

-60.586 -60.586 -49.863 33.719 -33.541 -26.565 -26.078 -19.051

Т	1	1	·	1	1	1		1	·		· 1	1	'		' 1	'	· 1		' '			· · · ·	
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												11 (ppm)											S61

Т f1 (ppm) -10

Т f1 (ppm) -10

 	$\begin{array}{c} -65.600 \\ -65.600 \\ -65.600 \\ -65.600 \\ -24.682 \\ -24.682 \\ -23.362 \\ -24.512 \\$
(¹³ C NMR, 100 MHz, C	CD ₃ OD)

	1 1	1 1	1 1			· 1	' 1	· 1	· 1	· 1	·			· 1	· · · ·			'	· 1			· 1		T
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
											t	fl (ppm)											S67	

Т f1 (ppm) -20 -10

Т f1 (ppm)

-180.367
-180.924

·	 	 	 	 I	 I	-rr						 	 		
00	150	100	50	0	-50	-10	0	-150	-200	-	-250	-300	-350		-4C
						f1 (pp	m)							S94	

Т	· I	· · · · ·	1	1	· · · ·		1	· · · · · ·	I	· · · · ·		
00	150	100	50	0	-50	-100 f1 (ppm)	-150	-200	-250	-300	-350 _{\$97}	-4C

	1	· · · ·	· · · ·	1 1		1	· I	1	1	r	· · · ·	
00	150	100	50	0	-50	-100 f1 (ppm)	-150	-200	-250	-300	-350 \$100	-4C

-												
		·	· · ·	·	· ·	· ·	· .	1	· ·	·		1
00	150	100	50	0	-50	-100 f1 (ppm)	-150	-200	-250	-300	-350 \$103	-40

S107
ORTEP drawing of the X-ray crystallographic structure of 60

The single crystal of compound **60** was prepared from its solution in petroleum ether/ethylacetate (1:1) by slow evaporation of the solvent.

CCDC 2089259. For detailed crystallographic data, please refer to the Cambridge Crystallographic Data Centre at <u>http://ccdc.cam.ac.uk</u>.

 Table 1.
 Crystal data and structure refinement for dd20119.

Identification code	dd20119	
Empirical formula	C24 H22 N2 O2	
Formula weight	370.43	
Temperature	192(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P n a 21	
Unit cell dimensions	a = 9.8421(19) Å	$\alpha = 90^{\circ}$.
	b = 19.150(4) Å	β= 90°.
	c = 10.450(2) Å	$\gamma = 90^{\circ}.$
Volume	1969.5(7) Å ³	
Z	4	
Density (calculated)	1.249 Mg/m ³	
Absorption coefficient	0.080 mm ⁻¹	
F(000)	784	
Crystal size	0.200 x 0.100 x 0.060 mm ³	
Theta range for data collection	2.220 to 25.495°.	

Index ranges	-11<=h<=9, -23<=k<=22, -12<=l<=12
Reflections collected	8842
Independent reflections	3627 [R(int) = 0.0496]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6421
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3627 / 1 / 258
Goodness-of-fit on F ²	1.094
Final R indices [I>2sigma(I)]	R1 = 0.0544, wR2 = 0.0999
R indices (all data)	R1 = 0.0915, wR2 = 0.1203
Absolute structure parameter	-0.4(10)
Extinction coefficient	0.018(2)
Largest diff. peak and hole	0.186 and -0.170 e.Å ⁻³

Zaigest ann pean and note		011			
Table 2.	Atomic coordinates	$(x 10^4)$ and equivalent	isotropic displacement parameters (Å ² x 10 ³)		
for dd201	19. U(eq) is defined	as one third of the trad	ce of the orthogonalized U ^{ij} tensor.		

U(eq)
51(1)
62(1)
46(1)
34(1)
39(1)
53(1)
83(2)
46(1)
42(1)
36(1)
50(1)
64(2)
70(2)
52(1)
38(1)
39(1)
52(1)
66(2)
00(2)

C(16)	3800(5)	5022(3)	8163(5)	56(1)
C(17)	4094(5)	5395(2)	7058(4)	44(1)
C(18)	2152(5)	4072(2)	2316(4)	50(1)
C(19)	2165(5)	3712(2)	3592(5)	45(1)
C(20)	3263(5)	3784(3)	4409(5)	49(1)
C(21)	3295(7)	3465(3)	5591(5)	68(2)
C(22)	2237(9)	3067(3)	5975(7)	82(2)
C(23)	1134(8)	2973(3)	5180(8)	85(2)
C(24)	1075(6)	3309(3)	4000(6)	67(2)

Table 3. Bond lengths [Å] and angles [°] for dd20119.

O(1)-C(1)	1.227(5)
O(2)-C(5)	1.218(5)
N(1)-C(1)	1.337(5)
N(1)-C(4)	1.457(5)
N(1)-C(18)	1.464(5)
N(2)-C(5)	1.366(5)
N(2)-C(6)	1.415(5)
N(2)-H(2)	0.92(5)
C(1)-C(2)	1.487(6)
C(2)-C(3)	1.464(7)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.546(7)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(5)	1.509(7)
C(4)-H(4)	1.0000
C(6)-C(7)	1.389(6)
C(6)-C(11)	1.394(6)
C(7)-C(8)	1.374(7)
C(7)-H(7)	0.9500
C(8)-C(9)	1.382(8)
C(8)-H(8)	0.9500
C(9)-C(10)	1.377(7)
C(9)-H(9)	0.9500
C(10)-C(11)	1.394(6)

0.9500
1.494(6)
1.388(6)
1.393(6)
1.379(7)
0.9500
1.370(7)
0.9500
1.373(8)
0.9500
1.388(6)
0.9500
0.9500
1.501(6)
0.9900
0.9900
1.384(6)
1.388(7)
1.378(7)
0.9500
1.350(8)
0.9500
1.379(9)
0.9500
1.393(8)
0.9500
0.9500
113.7(4)
123.4(4)
121.9(3)
126.5(4)
113(3)
121(3)
124.9(4)
126.6(4)
108.4(4)
107.0(4)

C(3)-C(2)-H(2A)	110.3
C(1)-C(2)-H(2A)	110.3
C(3)-C(2)-H(2B)	110.3
C(1)-C(2)-H(2B)	110.3
H(2A)-C(2)-H(2B)	108.6
C(2)-C(3)-C(4)	106.2(4)
C(2)-C(3)-H(3A)	110.5
C(4)-C(3)-H(3A)	110.5
C(2)-C(3)-H(3B)	110.5
C(4)-C(3)-H(3B)	110.5
H(3A)-C(3)-H(3B)	108.7
N(1)-C(4)-C(5)	113.1(4)
N(1)-C(4)-C(3)	102.5(4)
C(5)-C(4)-C(3)	108.7(4)
N(1)-C(4)-H(4)	110.7
C(5)-C(4)-H(4)	110.7
C(3)-C(4)-H(4)	110.7
O(2)-C(5)-N(2)	124.4(5)
O(2)-C(5)-C(4)	123.0(4)
N(2)-C(5)-C(4)	112.5(4)
C(7)-C(6)-C(11)	119.7(4)
C(7)-C(6)-N(2)	121.7(4)
C(11)-C(6)-N(2)	118.6(4)
C(8)-C(7)-C(6)	120.5(5)
C(8)-C(7)-H(7)	119.7
C(6)-C(7)-H(7)	119.7
C(7)-C(8)-C(9)	120.6(5)
C(7)-C(8)-H(8)	119.7
C(9)-C(8)-H(8)	119.7
C(10)-C(9)-C(8)	118.8(5)
C(10)-C(9)-H(9)	120.6
C(8)-C(9)-H(9)	120.6
C(9)-C(10)-C(11)	121.8(5)
C(9)-C(10)-H(10)	119.1
C(11)-C(10)-H(10)	119.1
C(10)-C(11)-C(6)	118.5(4)
C(10)-C(11)-C(12)	117.1(4)
C(6)-C(11)-C(12)	124.4(4)

C(17)-C(12)-C(13)	118.8(4)
C(17)-C(12)-C(11)	120.6(4)
C(13)-C(12)-C(11)	120.3(4)
C(14)-C(13)-C(12)	120.3(5)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(15)-C(14)-C(13)	120.4(5)
C(15)-C(14)-H(14)	119.8
C(13)-C(14)-H(14)	119.8
C(14)-C(15)-C(16)	120.1(5)
C(14)-C(15)-H(15)	119.9
C(16)-C(15)-H(15)	119.9
C(15)-C(16)-C(17)	120.1(5)
C(15)-C(16)-H(16)	119.9
C(17)-C(16)-H(16)	119.9
C(16)-C(17)-C(12)	120.2(5)
C(16)-C(17)-H(17)	119.9
С(12)-С(17)-Н(17)	119.9
N(1)-C(18)-C(19)	112.7(4)
N(1)-C(18)-H(18A)	109.1
C(19)-C(18)-H(18A)	109.1
N(1)-C(18)-H(18B)	109.1
C(19)-C(18)-H(18B)	109.1
H(18A)-C(18)-H(18B)	107.8
C(20)-C(19)-C(24)	118.0(5)
C(20)-C(19)-C(18)	120.6(4)
C(24)-C(19)-C(18)	121.4(5)
C(21)-C(20)-C(19)	121.7(5)
C(21)-C(20)-H(20)	119.1
C(19)-C(20)-H(20)	119.1
C(22)-C(21)-C(20)	119.9(6)
C(22)-C(21)-H(21)	120.0
C(20)-C(21)-H(21)	120.0
C(21)-C(22)-C(23)	120.1(7)
C(21)-C(22)-H(22)	119.9
C(23)-C(22)-H(22)	119.9
C(22)-C(23)-C(24)	120.4(6)
C(22)-C(23)-H(23)	119.8

C(24)-C(23)-H(23)	119.8
C(19)-C(24)-C(23)	119.8(6)
C(19)-C(24)-H(24)	120.1
C(23)-C(24)-H(24)	120.1

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for dd20119.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	57(2)	43(2)	52(2)	-3(2)	-20(2)	-5(2)
O(2)	84(3)	73(2)	30(2)	-9(2)	14(2)	-8(2)
N(1)	44(3)	46(2)	49(2)	-14(2)	-17(2)	14(2)
N(2)	38(2)	41(2)	23(2)	-1(2)	2(2)	-3(2)
C(1)	42(3)	40(3)	36(2)	8(2)	-6(2)	-1(2)
C(2)	44(3)	52(3)	62(3)	0(3)	-11(3)	6(3)
C(3)	65(4)	79(4)	106(5)	-41(4)	-47(4)	35(3)
C(4)	43(3)	52(3)	44(3)	-17(2)	-11(2)	9(2)
C(5)	51(3)	47(3)	28(2)	-3(2)	-5(2)	7(2)
C(6)	38(3)	34(2)	35(2)	-1(2)	7(2)	3(2)
C(7)	61(4)	42(3)	48(3)	9(2)	13(3)	5(3)
C(8)	69(4)	40(3)	83(4)	14(3)	25(3)	-8(3)
C(9)	64(4)	42(3)	103(5)	-3(3)	6(4)	-15(3)
C(10)	48(3)	42(3)	67(3)	-11(3)	6(3)	-11(3)
C(11)	32(3)	34(2)	46(3)	-5(2)	2(2)	1(2)
C(12)	32(2)	51(3)	32(2)	-7(2)	-3(2)	-7(2)
C(13)	48(3)	68(3)	39(3)	-14(3)	0(2)	1(3)
C(14)	61(4)	105(5)	32(3)	-11(3)	5(3)	-3(3)
C(15)	63(4)	100(5)	32(3)	12(3)	3(3)	-18(3)
C(16)	58(4)	69(3)	40(3)	10(3)	-7(3)	-13(3)
C(17)	47(3)	49(3)	35(2)	-1(2)	0(2)	-8(2)
C(18)	50(3)	53(3)	46(3)	-12(2)	-14(3)	15(2)
C(19)	46(3)	36(2)	53(3)	-9(2)	-4(2)	8(2)
C(20)	40(3)	61(3)	47(3)	2(3)	-4(2)	11(2)
C(21)	66(4)	86(4)	52(4)	5(3)	4(3)	30(4)
C(22)	106(6)	60(4)	79(5)	14(4)	25(5)	26(4)

C(23)	98(6)	40(3)	118(6)	2(4)	46(5)	-8(4)
C(24)	58(4)	48(3)	96(5)	-19(3)	2(3)	-8(3)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for dd20119.

