Supporting Information

Chemo-, Regio- and Stereoselective Synthesis of Monofluoroalkenes *via* a Tandem Fluorination-

Desulfonation Sequence

Ren-Yin Yang, Bo Xu*

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China

Table of contents

Table of contents		S1
1.	General	S2
2.	General procedure for the synthesis of S1	S2
3.	General procedure for the synthesis of 1	S2
4.	General procedure for the synthesis of monofluoroakenes (2a-2z)	S3
5.	Gram scale synthesis of 2b	S3
6.	Synthesis of intermediate 1s-F and 1u-F	S3
7.	The characterization data of compounds	S4
8.	References	S11
9.	Copies of NMR spectra	S11

1. General

¹H NMR (400 MHz, 600 MHz), ¹³C NMR (100 MHz, 150 MHz) and ¹⁹F NMR (376 MHz, 564 MHz) spectra were recorded on a Bruker NMR apparatus. The chemical shifts are reported in δ (ppm) values (¹H and ¹³C NMR relative to CHCl₃, δ 7.26 ppm for ¹H NMR and δ 77.0 ppm for ¹³C NMR). Or alternatively, ¹H NMR chemical shifts were referenced to tetramethylsilane signal (0 ppm). Multiplicities are recorded by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet) and br (broad). Coupling constants (*J*) are reported in Hertz (Hz). TLC was developed on silica gel 60 F254 glass plates. The products were purified using a commercial flash chromatography system or a regular glass column. The High-Resolution Mass measurements were conducted using Agilent 7250 GC/Q-TOF equipment.

Commercial reagents and solvents were obtained from commercial providers and used without further purification. Work-ups and purifications were performed using commercial reagent-grade solvents. Most benzyl bromides were commercially available from Sigma-Aldrich, TCI, and Bidepharm.

2. General procedure for the synthesis of S1

Ar
$$+$$
 CF₃SO₂Na $\xrightarrow{80^{\circ}C}$ Ar SO₂CF₃
CH₃CN S1

Under nitrogen atmosphere, a mixture of benzyl bromide 1 (1.0 equiv) and NaSO₂CF₃ 2 (2.0 equiv) in acetonitrile (0.2 M) was heated at 80 °C for about 12 to 24 h. The progress of the reaction was monitored by TLC and GC-MS. After completion, the reaction mixture was cooled down to room temperature; the reaction mixture was then concentrated in a vacuum. The residue was washed with dichloromethane and filtered through Celite to give the crude product. The crude product was purified by silica gel chromatography eluted with PE: EtOAc = 20:1 or recrystallization from a mixture of hexane and dichloromethane to give product S1.^{1,2}

3. General procedure for the synthesis of 1

To a solution of S1 (1.0 equiv.) in THF (0.2 M/L) was added NaH (1.1 equiv) under nitrogen atmosphere at 0 °C. The mixture was stirred at 0 °C for 10 minutes, and then benzyl bromide or alkyl iodide in THF was added via syringe. The mixture was stirred at 0 °C to room temperature for several hours. After completion of the reaction (monitored by TLC), the mixture was diluted with NH₄Cl (aq.), and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated under vacuum. The residue was purified by silica gel column chromatography eluting with a mixture of ethyl acetate and petroleum ether to give products 1.^{1,2}

4. General procedure for the synthesis of monofluoroalkenes (2a-2z)

To a Schlenk tube was added **1** (0.2 mmol, 1.0 equiv), NFSI (0.2 mmol, 1.0 equiv, 65.0 mg) and K_3PO_4 (0.6 mmol, 127 mg) in DMF (1.0 mL). The reaction mixture was stirred at 35 °C for 12-15 h. After completion of the reaction (monitored by TLC), the mixture was diluted with water (10 mL), extracted with ethyl acetate (3 mL×3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, concentrated under vacuum to give pure products. Compounds **2p-2r** were further purified by column chromatography on silica gel eluting with a mixture of ethyl acetate and petroleum ether (or 100 % petroleum ether) to give the desired product monofluoroalkenes **2**.

5. Gram scale synthesis of 2b

To a Schlenk tube was added **1b** (3.0 mmol, 1.09 g, 1.0 equiv), NFSI (3.1 mmol, 0.98 g, 1.0 equiv) and K_3PO_4 (9.0 mmol, 1.91g) in DMF (15 mL). The reaction mixture was stirred at 35 °C for 12 h. After completion of the reaction (monitored by TLC), the mixture was diluted with water (100 mL), and a white solid precipitated. Filtration of the mixture and drying of obtained solids under vacuum gave pure product **2b**.

