Supporting Information

Application of Chiral Triazole-Substituted Iodoarenes in the Enantioselective Construction of Spirooxazolines

Ayham H. Abazid^a and Boris J. Nachtsheim^{*a}

^aUniversität Bremen, Institut für Organische und Analytische Chemie, Leobener Straße 7, 28359 Bremen, Germany

*Corresponding author: nachtsheim@uni-bremen.de

Table of Content

1	1. General Information				
2	. Expe	erimental Section	. 7		
2	.1. Syr	nthesis of <i>N-</i> (hydroxymethyl)benzamide derivatives (GP1)	7		
	2.1.1.	Synthesis of 4-bromo- <i>N</i> -(hydroxymethyl)benzamide (a1)	7		
	2.1.2.	Synthesis of 4-chloro-N-(hydroxymethyl)benzamide (b1)	7		
	2.1.3.	Synthesis of 4-fluoro-N-(hydroxymethyl)benzamide (c1)	8		
	2.1.4.	Synthesis of N-(hydroxymethyl)-4-(trifluoromethyl)benzamide (d1)	8		
	2.1.5.	Synthesis of N-(hydroxymethyl)-4-methoxybenzamide (e1)	9		
	2.1.6.	Synthesis of N-(hydroxymethyl)-4-nitrobenzamide (f1)	9		
	2.1.7.	Synthesis of 2-bromo-N-(hydroxymethyl)benzamide (g1)	9		
	2.1.8.	Synthesis of 3-bromo-N-(hydroxymethyl)benzamide (h1)	. 10		
	2.1.9.	Synthesis of 2-ethoxy-N-(hydroxymethyl)benzamide (i1)	. 10		
	2.1.10.	Synthesis of 3,5-dibromo-N-(hydroxymethyl)benzamide (j1)	. 11		
	2.1.11.	Synthesis of N-(hydroxymethyl)-3,4,5-trimethoxybenzamide (k1)	. 11		
	2.1.12.	Synthesis of N-(hydroxymethyl)picolinamide (I1)	. 11		
2	.2. Syr	nthesis of <i>N</i> -((2-hydroxynaphthalen-1-yl)methyl)benzamide derivatives (GP2)	12		
	2.2.1.	Synthesis of N-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4a)	. 12		
	2.2.2.	Synthesis of N-((6-bromo-2-hydroxynaphthalen-1-yl)methyl)benzamide (4b)	. 13		
	2.2.3.	Synthesis of N-((2-hydroxy-7-methoxynaphthalen-1-yl)methyl)benzamide (4c)	. 13		
	2.2.4.	Synthesis of N-((2,7-dihydroxynaphthalen-1-yl)methyl)benzamide (4d)	. 14		
	2.2.5.	Synthesis methyl 4-(benzamidomethyl)-3-hydroxy-2-naphthoate (4e)	. 14		
	2.2.6.	Synthesis of ethyl 4-(benzamidomethyl)-3-hydroxy-2-naphthoate (4f)	. 15		
	2.2.7.	Synthesis of N-((2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)methyl) benzamide (4g)	. 15		
	2.2.8.	Synthesis of 4-bromo-N-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4h)	. 16		
	2.2.9.	Synthesis of 4-bromo-N-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4i)	. 16		
	2.2.10.	Synthesis of 4-fluoro-N-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4j)	. 17		
	2.2.11.	Synthesis of 2-bromo-N-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4k)	. 17		
	2.2.12.	Synthesis of 3-bromo-N-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4I)	. 18		
	2.2.13.	Synthesis of 3,5-dibromo-N-((2-hydroxynaphthalen-1-yl)methyl) benzamide (4m)	. 18		
	2.2.14.	Synthesis of N-((2-hydroxynaphthalen-1-yl)methyl)-4-(trifluoromethyl) benzamide (4n)	. 19		
	2.2.15.	Synthesis of N-((2-hydroxynaphthalen-1-yl)methyl)-4-nitrobenzamide (4o)	. 19		
	2.2.16.	Synthesis of N-((2-hydroxynaphthalen-1-yl)methyl)-4-methoxy benzamide (4p)	. 20		
	2.2.17.	Synthesis of 2-ethoxy-N-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4q)	. 20		
	2.2.18.	Synthesis of <i>N</i> -((2-hydroxynaphthalen-1-yl)methyl)-3,4,5-trimethoxy benzamide (4r)	.21		
	2.2.19.	Synthesis of N-((2-hydroxynaphthalen-1-yl)methyl)picolinamide (4s)	.21		
2	.3. Syr	nthesis of Spirooxazoline compounds (GP3)	22		
	2.3.1.	Synthesis of (S)-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5a)	. 22		
	2.3.2.	Synthesis of (S)-6-bromo-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5b)	.23		
	2.3.3.	Synthesis of (S)-7-methoxy-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5c)	.24		
	2.3.4.	Synthesis of (S)-7-hydroxy-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5d)	.24		
	2.3.5.	Synthesis of (S)-methyl 2-oxo-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazole]-3-carboxylate (5e)	.25		
	2.3.6.	Synthesis of (S)-2'-phenyl-3-propionyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5f)	.25		
	2.3.7.	Synthesis of (S)-2'-phenyl-5,6,7,8-tetrahydro-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5g)	. 26		

	2.3.8.	Synthesis of (S)-2'-(4-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5h)	27
	2.3.9.	Synthesis of (S)-2'-(4-chlorophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5i)	27
	2.3.10.	Synthesis of (S)-2'-(4-fluorophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5j)	28
	2.3.11.	Synthesis of (S)-2'-(2-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5k)	29
	2.3.12.	Synthesis of (S)-2'-(3-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5I)	29
	2.3.13.	Synthesis (S)-2'-(3,5-dibromophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5m)	30
	2.3.14.	Synthesis of (S)-2'-(4-(trifluoromethyl)phenyl)-2H,4'H-spiro[naphth alene -1,5'-oxazol]-2-one (5n)	31
	2.3.15.	Synthesis of (S)-2'-(4-nitrophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5o)	31
	2.3.16.	Synthesis of (S)-2'-(4-methoxyphenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5p)	32
	2.3.17.	Synthesis of (S)-2'-(2-ethoxyphenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5q)	33
	2.3.18.	Synthesis of (S)-2'-(3,4,5-trimethoxyphenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5r)	33
	2.3.19.	Synthesis of (S)-2'-(pyridin-2-yl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5s)	34
2	.4. Der	ivetizations	35
	2.4.1.	Synthesis of (1S,2S)-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-ol (7)	35
	2.4.2.	Synthesis of (S)-2'-phenyl-2H,4'H-spiro[benzo[d]oxepine-1,5'-oxazol]-2-one (8)	36
	2.4.3.	Synthesis of (Z)-3-(2-(2-phenyloxazol-5-yl)phenyl)acrylaldehyde (9)	36
3	. NMR	Spectra for New Compounds	. 37
-			
3	.1. NM	R of 4-bromo- <i>N</i> -(hydroxymethyl)benzamide (a1) in DMSO- <i>d</i> ₆	38
3	.2. NM	R of 4-chloro- <i>N</i> -(hydroxymethyl)benzamide (b1) in CDCl₃	39
3	.3. NM	R of 4-fluoro- <i>N</i> -(hydroxymethyl)benzamide (c1) in CDCl ₃	41
3	.4. NM	R of <i>N</i> -(hydroxymethyl)-4-(trifluoromethyl)benzamide in (d1) CDCl ₃	43
3	.5. NM	R of <i>N</i> -(hydroxymethyl)-4-methoxybenzamide (e1) in DMSO- <i>d</i> ₆	45
3	.6. NM	R of <i>N</i> -(hydroxymethyl)-4-nitrobenzamide (f1) in DMSO- <i>d</i> ₆	46
3	.7. NM	R of 2-bromo- <i>N</i> -(hydroxymethyl)benzamide (g1) CDCl₃	47
3	.8. NM	R of 3-bromo-N-(hydroxymethyl)benzamide (h1) in CDCl ₃	48
3	.9. NM	R of 2-ethoxy-N-(hydroxymethyl)benzamide (i1) in CDCl3	49
3	.10.NM	R of 3.5-dibromo- <i>N</i> -(hvdroxymethyl)benzamide (i1) in DMSO-d ₆	50
3	11 NM	R of N-(hydroxymethyl)-3.4.5-trimethoxybenzamide (k1) in DMSO- d_{6}	51
с 2	12 NM	R of N-(hydroxymethyl)picolinamide (11) in CDCl ₂	52
2	12 NIM	P of N ((2 by droxy nonhthalon 1 yl)motbyl) benzamide (4a) in DMSO de	
ე ე	1 J . NIM	$R = 1 \sqrt{(2 - 1) \sqrt{1 - 1}}$	
3	. 14. INIVI	R of N-((6-bromo-2-hydroxynaphthalen-1-yr)methyl)benzamide (4b) in CDCI3	54
3	.15.NM	R of N-((2-hydroxy-/-methoxynaphthalen-1-yl)methyl)benzamide (4c) in CDCl ₃	55
3	.16.NM	R of <i>N</i> -((2,7-dihydroxynaphthalen-1-yl)methyl)benzamide (4d) in CDCl ₃	56
3	.17.NM	R of 4-(benzamidomethyl)-3-hydroxy-2-naphthoate (4e) in CDCl ₃	57
3	.18.NM	R of ethyl 4-(benzamidomethyl)-3-hydroxy-2-naphthoate (4f) in CDCl ₃	58
3	.19.NM	R of N-((2-hydroxy-4a,5,6,7,8,8a-hexahydronaphthalen-1-yl)methyl) benzamide (4g) in CE	Cl₃
			59
3	.20.NM	R of 4-bromo- <i>N</i> -((2-hydroxynaphthalen-1-yl)methyl)benzamide (4h) in CDCl ₃	60
3	.21.NM	R of 4-chloro- <i>N</i> -((2-hydroxynaphthalen-1-yl)methyl)benzamide (4i) in CDCl ₃	61
3	.22.NM	R of 4-fluoro-N-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4i) in CDCl ₃	62
3	.23.NM	R of 2-bromo-N-((2-hydroxynaphthalen-1-yl)methyl)benzamide mide (4k) in CDCl3	64
3	24 NM	R of 3-bromo- <i>N</i> -((2-hydroxynaphthalen-1-yl)methyl)benzamide (41) in CDCI ₂	65
0			