	X	у	Z	U(eq)
H(2A)	-730	5582	929	63
H(2B)	-1603	5225	2052	63
H(3A)	-505	5863	3403	100
H(3B)	503	6136	2300	100
H(4)	992	5046	4069	56
H(7)	4103	6766	2778	60
H(8)	5699	7616	3250	77
H(9)	6359	7818	5365	83
H(10)	5426	7143	6989	63
H(13)	2851	6891	7952	62
H(14)	2402	6260	9803	79
H(15)	2954	5086	9922	78
H(16)	4041	4543	8221	67
H(17)	4523	5169	6357	52
H(18A)	3075	4251	2130	59
H(18B)	1916	3728	1644	59
H(20)	4015	4060	4148	59
H(21)	4059	3525	6135	82
H(22)	2254	2852	6793	98
H(23)	411	2676	5439	102
H(24)	290	3264	3477	81
H(2)	2200(50)	5800(20)	4980(40)	49(14)

Table 6. Torsion angles $[^{\circ}]$ for dd20119.

C(4)-N(1)-C(1)-O(1)	-170.9(4)
C(18)-N(1)-C(1)-O(1)	-2.3(7)
C(4)-N(1)-C(1)-C(2)	10.8(5)
C(18)-N(1)-C(1)-C(2)	179.4(4)

O(1)-C(1)-C(2)-C(3)	-179.7(5)
N(1)-C(1)-C(2)-C(3)	-1.4(6)
C(1)-C(2)-C(3)-C(4)	-7.5(6)
C(1)-N(1)-C(4)-C(5)	-131.9(4)
C(18)-N(1)-C(4)-C(5)	59.3(6)
C(1)-N(1)-C(4)-C(3)	-14.9(5)
C(18)-N(1)-C(4)-C(3)	176.3(5)
C(2)-C(3)-C(4)-N(1)	12.9(6)
C(2)-C(3)-C(4)-C(5)	132.9(5)
C(6)-N(2)-C(5)-O(2)	9.1(7)
C(6)-N(2)-C(5)-C(4)	-167.9(4)
N(1)-C(4)-C(5)-O(2)	28.5(6)
C(3)-C(4)-C(5)-O(2)	-84.7(6)
N(1)-C(4)-C(5)-N(2)	-154.4(4)
C(3)-C(4)-C(5)-N(2)	92.4(5)
C(5)-N(2)-C(6)-C(7)	23.5(6)
C(5)-N(2)-C(6)-C(11)	-160.0(4)
C(11)-C(6)-C(7)-C(8)	0.0(7)
N(2)-C(6)-C(7)-C(8)	176.5(4)
C(6)-C(7)-C(8)-C(9)	-1.2(8)
C(7)-C(8)-C(9)-C(10)	0.7(9)
C(8)-C(9)-C(10)-C(11)	1.0(8)
C(9)-C(10)-C(11)-C(6)	-2.2(7)
C(9)-C(10)-C(11)-C(12)	177.0(4)
C(7)-C(6)-C(11)-C(10)	1.6(6)
N(2)-C(6)-C(11)-C(10)	-174.9(4)
C(7)-C(6)-C(11)-C(12)	-177.5(4)
N(2)-C(6)-C(11)-C(12)	5.9(6)
C(10)-C(11)-C(12)-C(17)	-113.9(5)
C(6)-C(11)-C(12)-C(17)	65.3(6)
C(10)-C(11)-C(12)-C(13)	59.1(6)
C(6)-C(11)-C(12)-C(13)	-121.8(5)
C(17)-C(12)-C(13)-C(14)	1.7(7)
C(11)-C(12)-C(13)-C(14)	-171.3(5)
C(12)-C(13)-C(14)-C(15)	-1.6(8)
C(13)-C(14)-C(15)-C(16)	1.1(8)
C(14)-C(15)-C(16)-C(17)	-0.7(8)
C(15)-C(16)-C(17)-C(12)	0.9(7)

C(13)-C(12)-C(17)-C(16)	-1.4(6)
C(11)-C(12)-C(17)-C(16)	171.7(4)
C(1)-N(1)-C(18)-C(19)	-112.9(5)
C(4)-N(1)-C(18)-C(19)	54.8(6)
N(1)-C(18)-C(19)-C(20)	-108.9(5)
N(1)-C(18)-C(19)-C(24)	69.8(5)
C(24)-C(19)-C(20)-C(21)	0.5(7)
C(18)-C(19)-C(20)-C(21)	179.3(4)
C(19)-C(20)-C(21)-C(22)	0.3(8)
C(20)-C(21)-C(22)-C(23)	0.8(9)
C(21)-C(22)-C(23)-C(24)	-2.7(9)
C(20)-C(19)-C(24)-C(23)	-2.4(7)
C(18)-C(19)-C(24)-C(23)	178.8(4)
C(22)-C(23)-C(24)-C(19)	3.5(8)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(2)O(1)#1	0.92(5)	2.11(5)	2.945(5)	151(4)
C(7)-H(7)O(2)	0.95	2.33	2.885(6)	116.5
C(4)-H(4)O(1)#1	1.00	2.45	3.110(6)	122.7
C(3)-H(3A)O(1)#1	0.99	2.62	3.259(7)	122.6
C(3)-H(3A)O(1)#1	0.99	2.62	3.259(7)	122.6
C(4)-H(4)O(1)#1	1.00	2.45	3.110(6)	122.7
C(7)-H(7)O(2)	0.95	2.33	2.885(6)	116.5
N(2)-H(2)O(1)#1	0.92(5)	2.11(5)	2.945(5)	151(4)

Table 7. Hydrogen bonds for dd20119 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,z+1/2

ORTEP drawing of the X-ray crystallographic structure of 6t

The single crystal of compound 6t was prepared from its solution in petroleum ether/ethylacetate (1:1) by slow evaporation of the solvent.

CCDC 2089257. For detailed crystallographic data, please refer to the Cambridge Crystallographic Data Centre at http://ccdc.cam.ac.uk.

Table 1. Crystal data and structure refinement for mo_ddz20072_0m.

Identification code	mo_ddz20072_0m	
Empirical formula	C22 H30 N2 O2	
Formula weight	354.48	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.9031(14) Å	$\alpha = 72.827(4)^{\circ}.$
	b = 9.9209(15) Å	β= 89.188(4)°.
	c = 10.8025(14) Å	$\gamma = 78.782(5)^{\circ}.$
Volume	993.6(2) Å ³	
Z	2	
Density (calculated)	1.185 Mg/m ³	
Absorption coefficient	0.076 mm ⁻¹	
F(000)	384	
Crystal size	$0.180 \ge 0.150 \ge 0.110 \text{ mm}^3$	
Theta range for data collection	2.717 to 25.500°.	
Index ranges	-11<=h<=11, -12<=k<=12, -13	<=l<=13
Reflections collected	22231	
Independent reflections	3683 [R(int) = 0.0909]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	correction Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.2216	

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3683 / 0 / 236
Goodness-of-fit on F ²	1.029
Final R indices [I>2sigma(I)]	R1 = 0.0574, wR2 = 0.1469
R indices (all data)	R1 = 0.0787, wR2 = 0.1651
Extinction coefficient	0.075(10)
Largest diff. peak and hole	0.257 and -0.212 e.Å ⁻³

Table 2.	Atomic coord	inates (x 10 ⁴) and equival	ent	isotropic displacement parameters (Å ² x 10 ³)
for mo_do	lz20072_0m.	U(eq) is	defined as one thir	d of	the trace of the orthogonalized U^{ij} tensor.	

	X	У	Z	U(eq)
O(1)	3819(1)	6280(2)	4881(1)	57(1)
O(2)	6267(1)	5810(2)	232(1)	58(1)
N(1)	4018(1)	5866(2)	2904(1)	41(1)
N(2)	6509(2)	4408(2)	2325(1)	46(1)
C(1)	4266(2)	6526(2)	3786(2)	43(1)
C(2)	5189(2)	7571(2)	3192(2)	45(1)
C(3)	5052(2)	8852(3)	3719(2)	64(1)
C(4)	3736(3)	9965(3)	3214(2)	73(1)
C(5)	3600(3)	10402(2)	1745(2)	70(1)
C(6)	3555(2)	9099(2)	1295(2)	54(1)
C(7)	4842(2)	7908(2)	1738(2)	43(1)
C(8)	4577(2)	6458(2)	1648(2)	41(1)
C(9)	5870(2)	5508(2)	1342(2)	42(1)
C(10)	7694(2)	3347(2)	2169(2)	45(1)
C(11)	8774(2)	2968(2)	3265(2)	51(1)
C(12)	10000(2)	1861(2)	3080(2)	65(1)
C(13)	9560(3)	530(3)	2961(3)	77(1)
C(14)	8464(3)	906(3)	1882(3)	79(1)
C(15)	7243(2)	2011(2)	2072(2)	64(1)
C(16)	3146(2)	4805(2)	3117(2)	50(1)
C(17)	1665(2)	5498(2)	2691(2)	42(1)
C(18)	806(2)	6110(2)	3484(2)	59(1)
C(19)	-530(2)	6805(3)	3070(3)	72(1)
C(20)	-1010(2)	6899(3)	1864(3)	73(1)
C(21)	-179(2)	6284(3)	1070(2)	70(1)
C(22)	1155(2)	5584(2)	1486(2)	56(1)

O(1)-C(1)	1.229(2)
O(2)-C(9)	1.226(2)
N(1)-C(1)	1.354(2)
N(1)-C(16)	1.454(2)
N(1)-C(8)	1.458(2)
N(2)-C(9)	1.336(2)
N(2)-C(10)	1.460(2)
N(2)-H(2)	0.8600
C(1)-C(2)	1.511(3)
C(2)-C(3)	1.522(3)
C(2)-C(7)	1.535(2)
C(2)-H(2A)	0.9800
C(3)-C(4)	1.523(3)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-C(5)	1.517(3)
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-C(6)	1.517(3)
C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700
C(6)-C(7)	1.532(2)
C(6)-H(6A)	0.9700
C(6)-H(6B)	0.9700
C(7)-C(8)	1.542(3)
C(7)-H(7)	0.9800
C(8)-C(9)	1.530(2)
C(8)-H(8)	0.9800
C(10)-C(15)	1.511(3)
C(10)-C(11)	1.517(3)
C(10)-H(10)	0.9800
C(11)-C(12)	1.525(3)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-C(13)	1.509(3)

 $Table \ 3. \hspace{1.5cm} Bond \ lengths \ [\text{\AA}] \ and \ angles \ [^\circ] \ for \hspace{1.5cm} mo_ddz 20072_0m.$

0.9700
0.9700
1.516(3)
0.9700
0.9700
1.522(3)
0.9700
0.9700
0.9700
0.9700
1.509(2)
0.9700
0.9700
1.376(3)
1.383(3)
1.380(3)
0.9300
1.364(3)
0.9300
1.371(3)
0.9300
1.380(3)
0.9300
0.9300
124.11(15)
112.92(16)
122.57(15)
123.41(14)
118.3
118.3
124.76(19)
127.14(17)
108.09(15)
114.98(16)
101.67(14)
116.71(17)
107.7