6. Synthesis of intermediate 1s-F and 1u-F

Under nitrogen atmosphere, to a solution of **1s** or **1u** (0.5 mmol, 1.0 equiv) and NFSI (0.55 mmol, 170 mg, 1.1 equiv) in THF (5 mL) at -30 °C was added NaH (60% in mineral oil, 60 mg, 1.5 mmol, 3.0 equiv). The reaction mixture was stirred at -30 °C for 1.0 h. After completion of the reaction (monitored by TLC), the mixture was quenched by saturated NH₄Cl (aq.) and extracted with ethyl acetate. Combined organic phases were dried over anhydrous Na₂SO₄, filtered, concentrated under vacuum. The residue was further purified by silica-gel column chromatography eluting with a mixture of EA and PE to give product **1s-F** and **1u-F**.

7. The characterization data of compounds

Ethyl (Z)-4-(2-(4-cyanophenyl)-2-fluorovinyl)benzoate (2a)

White solid, 48.3 mg, 82%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.08 – 8.05 (m, 2H), 7.77 – 7.70 (m, 6H), 6.49 (d, J = 38.4 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -96.9 (d, J = 20.5 Hz), -112.7 (d, J = 38.5 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 166.2, 156.5 (d, J = 261.3 Hz), 137.0 (d, J = 3.5 Hz), 136.5 (d, J = 28.1 Hz), 132.5 (d, J = 2.3 Hz), 129.9, 129.8 (d, J = 2.5 Hz), 129.1 (d, J = 8.4 Hz), 124.9 (d, J = 7.7 Hz), 118.4, 112.8, 108.3 (d, J = 9.8 Hz), 61.1, 14.4. HRMS (EI⁺) calcd. for C₁₈H₁₄O₂NF [M]⁺: 295.1003; found: 295.0999.

(Z)-4,4'-(1-fluoroethene-1,2-diyl)dibenzonitrile (2b)

White solid, 45.6 mg, 92%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.79 – 7.73 (m, 6H), 7.68 (d, J = 8.4 Hz, 2H), 6.47 (d, J = 37.8 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -94.0 (d, J = 19.9 Hz), δ : -111.0 (d, J = 37.8 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 157.3 (d, J = 263.1 Hz), 137.2 (d, J = 3.2 Hz), 136.0 (d, J = 28.3 Hz), 132.6 (d, J = 2.3 Hz), 132.5, 129.6 (d, J = 8.6 Hz), 125.1 (d, J = 7.7 Hz), 118.7 (CN), 118.2 (CN), 113.3, 111.4 (d, J = 3.0 Hz), 107.5 (d, J = 9.5 Hz). HRMS (EI⁺) calcd. for C₁₆H₉N₂F [M]⁺: 248.0744; found: 248.0748.

(Z)-4-(1-fluoro-2-(4-nitrophenyl)vinyl)benzonitrile (2c)

Yellow solid, 43.4 mg, 81%; ¹H NMR (600 MHz, Chloroform-*d*) δ : 8.26 (d, J = 8.9 Hz, 2H), 7.81 – 7.79 (m, 4H), 7.75 (d, J = 8.5 Hz, 2H), 6.53 (d, J = 37.6 Hz, 1H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ : -92.8 (d, J = 20.1 Hz), -110.3 (d, J = 37.6 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 157.6 (d, J = 264.0 Hz), 146.9, 139.1 (d, J = 3.4 Hz), 135.9 (d, J = 27.7 Hz), 132.6 (d, J = 2.2 Hz), 129.8 (d, J = 8.8 Hz), 125.2 (d, J = 7.7 Hz), 124.0, 118.2, 113.4, 107.1 (d, J = 9.5 Hz). HRMS (EI⁺) calcd. for C₁₅H₉O₂N₂F [M]⁺: 268.0643; found: 268.0646.