3.26.NMR of N-((2-hydroxynaphthalen-1-yl)methyl)-4-(trifluoromethyl) benzamide (4n) in CDCl ₃ 67
3.27.NMR of N-((2-hydroxynaphthalen-1-yl)methyl)-4-nitrobenzamide (4o) in CDCl ₃
3.28.NMR of N-((2-hydroxynaphthalen-1-yl)methyl)-4-methoxy benzamide (4p) in CDCl370
3.29.NMR of 2-ethoxy-N-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4q) in CDCl ₃ 71
3.30.NMR of N-((2-hydroxynaphthalen-1-yl)methyl)-3,4,5-trimethoxy benzamide (4r) in CDCl ₃ 72
3.31.NMR of N-((2-hydroxynaphthalen-1-yl)methyl)picolinamide (4s) in CDCl373
3.32.NMR of (S)-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5a) in CDCl ₃ 74
3.33.NMR of (S)-6-bromo-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5b) in CDCl ₃ 75
3.34.NMR of (S)-7-methoxy-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5c) in CDCl ₃ 76
3.35.NMR of (S)-7-hydroxy-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5d) in CDCl ₃ 77
3.36.NMR of (S)-methyl 2-oxo-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazole]-3-carboxylate (5e) in
CDCl ₃
3.37.NMR of (S)-2'-phenyl-3-propionyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5f) in CDCl ₃ 79
3.38.NMR of (1S)-2'-phenyl-4a,5,6,7,8,8a-hexahydro-2H,4'H-spiro [naphth alene-1,5'-oxazol]-2-one
(5g) in CDCl ₃
3.39.NMR of (S)-2'-(4-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5h) in CDCl ₃ 81
3.40.NMR of (S)-2'-(4-chlorophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5i) in CDCl ₃ 82
3.41.NMR of (S)-2'-(4-fluorophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5j) in CDCI ₃ 83
3.42.NMR of (S)-2'-(2-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5k) in CDCl ₃ 85
3.43.NMR of (S)-2'-(3-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5I) in CDCI ₃ 86
3.44.NMR of (S)-2'-(3,5-dibromophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5m) in CDCl ₃ 87
3.45.NMR of (S)-2'-(4-(trifluoromethyl)phenyl)-2H,4'H-spiro[naphth alene -1,5'-oxazol]-2-one (5n) ir
CDCl ₃
3.46.NMR of (S)-2'-(4-nitrophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (50) in CDCl ₃ 90
3.47.NMR of (S)-2'-(4-methoxyphenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5p) in CDCl ₃ 91
3.48.NMR of (S)-2'-(2-ethoxyphenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5q) in CDCl ₃ 92
3.49.NMR of (S)-2'-(3,4,5-trimethoxyphenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5r) in CDCl
3.50.NMR of (S)-2'-(pyridin-2-yl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5s) in CDCl ₃ 94
3.51.NMR of (1S,2S)-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-ol (7) in CDCl ₃ 95
3.52.NMR of (S)-2'-phenyl-2H,4'H-spiro[benzo[d]oxepine-1,5'-oxazol]-2-one (8) in CDCl ₃ 96
3.53.NMR of (Z)-3-(2-(2-phenyloxazol-5-yl)phenyl)acrylaldehyde (9) in CDCI ₃
4. HPLC Chromatograms
4.1. HPLC Chromatograms of Compound (5a)
4.2. HPLC Chromatograms of Compound (5b)
4.3. HPLC Chromatograms of Compound (5c)
4.4. HPLC Chromatograms of Compound (5d)
4.5. HPLC Chromatograms of Compound (5e)
4.6. HPLC Chromatograms of Compound (5f)
4.7. HPLC Chromatograms of compound (5g)104
4.8. HPLC Chromatograms of compound (5h)105

4.9. HPLC Chromatograms of compound (5i)	
4.10.HPLC Chromatograms of compound (5j)	
4.11.HPLC Chromatograms of compound(5k)	
4.12.HPLC Chromatograms of compound (5I)	
4.13.HPLC Chromatograms of compound (5m)	
4.14.HPLC Chromatograms of compound (5n)	
4.15.HPLC Chromatograms of compound (5o)	
4.16.HPLC Chromatograms of compound (5p)	
4.17.HPLC Chromatograms of compound (5q)	
4.18.HPLC Chromatograms of compound (5r)	
4.19.HPLC Chromatograms of compound (5s)	
4.20.HPLC Chromatograms of compound (7)	
4.21.HPLC Chromatograms of compound (8)	
5. Computational Studies	118
6. References	121

1. General Information

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere using a *two-necked round-bottomed flask*. All chemicals were purchased from commercial suppliers and either used as received or purified according to *Purification of Common Laboratory Chemicals*.¹ Dry acetonitrile (MeCN) was obtained from an *inert* PS-MD-6 solvent purification system.

Thin layer chromatography was performed on fluorescence indicator marked precoated silica gel 60 plates (*Macherey-Nagel*, ALUGRAM Xtra SIL G/UV₂₅₄) and visualized by UV light (254 nm/366 nm). Flash column chromatography was performed on silica gel (0.040 - 0.063 mm) with the solvents given in the procedures.

NMR spectra were recorded on a *Bruker AVANCE NEO 600 MHz* spectrometer at 25 °C. Chemical shifts for ¹H-NMR spectra are reported as δ (parts per million) relative to the residual proton signal of CDCl₃ at 7.26 ppm (s), or DMSO-*d*₆ at 2.50 ppm (quin). Chemical shifts for ¹³C-NMR spectra are reported as δ (parts per million) relative to the signal of CDCl₃ at 77.0 ppm (t), or DMSO-*d*₆ at 39.5 ppm (sept). The following abbreviations are used to describe splitting patterns: br. = broad, s = singlet, d = doublet, t = triplet, tt = triplet of triplets, q = quartet, sept = septet, m = multiplet. Coupling constants *J* are given in Hertz.

ESI and APCI mass spectra were recorded on an *Advion* Expression CMSL *via* ASAP probe or direct inlet. High resolution (HR) EI mass spectra were recorded on a double focusing mass spectrometer ThermoQuest MAT 95 XL from *Finnigan MAT*. HR-EI mass spectra were recorded on a *Bruker* impact II. All Signals are reported with the quotient from mass to charge *m/z*. APCI mass spectra were recorded on an Advion Expression CMSL via ASAP probe or direct inlet. All signals were reported with the quotient from mass to charge m/z.

IR spectra were recorded on a *Nicolet* Thermo iS10 scientific spectrometer with a diamond ATR unit.

Melting points of solids were measured on a *Büchi* M-5600 Melting Point apparatus and are uncorrected. The measurements were performed with a heating rate of 2 °C/min and the melting points are reported in °C.

Low temperature reactions were cooled using a *Julabo* FT902 cryostat. If not otherwise noted, solvents were removed on a *Büchi* Rotavapor R-300 with 40 °C water bath temperature.

HPLC chromatograms were recorded on Azura Analytical *Knauer*. UV detection 2.1 L monitored at different wavelength, *pump P6.1 L. Used Columns: Reprosil Chiral- OM*, *5 μm (250x4,6* mm).

Optical rotations were measured on Anton Paar MCP 150, in chloroform at 23 °C.

CD-spectra were recorded on a *Jasco J-810 CD-Spectrometer* at 25 °C in chloroform with a concentration of 1.75 m Molar.

2. Experimental Section

2.1. Synthesis of *N*-(hydroxymethyl)benzamide derivatives (GP1)

Benzamide derivative (1.00 mmol, 1.00 eq.) was dissolved in (5.00 ml) ethanol. A 37% aqueous formaldehyde solution (0.15 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. Extracted three times with dichloromethane and water, and then washed with saturated brine, dried with anhydrous Na₂SO₄, evaporation of the solvent, and performed column chromatography using mixture of (DCM: MeOH) to yield the desired product.

2.1.1. Synthesis of 4-bromo-*N*-(hydroxymethyl)benzamide (a1)

Following GP1, 4-bromo benzamide (200 mg, 1.00 mmol, 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 20:1) **a1** (207 mg, 0.900 mmol, 90%) was obtained as a white solid. **Mp**: 137-139 °C. ¹H **NMR (600 MHz, DMSO-***d*₆): δ 9.21 (t, *J* = 6.0 Hz, 1H), 7.92 – 7.87 (m, 2H), 7.58 – 7.52 (m, 2H), 5.70 (t, *J* = 6.8 Hz, 1H), 4.70 (t, *J* = 6.5 Hz, 2H). ¹³C **NMR (150 MHz, DMSO-***d*₆): δ 165.6, 136.7, 133.5, 129.7, 128.7, 63.4. **HR-MS (EI, 70 eV)**: calculated for [C₈H₈BrNNaO₂]⁺: *m/z*= 251.9741, found: 251.9744 (Dev.: 0.29 mu; 0.66 ppm). **IR** (**ATR**): $\tilde{\nu}$ (cm⁻¹)= 3341, 2976, 2873, 2162, 1646, 1591, 1568, 1533, 1478, 1445, 1385, 1364, 1290, 1147, 1136, 1009, 845, 755, 708.

2.1.2. Synthesis of 4-chloro-N-(hydroxymethyl)benzamide (b1)

Following GP1, 4-chlorobenzamide (156 mg, 1.00 mmol, $_{CI}$ - $_{H}$ - $_{OH}$ - $_{H}$ - $_{I.00 eq.}$) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 20:2) **b1** (171 mg, 0.920 mmol, 92%) was obtained as a white solid. **Mp:** 144-146 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 7.76 – 7.71 (m, 2H), 7.47 – 7.42 (m, 2H), 7.04 (bs, 1H), 4.96 (s, 2H), 3.35 (s, 1H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 167.8, 138.6, 131.8, 129.1, 128.5, 65.5. **HR-MS (EI, 70 eV):** calculated for [C₈H₈CINNaO₂]⁺: m/z= 208.0133, found: 208.0135 (Dev.: 0.25 mu; 1.20 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3338, 3272, 2839, 1638, 1594, 1548, 1311, 1113, 1007, 843, 720, 667. Analytical data is in accordance with literature data.²

2.1.3. Synthesis of 4-fluoro-*N*-(hydroxymethyl)benzamide (c1)

Following GP1, 4-fluorobenzamide (139 mg, 1.00 mmol, $_{F}$ $_{H}$ $_{OH}$ 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 20:1) **c1** (155 mg, 0.920 mmol, 92%) was obtained as a white solid. **Mp:** 196-198 °C. ¹H **NMR (600 MHz, Chloroform-d):** δ 7.86 – 7.77 (m, 2H), 7.21 – 7.00 (m, 3H), 4.97 (s, 2H), 3.53 (s, 1H). ¹³C **NMR (150 MHz, Chloroform-d):** δ 167.8, 166.0, 164.3, 129.8, 129.6 (d, J = 9.0 Hz), 115.9 (d, J = 22.0 Hz), 65.4. ¹⁹F **NMR (376 MHz, CDCI₃)** δ = –118.40. **HR-MS (EI, 70 eV):** calculated for [C₈H₈FNNaO₂]⁺: m/z= 192.0459, found: 192.0461 (Dev.: 0.19 mu; 0.37 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3275, 3114, 2758, 1645, 1590, 1434, 1384, 1004, 852, 747, 680. Analytical data is in accordance with literature data.³

2.1.4. Synthesis of N-(hydroxymethyl)-4-(trifluoromethyl)benzamide (d1)

Following GP1, 4-trifluoromethylbenzamide (189 mg, 1.00 mmol, 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 20:3) d1 (195 mg, 0.890 mmol, 89%) was obtained as a white solid. Mp: 114-116 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 9.38 (bs, 1H), 8.07 (d, *J* = 8.5 Hz, 2H), 7.86 (d, *J* = 7.6 Hz, 2H), 5.80 (bs, 1H), 4.73 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 165.5, 138.5, 1318 (d, J = 31.8 Hz), 128.8 (d, J = 19.0 Hz), 125.9 (d, J = 3.6 Hz), 125.3, 123.5, 63.5. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ = -64.35. HR-MS (EI, 70 eV): calculated for [C₉H₈F₃NNaO₂]⁺: m/z= 242.0977, found: 242.0981 (Dev.: 0.40 mu; 0.96 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3315, 2966, 1651, 1579, 1537, 1509, 1323, 1168, 1126, 1106, 1016, 861, 778, 689.