C(3)-C(2)-H(2A)	107.7
C(7)-C(2)-H(2A)	107.7
C(2)-C(3)-C(4)	112.51(17)
C(2)-C(3)-H(3A)	109.1
C(4)-C(3)-H(3A)	109.1
C(2)-C(3)-H(3B)	109.1
C(4)-C(3)-H(3B)	109.1
H(3A)-C(3)-H(3B)	107.8
C(5)-C(4)-C(3)	110.92(18)
C(5)-C(4)-H(4A)	109.5
C(3)-C(4)-H(4A)	109.5
C(5)-C(4)-H(4B)	109.5
C(3)-C(4)-H(4B)	109.5
H(4A)-C(4)-H(4B)	108.0
C(4)-C(5)-C(6)	110.09(19)
C(4)-C(5)-H(5A)	109.6
C(6)-C(5)-H(5A)	109.6
C(4)-C(5)-H(5B)	109.6
C(6)-C(5)-H(5B)	109.6
H(5A)-C(5)-H(5B)	108.2
C(5)-C(6)-C(7)	112.95(17)
C(5)-C(6)-H(6A)	109.0
C(7)-C(6)-H(6A)	109.0
C(5)-C(6)-H(6B)	109.0
C(7)-C(6)-H(6B)	109.0
H(6A)-C(6)-H(6B)	107.8
C(6)-C(7)-C(2)	111.36(14)
C(6)-C(7)-C(8)	111.09(15)
C(2)-C(7)-C(8)	102.29(14)
C(6)-C(7)-H(7)	110.6
C(2)-C(7)-H(7)	110.6
C(8)-C(7)-H(7)	110.6
N(1)-C(8)-C(9)	114.99(14)
N(1)-C(8)-C(7)	102.32(13)
C(9)-C(8)-C(7)	112.66(15)
N(1)-C(8)-H(8)	108.9
C(9)-C(8)-H(8)	108.9
C(7)-C(8)-H(8)	108.9

O(2)-C(9)-N(2)	124.26(16)
O(2)-C(9)-C(8)	118.76(15)
N(2)-C(9)-C(8)	116.97(15)
N(2)-C(10)-C(15)	110.58(16)
N(2)-C(10)-C(11)	111.56(14)
C(15)-C(10)-C(11)	110.63(16)
N(2)-C(10)-H(10)	108.0
C(15)-C(10)-H(10)	108.0
C(11)-C(10)-H(10)	108.0
C(10)-C(11)-C(12)	110.58(16)
C(10)-C(11)-H(11A)	109.5
C(12)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
C(12)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	108.1
C(13)-C(12)-C(11)	111.63(19)
C(13)-C(12)-H(12A)	109.3
C(11)-C(12)-H(12A)	109.3
C(13)-C(12)-H(12B)	109.3
C(11)-C(12)-H(12B)	109.3
H(12A)-C(12)-H(12B)	108.0
C(12)-C(13)-C(14)	111.17(19)
C(12)-C(13)-H(13A)	109.4
C(14)-C(13)-H(13A)	109.4
C(12)-C(13)-H(13B)	109.4
C(14)-C(13)-H(13B)	109.4
H(13A)-C(13)-H(13B)	108.0
C(13)-C(14)-C(15)	110.97(18)
C(13)-C(14)-H(14A)	109.4
C(15)-C(14)-H(14A)	109.4
C(13)-C(14)-H(14B)	109.4
C(15)-C(14)-H(14B)	109.4
H(14A)-C(14)-H(14B)	108.0
C(10)-C(15)-C(14)	111.19(19)
C(10)-C(15)-H(15A)	109.4
C(14)-C(15)-H(15A)	109.4
C(10)-C(15)-H(15B)	109.4
C(14)-C(15)-H(15B)	109.4

H(15A)-C(15)-H(15B)	108.0
N(1)-C(16)-C(17)	111.75(15)
N(1)-C(16)-H(16A)	109.3
C(17)-C(16)-H(16A)	109.3
N(1)-C(16)-H(16B)	109.3
C(17)-C(16)-H(16B)	109.3
H(16A)-C(16)-H(16B)	107.9
C(22)-C(17)-C(18)	118.59(18)
C(22)-C(17)-C(16)	120.75(16)
C(18)-C(17)-C(16)	120.61(17)
C(19)-C(18)-C(17)	120.6(2)
C(19)-C(18)-H(18)	119.7
C(17)-C(18)-H(18)	119.7
C(20)-C(19)-C(18)	119.9(2)
C(20)-C(19)-H(19)	120.1
C(18)-C(19)-H(19)	120.1
C(19)-C(20)-C(21)	120.3(2)
C(19)-C(20)-H(20)	119.9
C(21)-C(20)-H(20)	119.9
C(20)-C(21)-C(22)	119.8(2)
C(20)-C(21)-H(21)	120.1
C(22)-C(21)-H(21)	120.1
C(17)-C(22)-C(21)	120.8(2)
C(17)-C(22)-H(22)	119.6
C(21)-C(22)-H(22)	119.6

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_ddz20072_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	52(1)	79(1)	32(1)	-14(1)	6(1)	4(1)
O(2)	60(1)	71(1)	32(1)	-13(1)	9(1)	5(1)
N(1)	34(1)	56(1)	33(1)	-13(1)	4(1)	-5(1)
N(2)	44(1)	55(1)	32(1)	-12(1)	6(1)	4(1)
C(1)	33(1)	58(1)	31(1)	-12(1)	-2(1)	6(1)
C(2)	34(1)	60(1)	41(1)	-19(1)	-2(1)	-2(1)

C(3)	68(1)	74(2)	60(1)	-33(1)	-3(1)	-12(1)
C(4)	84(2)	71(2)	69(2)	-40(1)	2(1)	4(1)
C(5)	77(2)	58(1)	68(2)	-20(1)	1(1)	7(1)
C(6)	51(1)	59(1)	44(1)	-13(1)	-2(1)	7(1)
C(7)	36(1)	53(1)	38(1)	-13(1)	5(1)	-3(1)
C(8)	35(1)	55(1)	29(1)	-12(1)	-1(1)	-2(1)
C(9)	42(1)	53(1)	32(1)	-18(1)	2(1)	-4(1)
C(10)	46(1)	49(1)	35(1)	-14(1)	7(1)	1(1)
C(11)	47(1)	58(1)	51(1)	-24(1)	0(1)	-2(1)
C(12)	51(1)	67(1)	71(2)	-24(1)	-4(1)	9(1)
C(13)	80(2)	58(1)	81(2)	-21(1)	-11(1)	16(1)
C(14)	100(2)	57(1)	82(2)	-35(1)	-14(2)	5(1)
C(15)	70(1)	59(1)	63(1)	-24(1)	-14(1)	-4(1)
C(16)	42(1)	54(1)	51(1)	-13(1)	5(1)	-7(1)
C(17)	38(1)	48(1)	44(1)	-16(1)	8(1)	-11(1)
C(18)	47(1)	82(2)	62(1)	-42(1)	10(1)	-16(1)
C(19)	47(1)	81(2)	106(2)	-57(2)	18(1)	-10(1)
C(20)	42(1)	68(2)	104(2)	-20(1)	-6(1)	-4(1)
C(21)	56(1)	94(2)	58(1)	-13(1)	-8(1)	-21(1)
C(22)	48(1)	79(2)	47(1)	-24(1)	10(1)	-16(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for mo_ddz20072_0m.

	X	у	Z	U(eq)
H(2)	6206	4320	3089	55
H(2A)	6144	7042	3364	54
H(3A)	5840	9306	3477	77
H(3B)	5061	8513	4659	77
H(4A)	2946	9567	3576	88
H(4B)	3747	10808	3492	88
H(5A)	4376	10824	1380	84
H(5B)	2763	11121	1442	84
H(6A)	3460	9399	356	65
H(6B)	2749	8715	1630	65
H(7)	5627	8173	1227	52

H(8)	3863	6646	966	49
H(10)	8114	3770	1355	54
H(11A)	8371	2583	4086	61
H(11B)	9084	3831	3286	61
H(12A)	10458	2285	2305	78
H(12B)	10654	1594	3814	78
H(13A)	9201	40	3775	92
H(13B)	10353	-121	2786	92
H(14A)	8153	42	1867	95
H(14B)	8856	1291	1054	95
H(15A)	6579	2270	1347	76
H(15B)	6797	1591	2857	76
H(16A)	3197	4271	4032	60
H(16B)	3484	4128	2639	60
H(18)	1132	6053	4305	70
H(19)	-1102	7208	3613	87
H(20)	-1904	7382	1579	88
H(21)	-513	6338	252	85
H(22)	1715	5167	945	67

Table 6. Torsion angles [°] for mo_ddz20072_0m.

2.2(3)
174.95(15)
-178.76(14)
-5.96(18)
-27.9(2)
152.99(16)
-155.00(16)
25.94(17)
-74.8(2)
44.2(3)
-52.4(3)
60.1(3)
-59.2(3)
48.9(2)
162.16(17)
84.15(18)

C(3)-C(2)-C(7)-C(6)	-41.8(2)
C(1)-C(2)-C(7)-C(8)	-34.57(15)
C(3)-C(2)-C(7)-C(8)	-160.49(16)
C(1)-N(1)-C(8)-C(9)	105.85(17)
C(16)-N(1)-C(8)-C(9)	-81.22(19)
C(1)-N(1)-C(8)-C(7)	-16.62(17)
C(16)-N(1)-C(8)-C(7)	156.31(14)
C(6)-C(7)-C(8)-N(1)	-87.49(16)
C(2)-C(7)-C(8)-N(1)	31.42(15)
C(6)-C(7)-C(8)-C(9)	148.47(15)
C(2)-C(7)-C(8)-C(9)	-92.62(16)
C(10)-N(2)-C(9)-O(2)	-5.8(3)
C(10)-N(2)-C(9)-C(8)	175.47(16)
N(1)-C(8)-C(9)-O(2)	168.02(17)
C(7)-C(8)-C(9)-O(2)	-75.3(2)
N(1)-C(8)-C(9)-N(2)	-13.2(2)
C(7)-C(8)-C(9)-N(2)	103.51(19)
C(9)-N(2)-C(10)-C(15)	-97.5(2)
C(9)-N(2)-C(10)-C(11)	138.97(19)
N(2)-C(10)-C(11)-C(12)	180.00(17)
C(15)-C(10)-C(11)-C(12)	56.5(2)
C(10)-C(11)-C(12)-C(13)	-55.9(3)
C(11)-C(12)-C(13)-C(14)	55.2(3)
C(12)-C(13)-C(14)-C(15)	-55.0(3)
N(2)-C(10)-C(15)-C(14)	178.87(17)
C(11)-C(10)-C(15)-C(14)	-57.0(2)
C(13)-C(14)-C(15)-C(10)	56.2(3)
C(1)-N(1)-C(16)-C(17)	89.8(2)
C(8)-N(1)-C(16)-C(17)	-82.31(19)
N(1)-C(16)-C(17)-C(22)	96.5(2)
N(1)-C(16)-C(17)-C(18)	-80.9(2)
C(22)-C(17)-C(18)-C(19)	-0.6(3)
C(16)-C(17)-C(18)-C(19)	176.9(2)
C(17)-C(18)-C(19)-C(20)	-0.4(4)
C(18)-C(19)-C(20)-C(21)	1.2(4)
C(19)-C(20)-C(21)-C(22)	-0.9(4)
C(18)-C(17)-C(22)-C(21)	0.8(3)
C(16)-C(17)-C(22)-C(21)	-176.6(2)

d(D-H)	d(HA)	d(DA)	<(DHA)
0.97	2.64	3.340(2)	129.7
0.86	2.10	2.9202(19)	159.9
	d(D-H) 0.97 0.86	d(D-H) d(HA) 0.97 2.64 0.86 2.10	d(D-H)d(HA)d(DA)0.972.643.340(2)0.862.102.9202(19)

Table 7. Hydrogen bonds for mo_ddz20072_0m $\ [{\rm \AA\ and\ }^{\circ}].$

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1

ORTEP drawing of the X-ray crystallographic structure of 8a

The single crystal of compound **8a** was prepared from its solution in petroleum ether/ethylacetate (1:1) by slow evaporation of the solvent.