(Z)-4-(2-(2-Chloro-4-fluorophenyl)-1-fluorovinyl)benzonitrile (2d)

White solid, 39.0 mg, 71%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.96 (dd, J = 8.9, 6.1 Hz, 1H), 7.76-7.70 (m, 4H), 7.18 (dd, J = 8.4, 2.7 Hz, 1H), 7.05 (td, J = 8.4, 2.7 Hz, 1H), 6.81 (d, J = 37.7 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -99.7 (d, J = 19.9 Hz), -110.2 (q, J = 7.9 Hz), -116.2 (d, J = 37.9 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 161.7 (d, J = 250.0 Hz), 156.0 (d, J = 259.9 Hz), 136.5 (d, J = 28.6 Hz), 134.3 (dd, J = 10.0, 1.2 Hz), 132.5 (d, J = 2.2 Hz), 131.8 (dd, J = 14.1, 8.7 Hz), 126.9 (t, J = 3.7 Hz), 124.9 (d, J = 7.6 Hz), 118.4 (CN), 117.1 (d, J = 24.8 Hz), 114.6 (d, J = 21.3 Hz), 112.7, 103.8 (dd, J = 8.5, 1.4 Hz). HRMS (EI⁺) calcd. for C₁₅H₈NF₂Cl [M]⁺: 275.0308; found: 275.0305.

(Z)-4-(2-(4-Chlorophenyl)-1-fluorovinyl)benzonitrile (2e)

White solid, 43.4 mg, 79%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.73 – 7.68 (m, 4H), 7.59 – 7.56 (m, 2H), 7.38 – 7.34 (m, 2H), 6.40 (d, J = 38.5 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -115.2 (d, J = 38.6 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 155.5 (d, J = 258.9 Hz), 136.7 (d, J = 28.4 Hz), 134.0 (d, J = 3.8 Hz), 132.5 (d, J = 2.4 Hz), 131.2 (d, J = 3.2 Hz), 130.5 (d, J = 8.4 Hz), 129.0, 124.6 (d, J = 7.7 Hz), 118.4 (CN), 112.5, 108.0 (d, J = 10.1 Hz). HRMS (EI⁺) calcd. for C₁₅H₉NFCl [M]⁺: 257.0402; found: 275.0406.

(Z)-4-(2-(4-Bromophenyl)-1-fluorovinyl)benzonitrile (2f)

White solid, 43.9 mg, 73%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.73 – 7.68 (m, 4H), 7.51 (brs, 4H), 6.38 (d, J = 38.4 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -98.8 (d, J = 20.8 Hz), -114.8 (d, J = 38.6 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 155.6 (d, J = 259.1 Hz), 136.7 (d, J = 28.1 Hz), 132.5 (d, J = 2.3 Hz), 131.9, 131.6 (d, J = 3.2 Hz), 130.8 (d, J = 8.3 Hz), 124.6 (d, J = 7.7 Hz), 122.3 (d, J = 3.7 Hz), 118.4 (CN), 112.5, 108.1 (d, J = 10.1 Hz). HRMS (EI⁺) calcd. for C₁₅H₉NFBr [M]⁺: 300.9897; found: 300.9903.

(Z)-4-(2-(3-Bromophenyl)-1-fluorovinyl)benzonitrile (2g)

White solid, 46.9 mg, 78%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.82 (t, J = 1.8 Hz, 1H), 7.74 – 7.69 (m, 4H), 7.55 (dt, J = 7.8, 1.3 Hz, 1H), 7.45-7.43 (m, 1H), 7.28 – 7.24 (m, 1H), 6.37 (d, J = 38.2 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -98.4 (d, J = 20.6 Hz), -113.8 (d, J = 38.2 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 156.0 (d, J = 260.1 Hz), 136.5 (d, J = 28.3 Hz), 134.7 (d, J = 3.3 Hz), 132.5 (d, J = 2.3 Hz), 132.0 (d, J = 9.0 Hz), 131.2 (d, J = 2.4 Hz), 130.2, 127.8 (d, J = 7.9 Hz), 124.8 (d, J = 7.7 Hz), 122.8, 118.4, 112.7, 107.8 (d, J = 9.9 Hz). HRMS (EI⁺) calcd. for C₁₅H₉NFBr [M]⁺: 300.9897; found: 300.9901.