S8

2.1.5. Synthesis of *N*-(hydroxymethyl)-4-methoxybenzamide (e1)

Following GP1, 4-methoxybenzamide (151 mg, 1.00 mmol, MeO H 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 20:1) e1 (172 mg, 0.950 mmol, 95%) was obtained as a white solid. Mp: 203-205 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 9.01 (bs, 1H), 7.99 – 7.74 (m, 2H), 7.05 – 6.93 (m, 2H), 4.69 (s, 2H), 3.81 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 165.5, 161.1, 129.0, 126.3, 113.4, 62.7, 55.2. HR-MS (EI, 70 eV): calculated for [C₉H₁₁NNaO₃]⁺: m/z= 204.0714, found: 204.0716 (Dev.: 0.15 mu; 0.33 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3387, 3310, 3163, 2841, 1643, 1606, 1533, 1422, 1248, 1180, 1023, 847, 714, 671. Analytical data is in accordance with literature data.⁴

2.1.6. Synthesis of *N*-(hydroxymethyl)-4-nitrobenzamide (f1)

Following GP1, 4-nitrobenzamide (166 mg, 1.00 mmol, O_{2N} 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 20:2) f1 (183 mg, 0.930 mmol, 93%) was obtained as a yellow oil. ¹H NMR (600 MHz, DMSO *d*₆): δ 9.52 (s, 1H), 8.36 – 8.27 (m, 2H), 8.16 – 8.05 (m, 2H), 7.72 (s, 1H), 4.74 (d, *J* = 3.8 Hz, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 166.7, 149.5, 1405, 129.4, 123.9, 63.6. HR-MS (EI, 70 eV): calculated for [C₈H₈N₂NaO₄]⁺: m/z= 219.0532, found: 219.0533 (Dev.: 0.12 mu; 0.25 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3370, 3176, 1655, 1623, 1521, 1338, 1144, 1069, 1013, 870, 800, 767, 705.

2.1.7. Synthesis of 2-bromo-N-(hydroxymethyl)benzamide (g1)

Following GP1, 2-bromobenzamide (200 mg, 1.00 mmol, 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and

potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 10:1) **g1** (194 mg, 0.840 mmol, 84%) was obtained as a pale-brown solid. **Mp:** 161-163 °C. **1H NMR (600 MHz, Chloroform-d):** δ 8.08 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H),

7.59 (d, J = 8.8 Hz, 1H), 7.38 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.26 (ddd, J = 8.3, 7.3, 1.9 Hz, 1H), 6.90 (s, 1H), 4.83 (d, J = 6.6 Hz, 2H). ¹³C NMR (150 MHz, Chloroformd): δ 167.1, 133.0, 129.4, 126.1, 122.3, 120.2, 111.6, 64.2. HR-MS (EI, 70 eV): calculated for [C₈H₈BrNNaO₂]⁺: *m*/*z*= 251.9755, found: 251.9757 (Dev.: 0.21 mu; 0.53) ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3320, 2986, 2100, 1642, 1421, 1365, 1240, 1162, 841, 733, 692.

2.1.8. Synthesis of 3-bromo-N-(hydroxymethyl)benzamide (h1)

Following GP1, 3-bromobenzamide (200 mg, 1.00 mmol, 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37%Br aqueous formaldehyde solution (0.150 mL, 1.50 mmol,

1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 20:3) h1 (186 mg, 0.810 mmol, 81%) was obtained as a brown solid. Mp: 146-148 °C. ¹H **NMR (600 MHz, Chloroform-d):** δ 8.52 (s, 1H), 7.74 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.21 (s, 1H), 4.95 (d, J = 6.5 Hz, 2H). ¹³C NMR (150 MHz, Chloroform-d): δ 167.5, 134.7, 132.6, 131.8, 130.4, 127.5, 122.0, 114.8. **HR-MS (EI, 70 eV):** calculated for [C₈H₈BrNNaO₂]⁺: *m*/*z*= 251.9754, found: 251.9755 (Dev.: 0.11 mu; 0.24 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3299, 3011, 2781, 1640, 1532, 14888, 1420, 1366, 1202, 1007, 922, 836, 741, 694.

2.1.9. Synthesis of 2-ethoxy-*N*-(hydroxymethyl)benzamide (i1)

Following GP1, 2-ethoxybenzamide (165 mg, 1.00 mmol, 1.00 eq.) $\sim_{
m OH}$ was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C

for 8 h. After work-up and column chromatography (DCM:MeOH 5:1) i1 (162 mg, 0.830 mmol, 83%) was obtained as a white solid. Mp: 183-185 °C. ¹H NMR (600 MHz, **Chloroform-d):** δ 7.87 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.35 (ddd, J = 8.0, 6.9, 1.0 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 4.98 (d, J = 6.6 Hz, 2H), 4.15 (q, J = 7.0 Hz, 2H), 1.54 (t, J = 7.0 Hz, 3H). 13C NMR (150 MHz, Chloroformd): δ 166.5, 165.0, 156.6, 132.6, 120.5, 113.3, 113.1, 63.0, 14.6. HR-MS (EI, 70 eV): calculated for [C₁₀H₁₃NNaO₃]⁺: m/z= 218.0873, found: 218.0874 (Dev.: 0.09 mu; 0.20 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3368, 2785, 2341, 1647, 1520, 1488, 1451, 1321, 1156, 1014, 930, 844, 736.

2.1.10. Synthesis of 3,5-dibromo-*N*-(hydroxymethyl)benzamide (j1)

Br N C

Following GP1, 3,5-dibromobenzamide (279 mg, 1.00 mmol, 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg, 1.00 mmol,

1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 20:3) **j1** (284 mg, 0.920 mmol, 92%) was obtained as a white solid. **Mp:** 219-221 °C. ¹**H NMR (600 MHz, DMSO-***d*₆**):** δ 9.39 (s, 1H), 8.09 – 8.05 (m, 3H), 4.69 (s, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆**):** δ 163.8, 138.3, 136.6, 129.8, 123.1, 63.6. **HR-MS (EI, 70 eV):** calculated for [C₈H₇Br₂NNaO₂]⁺: m/z= 329.8732, found: 329.8735 (Dev.: 0.36 mu; 1.09 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3370, 3055, 1622, 1574, 1495, 1335, 1236, 1156, 1117, 1013, 867, 789, 766, 704, 657.

2.1.11. Synthesis of *N*-(hydroxymethyl)-3,4,5-trimethoxybenzamide (k1)

Following GP1, 3,4,5-trimethoxybenzamide (211 mg, 1.00 mmol, 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.150 mL, 1.50 mmol, 1.50 eq.) and potassium carbonate (138 mg,

1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 5:1) **k1** (209 mg, 0.870 mmol, 87%) was obtained as a white solid. **Mp:** 150-152 °C. ¹H **NMR (600 MHz, DMSO-***d*₆): δ 9.10 (t, J = 6.2 Hz, 1H), 7.22 (s, 2H), 5.67 (s, 1H), 4.72 (d, J = 5.9 Hz, 2H), 3.83 (s, 6H), 3.71 (s, 3H). ¹³C **NMR (150 MHz, DMSO-***d*₆): δ 166.0, 153.0, 140.5, 129.9, 105.3, 63.5, 60.5, 56.4. **HR-MS (EI, 70 eV):** calculated for [C₁₁H₁₅NNaO₅]⁺: m/z= 264.0841, found: 264.0842 (Dev.: 0.09 mu; 0.35 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3269, 2950, 2839, 1642, 1543, 1435, 1230, 1126, 1051, 991, 852, 773, 669.

2.1.12. Synthesis of *N*-(hydroxymethyl)picolinamide (I1)

Following GP1, 3,4,5-trimethoxybenzamide (122 mg, 1.00 mmol, 1.00 eq.) was dissolved in (5.00 ml) ethanol. Then, a 37% aqueous formaldehyde solution (0.15 mL, 1.50 mmol, 1.50 eq.) and

potassium carbonate (138 mg, 1.00 mmol, 1.00 eq.) were added and stirred at 60 °C for 8 h. After work-up and column chromatography (DCM:MeOH 10:1) **I1** (126 mg, 0.830 mmol, 83%) was obtained as a white solid. **Mp:** 125-127 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 8.90 (s, 1H), 8.57 (ddd, *J* = 4.8, 1.7, 0.9 Hz, 1H), 8.19 (dt, *J* = 7.8,

1.1 Hz, 1H), 7.86 (td, J = 7.7, 1.7 Hz, 1H), 7.45 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 5.02 (d, J = 6.8 Hz, 2H), 3.54 (s, 1H).¹³**C** NMR (150 MHz, Chloroform-d): δ 165.8, 149.2, 148.3, 137.4, 126.7, 122.5, 64.7. HR-MS (EI, 70 eV): calculated for [C₇H₈N₂NaO₂]⁺: m/z= 175.0544, found: 175.0546 (Dev.: 0.27 mu; 0.59 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3394, 3014, 2741, 1644, 1550, 1484, 1457, 1336, 1294, 1147, 948, 926, 801, 738, 695.