CCDC 2089256. For detailed crystallographic data, please refer to the Cambridge Crystallographic Data Centre at <u>http://ccdc.cam.ac.uk</u>.

Table 1. Crystal data and structure refinement for mo_ddz20132_0m.

Identification code	mo_ddz20132_0m	
Empirical formula	C16 H28 N2 O4	
Formula weight	312.40	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 9.6865(7) Å	α= 90°.
	b = 10.3400(8) Å	$\beta = 90^{\circ}$.
	c = 17.7546(11) Å	$\gamma = 90^{\circ}.$
Volume	1778.3(2) Å ³	
Z	4	
Density (calculated)	1.167 Mg/m ³	
Absorption coefficient	0.083 mm ⁻¹	
F(000)	680	
Crystal size	$0.190 \ge 0.150 \ge 0.130 \text{ mm}^3$	

2.294 to 25.989°.
-11<=h<=10, -12<=k<=12, -21<=l<=19
8722
3456 [R(int) = 0.0266]
99.4 %
Semi-empirical from equivalents
0.7456 and 0.6306
Full-matrix least-squares on F ²
3456 / 0 / 204
1.039
R1 = 0.0389, wR2 = 0.0833
R1 = 0.0546, wR2 = 0.0935
0.0(6)
0.043(7)
0.087 and -0.097 e.Å ⁻³

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for mo_ddz20132_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
O(1)	4807(2)	-212(2)	1447(1)	74(1)
O(2)	6627(2)	558(2)	2526(1)	67(1)
O(3)	7742(2)	3127(2)	552(1)	73(1)
O(4)	7830(2)	3553(2)	1811(1)	63(1)
N(1)	6094(2)	2430(2)	1354(1)	52(1)
N(2)	6243(2)	2157(2)	3363(1)	52(1)
C(1)	5266(3)	1781(3)	780(1)	61(1)
C(2)	4253(3)	1010(3)	1239(2)	66(1)
C(3)	4014(3)	1882(3)	1917(2)	66(1)
C(4)	5436(2)	2460(2)	2093(1)	48(1)
C(5)	6184(2)	1648(2)	2677(1)	49(1)
C(6)	6706(3)	1450(2)	4026(1)	51(1)
C(7)	7255(3)	2383(3)	4606(1)	66(1)
C(8)	7705(3)	1678(3)	5314(2)	75(1)
C(9)	6569(4)	858(3)	5636(2)	77(1)
C(10)	6003(3)	-65(3)	5060(2)	76(1)
C(11)	5559(3)	632(3)	4348(2)	64(1)
C(12)	7275(3)	3048(2)	1181(1)	55(1)

C(13)	9173(3)	4211(3)	1797(2)	65(1)
C(14)	10284(3)	3309(3)	1510(2)	98(1)
C(15)	9076(4)	5417(3)	1330(2)	98(1)
C(16)	9387(4)	4531(4)	2617(2)	98(1)

Table 3. Bond lengths [Å] and angles [°] for mo_ddz20132_0m.

O(1)-C(2)	1.421(3)
O(1)-H(1)	0.8200
O(2)-C(5)	1.235(3)
O(3)-C(12)	1.208(3)
O(4)-C(12)	1.347(3)
O(4)-C(13)	1.468(3)
N(1)-C(12)	1.346(3)
N(1)-C(4)	1.459(3)
N(1)-C(1)	1.461(3)
N(2)-C(5)	1.328(3)
N(2)-C(6)	1.456(3)
N(2)-H(2)	0.8600
C(1)-C(2)	1.505(4)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(2)-C(3)	1.522(4)
C(2)-H(2A)	0.9800
C(3)-C(4)	1.534(4)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-C(5)	1.518(3)
C(4)-H(4)	0.9800
C(6)-C(7)	1.508(3)
C(6)-C(11)	1.509(3)
C(6)-H(6)	0.9800
C(7)-C(8)	1.517(3)
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(8)-C(9)	1.502(4)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700

C(9)-C(10)	1.502(4)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.517(3)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(13)-C(15)	1.502(4)
C(13)-C(16)	1.508(4)
C(13)-C(14)	1.513(4)
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(2)-O(1)-H(1)	109.5
C(12)-O(4)-C(13)	121.3(2)
C(12)-N(1)-C(4)	124.5(2)
C(12)-N(1)-C(1)	121.7(2)
C(4)-N(1)-C(1)	113.5(2)
C(5)-N(2)-C(6)	123.75(19)
C(5)-N(2)-H(2)	118.1
C(6)-N(2)-H(2)	118.1
N(1)-C(1)-C(2)	102.88(19)
N(1)-C(1)-H(1A)	111.2
C(2)-C(1)-H(1A)	111.2
N(1)-C(1)-H(1B)	111.2
C(2)-C(1)-H(1B)	111.2
H(1A)-C(1)-H(1B)	109.1
O(1)-C(2)-C(1)	111.4(2)
O(1)-C(2)-C(3)	112.3(2)
C(1)-C(2)-C(3)	102.3(2)

O(1)-C(2)-H(2A)	110.2
C(1)-C(2)-H(2A)	110.2
C(3)-C(2)-H(2A)	110.2
C(2)-C(3)-C(4)	104.8(2)
C(2)-C(3)-H(3A)	110.8
C(4)-C(3)-H(3A)	110.8
C(2)-C(3)-H(3B)	110.8
C(4)-C(3)-H(3B)	110.8
H(3A)-C(3)-H(3B)	108.9
N(1)-C(4)-C(5)	113.19(19)
N(1)-C(4)-C(3)	101.58(19)
C(5)-C(4)-C(3)	110.6(2)
N(1)-C(4)-H(4)	110.4
C(5)-C(4)-H(4)	110.4
C(3)-C(4)-H(4)	110.4
O(2)-C(5)-N(2)	123.0(2)
O(2)-C(5)-C(4)	121.5(2)
N(2)-C(5)-C(4)	115.3(2)
N(2)-C(6)-C(7)	109.90(19)
N(2)-C(6)-C(11)	111.16(19)
C(7)-C(6)-C(11)	111.1(2)
N(2)-C(6)-H(6)	108.2
C(7)-C(6)-H(6)	108.2
C(11)-C(6)-H(6)	108.2
C(6)-C(7)-C(8)	111.1(2)
C(6)-C(7)-H(7A)	109.4
C(8)-C(7)-H(7A)	109.4
C(6)-C(7)-H(7B)	109.4
C(8)-C(7)-H(7B)	109.4
H(7A)-C(7)-H(7B)	108.0
C(9)-C(8)-C(7)	112.1(3)
C(9)-C(8)-H(8A)	109.2
C(7)-C(8)-H(8A)	109.2
C(9)-C(8)-H(8B)	109.2
C(7)-C(8)-H(8B)	109.2
H(8A)-C(8)-H(8B)	107.9
C(8)-C(9)-C(10)	111.5(2)
C(8)-C(9)-H(9A)	109.3

C(10)-C(9)-H(9A)	109.3
C(8)-C(9)-H(9B)	109.3
C(10)-C(9)-H(9B)	109.3
H(9A)-C(9)-H(9B)	108.0
C(9)-C(10)-C(11)	111.7(2)
C(9)-C(10)-H(10A)	109.3
C(11)-C(10)-H(10A)	109.3
C(9)-C(10)-H(10B)	109.3
C(11)-C(10)-H(10B)	109.3
H(10A)-C(10)-H(10B)	107.9
C(6)-C(11)-C(10)	111.9(2)
C(6)-C(11)-H(11A)	109.2
C(10)-C(11)-H(11A)	109.2
C(6)-C(11)-H(11B)	109.2
C(10)-C(11)-H(11B)	109.2
H(11A)-C(11)-H(11B)	107.9
O(3)-C(12)-N(1)	124.2(2)
O(3)-C(12)-O(4)	126.3(2)
N(1)-C(12)-O(4)	109.5(2)
O(4)-C(13)-C(15)	109.8(2)
O(4)-C(13)-C(16)	102.0(2)
C(15)-C(13)-C(16)	111.1(3)
O(4)-C(13)-C(14)	110.5(2)
C(15)-C(13)-C(14)	111.7(3)
C(16)-C(13)-C(14)	111.3(3)
C(13)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(13)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(13)-C(15)-H(15A)	109.5
C(13)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(13)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(13)-C(16)-H(16A)	109.5

C(13)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(13)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_ddz20132_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	95(2)	48(1)	78(1)	4(1)	-10(1)	-16(1)
O(2)	87(1)	55(1)	58(1)	-7(1)	-7(1)	23(1)
O(3)	87(1)	79(1)	53(1)	2(1)	18(1)	-9(1)
O(4)	62(1)	74(1)	54(1)	-1(1)	2(1)	-18(1)
N(1)	61(1)	53(1)	41(1)	-2(1)	2(1)	-6(1)
N(2)	68(1)	41(1)	46(1)	0(1)	1(1)	8(1)
C(1)	78(2)	52(2)	52(1)	2(1)	-11(1)	-3(1)
C(2)	63(2)	63(2)	71(2)	3(1)	-15(1)	-8(1)
C(3)	50(1)	73(2)	76(2)	2(2)	0(1)	3(1)
C(4)	53(1)	45(1)	47(1)	2(1)	3(1)	5(1)
C(5)	52(1)	44(1)	49(1)	1(1)	6(1)	3(1)
C(6)	57(1)	46(1)	50(1)	0(1)	0(1)	7(1)
C(7)	82(2)	58(2)	58(1)	4(1)	-9(1)	-14(2)
C(8)	89(2)	74(2)	61(2)	4(1)	-15(2)	-9(2)
C(9)	97(2)	80(2)	54(2)	12(1)	2(2)	4(2)
C(10)	87(2)	66(2)	76(2)	21(2)	-3(2)	-10(2)
C(11)	70(2)	54(2)	67(2)	7(1)	-7(1)	-7(1)
C(12)	64(2)	51(1)	49(1)	2(1)	4(1)	1(1)
C(13)	51(2)	59(2)	85(2)	6(1)	-1(1)	-8(1)
C(14)	71(2)	89(3)	133(3)	6(2)	2(2)	16(2)
C(15)	88(2)	67(2)	137(3)	28(2)	0(2)	-10(2)
C(16)	86(2)	109(3)	99(2)	-8(2)	-22(2)	-20(2)

	x	у	Z	U(eq)
H(1)	5481	-104	1720	111
H(2)	5992	2949	3419	62
H(1A)	5832	1222	468	73
H(1B)	4795	2403	461	73
H(2A)	3390	893	959	79
H(3A)	3671	1387	2342	80
H(3B)	3354	2557	1798	80
H(4)	5341	3354	2269	58
H(6)	7460	875	3874	61
H(7A)	6544	3007	4732	79
H(7B)	8035	2850	4398	79
H(8A)	8492	1133	5198	89
H(8B)	7994	2305	5688	89
H(9A)	5831	1413	5815	92
H(9B)	6921	372	6062	92
H(10A)	5217	-519	5271	91
H(10B)	6703	-701	4936	91
H(11A)	5274	0	3975	76
H(11B)	4772	1179	4459	76
H(14A)	10244	2508	1783	147
H(14B)	11173	3700	1581	147
H(14C)	10140	3145	983	147
H(15A)	8988	5187	808	146
H(15B)	9895	5927	1399	146
H(15C)	8284	5909	1483	146
H(16A)	8633	5053	2793	147
H(16B)	10236	4999	2676	147
H(16C)	9427	3746	2905	147

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for mo_ddz20132_0m.