(Z)-4-(1-Fluoro-2-(4-iodophenyl)vinyl)benzonitrile (2h)

White solid, 50.2 mg, 72%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.73 – 7.68 (m, 6H), 7.39 – 7.26 (m, 2H), 6.37 (d, J = 38.5 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -98.6 (d, J = 20.7 Hz), -114.4 (d, J = 38.4 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 155.8 (d, J = 259.3 Hz), 137.9, 136.6 (d, J = 28.2

Hz), 132.5 (d, J = 2.2 Hz), 132.1 (d, J = 3.1 Hz), 130.9 (d, J = 8.3 Hz), 124.7 (d, J = 7.3 Hz), 118.5 (CN), 112.5, 108.2 (d, J = 10.0 Hz), 94.0 (d, J = 3.8 Hz). HRMS (EI⁺) calcd. for C₁₅H₉NFI [M]⁺: 348.9758; found: 348.9764.

(Z)-4-(1-fluoro-2-phenylvinyl)benzonitrile (2i)

White solid, 31.2 mg, 70%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.75 – 7.65 (m, 6H), 7.43-7.39 (m, 2H), 7.37 – 7.29 (m, 1H), 6.46 (d, *J* = 39.0 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -116.0 (d, *J* = 38.9 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 155.2 (d, *J* = 258.3 Hz), 137.0 (d, *J* = 28.4 Hz), 132.7 (d, *J* = 3.3 Hz), 132.4 (d, *J* = 2.3 Hz), 129.4 (d, *J* = 8.1 Hz), 128.8, 128.3 (d, *J* = 2.6 Hz), 124.6 (d, *J* = 7.6 Hz), 118.5 (CN), 112.2, 109.2 (d, *J* = 10.1 Hz). HRMS (EI⁺) calcd. for C₁₅H₁₀NF [M]⁺: 223.0792; found: 223.0798.

(Z)-4-(1-fluoro-2-(naphthalen-2-yl)vinyl)benzonitrile (2j)

White solid, 43.6 mg, 80%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.05 (d, J = 1.6 Hz, 1H), 7.83 – 7.77 (m, 4H), 7.68 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.48 (dt, J = 6.3, 3.2 Hz, 2H), 6.54 (d, J = 39.0 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -115.8 (d, J = 39.1 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 155.4 (d, J = 258.3 Hz), 137.0 (d, J = 28.3 Hz), 133.4, 133.0 (d, J = 2.1 Hz), 132.4 (d, J = 2.3 Hz), 130.3 (d, J = 3.5 Hz), 129.0 (d, J = 8.2 Hz), 128.4, 128.3, 127.7, 126.7, 126.7 (d, J = 3.1 Hz), 126.5, 124.5 (d, J = 7.7 Hz), 118.6 (CN), 112.2, 109.3 (d, J = 9.9 Hz). HRMS (EI⁺) calcd. for C₁₉H₁₂NF [M]⁺: 273.0948; found: 273.0954.

(Z)-4-(2-([1,1'-Biphenyl]-4-yl)-1-fluorovinyl)benzonitrile (2k)

White solid, 48.4 mg, 81%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.77 – 7.70 (m, 6H), 7.66 – 7.63 (m, 4H), 7.48-7.45 (m, 2H), 7.39 – 7.36 (m, 1H), 6.50 (d, J = 39.0 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -99.9 (d, J = 21.3 Hz), -115.8 (d, J = 39.0 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 155.3 (d, J = 258.2 Hz), 140.9 (d, J = 2.8 Hz), 140.3, 137.0 (d, J = 28.4 Hz), 132.5 (d, J = 2.3 Hz), 131.7 (d, J = 3.4 Hz), 129.8 (d, J = 8.1 Hz), 128.9, 127.7, 127.4, 127.0, 124.5 (d, J = 7.6 Hz), 118.6 (CN), 112.2, 108.9 (d, J = 10.2 Hz). HRMS (EI⁺) calcd. for C₂₁H₁₄NF [M]⁺: 299.1105; found: 299.1109.

(Z)-4-(1-Fluoro-2-(p-tolyl)vinyl)benzonitrile (2l)

White solid, 35.1 mg, 74%; ¹H NMR (400 MHz, Chloroform-*d*) δ: 7.73 – 7.67 (m, 4H), 7.55 (d, *J* = 8.2

Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.42 (d, J = 39.2 Hz, 1H), 2.38 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -117.1 (d, J = 39.3 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.6 (d, J = 256.5 Hz), 138.5 (d, J = 2.7 Hz), 137.2 (d, J = 28.3 Hz), 132.4 (d, J = 2.5 Hz), 129.9 (d, J = 3.2 Hz), 129.5, 129.3 (d, J = 8.0 Hz), 124.4 (d, J = 7.7 Hz), 118.6 (CN), 111.9, 109.2 (d, J = 10.2 Hz), 21.4. HRMS (EI⁺) calcd. for C₁₆H₁₂NF [M]⁺: 237.0948; found: 237.0949.