2.2. Synthesis of *N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide derivatives (GP2)

2-Naphthol derivatives (0.750 mmol, 1.00 eq.) and *N*-(hydroxymethyl)benzamide derivatives (0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Concentrated sulfuric acid (1.10 mL) was added dropwise and the reaction mixture was stirred for 7 h at 65 °C. The reaction mixture was cooled to room temperature and washed with (1 M) NaOH solution (10.0 mL), extract three times with EtOAc. Combined organic layers were dried Na₂SO₄, filtered, and concentrated under reduced pressure.

2.2.1. Synthesis of *N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4a)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and N-0 ∠Ph (hydroxymethyl)benzamide (113 mg, 0.750 mmol, 1.00 eq.) were ΗN dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ OH. (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **4a** (196 mg, 0.710 mmol, 94%) as a brown solid. **Mp:** 173-175 °C. ¹**H NMR** (600 MHz, DMSO-d₆): δ 10.25 (s, 1H), 9.08 (t, J = 5.1 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 7.9 Hz, 2H), 7.78 (dd, J = 24.2, 8.4 Hz, 2H), 7.55 – 7.40 (m, 4H), 7.30 (t, J = 7.4 Hz, 1H), 7.18 (d, J = 8.8 Hz, 1H), 4.85 (d, J = 5.3 Hz, 2H).¹³C NMR (150 MHz, DMSO-d₆): δ 167.4, 153.9, 133.7, 133.4, 131.5, 129.4, 128.4, 128.3, 127.5, 127.4, 126.5, 122.9, 122.7, 119.0, 115.7, 34.5. HR-MS (APCI): calculated for [C₁₈H₁₅NO₂]⁺: m/z= 277.1124, found: 277.1127 (Dev: 0.37 mu; 0.81 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3234, 3102, 1662, 1654, 1265, 947, 844. Analytical data is in accordance with literature data.⁵

2.2.2. Synthesis of N-((6-bromo-2-hydroxynaphthalen-1-yl)methyl)benzamide (4b)

Following GP2, 6-bromonaphthalen-2-ol (167 mg, 0.750 mmol, ΗŃ 1.00 ea.) and *N*-(hydroxymethyl)benzamide (113 ma. 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol OH. (7.50 mL). Then, conc H_2SO_4 (1.10 mL) and the reaction mixture Br was stirred for 7 h at 65 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to furnish 4b (234 mg, 0.660 mmol, 88%) as off-white solid. Mp: 195-197 °C. ¹H NMR (600 MHz, Chloroform-d): δ 10.21 (s, 1H), 7.94 (d, J = 2.0 Hz, 1H), 7.80 – 7.74 (m, 3H), 7.65 (d, J = 8.9 Hz, 1H), 7.59 (dd, J = 9.0, 2.1 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.27 (d, J = 8.9 Hz, 1H), 7.07 – 7.01 (m, 1H), 4.97 (d, J = 6.5 Hz, 2H). ¹³C NMR (150 MHz, Chloroform-d): δ 155.0, 132.6, 132.5, 131.6, 131.0, 130.2, 130.1, 129.4, 128.8, 127.2, 122.8, 121.9, 116.6, 115.9, 35.6. HR-MS (APCI): calculated for [C₁₈H₁₄BrNO₂]⁺: m/z= 355.0278, found: 355.0280 (Dev.: 0.23 mu; 0.64 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3324, 22845, 1644, 1540, 1230, 1007, 874.

2.2.3. Synthesis of *N*-((2-hydroxy-7-methoxynaphthalen-1-yl)methyl)benzamide (4c)

0

MeO

Following GP2, 7-methoxynaphthalen-2-ol (131 mg, .Ph 0.750 mmol, 1.00 eq.) and *N*-(hydroxymethyl)benzamide ΗN (113 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous OH ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the

reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish 4c (206 mg, 0.670 mmol, 89%) as a brown solid. Mp: 150-152 °C. ¹H NMR (600 MHz, Chloroform-d): δ 7.73 (dd, J = 17.6, 8.5 Hz, 3H), 7.67 (d, J = 8.8 Hz, 1H), 7.50 - 7.46 (m, 1H), 7.43 - 7.36(m, 2H), 7.23 (d, J = 2.1 Hz, 1H), 7.10 (d, J = 8.8 Hz, 2H), 7.04 (dd, J = 8.8, 2.4 Hz, 1H), 6.97 - 6.88 (m, 1H), 4.96 (d, J = 6.5 Hz, 2H), 3.97 (s, 3H). ¹³C NMR (150 MHz, **Chloroform-d):** δ 170.0, 158.7, 155.1, 134.4, 132.3, 130.7, 130.1, 128.7, 127.2, 124.5, 118.0, 113.7, 102.0, 55.6, 35.8, 26.9. HR-MS (APCI): calculated for [C₁₉H₁₇NO₃]⁺: m/z= 307.1280, found: 307.1281 (Dev.: 0.06 mu; 0.19 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3356, 3041, 1644, 1250, 1024, 962, 845.

2.2.4. Synthesis of *N*-((2,7-dihydroxynaphthalen-1-yl)methyl)benzamide (4d)

HN HO HO HO

Following GP2, naphthalene-2,7-diol (120 mg, 0.750 mmol, 1.00 eq.) and *N*-(hydroxymethyl)benzamide (113 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture

was stirred for 7 h at 65 °C. The product was purified by column chromatography (60:40 Cyclohexane /EtOAc) to furnish **4d** (145 mg, 0.490 mmol, 66%) as a white solid. **Mp:** 211-213 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 10.23 (s, 1H), 8.02 (dd, J = 17.6, 8.5 Hz, 3H), 7.95 (d, J = 8.8 Hz, 1H), 7.78 – 7.74 (m, 1H), 7.71 – 7.62 (m, 2H), 7.52 (d, J = 2.1 Hz, 1H), 7.38 (d, J = 8.8 Hz, 2H), 7.32 (dd, J = 8.8, 2.4 Hz, 1H), 5.24 (d, J = 6.5 Hz, 2H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 167.0, 158.4, 151.0, 134.7, 132.6, 131.0, 130.4, 129.0, 127.5, 124.8, 121.8, 115.2, 114.0, 107.3, 37.7. A signal is missing due to overlap. **HR-MS (APCI)** calculated for [C₁₈H₁₅NO₃]⁺: m/z= 293.1043, found: 293.1044 (Dev.: 0.13 mu; 0.22 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3378, 3246, 1668, 1642, 1345, 1148, 1026, 984.

2.2.5. Synthesis methyl 4-(benzamidomethyl)-3-hydroxy-2-naphthoate (4e)

Following GP2, methyl 3-hydroxy-2-naphthoate (152 mg, 0.750 mmol, 1.00 eq.) and *N*-(hydroxymethyl)benzamide (113 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H_2SO_4 (1.10 mL) and the reaction mixture

 V_{OMe} was stirred for 7 h at 65 °C. The product was purified by column chromatography (75:25 Cyclohexane /EtOAc) to furnish **4e** (226 mg, 0.670 mmol, 90%) as a yellow solid. **Mp:** 183-185 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 10.97 (s, 1H), 8.51 (s, 1H), 8.28 (d, *J* = 8.6 Hz, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.75 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.63 (ddd, *J* = 8.4, 6.8, 1.3 Hz, 1H), 7.47 – 7.43 (m, 1H), 6.71 (s, 1H), 7.40 – 7.35 (m, 3H), 5.17 (d, *J* = 5.7 Hz, 2H), 4.05 (s, 3H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 170.5, 167.1, 154.9, 136.1, 134.6, 132.8, 131.4, 130.1, 130.0, 128.5, 127.1, 127.0, 124.1, 123.3, 118.0, 113.5, 52.8, 34.2. **HR-MS (APCI):** calculated for [C₂₀H₁₇NO₄]⁺: m/z= 335.1228, found: 335.1230 (Dev.: 0.24 mu; 0.70 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3345, 3142, 1663, 1642, 1432, 1145, 980.

2.2.6. Synthesis of ethyl 4-(benzamidomethyl)-3-hydroxy-2-naphthoate (4f)

Following GP2, ethyl 3-hydroxy-2-naphthoate (162 mg, 0.750 mmol, 1.00 eq.) and *N*-(hydroxymethyl)benzamide (113 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H_2SO_4 (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (70:30

Cyclohexane /EtOAc) to furnish **4f** (242 mg, 0.690 mmol, 92%) as a white solid. **Mp:** 169-171 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 8.08 (d, *J* = 1.4 Hz, 2H), 7.57 – 7.53 (m, 1H), 7.54 – 7.49 (m, 3H), 7.48 (d, *J* = 7.8 Hz, 3H), 7.45 – 7.41 (m, 1H), 4.60 (d, *J* = 14.9 Hz, 1H), 4.36 (qt, *J* = 7.1, 3.7 Hz, 2H), 3.97 (d, *J* = 14.9 Hz, 1H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 168.3, 167.1, 160.1, 134.7, 134.2, 131.5, 129.6, 129.1, 128.6, 128.4, 127.3, 126.7, 125.3, 118.2, 1140, 61.6, 36.8, 14.2. **HR-MS (APCI):** calculated for [C₂₁H₁₉NO₄]⁺: m/z= 349.1310, found: 349.1312 (Dev.: 0.22 mu; 0.64 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3341, 3150, 1654, 1640, 1165, 954.

2.2.7. Synthesis of *N*-((2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)methyl) benzamide (4g)

Following GP2, 5,6,7,8-tetrahydronaphthalen-2-ol (111 mg, 0.750 mmol, 1.00 eq.) and *N*-(hydroxymethyl)benzamide (113 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was

stirred for 7 h at 65 °C. The product was purified by column chromatography (90:10 Cyclohexane /EtOAc) to furnish **4g** (189 mg, 0.670 mmol, 90%) as a white solid. **Mp:** 116-118 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 7.82 – 7.73 (m, 3H), 7.49 – 7.46 (m, 1H), 7.41 (q, J = 7.5 Hz, 3H), 7.09 (dt, J = 7.8, 5.8 Hz, 1H), 4.62 (dd, J = 5.4, 6.2 Hz, 3H), 2.77 (dt, J = 7.4, 6.3 Hz, 3H), 1.84 – 1.67 (m, 3H), 1.65 – 1.52 (m, 1H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 167.2, 151.5, 136.8, 134.3, 131.5, 128.4, 128.2, 121.5, 110.8, 38.9, 38.4, 36.9, 31.2, 28.4, 24.9. **HR-MS (APCI):** calculated for [C₁₈H₁₉NO₂]⁺: m/z= 281.1487, found: 281.1488 (Dev.: 0.12 mu; 0.42 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3437, 3288, 2921, 1633, 1547, 1486, 1312, 1254, 1028, 1009, 918, 858, 742, 712, 689.