C(12)-N(1)-C(1)-C(2)	168.4(2)
C(4)-N(1)-C(1)-C(2)	-18.2(3)
N(1)-C(1)-C(2)-O(1)	-86.1(3)
N(1)-C(1)-C(2)-C(3)	34.1(3)
O(1)-C(2)-C(3)-C(4)	80.8(3)
C(1)-C(2)-C(3)-C(4)	-38.8(3)
C(12)-N(1)-C(4)-C(5)	-73.9(3)
C(1)-N(1)-C(4)-C(5)	112.9(2)
C(12)-N(1)-C(4)-C(3)	167.5(2)
C(1)-N(1)-C(4)-C(3)	-5.7(3)
C(2)-C(3)-C(4)-N(1)	27.3(2)
C(2)-C(3)-C(4)-C(5)	-93.2(2)
C(6)-N(2)-C(5)-O(2)	-6.2(4)
C(6)-N(2)-C(5)-C(4)	169.5(2)
N(1)-C(4)-C(5)-O(2)	-43.2(3)
C(3)-C(4)-C(5)-O(2)	70.1(3)
N(1)-C(4)-C(5)-N(2)	141.1(2)
C(3)-C(4)-C(5)-N(2)	-105.7(2)
C(5)-N(2)-C(6)-C(7)	154.5(2)
C(5)-N(2)-C(6)-C(11)	-82.1(3)
N(2)-C(6)-C(7)-C(8)	178.2(2)
C(11)-C(6)-C(7)-C(8)	54.8(3)
C(6)-C(7)-C(8)-C(9)	-55.1(3)
C(7)-C(8)-C(9)-C(10)	54.4(3)
C(8)-C(9)-C(10)-C(11)	-53.6(3)
N(2)-C(6)-C(11)-C(10)	-177.4(2)
C(7)-C(6)-C(11)-C(10)	-54.7(3)
C(9)-C(10)-C(11)-C(6)	54.1(3)
C(4)-N(1)-C(12)-O(3)	-172.3(3)
C(1)-N(1)-C(12)-O(3)	0.4(4)
C(4)-N(1)-C(12)-O(4)	7.5(3)
C(1)-N(1)-C(12)-O(4)	-179.8(2)
C(13)-O(4)-C(12)-O(3)	-4.2(4)
C(13)-O(4)-C(12)-N(1)	176.0(2)
C(12)-O(4)-C(13)-C(15)	65.1(3)
C(12)-O(4)-C(13)-C(16)	-177.0(2)

Table 6. Torsion angles [°] for mo_ddz20132_0m.

d(D-H)	d(HA)	d(DA)	<(DHA)
0.96	2.49	3.031(4)	115.5
0.96	2.45	2.999(4)	116.4
0.86	2.07	2.924(3)	174.4
0.82	1.94	2.723(3)	160.1
0.82	1.94	2.723(3)	160.1
0.86	2.07	2.924(3)	174.4
0.96	2.45	2.999(4)	116.4
0.96	2.49	3.031(4)	115.5
	d(D-H) 0.96 0.96 0.86 0.82 0.82 0.82 0.86 0.96 0.96	d(D-H) d(HA) 0.96 2.49 0.96 2.45 0.86 2.07 0.82 1.94 0.86 2.07 0.82 1.94 0.86 2.07 0.96 2.45 0.96 2.45 0.96 2.45 0.96 2.45 0.96 2.49	d(D-H) d(HA) d(DA) 0.96 2.49 3.031(4) 0.96 2.45 2.999(4) 0.86 2.07 2.924(3) 0.82 1.94 2.723(3) 0.82 1.94 2.723(3) 0.86 2.07 2.924(3) 0.82 1.94 2.723(3) 0.86 2.07 2.924(3) 0.96 2.45 2.999(4) 0.96 2.45 2.999(4) 0.96 2.49 3.031(4)

Table 7. Hydrogen bonds for mo_ddz20132_0m $\ [{\rm \AA\ and\ }^\circ].$

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y+1/2,-z+1/2

ORTEP drawing of the X-ray crystallographic structure of 8d

The single crystal of compound **8d** was prepared from its solution in petroleum ether/ethylacetate (1:1) by slow evaporation of the solvent.

CCDC 2089258. For detailed crystallographic data, please refer to the Cambridge Crystallographic Data Centre at <u>http://ccdc.cam.ac.uk</u>.

Table 1.	Crystal of	data and	structure refinement	for	ddz20133
----------	------------	----------	----------------------	-----	----------

ddz20133		
C20 H30 N2 O4		
362.46		
293(2) K		
0.71073 Å		
Monoclinic		
P 21/c		
a = 13.4680(13) Å	α= 90°.	
b = 14.2172(13) Å	β= 92.363(3)°.	
c = 10.9007(10) Å	$\gamma = 90^{\circ}.$	
2085.5(3) Å ³		
4		
1.154 Mg/m ³		
0.080 mm ⁻¹		
784		
0.160 x 0.130 x 0.090 mm ³		
2.758 to 25.499°.		
-16<=h<=16, -17<=k<=17, -13<=l<=13		
29338		
	ddz20133 C20 H30 N2 O4 362.46 293(2) K 0.71073 Å Monoclinic P 21/c a = 13.4680(13) Å b = 14.2172(13) Å c = 10.9007(10) Å 2085.5(3) Å ³ 4 1.154 Mg/m ³ 0.080 mm ⁻¹ 784 0.160 x 0.130 x 0.090 mm ³ 2.758 to 25.499°. -16<=h<=16, -17<=k<=17, -13 29338	

Independent reflections	3881 [R(int) = 0.0666]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6955
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3881 / 0 / 243
Goodness-of-fit on F ²	1.085
Final R indices [I>2sigma(I)]	R1 = 0.0521, $wR2 = 0.1082$
R indices (all data)	R1 = 0.0908, wR2 = 0.1293
Extinction coefficient	0.0173(19)
Largest diff. peak and hole	0.154 and -0.143 e.Å ⁻³
	_

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for ddz20133. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
O(1)	10076(1)	2794(1)	2912(2)	78(1)
O(2)	8868(1)	1225(1)	2967(1)	73(1)
O(3)	6831(1)	3456(1)	1607(1)	62(1)
O(4)	6439(1)	2301(1)	2951(1)	57(1)
N(1)	7891(1)	3019(1)	3177(1)	49(1)
N(2)	7849(1)	745(1)	4446(2)	51(1)
C(1)	8606(2)	3782(1)	3007(2)	50(1)
C(2)	9536(2)	3390(2)	3679(2)	59(1)
C(3)	9105(2)	2870(2)	4756(2)	56(1)
C(4)	8150(2)	2412(1)	4231(2)	46(1)
C(5)	8317(2)	1398(1)	3817(2)	50(1)
C(6)	7864(2)	-284(1)	4248(2)	55(1)
C(7)	8896(2)	-670(2)	4546(3)	82(1)
C(8)	7120(2)	-684(2)	5117(3)	81(1)
C(9)	7555(2)	-512(2)	2931(2)	82(1)
C(10)	8262(2)	4713(1)	3511(2)	49(1)
C(11)	8784(2)	5524(2)	3270(2)	65(1)
C(12)	8494(2)	6380(2)	3718(3)	82(1)
C(13)	7686(2)	6436(2)	4425(3)	84(1)
C(14)	7152(2)	5644(2)	4682(2)	77(1)
C(15)	7438(2)	4791(2)	4216(2)	64(1)
C(16)	7035(2)	2966(2)	2499(2)	50(1)

C(17)	5463(2)	2084(2)	2358(2)	64(1)
C(18)	5614(2)	1694(2)	1091(2)	96(1)
C(19)	5073(2)	1328(2)	3186(3)	90(1)
C(20)	4806(2)	2939(2)	2356(3)	105(1)

Table 3.Bond lengths [Å] and angles [°] forddz20133.

O(1)-C(2)	1.413(2)
O(1)-H(1)	0.8200
O(2)-C(5)	1.235(2)
O(3)-C(16)	1.218(2)
O(4)-C(16)	1.347(2)
O(4)-C(17)	1.473(3)
N(1)-C(16)	1.346(3)
N(1)-C(1)	1.467(2)
N(1)-C(4)	1.468(2)
N(2)-C(5)	1.328(2)
N(2)-C(6)	1.479(3)
N(2)-H(2)	0.8600
C(1)-C(10)	1.512(3)
C(1)-C(2)	1.530(3)
C(1)-H(1A)	0.9800
C(2)-C(3)	1.523(3)
C(2)-H(2A)	0.9800
C(3)-C(4)	1.532(3)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-C(5)	1.529(3)
C(4)-H(4)	0.9800
C(6)-C(9)	1.514(3)
C(6)-C(8)	1.518(3)
C(6)-C(7)	1.517(3)
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600

C(9)-H(9A)	0.9600
C(9)-H(9B)	0.9600
C(9)-H(9C)	0.9600
C(10)-C(11)	1.381(3)
C(10)-C(15)	1.381(3)
C(11)-C(12)	1.375(3)
C(11)-H(11)	0.9300
C(12)-C(13)	1.361(4)
C(12)-H(12)	0.9300
C(13)-C(14)	1.371(4)
C(13)-H(13)	0.9300
C(14)-C(15)	1.376(3)
C(14)-H(14)	0.9300
C(15)-H(15)	0.9300
C(17)-C(20)	1.504(4)
C(17)-C(18)	1.509(3)
C(17)-C(19)	1.511(3)
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(19)-H(19A)	0.9600
C(19)-H(19B)	0.9600
C(19)-H(19C)	0.9600
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(2)-O(1)-H(1)	109.5
C(16)-O(4)-C(17)	121.43(16)
C(16)-N(1)-C(1)	121.57(17)
C(16)-N(1)-C(4)	124.59(17)
C(1)-N(1)-C(4)	113.46(16)
C(5)-N(2)-C(6)	127.36(17)
C(5)-N(2)-H(2)	116.3
C(6)-N(2)-H(2)	116.3
N(1)-C(1)-C(10)	112.92(16)
N(1)-C(1)-C(2)	101.51(16)
C(10)-C(1)-C(2)	113.65(17)

N(1)-C(1)-H(1A)	109.5
C(10)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1A)	109.5
O(1)-C(2)-C(3)	112.76(18)
O(1)-C(2)-C(1)	111.49(19)
C(3)-C(2)-C(1)	102.38(17)
O(1)-C(2)-H(2A)	110.0
C(3)-C(2)-H(2A)	110.0
C(1)-C(2)-H(2A)	110.0
C(2)-C(3)-C(4)	105.04(17)
C(2)-C(3)-H(3A)	110.7
C(4)-C(3)-H(3A)	110.7
C(2)-C(3)-H(3B)	110.7
C(4)-C(3)-H(3B)	110.7
H(3A)-C(3)-H(3B)	108.8
N(1)-C(4)-C(5)	110.90(15)
N(1)-C(4)-C(3)	102.16(15)
C(5)-C(4)-C(3)	112.34(17)
N(1)-C(4)-H(4)	110.4
C(5)-C(4)-H(4)	110.4
C(3)-C(4)-H(4)	110.4
O(2)-C(5)-N(2)	124.06(19)
O(2)-C(5)-C(4)	120.63(18)
N(2)-C(5)-C(4)	115.30(17)
N(2)-C(6)-C(9)	110.16(18)
N(2)-C(6)-C(8)	105.48(17)
C(9)-C(6)-C(8)	110.4(2)
N(2)-C(6)-C(7)	110.19(18)
C(9)-C(6)-C(7)	109.8(2)
C(8)-C(6)-C(7)	110.7(2)
C(6)-C(7)-H(7A)	109.5
C(6)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(6)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(6)-C(8)-H(8A)	109.5
C(6)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
--------------------	------------
C(6)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(6)-C(9)-H(9A)	109.5
C(6)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(6)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(11)-C(10)-C(15)	117.7(2)
C(11)-C(10)-C(1)	119.76(19)
C(15)-C(10)-C(1)	122.51(18)
C(12)-C(11)-C(10)	121.2(2)
C(12)-C(11)-H(11)	119.4
C(10)-C(11)-H(11)	119.4
C(13)-C(12)-C(11)	119.9(2)
C(13)-C(12)-H(12)	120.1
C(11)-C(12)-H(12)	120.1
C(12)-C(13)-C(14)	120.5(2)
C(12)-C(13)-H(13)	119.8
C(14)-C(13)-H(13)	119.8
C(13)-C(14)-C(15)	119.3(3)
C(13)-C(14)-H(14)	120.3
C(15)-C(14)-H(14)	120.3
C(14)-C(15)-C(10)	121.4(2)
C(14)-C(15)-H(15)	119.3
C(10)-C(15)-H(15)	119.3
O(3)-C(16)-N(1)	124.5(2)
O(3)-C(16)-O(4)	125.1(2)
N(1)-C(16)-O(4)	110.38(17)
O(4)-C(17)-C(20)	110.2(2)
O(4)-C(17)-C(18)	109.05(18)
C(20)-C(17)-C(18)	113.4(2)
O(4)-C(17)-C(19)	102.31(18)
C(20)-C(17)-C(19)	110.9(2)
C(18)-C(17)-C(19)	110.4(2)
C(17)-C(18)-H(18A)	109.5