(Z)-4-(1-Fluoro-2-(4-methoxyphenyl)vinyl)benzonitrile (2m)

White solid, 38.0 mg, 75%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.72 – 7.66 (m, 4H), 7.62 – 7.60 (m, 2H), 6.95 – 6.92 (m, 2H), 6.41 (d, *J* = 39.3 Hz, 1H), 3.85 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -102.7 (d, *J* = 21.6 Hz), -119.1 (d, *J* = 39.4 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 159.6, 153.9 (d, *J* = 255.4 Hz), 137.3 (d, *J* = 28.4 Hz), 132.4 (d, *J* = 2.2 Hz), 130.8 (d, *J* = 8.3 Hz), 125.4 (d, *J* = 3.3 Hz), 124.2 (d, *J* = 7.7 Hz), 118.7 (CN), 114.2, 111.6, 108.8 (d, *J* = 10.5 Hz), 55.3. HRMS (EI⁺) calcd. for C₁₆H₁₂ONF [M]⁺: 253.0897; found: 253.0904.

(Z)-4-(1-Fluoro-2-(naphthalen-1-yl)vinyl)benzonitrile (2n)

White solid, 42.5 mg, 78%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.07 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 7.3 Hz, 1H), 7.91 – 7.83 (m, 4H), 7.74 (d, J = 8.4 Hz, 2H), 7.59 – 7.52 (m, 3H), 7.16 (d, J = 36.3 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -102.4 (d, J = 20.7 Hz), -116.6 (d, J = 36.1 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 155.8 (d, J = 257.5 Hz), 137.0 (d, J = 28.8 Hz), 133.7, 132.5 (d, J = 2.4 Hz), 131.5, 128.9, 128.9, 128.6 (d, J = 2.2 Hz), 127.9 (d, J = 10.0 Hz), 126.6, 126.0, 125.6, 124.8 (d, J = 7.4 Hz), 123.7, 118.6 (CN), 112.4, 105.7 (d, J = 11.6 Hz). HRMS (EI⁺) calcd. for C₁₉H₁₂NF [M]⁺: 273.0948; found: 273.0952.

4-((1Z, 3E)-1-Fluoro-4-phenylbuta-1,3-dien-1-yl)benzonitrile (20)

White solid, 37.3 mg, 75%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.69-7.64 (m, 4H), 7.49 (d, J = 7.3 Hz, 2H), 7.39 – 7.33 (m, 2H), 7.32 – 7.27 (m, 1H), 7.26 – 7.19 (m, 1H), 6.76 (d, J = 15.8 Hz, 1H), 6.41 (ddd, J = 34.1, 11.0, 0.8 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -103.2 (d, J = 19.9 Hz), -119.4 (d, J = 34.5 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.9 (d, J = 255.0 Hz), 136.8 (d, J = 1.7 Hz), 136.1 (d, J = 27.9 Hz), 134. 9 (d, J = 3.8 Hz), 132.4 (d, J = 2.6 Hz), 128.8, 128.4, 126.8, 124.2 (d, J = 7.5 Hz), 120.2 (d, J = 5.2 Hz), 118.6 (CN), 111.9, 110.4 (d, J = 13.8 Hz). HRMS (EI⁺) calcd. for C₁₇H₁₂NF [M]⁺: 249.0948; found: 249.0950.

(Z)-4-(1-Fluoropent-1-en-1-yl)benzonitrile (2p)

∠CH3

Colorless oil, 25.7 mg, 68%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.64 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 5.59 (dt, J = 36.8, 7.7 Hz, 1H), 2.30 (qd, J = 7.5, 1.9 Hz, 2H), 1.55-1.46 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -105.3 (d, J = 22.6 Hz), -122.3 (d, J = 36.8 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 155.1 (d, J = 245.8 Hz), 136.9 (d, J = 29.6 Hz), 132.3 (d, J = 2.3 Hz), 124.2 (d, J = 7.2 Hz), 118.7 (CN), 111.6, 110.2 (d, J = 17.4 Hz), 26.3 (d, J = 4.4 Hz), 22.4, 13.8. HRMS (EI⁺) calcd. for C₁₂H₁₂NF [M]⁺: 189.0948; found: 189.0951.