2.2.8. Synthesis of 4-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4h)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 4bromo-*N*-(hydroxymethyl)benzamide (173 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **4h** (214 mg, 0.600 mmol,

80%) as a pale-brown solid. **Mp:** 120-122 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 10.35 (s, 1H), 8.09 (d, *J* = 7.5 Hz, 1H), 7.94 – 7.88 (m, 3H), 7.80 (d, *J* = 7.4 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.69 – 7.64 (m, 1H), 7.57 – 7.38 (m, 2H), 7.19 (d, *J* = 8.1 Hz, 1H), 7.17 (s, 1H), 511 (d, *J* = 7.0 Hz, 2H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 167.7, 151.1, 133.7, 133.5, 132.7, 132.0, 131.3, 131.1, 130.5, 129.9, 128.3, 123.9, 122.9, 117.6, 117.0, 36.7. **HR-MS (APCI):** calculated for [C₁₈H₁₄BrNO₂]⁺: m/z= 355.0361, found: 355.0362 (Dev.: 0.07 mu; 0.18 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3352, 2976, 1646, 1590, 1536, 1313, 1289, 1091, 1009, 845, 755, 699.

2.2.9. Synthesis of 4-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4i)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 4chloro-*N*-(hydroxymethyl)benzamide (127 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **4i** (192 mg, 0.650 mmol,

87%) as a brown solid. **Mp:** 162-164 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 9.58 (s, 1H), 8.31 (d, *J* = 8.8 Hz, 2H), 7.98 (d, *J* = 8.8 Hz, 2H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.9 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.30 (d, *J* = 8.9 Hz, 2H), 7.22 (s, 1H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 166.8, 153.2, 148.9, 137.3, 131.8, 129.5, 128.0, 127.3, 126.1, 122.8, 122.1, 119.8, 119.3, 114.0, 34.8. **HR-MS (APCI):** calculated for $[C_{18}H_{14}CINO_2]^+$: m/z= 311.0736, found: 311.0738 (Dev.: 0.23 mu; 0.54 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3298, 2874, 1641, 1258, 1140, 964, 833.

2.2.10. Synthesis of 4-fluoro-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4j)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 4fluoro-*N*-(hydroxymethyl)benzamide (127 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to furnish **4j** (192 mg, 0.650 mmol, 87%) as a

pale-yellow solid. **Mp:** 156-158 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 9.86 (s, 1H), 8.93 (t, *J* = 5.1 Hz, 1H), 7.87 – 7.78 (m, 3H), 7.60 (d, *J* = 8.3 Hz, 3H), 7.57 (d, *J* = 8.8 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.10 (ddd, *J* = 7.9, 6.7, 0.9 Hz, 1H), 7.00 (d, *J* = 8.8 Hz, 1H), 4.69 (d, *J* = 5.1 Hz, 2H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 166.0, 164.3, 162.1, 151.0, 133.1, 131.5, 130.5 (d, J = 19.2 Hz), 130.3, 129.6 (d, J = 9.6 Hz), 126.4, 126.2, 123.0, 121.6, 115.9 (d, J = 21.8 Hz), 113.6, 38.8.

¹⁹F NMR (376 MHz, CDCl₃) δ = -120.24. HR-MS (APCl): calculated for [C₁₈H₁₄FNO₂]⁺: m/z= 295.1012, found: 295.1016 (Dev.: 0.43 mu; 0.95 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3365, 3009, 1644, 1574, 1330, 1296, 1048, 932, 851.

2.2.11. Synthesis of 2-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4k)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 2bromo-*N*-(hydroxymethyl)benzamide (173 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (75:25 Cyclohexane /EtOAc) to furnish **4k** (244 mg, 0.680 mmol, 91%) as a

white solid. **Mp:** 172-174 °C. ¹**H NMR (600 MHz, Chloroform-d):** 9.44 (s, 1H), 8.43 (dd, J = 7.9, 1.9 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.9 Hz, 1H), 7.72 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.63 – 7.59 (m, 1H), 7.54 (ddd, J = 8.0, 6.9, 1.0 Hz, 1H), 7.46 (d, J = 8.8 Hz, 2H), 7.27 – 7.22 (m, 1H), 7.10 (d, J = 8.3 Hz, 1H), 5.17 (d, J = 6.6 Hz, 2H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 165.5, 150.5, 144.1, 135.4, 133.1, 123.3, 131.5, 130.5, 130.0, 129.0, 127.8, 126.7, 122.9, 121.4, 119.6, 113.3, 38.6. A signal is missing due to overlap. **HR-MS (APCI):** calculated for [C₁₈H₁₄BrNO₂]⁺: m/z= 355.0234,

found: 355.0235 (Dev.: 0.14 mu; 0.32 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3341, 2991, 1643, 1544, 1260, 1125, 966, 812.

2.2.12. Synthesis of 3-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4I)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 3bromo-*N*-(hydroxymethyl)benzamide (173 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **4I** (231 mg, 0.650 mmol,

86%) as off-white solid. **Mp:** 183-185 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 9.91 (s, 1H), 9.15 (t, *J* = 7.0 Hz, 1H), 8.21 (s, 1H), 8.07 (d, *J* = 7.8 Hz, 2H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 2H), 7.79 (d, *J* = 7.5 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.35 – 7.28 (m, 1H), 7.22 (d, *J* = 8.2 Hz, 1H), 4.91 (d, *J* = 8.1 Hz, 2H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 167.4, 151.2, 137.3, 134.5, 133.9, 133.0, 131.1, 130.1, 129.4, 128.9, 126.5, 126.1, 123.1, 122.3, 122.2, 114.7, 37.7. A signal is missing due to overlap. **HR-MS (APCI):** calculated for [C₁₈H₁₄BrNO₂]⁺: m/z= 355.0216, found: 355.0219 (Dev.: 0.24 mu; 0.54 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3312, 2985, 1645, 1425, 1355, 1236, 972, 870.

2.2.13. Synthesis of 3,5-dibromo-*N*-((2-hydroxynaphthalen-1-yl)methyl) benzamide (4m)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 3,5dibromo-*N*-(hydroxymethyl)benzamide (232 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **4m** (280 mg, 0.650 mmol, 86%) as a white solid. **Mp:** 176-178 °C. ¹H **NMR (600 MHz,**

Chloroform-d): δ 9.99 (s, 1H), 9.02 (t, *J* = 4.9 Hz, 1H), 8.08 (d, *J* = 1.8 Hz, 2H), 8.00 (t, *J* = 1.8 Hz, 1H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.46 (ddd, *J* = 8.3, 6.8, 1.2 Hz, 1H), 7.32 – 7.28 (m, 1H), 7.21 (d, *J* = 8.9 Hz, 1H), 4.87 (d, *J* = 4.9 Hz, 2H). ¹³**C NMR (150 MHz, Chloroform-d):** δ 164.2, 154.2, 137.9, 136.4, 133.9, 129.9, 129.8, 128.8, 128.6, 127.1, 123.2, 123.0, 123.0, 118.9, 115.2,

34.8. **HR-MS (APCI):** calculated for $[C_{18}H_{13}Br_2NO_2]^+$: m/z= 432.9379, found: 432.9385 (Dev.: 0.64 mu; 1.47 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3341, 3026, 1664, 1641, 1466, 1320, 1174, 1003, 962, 866.

2.2.14. Synthesis of *N*-((2-hydroxynaphthalen-1-yl)methyl)-4-(trifluoromethyl) benzamide (4n)

Following GP2, GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 4-trifluoromethyl-*N*-(hydroxymethyl)benzamide (164 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to furnish **4n**

(212 mg, 0.610 mmol, 82%) as a white solid. **Mp:** 136-138 °C. ¹**H NMR (600 MHz, DMSO-***d*₆**):** δ 10.06 (s, 1H), 9.13 (t, *J* = 5.1 Hz, 1H), 8.06 (d, *J* = 8.2 Hz, 2H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.81 (d, *J* = 8.3 Hz, 3H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.47 (ddd, *J* = 8.3, 6.7, 1.3 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 4.90 (d, *J* = 5.1 Hz, 2H). ¹³**C NMR (150 MHz, DMSO-***d*₆**):** δ 166.6, 154.2, 138.2, 133.9, 131.7, 131.5, 129.8, 128.9, 128.8 (d, J = 14.1 Hz), 127.0, 125.7 (d, J = 3.7 Hz), 123.2 (d, J = 25.5 Hz), 119.1, 115.6, 55.4, 34.8. ¹⁹**F NMR (376 MHz, DMSO-***d*₆**)** δ = -67.96. **HR-MS (APCI):** calculated for [C₁₉H₁₄F₃NO₂]⁺: m/z= 345.0984, found: 345.0986 (Dev.: 0.16 mu; 0.41 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3214, 2714, 1650, 1322, 1006, 987, 684.

2.2.15. Synthesis of *N*-((2-hydroxynaphthalen-1-yl)methyl)-4-nitrobenzamide (40)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 4-nitro-*N*-(hydroxymethyl)benzamide (147 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **4o** (218 mg, 0.680 mmol,

90%) as a off-white solid. **Mp:** 188-190 °C. ¹**H NMR (600 MHz, DMSO-***d*₆**):** δ 9.54 (s, 1H), 8.26 (d, *J* = 8.8 Hz, 2H), 7.94 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.77 (d, *J* = 8.9 Hz, 1H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.30 – 7.23 (m, 2H), 7.18 (s, 1H), 5.04 (d, *J* = 6.5 Hz, 2H). ¹³**C NMR (150 MHz, DMSO-***d*₆**):** δ 167.9, 154.3, 150.0, 138.4, 132.9, 130.6, 129.2, 128.5, 127.2, 123.9, 123.3, 120.9, 120.5,

115.1, 35.9. A signal is missing due to overlap. **HR-MS (APCI)**: calculated for $[C_{18}H_{14}N_2O_4]^+$: m/z= 322.0975, found: 322.0977 (Dev.: 0.17 mu; 0.42 ppm). **IR (ATR)**: $\tilde{\nu}$ (cm⁻¹)= 3316, 3074, 1636, 1599, 1489, 1350, 1223, 1157, 1052, 857, 869, 746, 701, 681.