C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(17)-C(19)-H(19A)	109.5
C(17)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(17)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(17)-C(20)-H(20A)	109.5
C(17)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(17)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	62(1)	66(1)	109(1)	-7(1)	31(1)	1(1)
O(2)	93(1)	54(1)	75(1)	-9(1)	42(1)	-6(1)
O(3)	64(1)	72(1)	49(1)	14(1)	3(1)	-1(1)
O(4)	47(1)	67(1)	56(1)	10(1)	0(1)	-10(1)
N(1)	49(1)	47(1)	50(1)	5(1)	1(1)	-6(1)
N(2)	58(1)	41(1)	54(1)	-3(1)	14(1)	-3(1)
C(1)	51(1)	48(1)	51(1)	3(1)	10(1)	-9(1)
C(2)	49(1)	53(1)	75(2)	-7(1)	7(1)	-2(1)
C(3)	56(1)	50(1)	63(1)	-3(1)	-4(1)	4(1)
C(4)	51(1)	45(1)	44(1)	2(1)	7(1)	2(1)
C(5)	56(1)	46(1)	50(1)	-2(1)	8(1)	-1(1)
C(6)	62(2)	39(1)	65(1)	-6(1)	6(1)	-6(1)
C(7)	74(2)	55(2)	116(2)	-8(1)	-2(2)	7(1)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for ddz20133.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \dots + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

C(8)	94(2)	53(1)	98(2)	2(1)	25(2)	-19(1)
C(9)	96(2)	70(2)	80(2)	-21(1)	-2(2)	-15(2)
C(10)	54(1)	45(1)	48(1)	7(1)	1(1)	-2(1)
C(11)	64(2)	55(2)	77(2)	1(1)	6(1)	-14(1)
C(12)	91(2)	49(2)	107(2)	0(1)	5(2)	-14(1)
C(13)	106(2)	49(2)	97(2)	-7(1)	-2(2)	11(2)
C(14)	84(2)	64(2)	84(2)	4(1)	19(2)	19(2)
C(15)	72(2)	51(1)	69(2)	6(1)	16(1)	2(1)
C(16)	52(1)	51(1)	46(1)	1(1)	12(1)	-1(1)
C(17)	42(1)	88(2)	61(1)	2(1)	4(1)	-8(1)
C(18)	84(2)	139(3)	65(2)	-20(2)	7(2)	-39(2)
C(19)	63(2)	119(2)	90(2)	9(2)	10(2)	-33(2)
C(20)	63(2)	129(3)	125(3)	13(2)	9(2)	25(2)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for ddz20133.

	X	у	Z	U(eq)
H(1)	9768	2303	2795	118
H(2)	7498	943	5034	61
H(1A)	8729	3849	2132	60
H(2A)	9961	3908	3981	71
H(3A)	8959	3304	5412	68
H(3B)	9566	2398	5076	68
H(4)	7629	2436	4832	56
H(7A)	9359	-396	4002	123
H(7B)	8891	-1341	4443	123
H(7C)	9091	-519	5379	123
H(8A)	7328	-539	5948	122
H(8B)	7082	-1354	5016	122
H(8C)	6478	-412	4936	122
H(9A)	6898	-275	2752	123
H(9B)	7560	-1181	2816	123
H(9C)	8011	-224	2390	123
H(11)	9342	5490	2796	78
H(12)	8849	6921	3539	99

H(13)	7495	7015	4735	101
H(14)	6601	5683	5167	92
H(15)	7069	4256	4380	76
H(18A)	5877	2178	582	144
H(18B)	4990	1480	739	144
H(18C)	6073	1178	1147	144
H(19A)	5530	809	3224	136
H(19B)	4438	1114	2864	136
H(19C)	5003	1579	3995	136
H(20A)	4788	3188	3174	158
H(20B)	4146	2769	2072	158
H(20C)	5065	3407	1821	158

Table 6. Torsion angles [°] for ddz20133.

C(16)-N(1)-C(1)-C(10)	73.5(2)
C(4)-N(1)-C(1)-C(10)	-99.72(19)
C(16)-N(1)-C(1)-C(2)	-164.46(18)
C(4)-N(1)-C(1)-C(2)	22.3(2)
N(1)-C(1)-C(2)-O(1)	84.60(19)
C(10)-C(1)-C(2)-O(1)	-153.86(17)
N(1)-C(1)-C(2)-C(3)	-36.20(19)
C(10)-C(1)-C(2)-C(3)	85.3(2)
O(1)-C(2)-C(3)-C(4)	-81.4(2)
C(1)-C(2)-C(3)-C(4)	38.5(2)
C(16)-N(1)-C(4)-C(5)	68.3(2)
C(1)-N(1)-C(4)-C(5)	-118.73(18)
C(16)-N(1)-C(4)-C(3)	-171.81(18)
C(1)-N(1)-C(4)-C(3)	1.2(2)
C(2)-C(3)-C(4)-N(1)	-24.7(2)
C(2)-C(3)-C(4)-C(5)	94.21(19)
C(6)-N(2)-C(5)-O(2)	-1.8(3)
C(6)-N(2)-C(5)-C(4)	179.44(18)
N(1)-C(4)-C(5)-O(2)	49.6(3)
C(3)-C(4)-C(5)-O(2)	-64.0(3)
N(1)-C(4)-C(5)-N(2)	-131.55(19)
C(3)-C(4)-C(5)-N(2)	114.8(2)
C(5)-N(2)-C(6)-C(9)	-54.7(3)

C(5)-N(2)-C(6)-C(8)	-173.8(2)
C(5)-N(2)-C(6)-C(7)	66.6(3)
N(1)-C(1)-C(10)-C(11)	-170.94(19)
C(2)-C(1)-C(10)-C(11)	74.1(2)
N(1)-C(1)-C(10)-C(15)	9.3(3)
C(2)-C(1)-C(10)-C(15)	-105.7(2)
C(15)-C(10)-C(11)-C(12)	0.1(3)
C(1)-C(10)-C(11)-C(12)	-179.7(2)
C(10)-C(11)-C(12)-C(13)	0.8(4)
C(11)-C(12)-C(13)-C(14)	-0.7(4)
C(12)-C(13)-C(14)-C(15)	-0.2(4)
C(13)-C(14)-C(15)-C(10)	1.1(4)
C(11)-C(10)-C(15)-C(14)	-1.0(3)
C(1)-C(10)-C(15)-C(14)	178.8(2)
C(1)-N(1)-C(16)-O(3)	9.3(3)
C(4)-N(1)-C(16)-O(3)	-178.22(18)
C(1)-N(1)-C(16)-O(4)	-170.23(16)
C(4)-N(1)-C(16)-O(4)	2.2(3)
C(17)-O(4)-C(16)-O(3)	1.9(3)
C(17)-O(4)-C(16)-N(1)	-178.51(17)
C(16)-O(4)-C(17)-C(20)	-61.0(3)
C(16)-O(4)-C(17)-C(18)	64.1(3)
C(16)-O(4)-C(17)-C(19)	-178.99(19)

Table 7. Hydrogen bonds for ddz20133 [Å and $^{\circ}$].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(20)-H(20C)O(3)	0.96	2.40	2.970(3)	117.7
C(18)-H(18A)O(3)	0.96	2.47	3.033(3)	117.6
C(9)-H(9C)O(2)	0.96	2.43	3.036(3)	120.7
C(7)-H(7A)O(2)	0.96	2.64	3.197(3)	117.5
C(4)-H(4)O(3)#1	0.98	2.58	3.431(2)	144.5
N(2)-H(2)O(3)#1	0.86	2.15	2.998(2)	171.0
O(1)-H(1)O(2)	0.82	1.97	2.763(2)	163.5

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z+1/2

The compound 9 (20 mg) was dissolved in HCl/MeOH (6 M, 5 mL) and stirred at rt for 2h, than concentrated to give the deprotected 9 as its hydrochloride. The single crystal was prepared from its solution in methanol/acetonitrile (1:10) by slow evaporation of the solvent.

CCDC 2094462. For detailed crystallographic data, please refer to the Cambridge Crystallographic Data Centre at <u>http://ccdc.cam.ac.uk</u>.

Table 1. Crystal data and st	tructure refinement for	mo_d8v21545_0m.
------------------------------	-------------------------	-----------------

mo_d8v21545_0m	
C15 H22 Cl2 N2 O	
317.24	
213(2) K	
0.71073 Å	
Monoclinic	
P 21/c	
a = 6.0632(3) Å	α= 90°.
b = 26.8654(12) Å	$\beta = 92.299(2)^{\circ}.$
c = 10.3001(5) Å	$\gamma = 90^{\circ}.$
1676.44(14) Å ³	
4	
1.257 Mg/m ³	
0.385 mm ⁻¹	
672	
$0.140 \ge 0.100 \ge 0.060 \text{ mm}^3$	
3.015 to 25.998°.	
-6<=h<=7, -33<=k<=31, -12<=	=1<=12
	mo_d8v21545_0m C15 H22 Cl2 N2 O 317.24 213(2) K 0.71073 Å Monoclinic P 21/c a = 6.0632(3) Å b = 26.8654(12) Å c = 10.3001(5) Å 1676.44(14) Å ³ 4 1.257 Mg/m ³ 0.385 mm ⁻¹ 672 0.140 x 0.100 x 0.060 mm ³ 3.015 to 25.998°. -6<=h<=7, -33<=k<=31, -12<=

Reflections collected	12631
Independent reflections	3288 [R(int) = 0.0461]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6686
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3288 / 0 / 184
Goodness-of-fit on F ²	1.075
Final R indices [I>2sigma(I)]	R1 = 0.0458, wR2 = 0.0894
R indices (all data)	R1 = 0.0703, wR2 = 0.1028
Extinction coefficient	n/a
Largest diff. peak and hole	0.208 and -0.270 e.Å ⁻³
	0

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for mo_d8v21545_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
Cl(1)	2384(1)	5292(1)	3349(1)	56(1)
O(1)	6731(3)	1880(1)	5455(2)	41(1)
N(1)	4033(3)	1646(1)	3969(2)	34(1)
N(2)	8377(3)	2570(1)	3858(2)	29(1)
C(1)	5636(4)	1943(1)	4432(2)	31(1)
C(2)	6056(4)	2396(1)	3597(2)	28(1)
C(3)	4625(4)	2849(1)	3929(2)	32(1)
C(4)	6251(4)	3260(1)	4390(2)	29(1)
C(5)	8337(4)	3120(1)	3705(2)	30(1)
C(6)	5391(4)	3780(1)	4162(2)	29(1)
C(7)	3429(4)	3923(1)	4708(2)	34(1)
C(8)	2513(4)	4385(1)	4479(2)	40(1)
C(9)	3580(4)	4714(1)	3691(2)	37(1)
C(10)	5561(5)	4593(1)	3170(2)	40(1)
C(11)	6452(4)	4126(1)	3402(2)	36(1)
C(12)	3207(4)	1189(1)	4596(2)	38(1)
C(13)	2192(5)	1319(1)	5877(3)	49(1)
C(14)	1452(6)	973(1)	3653(3)	66(1)
C(15)	5099(5)	819(1)	4798(3)	50(1)
Cl(2)	957(1)	2160(1)	1625(1)	38(1)

Cl(1)-C(9)	1.745(3)
O(1)-C(1)	1.234(3)
N(1)-C(1)	1.332(3)
N(1)-C(12)	1.485(3)
N(1)-H(1)	0.8700
N(2)-C(5)	1.484(3)
N(2)-C(2)	1.497(3)
N(2)-H(2A)	0.9800
N(2)-H(2B)	0.9800
C(1)-C(2)	1.518(3)
C(2)-C(3)	1.541(3)
C(2)-H(2)	0.9900
C(3)-C(4)	1.541(3)
C(3)-H(3A)	0.9800
C(3)-H(3B)	0.9800
C(4)-C(6)	1.508(3)
C(4)-C(5)	1.520(3)
C(4)-H(4)	0.9900
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(6)-C(7)	1.390(3)
C(6)-C(11)	1.389(3)
C(7)-C(8)	1.377(3)
C(7)-H(7)	0.9400
C(8)-C(9)	1.378(4)
C(8)-H(8)	0.9400
C(9)-C(10)	1.374(4)
C(10)-C(11)	1.382(4)
C(10)-H(10)	0.9400
C(11)-H(11)	0.9400
C(12)-C(13)	1.518(4)
C(12)-C(15)	1.525(4)
C(12)-C(14)	1.527(4)
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700

Table 3. Bond lengths [Å] and angles [°] for $mo_d8v21545_0m$.