(Z)-4-(1-Fluorooct-1-en-1-yl)benzonitrile (2q)

Colorless oil, 33.2 mg, 72%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.64 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 5.59 (dt, *J* = 36.7, 7.6 Hz, 1H), 2.31 (qd, *J* = 7.5, 1.9 Hz, 2H), 1.50-1.43 (m, 2H), 1.39 – 1.25 (m, 7H), 0.89 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -105.5 (d, *J* = 22.9 Hz), -122.4 (d, *J* = 36.8 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 155.0 (d, *J* = 245.3 Hz), 136.9 (d, *J* = 29.6 Hz), 132.3 (d, *J* = 2.3 Hz), 124.2 (d, *J* = 6.9 Hz), 118.7 (CN), 111.6, 110.5 (d, *J* = 17.5 Hz), 31.6, 29.1, 29.0, 24.4 (d, *J* = 4.5 Hz), 22.6, 14.1. HRMS (EI⁺) calcd. for C₁₅H₁₈NF [M]⁺: 231.1418; found: 231.1419.

4-(1-Fluorovinyl)benzonitrile (2r)³

Colorless oil, 15.2 mg, 52%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.70 – 7.64 (m, 4H), 5.27 – 5.03 (m, 2H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -108.9 (dd, J = 48.7, 17.3 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 159.5 (d, J = 263.7 Hz), 138.4, 132.3, 131.9 (d, J = 27.1 Hz), 130.0, 129.3 (d, J = 8.6 Hz), 128.8, 124.7 (d, J = 7.5 Hz), 119.0 (CN), 110.3, 104.4 (d, J = 9.9 Hz).

(Z)-4,4'-(1-Fluoroethene-1,2-diyl)bis(nitrobenzene) (2s)

Yellow solid, 47.9 mg, 83%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.32 (d, J = 8.6 Hz, 2H), 8.30 – 8.24 (m, 2H), 7.92 – 7.79 (m, 4H), 6.58 (d, J = 37.4 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -109.7 (d, J = 37.5 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 157.4 (d, J = 263.9 Hz), 148.4, 147.0 (d, J = 3.1 Hz), 139.0 (d, J = 3.4 Hz), 137.6 (d, J = 27.6 Hz), 129.9 (d, J = 8.8 Hz), 125.5 (d, J = 7.7 Hz), 124.2 (d, J = 2.1 Hz), 124.1, 107.8 (d, J = 9.4 Hz). HRMS (EI⁺) calcd. for C₁₄H₉O₄N₂F [M]⁺: 288.0541; found: 288.0545.

(Z)-1-Bromo-3-(2-fluoro-2-(4-nitrophenyl)vinyl)benzene (2t)

Yellow solid, 49.3 mg, 77%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.29 (d, J = 8.8 Hz, 2H), 7.85 (t, J = 1.9 Hz, 1H), 7.83 – 7.75 (m, 2H), 7.58 (dt, J = 7.8, 1.3 Hz, 1H), 7.46 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.30 (d, J = 7.9 Hz, 1H), 6.45 (d, J = 38.1 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -113.2 (d, J

= 38.1 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 155.8 (d, J = 260.1 Hz), 147.9, 138.3 (d, J = 28.1 Hz), 134.6 (d, J = 3.3 Hz), 132.1 (d, J = 9.1 Hz), 131.4 (d, J = 2.4 Hz), 130.2, 127.9 (d, J = 8.0 Hz), 125.0 (d, J = 7.6 Hz), 124.1 (d, J = 2.3 Hz), 122.9, 108.5 (d, J = 9.9 Hz). HRMS (EI⁺) calcd. for C₁₄H₉O₂NFBr [M]⁺: 320.9795; found: 320.9802.

(Z)-1-(2-Fluoro-2-(4-nitrophenyl)vinyl)-4-methylbenzene (2u)

Yellow solid, 38.1 mg, 74%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.26 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 9.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 7.8 Hz, 2H), 6.49 (d, J = 39.1 Hz, 1H), 2.39 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -101.5 (d, J = 21.6 Hz), -116.5 (d, J = 39.0 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 154.5 (d, J = 256.7 Hz), 147.5, 139.0 (d, J = 28.1 Hz), 138.7 (d, J = 2.6 Hz), 129.8 (d, J = 3.3 Hz), 129.5, 129.4 (d, J = 8.1 Hz), 124.6 (d, J = 7.5 Hz), 124.0 (d, J = 2.3 Hz), 110.0 (d, J = 10.2 Hz), 21.4. HRMS (EI⁺) calcd. for C₁₅H₁₂O₂NF [M]⁺: 257.0847; found: 257.0850.