2.2.16. Synthesis of *N*-((2-hydroxynaphthalen-1-yl)methyl)-4-methoxy benzamide (4p)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 4-methoxy-*N*-(hydroxymethyl)benzamide (136 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (60:40 Cyclohexane /EtOAc) to furnish **4p** (215 mg, 0.700 mmol,

93%) as a pale-brown solid. **Mp:** 147-149 °C. ¹**H NMR (600 MHz, DMSO-***d*₆**):** δ 10.11 (s, 1H), 9.18 (t, *J* = 5.1 Hz, 1H), 8.10 (d, *J* = 8.2 Hz, 2H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.85 (d, *J* = 8.3 Hz, 3H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.51 (ddd, *J* = 8.3, 6.7, 1.3 Hz, 1H), 7.35 (ddd, *J* = 7.9, 6.7, 0.9 Hz, 1H), 7.25 (d, *J* = 8.8 Hz, 1H), 4.94 (d, *J* = 5.1 Hz, 2H), 3.37 (s, 3H). ¹³**C NMR (150 MHz, DMSO-***d*₆**):** δ 162.3, 150.0, 138.4, 133.5, 132.9, 130.6, 129.2, 128.5, 127.2, 125.6, 123.3, 120.9, 120.5, 115.1, 112.3, 55.3, 38.7. **HR-MS (APCI):** calculated for [C₁₉H₁₇NO₃]⁺: m/z= 307.1456, found: 307.1459 (Dev.: 0.38 mu; 0.70 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3373, 3060, 1621, 1605, 1499, 1347, 1207, 1071, 860, 750, 730, 671.

2.2.17. Synthesis of 2-ethoxy-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4q)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and 2ethoxy-*N*-(hydroxymethyl)benzamide (146 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H_2SO_4 (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (70:30 Cyclohexane /EtOAc) to furnish **4q** (220 mg, 0.680 mmol, 90%) as a

brown oil. ¹H NMR (600 MHz, Chloroform-d): δ 9.25 (s, 1H), 8.23 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 8.9 Hz, 1H), 7.52 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.34 (ddd, *J* = 8.0, 6.9, 1.0 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.07 – 7.03 (m, 1H), 6.90 (d, *J* = 8.3 Hz, 1H), 4.97 (d, *J*

= 6.6 Hz, 2H), 4.14 (q, *J* = 7.0 Hz, 2H), 1.54 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-d): δ 167.7, 157.3, 154.4, 133.6, 133.1, 132.3, 130.0, 129.1, 129.0, 126.7, 122.9, 121.4, 121.0, 120.8, 119.6, 116.5, 112.2, 64.8, 35.1, 14.9. HR-MS (APCI): calculated for $[C_{20}H_{19}NO_3]^+$: m/z= 321.1542, found: 321.1544 (Dev.: 0.16 mu; 0.41 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3391, 3014, 2841, 1648, 1589, 1477, 1230, 1140, 944, 899.

2.2.18. Synthesis of *N*-((2-hydroxynaphthalen-1-yl)methyl)-3,4,5-trimethoxy benzamide (4r)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and
OMe *N*-(hydroxymethyl)-3,4,5-trimethoxybenzamide (181 mg,
0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol
(7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture
was stirred for 7 h at 65 °C. The product was purified by column chromatography (60:40 Cyclohexane /EtOAc) to furnish 4r (225 mg, 0.610 mmol, 82%) as a brown solid. Mp: 156-158 °C.

¹H NMR (600 MHz, Chloroform-d): δ 10.22 (s, 1H), 8.93 (t, *J* = 5.2 Hz, 1H), 8.04 (d, *J* = 8.5 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.9 Hz, 1H), 7.48 (ddd, *J* = 8.3, 6.8, 1.2 Hz, 1H), 7.31 (ddd, *J* = 7.8, 6.7, 0.8 Hz, 1H), 7.20 (d, *J* = 8.9 Hz, 3H), 4.87 (d, *J* = 5.2 Hz, 2H), 3.80 (s, 6H), 3.68 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d): δ 167.0, 154.3, 153.0, 140.5, 133.9, 129.8, 129.3, 128.8, 128.7, 127.0, 123.3, 123.1, 119.3, 116.0, 105.5, 60.5, 56.5, 34.9. HR-MS (APCI): calculated for $[C_{21}H_{21}NO_5]^+$: m/z= 367.1491, found: 367.1492 (Dev.: 0.13 mu; 0.35 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3370, 2997, 1623, 1574, 1431, 1235, 1174, 1156, 1119, 1000, 885, 789, 747, 703.

2.2.19. Synthesis of *N*-((2-hydroxynaphthalen-1-yl)methyl)picolinamide (4s)

Following GP2, 2-Naphthol (108 mg, 0.750 mmol, 1.00 eq.) and *N*-(hydroxymethyl)picolinamide (114 mg, 0.750 mmol, 1.00 eq.) were dissolved in anhydrous ethanol (7.50 mL). Then, conc H₂SO₄ (1.10 mL) and the reaction mixture was stirred for 7 h at 65 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to furnish **4s** (162 mg, 0.580 mmol, 78%) as a white solid.

Mp: 187-189 °C. ¹**H NMR (600 MHz, Chloroform-d):** δ 10.11 (s, 1H), 9.00 (s, 1H), 8.54 (dd, J = 4.3, 2.0 Hz, 1H), 8.22 (d, J = 3.8 Hz, 1H), 8.19 (d, J = 7.9 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.85 (td, J = 7.7, 1.6 Hz, 1H), 7.56 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H),

7.34 (d, J = 1.1 Hz, 1H), 7.32 (dd, J = 2.8, 1.0 Hz, 1H), 7.11 (d, J = 2.5 Hz, 1H), 7.10 (d, J = 2.5 Hz, 1H), 5.02 (d, J = 6.9 Hz, 2H). ¹³**C** NMR (150 MHz, Chloroform-d): δ 165.7, 151.6, 148.2, 130.2, 129.9, 128.9, 127.8, 126.5, 126.4, 123.6, 123.1, 121.3, 120.6, 118.1, 117.7, 109.5, 26.9. HR-MS (APCI): calculated for [C₁₇H₁₄N₂O₂]⁺: m/z= 278.1035, found: 278.1038 (Dev.: 0.26 mu; 0.65 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3389, 3016, 2871, 1647, 1587, 1339, 1248, 1018, 985, 882.

2.3. Synthesis of Spirooxazoline compounds (GP3)

Racemic products: To a stirred solution of *N*-((2-Hydroxynaphthalen-1yl)methyl)benzamide derivatives (0.500 mmol, 1.00 eq.) in MeCN (10.0 mL) was added 2-iodo anisole (0.500 mmol, 1.00 eq.) and *m*-CPBA (75%, 0.750 mmol, 1.50 eq.). The reaction mixture was stirred for 16 hours at room temperature. Then, aqueous NaHCO₃ solution (10.00 ml) was added and extracted with CH₂Cl₂ (15.00 mL x 2) and the organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure. The product was purified by column chromatography using mixture of (cyclohexane: EtOAc) to yield the desired product.

Optical Active Products: To a stirred solution of *N*-((2-Hydroxynaphthalen-1yl)methyl)benzamide derivatives (0.150 mmol, 1.00 eq.) in MeCN (3.00 mL) was added **6d** (10.0 mol%) and *m*-CPBA (75%, 0.230 mmol, 1.50 eq.). The reaction mixture was stirred for 16 hours at 0 °C. Then, aqueous NaHCO₃ solution (3.00 ml) was added and extracted with CH_2Cl_2 (5.00 mL x 2) and the organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure. The product was purified by column chromatography using mixture of (cyclohexane: EtOAc) to yield the desired product.

2.3.1. Synthesis of (*S*)-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2-one (5a)

Following GP3, *N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (39.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred

for 16 h at 0 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **5a** (34.0 mg, 0.120 mmol, 82%) as a pale-yellow solid. **Mp:** 169-171 °C. **[\alpha]**_D²³: -3.60 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, Chloroform-d): δ

8.08 (dt, J = 8.5, 1.6 Hz, 2H), 7.56 – 7.52 (m, 1H), 7.51 – 7.35 (m, 7H), 6.22 (d, J = 10.0 Hz, 1H), 4.49 (d, J = 14.7 Hz, 1H), 4.02 (d, J = 14.7 Hz, 1H). ¹³C NMR (150 MHz, **Chloroform-d):** δ 197.7, 164.2, 145.7, 142.2, 131.9, 130.9, 129.6, 129.0, 128.9, 128.7, 128.5, 126.9, 125.6, 123.6, 86.5, 69.8. **HR-MS (APCI):** calculated for [C₁₈H₁₃NO₂]⁺: m/z= 275.1024, found: 275.1108 (Dev.: 0.33 mu; 0.78 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3029, 2847, 1679, 1653, 1395, 1342, 1294, 1065, 1037, 925, 812, 780, 766, 690. Analytical data is in accordance with literature data.⁶

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 90:10 hexane/*i*-PrOH, 1 mL/min, t = 17.26 min (*major*), t = 24.09 min (*minor*).

2.3.2. Synthesis of (S)-6-bromo-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (5b)

Following GP3, N-((6-bromo-2-hydroxynaphthalen-1-yl)methyl) benzamide (53.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the

reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to furnish **5b** (49.0 mg, 0.140 mmol, 92%) as a brown solid. **Mp:** 194-196 °C. $[\alpha]_{D}^{23}$: -18.5 (c 1.0 in CHCl₃); ¹H **NMR (600 MHz, Chloroform-d)**: δ 8.05 (dt, J = 8.5, 1.7 Hz, 2H), 7.57 – 7.49 (m, 3H), 7.49 – 7.44 (m, 2H), 7.41 (d, J = 10.0 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 6.25 (d, J = 10.0 Hz, 1H), 4.47 (d, J = 14.8 Hz, 1H), 3.99 (d, J = 14.8 Hz, 1H). ¹³C **NMR (150 MHz, Chloroform-d)**: δ 196.7, 164.0, 143.9, 140.8, 133.4, 132.0, 131.9, 130.7, 128.6, 128.4, 127.1, 126.6, 124.7, 122.7, 86.0, 69.5. **HR-MS (APCI)**: calculated for [C₁₈H₁₂BrNO₂]⁺: m/z= 353.0121, found: 353.0124 (Dev.: 0.22 mu; 0.63 ppm). **IR (ATR)**: $\tilde{\nu}$ (cm⁻¹)= 3348, 3038, 1670, 1600, 1495, 1338, 1265, 1224, 1059, 894, 882, 831, 796, 673.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 90:10 hexane/*i*-PrOH, 1.3 mL/min, t = 16.27 min (*minor*), t = 26.29 min (*major*).