C(13)-H(13C)	0.9700
C(14)-H(14A)	0.9700
C(14)-H(14B)	0.9700
C(14)-H(14C)	0.9700
C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
C(15)-H(15C)	0.9700
C(1)-N(1)-C(12)	126.4(2)
C(1)-N(1)-H(1)	116.8
C(12)-N(1)-H(1)	116.8
C(5)-N(2)-C(2)	106.23(17)
C(5)-N(2)-H(2A)	110.5
C(2)-N(2)-H(2A)	110.5
C(5)-N(2)-H(2B)	110.5
C(2)-N(2)-H(2B)	110.5
H(2A)-N(2)-H(2B)	108.7
O(1)-C(1)-N(1)	125.7(2)
O(1)-C(1)-C(2)	119.8(2)
N(1)-C(1)-C(2)	114.5(2)
N(2)-C(2)-C(1)	109.03(18)
N(2)-C(2)-C(3)	104.33(18)
C(1)-C(2)-C(3)	113.52(19)
N(2)-C(2)-H(2)	109.9
C(1)-C(2)-H(2)	109.9
C(3)-C(2)-H(2)	109.9
C(2)-C(3)-C(4)	105.93(18)
C(2)-C(3)-H(3A)	110.6
C(4)-C(3)-H(3A)	110.6
C(2)-C(3)-H(3B)	110.6
C(4)-C(3)-H(3B)	110.6
H(3A)-C(3)-H(3B)	108.7
C(6)-C(4)-C(5)	116.5(2)
C(6)-C(4)-C(3)	113.73(19)
C(5)-C(4)-C(3)	102.33(18)
C(6)-C(4)-H(4)	107.9
C(5)-C(4)-H(4)	107.9
C(3)-C(4)-H(4)	107.9

N(2)-C(5)-C(4)	101.97(18)
N(2)-C(5)-H(5A)	111.4
C(4)-C(5)-H(5A)	111.4
N(2)-C(5)-H(5B)	111.4
C(4)-C(5)-H(5B)	111.4
H(5A)-C(5)-H(5B)	109.2
C(7)-C(6)-C(11)	117.9(2)
C(7)-C(6)-C(4)	119.2(2)
C(11)-C(6)-C(4)	122.9(2)
C(8)-C(7)-C(6)	121.6(2)
C(8)-C(7)-H(7)	119.2
C(6)-C(7)-H(7)	119.2
C(7)-C(8)-C(9)	118.9(2)
C(7)-C(8)-H(8)	120.6
C(9)-C(8)-H(8)	120.6
C(10)-C(9)-C(8)	121.1(2)
C(10)-C(9)-Cl(1)	119.6(2)
C(8)-C(9)-Cl(1)	119.2(2)
C(9)-C(10)-C(11)	119.2(2)
C(9)-C(10)-H(10)	120.4
C(11)-C(10)-H(10)	120.4
C(10)-C(11)-C(6)	121.2(2)
C(10)-C(11)-H(11)	119.4
C(6)-C(11)-H(11)	119.4
N(1)-C(12)-C(13)	110.1(2)
N(1)-C(12)-C(15)	109.5(2)
C(13)-C(12)-C(15)	111.1(2)
N(1)-C(12)-C(14)	106.0(2)
C(13)-C(12)-C(14)	110.1(2)
C(15)-C(12)-C(14)	109.9(2)
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5

H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(12)-C(15)-H(15A)	109.5
C(12)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(12)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_d8v21545_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	69(1)	44(1)	53(1)	8(1)	5(1)	19(1)
O(1)	43(1)	46(1)	34(1)	6(1)	-14(1)	-7(1)
N(1)	38(1)	34(1)	28(1)	3(1)	-9(1)	-5(1)
N(2)	26(1)	36(1)	24(1)	-2(1)	1(1)	3(1)
C(1)	29(1)	34(1)	28(1)	-2(1)	-2(1)	2(1)
C(2)	25(1)	34(1)	24(1)	-1(1)	-1(1)	-1(1)
C(3)	26(1)	31(1)	40(1)	6(1)	3(1)	0(1)
C(4)	30(1)	34(1)	22(1)	-1(1)	1(1)	1(1)
C(5)	26(1)	34(1)	30(1)	-1(1)	0(1)	-2(1)
C(6)	30(1)	32(1)	24(1)	-2(1)	0(1)	-3(1)
C(7)	32(1)	34(1)	35(1)	-2(1)	4(1)	-2(1)
C(8)	39(2)	41(2)	39(2)	-7(1)	6(1)	2(1)
C(9)	45(2)	32(1)	34(1)	-2(1)	-4(1)	7(1)
C(10)	50(2)	36(2)	34(1)	3(1)	6(1)	-5(1)
C(11)	34(2)	38(2)	36(1)	-1(1)	6(1)	-2(1)
C(12)	44(2)	34(2)	34(1)	1(1)	-3(1)	-7(1)
C(13)	46(2)	53(2)	49(2)	3(1)	8(1)	4(1)
C(14)	80(2)	57(2)	58(2)	6(2)	-20(2)	-35(2)
C(15)	66(2)	37(2)	49(2)	3(1)	11(2)	9(1)
Cl(2)	36(1)	54(1)	24(1)	-3(1)	-1(1)	11(1)

	Х	У	Z	U(eq)
H(1)	3407	1728	3224	40
H(2A)	8890	2479	4741	35
H(2B)	9366	2419	3240	35
H(2)	5827	2310	2667	34
H(3A)	3619	2765	4617	39
H(3B)	3751	2960	3162	39
H(4)	6545	3217	5336	34
H(5A)	8240	3216	2787	36
H(5B)	9645	3274	4124	36
H(7)	2710	3698	5248	40
H(8)	1182	4475	4853	47
H(10)	6301	4825	2660	48
H(11)	7800	4041	3040	43
H(13A)	3318	1457	6467	73
H(13B)	1586	1021	6256	73
H(13C)	1025	1561	5725	73
H(14A)	288	1216	3496	99
H(14B)	836	674	4023	99
H(14C)	2116	891	2838	99
H(15A)	5713	741	3967	76
H(15B)	4550	517	5186	76
H(15C)	6236	964	5370	76

5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for mo_d8v21545_0m.

Table 6. Torsion angles [°] for mo_d8v21545_0m.

C(12)-N(1)-C(1)-O(1)	1.5(4)
C(12)-N(1)-C(1)-C(2)	-177.6(2)
C(5)-N(2)-C(2)-C(1)	-147.34(18)
C(5)-N(2)-C(2)-C(3)	-25.8(2)
O(1)-C(1)-C(2)-N(2)	25.2(3)
N(1)-C(1)-C(2)-N(2)	-155.7(2)

O(1)-C(1)-C(2)-C(3)	-90.7(3)
N(1)-C(1)-C(2)-C(3)	88.5(3)
N(2)-C(2)-C(3)-C(4)	-0.9(2)
C(1)-C(2)-C(3)-C(4)	117.7(2)
C(2)-C(3)-C(4)-C(6)	152.64(19)
C(2)-C(3)-C(4)-C(5)	26.1(2)
C(2)-N(2)-C(5)-C(4)	42.6(2)
C(6)-C(4)-C(5)-N(2)	-166.27(18)
C(3)-C(4)-C(5)-N(2)	-41.6(2)
C(5)-C(4)-C(6)-C(7)	176.8(2)
C(3)-C(4)-C(6)-C(7)	58.1(3)
C(5)-C(4)-C(6)-C(11)	-1.9(3)
C(3)-C(4)-C(6)-C(11)	-120.6(2)
C(11)-C(6)-C(7)-C(8)	2.0(4)
C(4)-C(6)-C(7)-C(8)	-176.7(2)
C(6)-C(7)-C(8)-C(9)	-0.2(4)
C(7)-C(8)-C(9)-C(10)	-2.0(4)
C(7)-C(8)-C(9)-Cl(1)	177.81(19)
C(8)-C(9)-C(10)-C(11)	2.4(4)
Cl(1)-C(9)-C(10)-C(11)	-177.40(19)
C(9)-C(10)-C(11)-C(6)	-0.6(4)
C(7)-C(6)-C(11)-C(10)	-1.6(4)
C(4)-C(6)-C(11)-C(10)	177.1(2)
C(1)-N(1)-C(12)-C(13)	63.4(3)
C(1)-N(1)-C(12)-C(15)	-59.0(3)
C(1)-N(1)-C(12)-C(14)	-177.5(3)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(15)-H(15C)O(1)	0.97	2.48	3.084(3)	120.1
C(15)-H(15A)Cl(1)#1	0.97	2.95	3.904(3)	168.1
C(13)-H(13A)O(1)	0.97	2.61	3.183(3)	117.7
C(8)-H(8)Cl(1)#2	0.94	2.97	3.886(3)	165.6
C(5)-H(5B)Cl(2)#3	0.98	2.91	3.428(2)	114.1
C(5)-H(5A)O(1)#4	0.98	2.55	3.449(3)	152.7
C(3)-H(3A)Cl(2)#5	0.98	2.68	3.627(2)	162.2
N(2)-H(2B)Cl(2)#6	0.98	2.08	3.040(2)	167.3
N(2)-H(2A)Cl(2)#3	0.98	2.47	3.2768(19)	139.8
N(1)-H(1)Cl(2)	0.87	2.46	3.294(2)	159.8

Table 7. Hydrogen bonds for mo_d8v21545_0m [Å and °].

#1 -x+1,y-1/2,-z+1/2	#2 -x,-y+1,-z+1	#3 x+1,-y+1/2,z+1/2
#4 x,-y+1/2,z-1/2	#5 x,-y+1/2,z+1/2	#6 x+1,y,z

The compound **14** (20 mg) was dissolved in HCl/MeOH (6 M, 5 mL) and stirred at rt for 2h then concentrated to give the deprotected **15** as its hydrochloride. The single crystal was prepared from its solution in methanol/acetonitrile (1:10) by slow evaporation of the solvent.

CCDC 2094460. For detailed crystallographic data, please refer to the Cambridge

Crystallographic

Data Centre at <u>http://ccdc.cam.ac.uk</u>.

Table 1. Crystal data and structure refinement for mo_d8v21544_0m.