Ethyl (Z)-4-(2-(4-cyanophenyl)-1-fluorovinyl)benzoate (2v)

White solid, 41.0 mg, 69%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.11 (d, J = 8.3 Hz, 2H), 7.75 – 7.72 (m, 4H), 7.67 (d, J = 8.5 Hz, 2H), 6.45 (d, J = 38.0 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -91.8 (d, J = 20.1 Hz), -109.9 (d, J = 38.0 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 165.8, 158.4 (d, J = 263.5 Hz), 137.7 (d, J = 3.2 Hz), 136.0, 132.4, 131.5, 130.0 (d, J = 2.1 Hz), 129.5 (d, J = 8.6 Hz), 124.5 (d, J = 7.7 Hz), 118.8 (CN), 110.9 (d, J = 3.1 Hz), 106.4 (d, J = 9.7 Hz), 61.3, 14.3. HRMS (EI⁺) calcd. for C₁₈H₁₄O₂NF [M]⁺: 295.1003; found: 295.1006.

(Z)-4-(2-Fluoro-2-(4-(trifluoromethyl)phenyl)vinyl)benzonitrile (2w)

White solid, 44.2 mg, 76%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.79 – 7.66 (m, 8H), 6.43 (d, J = 38.0 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -62.8, -110.1 (d, J = 38.2 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 157.9 (d, J = 263.4 Hz), 137.5 (d, J = 2.9 Hz), 135.3 (d, J = 27.4 Hz), 132.4, 131.6 (q, J = 32.9 Hz), 129.5 (d, J = 8.6 Hz), 125.8 (dt, J = 6.1, 3.7 Hz), 124.9 (d, J = 7.6 Hz), 123.8 (q, J = 272.2 Hz), 118.8 (CN), 111.0 (d, J = 3.2 Hz), 106.5 (d, J = 9.6 Hz). HRMS (EI⁺) calcd. for C₁₆H₉NF₄ [M]⁺: 291.0666; found: 291.0670.

(Z)-4-(2-(4-Chlorophenyl)-2-fluorovinyl)benzonitrile (2x)

White solid, 37.1 mg, 72%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.70 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* =

8.5 Hz, 2H), 7.59 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 6.30 (d, J = 38.2 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -90.5 (d, J = 20.0 Hz), -109.4 (d, J = 38.3 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 158.5 (d, J = 263.1 Hz), 138.0 (d, J = 3.0 Hz), 136.0, 132.4, 130.4 (d, J = 28.1 Hz), 129.3 (d, J = 8.5 Hz), 129.1 (d, J = 2.1 Hz), 126.0 (d, J = 7.6 Hz), 118.9 (CN), 110.6 (d, J = 3.2 Hz), 104.9 (d, J = 9.9 Hz). HRMS (EI⁺) calcd. for C₁₅H₉NFCl [M]⁺: 257.0402; found: 257.0407.

(Z)-4-(2-(4-Bromophenyl)-2-fluorovinyl)benzonitrile (2y)

White solid, 47.6 mg, 79%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.71 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.6 Hz, 2H), 7.54 – 7.52 (m, 2H), 6.32 (d, J = 38.2 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -90.9 (d, J = 20.2 Hz), -109.6 (d, J = 38.2 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 158.5 (d, J = 263.1 Hz), 137.9 (d, J = 3.2 Hz), 132.4, 132.0 (d, J = 2.1 Hz), 130.8 (d, J = 28.0 Hz), 129.3 (d, J = 8.7 Hz), 126.1 (d, J = 7.6 Hz), 124.3, 118.9 (CN), 110.6 (d, J = 3.2 Hz), 105.0 (d, J = 9.7 Hz). HRMS (EI⁺) calcd. for C₁₅H₉NFBr [M]⁺: 300.9897; found: 300.9900.