2.3.3. Synthesis of (S)-7-methoxy-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'oxazol]-2-one (5c)

Following GP3, *N*-((2-hydroxy-7-methoxynaphthalen-1-yl)methyl) benzamide (46.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the

reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (75:25 Cyclohexane /EtOAc) to furnish **5c** (33.0 mg, 0.110 mmol, 72%) as a brown solid. **Mp:** 170-172 °C. $[\alpha]_{D}^{23}$: -10.6 (c 1.0 in CHCI₃); ¹H **NMR (600 MHz, Chloroform-d):** δ 8.12 – 8.04 (m, 2H), 7.57 – 7.51 (m, 1H), 7.49 – 7.41 (m, 3H), 7.29 (d, *J* = 8.4 Hz, 1H), 6.96 (d, *J* = 2.6 Hz, 1H), 6.86 (dd, *J* = 8.4, 2.6 Hz, 1H), 6.07 (d, *J* = 9.9 Hz, 1H), 4.48 (d, *J* = 14.7 Hz, 1H), 4.01 (d, *J* = 14.7 Hz, 1H), 3.79 (s, 3H). ¹³C **NMR (150 MHz, Chloroform-d):** δ 197.7, 164.2, 162.0, 145.7, 144.6, 131.8, 131.4, 128.7, 128.5, 126.9, 122.1, 120.9, 113.5, 112.0, 86.6, 70.0, 55.6. **HR-MS (APCI):** calculated for [C₁₉H₁₅NO₃]⁺: m/z= 305.1143, found: 305.1144 (Dev.: 0.16 mu; 0.38 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3338, 2978, 2874, 1646, 1568, 1445, 1316, 1291, 1092, 1058, 1010, 895, 784, 754, 674.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 254 nm, 90:10 hexane/*i*-PrOH, 1.0 mL/min, t = 13.32 min (*minor*), t = 17.19 min (*major*).

2.3.4. Synthesis of (S)-7-hydroxy-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'oxazol]-2-one (5d)

Following GP3, N-((2,7-dihydroxynaphthalen-1-yl)methyl) benzamide (46.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the

reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to furnish **5d** (24.0 mg, 0.080 mmol, 55%) as a white solid. **Mp:** 193-195 °C. $[\alpha]_{p}^{23}$: -5.00 (c 1.0 in CHCl₃); ¹H NMR (600 **MHz, Chloroform-d):** δ 8.41 – 8.35 (m, 2H), 7.87 – 7.81 (m, 1H), 7.80 – 7.71 (m, 3H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.26 (d, *J* = 2.6 Hz, 1H), 7.16 (dd, *J* = 8.4, 2.6 Hz, 1H), 6.38 (d, *J* = 9.9 Hz, 1H), 4.78 (d, *J* = 14.7 Hz, 1H), 4.31 (d, *J* = 14.7 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-d): δ 194.0, 164.2, 158.4, 145.7, 139.3, 131.8, 131.4, 129.8, 128.5,

127.9, 126.9, 122.1, 115.1, 112.0, 90.0, 66.3. **HR-MS (APCI)**: calculated for $[C_{18}H_{13}NO_3]^+$: m/z= 291.1032, found: 291.1034 (Dev.: 0.23 mu; 0.46 ppm). **IR (ATR)**: $\tilde{\nu}$ (cm⁻¹)= 3368, 3214, 2877, 2684, 1684, 1647, 1433, 1201, 1066, 972, 845, 688.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 80:20 hexane/*i*-PrOH, 1.0 mL/min, t = 19.44 min (*major*), t = 22.20 min (*minor*).

2.3.5. Synthesis of (S)-methyl 2-oxo-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'oxazole]-3-carboxylate (5e)

Following GP3, methyl 4-(benzamidomethyl)-3-hydroxy-2naphthoatemethyl)benzamide (50.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h

at 0 °C. The product was purified by column chromatography (70:30 Cyclohexane /EtOAc) to furnish **5e** (43.0 mg, 0.130 mmol, 86%) as a brown solid. **Mp:** 155-157 °C. $[\alpha]_{D}^{23}$: -22.4 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, Chloroform-d): δ 8.08 (dt, J = 8.5, 1.6 Hz, 2H), 7.57 – 7.42 (m, 8H), 4.59 (d, J = 14.9 Hz, 1H), 3.97 (d, J = 14.9 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d): δ 192.6, 164.4, 164.3, 151.0, 143.6, 132.9, 131.6, 129.2, 128.7, 128.5, 127.4, 126.8, 125.4, 124.9, 88.2, 68.3, 52.6, 26.9. HR-MS (APCI): calculated for [C₂₀H₁₅NO₄]⁺: m/z= 333.1021, found: 333.1023 (Dev.: 0.19 mu; 0.43 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3120, 2914, 1685, 1643, 1421, 1258, 1105, 847, 658.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 320 nm, 90:10 hexane/*i*-PrOH, 1 mL/min, t = 28.78 min (*minor*), t = 36.31 min (*major*).

2.3.6. Synthesis of (S)-2'-phenyl-3-propionyl-2*H*,4'*H*-spiro[naphthalene-1,5'oxazol]-2-one (5f)

Following GP3, ethyl 4-(benzamidomethyl)-3-hydroxy-2-naphthoate (52.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column

chromatography (75:25 Cyclohexane /EtOAc) to furnish 5f (32.0 mg, 0.090 mmol,

61%) as a brown solid. **Mp:** 150-152 °C. **[α]**²³_p: -11.4 (c 1.0 in CHCl₃); ¹H NMR (600 **MHz, Chloroform-d):** δ 8.24 (s, 1H), 8.10 – 8.06 (m, 2H), 7.62 – 7.39 (m, 7H), 4.60 (d, J = 14.9 Hz, 1H), 4.36 (qt, J = 7.1, 3.7 Hz, 2H), 3.96 (d, J = 14.9 Hz, 1H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-d): δ 192.8, 164.5, 164.1, 150.6, 144.0, 132.9, 132.1, 131.7, 129.3, 128.9, 128.7, 127.6, 126.9, 125.6, 125.4, 88.3, 68.5, 61.8, 14.4. HR-MS (APCI): calculated for [C₂₁H₁₇NO₃]⁺: m/z= 331.1302, found: 331.1305 (Dev.: 0.27 mu; 0.68 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3147, 3012, 1662, 1654, 1426, 1399, 1201, 1008, 984, 880, 674.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 320 nm, 90:10 hexane/*i*-PrOH, 1 mL/min, t = 13.22 min (*minor*), t = 17.03 min (*major*).

2.3.7. Synthesis of (S)-2'-phenyl-5,6,7,8-tetrahydro-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5g)

Following GP3, N-((2-hydroxy-5,6,7,8-tetrahydronaphthalen-1yl)methyl)benzamide (43.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*- CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction

mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to furnish **5g** (36.0 mg, 0.130 mmol, 85%) as a pale-yellow solid. **Mp:** 148-150 °C. **[\alpha]**²³_p: -12.9 (c 1.0 in CHCl₃); ¹**H NMR (600 MHz, Chloroform-d):** δ 8.03 – 7.95 (m, 2H), 7.55 – 7.39 (m, 4H), 6.81 (d, *J* = 9.9 Hz, 1H), 6.00 (d, *J* = 9.9 Hz, 1H), 4.25 (d, *J* = 14.7 Hz, 1H), 3.94 (d, *J* = 14.7 Hz, 1H), 2.37 – 2.19 (m, 3H), 1.80 – 1.58 (m, 4H). ¹³C NMR (150 MHz, Chloroform-d): δ 200.3, 164.3, 157.2, 146.8, 145.3, 131.7, 128.6, 128.4, 127.3, 127.0, 121.7, 87.5, 66.4, 28.6, 23.3, 22.2, 21.5. A signal is missing due to overlap. HR-MS (APCI): calculated for [C₁₈H₁₇NO₂]⁺: m/z= 279.1534, found: 279.1535 (Dev.: 0.11 mu; 0.26 ppm). **IR** (ATR): $\tilde{\nu}$ (cm⁻¹)= 2930, 2859, 1731, 1676, 1494, 1448, 1336, 1247, 1088, 973, 956, 776, 749, 670.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 254 nm, 85:15 hexane/*i*-PrOH, 1 mL/min, t = 6.28 min (*minor*), t = 7.71 min (*major*).

2.3.8. Synthesis of (S)-2'-(4-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (5h)

Following GP3, 4-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl) benzamide (53.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to furnish **5h** (34.0 mg,

0.100 mmol, 64%) as a brown solid. **Mp:** 186-188 °C. $[\alpha]_{D}^{23}$: -11.2 (c 1.0 in CHCl₃); $[\alpha]_{D}^{23}$: -20.6 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, Chloroform-d): δ 8.29 (dd, J = 8.3, 1.2 Hz, 2H), 7.81 – 7.73 (m, 3H), 7.73 – 7.67 (m, 2H), 7.65 (d, J = 10.0 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 6.49 (d, J = 10.0 Hz, 1H), 4.71 (d, J = 14.8 Hz, 1H), 4.23 (d, J = 14.8 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-d): δ 195.4, 162.6, 142.5, 139.4, 132.0, 130.6, 130.5, 129.3, 127.2, 127.1, 125.8, 125.2, 123.3, 121.3, 84.6, 68.1. HR-MS (APCI): calculated for [C₁₈H₁₂BrNO₂]⁺: m/z= 353.0078, found: 353.0079 (Dev.: 0.17 mu; 0.44 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3339, 3063, 1651, 1584, 1474, 1286, 1245, 1069, 1011, 967, 876, 844, 746, 686.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 320 nm, 90:10 hexane/*i*-PrOH, 1 mL/min, t = 10.38 min (*minor*), t = 12.92 min (*major*).

2.3.9. Synthesis of (S)-2'-(4-chlorophenyl)-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (5i)

Following GP3, 4-chloro-*N*-((2-hydroxynaphthalen-1-yl)methyl) benzamide (47.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **5i** (35.0 mg,

0.110 mmol, 75%) as a colorless oil. $[\alpha]_{D}^{23}$: -14.6 (c 1.0 in CHCl₃); $[\alpha]_{D}^{23}$: -15.9 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, Chloroform-d): δ 8.10 – 8.00 (m, 2H), 7.52 (d, *J* = 9.9 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.43 – 7.38 (m, 2H), 7.04 – 6.98 (m, 2H), 6.26 (d, *J* = 10.0 Hz, 1H), 4.50 (d, *J* = 14.5 Hz, 1H), 4.03 (d, *J* = 14.5 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-d): δ 193.4, 164.1, 139.8, 138.2, 133.3, 132.0, 130.9, 130.5, 129.6,

128.8, 127.2, 125.6, 123.7, 90.8, 66.2. A signal is missing due to overlap. **HR-MS** (APCI): calculated for $[C_{18}H_{12}CINO_2]^+$: m/z= 309.0582, found: 309.0584 (Dev.: 0.23 mu; 0.57 ppm). (ATR): $\tilde{\nu}$ (cm⁻¹)= 3265, 2965, 1648, 1598, 1244, 1160, 1036, 954, 812, 745, 694.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 85:15 hexane/*i*-PrOH, 1.0 mL/min, t = 7.11 min (*minor*), t = 10.87 min (*major*).