Identification code	mo_d8v21544_0m	
Empirical formula	C12 H15 Br Cl F N2 O	
Formula weight	337.62	
Temperature	213(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 6.5060(4) Å	$\alpha = 90^{\circ}$.
	b = 4.7861(3) Å	β= 96.991(2)°.
	c = 21.3358(10) Å	$\gamma = 90^{\circ}$.
Volume	659.42(7) Å ³	
Z	2	
Density (calculated)	1.700 Mg/m ³	
Absorption coefficient	3.321 mm ⁻¹	
F(000)	340	
Crystal size	0.170 x 0.140 x 0.100 mm ³	
Theta range for data collection	2.886 to 25.995°.	
Index ranges	-8<=h<=8, -5<=k<=5, -26<=l<=25	
Reflections collected	6384	

Independent reflections	2446 [R(int) = 0.0301]
Completeness to theta = 25.242°	98.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.4967
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2446 / 1 / 172
Goodness-of-fit on F ²	0.998
Final R indices [I>2sigma(I)]	R1 = 0.0195, wR2 = 0.0487
R indices (all data)	R1 = 0.0205, wR2 = 0.0490
Absolute structure parameter	0.030(6)
Extinction coefficient	0.014(4)
Largest diff. peak and hole	0.244 and -0.219 e.Å ⁻³

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for mo_d8v21544_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
Br(1)	13631(1)	-147(1)	9460(1)	34(1)
Cl(1)	8696(1)	2172(1)	6530(1)	27(1)
F(1)	2956(3)	3616(4)	5316(1)	33(1)
O(1)	4009(3)	10159(5)	7246(1)	25(1)
N(1)	6396(4)	6742(5)	7454(1)	22(1)
N(2)	1618(4)	7010(5)	6391(1)	19(1)
C(1)	1112(4)	7408(8)	5690(1)	25(1)
C(2)	3046(5)	6529(7)	5420(2)	23(1)
C(3)	4783(4)	7151(7)	5933(1)	22(1)
C(4)	3871(4)	6284(6)	6534(1)	17(1)
C(5)	4772(4)	7902(6)	7122(1)	18(1)
C(6)	7527(5)	8136(7)	8000(1)	30(1)
C(7)	9008(5)	6118(6)	8360(1)	24(1)
C(8)	10869(5)	5439(7)	8141(1)	34(1)
C(9)	12226(5)	3552(7)	8456(1)	29(1)
C(10)	11738(5)	2359(7)	9004(1)	24(1)
C(11)	9905(5)	2972(7)	9237(1)	28(1)
C(12)	8537(4)	4812(9)	8910(1)	29(1)

Table 3. Bond lengths [Å] and angles [°] for mo_d8v21544_0m.

Br(1)-C(10)	1.900(3)
F(1)-C(2)	1.412(3)
O(1)-C(5)	1.231(4)
N(1)-C(5)	1.320(4)
N(1)-C(6)	1.461(4)
N(1)-H(1)	0.8700
N(2)-C(4)	1.501(3)
N(2)-C(1)	1.503(3)
N(2)-H(2B)	0.86(3)
N(2)-H(2A)	1.02(5)
C(1)-C(2)	1.507(4)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(2)-C(3)	1.505(4)
C(2)-H(2)	0.9900
C(3)-C(4)	1.534(3)
C(3)-H(3A)	0.9800
C(3)-H(3B)	0.9800
C(4)-C(5)	1.529(4)
C(4)-H(4)	0.9900
C(6)-C(7)	1.507(4)
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(7)-C(8)	1.388(4)
C(7)-C(12)	1.396(4)
C(8)-C(9)	1.379(4)
C(8)-H(8)	0.9400
C(9)-C(10)	1.373(4)
C(9)-H(9)	0.9400
C(10)-C(11)	1.378(4)
C(11)-C(12)	1.379(5)
C(11)-H(11)	0.9400
C(12)-H(12)	0.9400
C(5)-N(1)-C(6)	121.9(2)
C(5)-N(1)-H(1)	119.1
C(6)-N(1)-H(1)	119.1
C(4)-N(2)-C(1)	108.8(2)
C(4)-N(2)-H(2B)	113(2)

C(1)-N(2)-H(2B)	108(2)
C(4)-N(2)-H(2A)	112(3)
C(1)-N(2)-H(2A)	108(2)
H(2B)-N(2)-H(2A)	108(3)
N(2)-C(1)-C(2)	104.7(2)
N(2)-C(1)-H(1A)	110.8
C(2)-C(1)-H(1A)	110.8
N(2)-C(1)-H(1B)	110.8
C(2)-C(1)-H(1B)	110.8
H(1A)-C(1)-H(1B)	108.9
F(1)-C(2)-C(3)	108.8(3)
F(1)-C(2)-C(1)	108.4(3)
C(3)-C(2)-C(1)	104.7(2)
F(1)-C(2)-H(2)	111.5
C(3)-C(2)-H(2)	111.5
C(1)-C(2)-H(2)	111.5
C(2)-C(3)-C(4)	102.9(2)
C(2)-C(3)-H(3A)	111.2
C(4)-C(3)-H(3A)	111.2
C(2)-C(3)-H(3B)	111.2
C(4)-C(3)-H(3B)	111.2
H(3A)-C(3)-H(3B)	109.1
N(2)-C(4)-C(5)	108.5(2)
N(2)-C(4)-C(3)	103.5(2)
C(5)-C(4)-C(3)	113.6(2)
N(2)-C(4)-H(4)	110.3
C(5)-C(4)-H(4)	110.3
C(3)-C(4)-H(4)	110.3
O(1)-C(5)-N(1)	124.8(3)
O(1)-C(5)-C(4)	119.8(3)
N(1)-C(5)-C(4)	115.4(2)
N(1)-C(6)-C(7)	110.0(2)
N(1)-C(6)-H(6A)	109.7
C(7)-C(6)-H(6A)	109.7
C(7)-C(6)-H(6A) N(1)-C(6)-H(6B)	109.7 109.7
C(7)-C(6)-H(6A) N(1)-C(6)-H(6B) C(7)-C(6)-H(6B)	109.7 109.7 109.7
C(7)-C(6)-H(6A) N(1)-C(6)-H(6B) C(7)-C(6)-H(6B) H(6A)-C(6)-H(6B)	109.7 109.7 109.7 108.2

C(8)-C(7)-C(6)	120.5(3)
C(12)-C(7)-C(6)	121.6(3)
C(9)-C(8)-C(7)	121.5(3)
C(9)-C(8)-H(8)	119.2
C(7)-C(8)-H(8)	119.2
C(10)-C(9)-C(8)	119.1(3)
C(10)-C(9)-H(9)	120.5
C(8)-C(9)-H(9)	120.5
C(9)-C(10)-C(11)	121.2(3)
C(9)-C(10)-Br(1)	119.7(2)
C(11)-C(10)-Br(1)	119.1(2)
C(10)-C(11)-C(12)	119.2(3)
C(10)-C(11)-H(11)	120.4
C(12)-C(11)-H(11)	120.4
C(11)-C(12)-C(7)	121.1(3)
C(11)-C(12)-H(12)	119.4
C(7)-C(12)-H(12)	119.4

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_d8v21544_0m.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	34(1)	32(1)	32(1)	-1(1)	-8(1)	9(1)
Cl(1)	20(1)	20(1)	42(1)	-3(1)	7(1)	0(1)
F(1)	37(1)	28(1)	32(1)	-12(1)	-2(1)	2(1)
O(1)	27(1)	19(1)	26(1)	-4(1)	-2(1)	7(1)
N(1)	28(1)	18(1)	20(1)	-4(1)	-5(1)	5(1)
N(2)	17(1)	19(1)	20(1)	-1(1)	2(1)	0(1)
C(1)	22(2)	32(2)	19(1)	-1(1)	-3(1)	3(2)
C(2)	26(2)	23(2)	21(1)	-1(1)	3(1)	-2(1)
C(3)	17(1)	28(2)	22(1)	-2(1)	4(1)	-1(1)
C(4)	15(2)	17(1)	18(1)	1(1)	-1(1)	2(1)
C(5)	21(2)	18(1)	16(1)	1(1)	5(1)	-4(1)
C(6)	35(2)	27(2)	25(2)	-4(1)	-9(1)	4(1)
C(7)	29(2)	22(1)	18(1)	-3(1)	-6(1)	1(1)

C(12)	26(2)	34(1)	28(1)	3(2)	5(1)	7(2)	
C(11)	32(2)	32(2)	22(1)	5(1)	6(1)	3(1)	
C(10)	27(2)	22(2)	22(1)	-5(1)	-4(1)	2(1)	
C(9)	23(2)	41(2)	24(1)	-3(1)	4(1)	2(1)	
C(8)	33(2)	47(3)	21(1)	4(1)	3(1)	0(2)	

Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) 5. for mo_d8v21544_0m.

	X	у	Z	U(eq)
H(1)	6803	5101	7344	27
H(1A)	779	9366	5589	30
H(1B)	-68	6241	5524	30
H(2)	3212	7562	5027	28
H(3A)	5140	9141	5942	27
H(3B)	6019	6053	5878	27
H(4)	4041	4249	6606	20
H(6A)	6548	8844	8276	36
H(6B)	8298	9728	7858	36
H(8)	11211	6285	7770	40
H(9)	13469	3089	8297	35
H(11)	9590	2146	9613	34
H(12)	7266	5193	9060	35
H(2B)	1290(50)	8530(70)	6572(14)	19(8)
H(2A)	680(60)	5450(110)	6523(18)	73(14)

Table 6. Torsion angles [°] for mo_d8v21544_0m.

7.2(3)
86.9(3)
-29.1(3)
-76.2(3)
39.6(3)
137.8(3)
16.8(3)
-34.3(3)

C(2)-C(3)-C(4)-C(5)	-151.8(3)
C(6)-N(1)-C(5)-O(1)	-2.9(4)
C(6)-N(1)-C(5)-C(4)	175.2(3)
N(2)-C(4)-C(5)-O(1)	-28.1(3)
C(3)-C(4)-C(5)-O(1)	86.5(3)
N(2)-C(4)-C(5)-N(1)	153.7(2)
C(3)-C(4)-C(5)-N(1)	-91.7(3)
C(5)-N(1)-C(6)-C(7)	168.6(2)
N(1)-C(6)-C(7)-C(8)	77.6(4)
N(1)-C(6)-C(7)-C(12)	-100.4(3)
C(12)-C(7)-C(8)-C(9)	-0.4(5)
C(6)-C(7)-C(8)-C(9)	-178.6(3)
C(7)-C(8)-C(9)-C(10)	-1.2(5)
C(8)-C(9)-C(10)-C(11)	1.3(5)
C(8)-C(9)-C(10)-Br(1)	-177.9(2)
C(9)-C(10)-C(11)-C(12)	0.2(5)
Br(1)-C(10)-C(11)-C(12)	179.4(3)
C(10)-C(11)-C(12)-C(7)	-1.9(5)
C(8)-C(7)-C(12)-C(11)	2.0(5)
C(6)-C(7)-C(12)-C(11)	-179.9(3)

Table 7. Hydrogen bonds for mo_d8v21544_0m [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(2A)Cl(1)#1	1.02(5)	2.03(5)	3.034(3)	164(3)
N(2)-H(2B)O(1)	0.86(3)	2.28(3)	2.708(3)	111(2)
N(2)-H(2B)Cl(1)#2	0.86(3)	2.42(3)	3.153(3)	143(3)
C(4)-H(4)O(1)#3	0.99	2.39	3.298(4)	152.3
C(3)-H(3B)Cl(1)	0.98	2.80	3.605(3)	140.1
C(3)-H(3A)Cl(1)#4	0.98	2.89	3.618(3)	132.3
C(1)-H(1A)F(1)#4	0.98	2.59	3.338(4)	133.6
C(1)-H(1A)Cl(1)#2	0.98	2.89	3.401(3)	113.7
N(1)-H(1)Cl(1)	0.87	2.65	3.410(2)	146.6

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 x-1,y+1,z #3 x,y-1,z #4 x,y+1,z