(Z)-4-(2-Fluoro-2-phenylvinyl)benzonitrile (2z)

White solid, 36.1 mg, 81%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.72 – 7.62 (m, 6H), 7.45-7.42 (m, 3H), 6.32 (d, J = 38.4 Hz, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -109.0 (d, J = 38.5 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 159.5 (d, J = 263.7 Hz), 138.4, 132.3, 131.9 (d, J = 27.1 Hz), 130.0, 129.3 (d, J = 8.6 Hz), 128.8, 124.7 (d, J = 7.5 Hz), 119.0 (CN), 110.3, 104.4 (d, J = 9.9 Hz). HRMS (EI⁺) calcd. for C₁₅H₁₀NF [M]⁺: 223.0792; found: 223.0791.

4,4'-(1-Fluoro-1-((trifluoromethyl)sulfonyl)ethane-1,2-diyl)bis(nitrobenzene) (1s-F)

02

Pale yellow solid, 200.0 mg, 95%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.29 (d, J = 8.8 Hz, 2H), 8.06 (d, J = 8.6 Hz, 2H), 7.74 (d, J = 8.7 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 4.16-4.09 (m, 1H), 3.97-3.84 (m, 1H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -68.7 (d, J = 9.6 Hz), -155.0 (dp, J = 39.6, 9.9 Hz). ¹³C NMR (150 MHz, Chloroform-*d*) δ : 148.6 (d, J = 225.0 Hz), 136.7, 135.0 (d, J = 20.8 Hz), 131.6, 129.7 (d, J = 50.1 Hz), 127.7 (d, J = 9.9 Hz), 124.1 (d, J = 2.2 Hz), 123.8, 120.0 (q, J = 332.3 Hz), 110.5 (d, J = 232.8 Hz), 38.7 (d, J = 19.4 Hz). HRMS (ESI⁻) calcd. for C₁₅H₉O₆N₂F₄S [M-H]⁻: 421.0123; found: 421.0111.

1-(2-Fluoro-2-(4-nitrophenyl)-2-((trifluoromethyl)sulfonyl)ethyl)-4-methylbenzene (1u-F)

Pale yellow solid, 168.1 mg, 86%; ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.25 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 7.8 Hz, 2H), 6.85 (d, J = 7.7 Hz, 2H), 4.00-3.93 (m, 1H), 3.80-3.66 (m, 1H), 2.23 (s, 3H). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -69.0 (d, J = 9.6 Hz), -154.8 (dp, J = 40.5, 9.9 Hz). ¹³C NMR (100 MHz, Chloroform-*d*) δ : 149.1, 138.1, 135.8 (d, J = 20.8 Hz), 130.5, 129.4, 127.9 (d, J = 9.9 Hz), 126.0, 123.7 (d, J = 2.2 Hz), 120.1 (d, J = 332.4 Hz), 111.3 (d, J = 231.2 Hz), 38.5 (d, J = 19.5 Hz), 21.0. HRMS (ESI⁻) calcd. for C₁₆H₁₂O₄NF₄S [M-H]⁻: 390.0429; found: 390.0423.

8. References

(1) Y. Maekawa, M. Nambo, D. Yokogawa, C. M. Crudden, J. Am. Chem. Soc. 2020, 142, 15667-15672.

(2) R.-Y. Yang, H. Wang, B. Xu, Chem. Commun. 2021, 57, 4831-4834.

(3) Y. Su, M. Bai, J.-B. Qiao, X.-J. Li, R. Li, Y.-Q.Tu, P. Gu, Tetrahedron Lett. 2015, 56, 1805-1807.

9. Copies of NMR spectra

Figure S 1

Figure S 3

Figure S 9

Figure S 11

Figure S 13

Figure S 19

156.646 154.646 154.928 154.928 154.928 136.725 132.754 136.725 132.754 132.458 132.458 132.458 132.458 132.458 132.458 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 132.4566 12

Figure S 25

Figure S 29

Figure S 31

Figure S 35

Figure S 39

S31

Figure S 47

Figure S 49

Figure S 51

$\begin{array}{c} 160.38 \\ 158.63 \\ 138.35 \\ 138.35 \\ 131.31 \\ 131.91 \\ 131.81 \\ 131.81 \\ 131.81 \\ 131.81 \\ 131.81 \\ 132.82 \\ 132.81 \\ 124.73 \\ 122.88 \\ 122.78 \\ 122.$

Figure S 55

Figure S 57

Figure S 59

Figure S 63

Figure S 69

Figure S 77

160.38 158.63 158.63 158.63 133.35 132.32 131.81 131.81 131.81 131.81 131.92 131.92 131.92 132.01 132.92 <p

Figure S 81

Figure S 83

S53