2.3.10. Synthesis of (S)-2'-(4-fluorophenyl)-2*H*,4'*H*-spiro[naphthalene-1,5'oxazol]-2-one (5j)

Following GP3, 4-fluoro-*N*-((2-hydroxynaphthalen-1-yl)methyl) benzamide (44.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **5j** (31.0 mg,

0.110 mmol, 70%) as off-white solid. **Mp:** 166-168 °C. $[\alpha]_{p}^{23}$: -21.7 (c 1.0 in CHCl₃); ¹H **NMR (600 MHz, Chloroform-d):** δ 8.12 – 7.98 (m, 2H), 7.64 (t, *J* = 7.0 Hz, 2H), 7.51 (dd, *J* = 9.9, 6.9 Hz, 1H), 7.35 – 7.24 (m, 4H), 6.05 (dd, *J* = 10.0, 5.5 Hz, 1H), 4.32 (dd, *J* = 15.2, 5.2 Hz, 1H), 3.86 (dd, *J* = 15.2, 4.9 Hz, 1H). ¹³C **NMR (150 MHz, Chloroform-d):** δ 195.4, 160.7, 144.6, 139.8, 131.2 (d, *J* = 32.4 Hz), 130.1, 129.4, 128.8, 128.3, 127.6 (d, *J* = 16.9 Hz), 127.4, 123.9, 123.1, 121.5, 84.7, 67.9. ¹⁹F **NMR (376 MHz, CDCl₃)** δ = -114.53. **HR-MS (APCl):** calculated for [C₁₈H₁₂FNO₂]⁺: m/z= 293.0881, found: 293.0883 (Dev.: 0.17 mu; 0.39 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3387, 3102, 2964, 1684, 1651, 1542, 1436, 1332, 1162, 1008, 922, 722.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 90:10 hexane/*i*-PrOH, 0.7 mL/min, t = 20.21 min (*major*), t = 23.51 min (*minor*).

2.3.11. Synthesis of (S)-2'-(2-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (5k)

Following GP3, 2-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl) benzamide (53.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column

chromatography (80:20 Cyclohexane /EtOAc) to furnish **5k** (46.0 mg, 0.130 mmol, 87%) as a brown solid. **Mp:** 185-187 °C. **[\alpha]**_D²³: -23.3 (c 1.0 in CHCl₃); ¹H **NMR (600 MHz, Chloroform-d)**: δ 8.16 (dd, J = 7.8, 1.8 Hz, 1H), 8.05 (t, J = 1.7 Hz, 1H), 7.97 – 7.88 (m, 2H), 7.83 (dd, J = 7.6, 1.8 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.54 (dt, J = 2.1, 1.0 Hz, 1H), 7.04 – 6.98 (m, 2H), 6.30 (d, J = 9.9 Hz, 1H), 4.46 (d, J = 14.6 Hz, 1H), 4.01 (d, J = 14.6 Hz, 1H). ¹³C **NMR (150 MHz, Chloroform-d)**: δ 195.5, 168.0, 163.5, 150.5, 139.2, 132.6, 131.8, 131.1, 130.3, 129.4, 129.4, 127.0, 125.2, 124.0, 123.2, 120.0, 87.4, 68.3. **HR-MS (APCI)**: calculated for [C₁₈H₁₂BrNO₂]⁺: m/z= 353.0120, found: 353.0124 (Dev.: 0.33 mu; 0.95 ppm). **IR (ATR)**: $\tilde{\nu}$ (cm⁻¹)= 3248, 2836, 1657, 1348, 1244, 1062, 933, 842.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 90:10 hexane/*i*-PrOH, 1 mL/min, t = 12.28 min (*major*), t = 15.57 min (*minor*).

2.3.12. Synthesis of (S)-2'-(3-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (5l)

Following GP3, 3-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl) benzamide (53.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **5I** (43.0 mg,

0.120 mmol, 81%) as a brown solid. **Mp:** 191-193 °C. $[\alpha]_{D}^{23}$: -14.8 (c 1.0 in CHCl₃); ¹H **NMR (600 MHz, Chloroform-d):** δ 8.21 – 8.02 (m, 2H), 7.58 – 7.53 (m, 1H), 7.51 – 7.41 (m, 3H), 7.31 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 2.6 Hz, 1H), 6.88 (dd, *J* = 8.4, 2.6 Hz, 1H), 6.09 (d, *J* = 9.9 Hz, 1H), 4.49 (d, *J* = 14.7 Hz, 1H), 4.03 (d, *J* = 14.7 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-d): δ 164.3, 145.8, 144.7, 138.9, 134.0, 133.1,

131.9, 131.5, 129.6, 128.8, 128.6, 127.0, 125.3, 124.1, 122.2, 121.0, 86.7, 70.1. **HR-MS (APCI):** calculated for $[C_{18}H_{12}BrNO_2]^+$: m/z= 353.0121, found: 353.0124 (Dev.: 0.30 mu; 0.85 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3301, 3014, 2710, 1652, 1588, 1452, 1365, 1112, 930, 851.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 85:15 hexane/*i*-PrOH, 1 mL/min, t = 12.62 min (*major*), t = 15.74 min (*minor*).

2.3.13. Synthesis (S)-2'-(3,5-dibromophenyl)-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (5m)

Following GP3, 3,5-dibromo-*N*-((2-hydroxynaphthalen-1-yl) methyl)benzamide (65.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc)

to furnish **5m** (51.0 mg, 0.120 mmol, 79%) as a pale-brown solid. **Mp:** 161-163 °C. $[\alpha]_{p}^{23}$: -13.8 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, Chloroform d): δ 8.15 (d, *J* = 1.8 Hz, 2H), 7.83 (t, *J* = 1.8 Hz, 1H), 7.50 (d, *J* = 10.0 Hz, 1H), 7.47 – 7.36 (m, 4H), 6.22 (d, *J* = 10.0 Hz, 1H), 4.49 (d, *J* = 15.1 Hz, 1H), 4.02 (d, *J* = 15.1 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-d): δ 197.2, 161.7, 145.9, 141.5, 139.5, 137.2, 131.0, 130.4, 129.8, 129.2, 123.4, 123.1, 111.0, 86.7, 69.6. A signal is missing due to overlap. HR-MS (APCI): calculated for [C₁₈H₁₁Br₂NO₂]⁺: m/z= 430.9302, found: 430.9304 (Dev.: 0.21 mu; 0.50 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3410, 3110, 1685, 1623, 1584, 1446, 1230, 1140, 942, 847, 732.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 85:15 hexane/*i*-PrOH, 1 mL/min, t = 9.48 min (*minor*), t = 10.83 min (*major*).

2.3.14. Synthesis of (S)-2'-(4-(trifluoromethyl)phenyl)-2H,4'H-spiro[naphth alene -1,5'-oxazol]-2-one (5n)

Following GP3, *N*-((2-hydroxynaphthalen-1-yl)methyl)-4-(trifluoro methyl)benzamide (52.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*- CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to

furnish **5n** (35.0 mg, 0.100 mmol, 68%) as a brown solid. **Mp:** 158-160 °C. $[\alpha]_D^{23}$: -16.3 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.13 (d, *J* = 8.0 Hz, 2H), 7.72 (t, *J* = 7.0 Hz, 2H), 7.59 (dd, *J* = 9.9, 6.9 Hz, 1H), 7.45 – 7.32 (m, 4H), 6.13 (dd, *J* = 10.0, 5.5 Hz, 1H), 4.40 (dd, *J* = 15.2, 5.2 Hz, 1H), 3.94 (dd, *J* = 15.2, 4.9 Hz, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 196.6, 161.9, 145.9, 141.0, 132.4, 132.2, 130.6, 130.1, 129.6, 128.8, 128.7 (d, J = 16.9 Hz),128.5, 125.2, 124.3, 122.8, 86.0, 69.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ = -66.15. HR-MS (APCI): calculated for [C₁₉H₁₂F₃NO₂]⁺: m/z= 343.1047, found: 343.1049 (Dev.: 0.16 mu; 0.45 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3402, 3004, 1689, 1652, 1335, 1269, 1025, 935, 841, 774, 651.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 93:7 hexane/*i*-PrOH, 1.0 mL/min, t = 15.81 min (*major*), t = 22.18 min (*minor*).

2.3.15. Synthesis of (S)-2'-(4-nitrophenyl)-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (50)

Following GP3, N-((2-hydroxynaphthalen-1-yl)methyl)-4-nitro benzamide (48.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (85:15 Cyclohexane /EtOAc) to furnish **5o**

(31.0 mg, 0.100 mmol, 65%) as a brown solid. **Mp:** 174-176 °C. $[\alpha]_{D}^{23}$: -10.4 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, Chloroform-d): δ 8.11 – 7.96 (m, 2H), 7.49 (d, J = 9.9 Hz, 1H), 7.46 – 7.34 (m, 4H), 7.00 – 6.94 (m, 2H), 6.22 (d, J = 10.0 Hz, 1H), 4.46 (d, J = 14.5 Hz, 1H), 3.99 (d, J = 14.5 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-d): δ 194.2, 163.8, 149.3, 144.2, 139.6, 133.9, 132.7, 130.3, 129.3, 128.6, 124.0, 123.4,

122.5, 91.0, 68.0. A signal is missing due to overlap. **HR-MS (APCI):** calculated for $[C_{18}H_{12}N_2O_4]^+$: m/z= 320.0941, found: 320.0944 (Dev.: 0.27 mu; 0.60 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3321, 2935, 1657, 1580, 1325, 1040, 991, 802.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 320 nm, 90:10 hexane/*i*-PrOH, 1 mL/min, t = 10.93 min (*minor*), t = 14.36 min (*major*).

2.3.16. Synthesis of (S)-2'-(4-methoxyphenyl)-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (5p)

Following GP3, *N*-((2-hydroxynaphthalen-1-yl)methyl)-4-methoxy benzamide (46.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (75:25 Cyclohexane /EtOAc) to

furnish **5p** (42.0 mg, 0.140 mmol, 92%) as a brown solid. **Mp:** 180-182 °C. $[\alpha]_D^{23}$: -17.3 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, Chloroform-d): δ 8.08 – 7.97 (m, 2H), 7.48 (d, *J* = 9.9 Hz, 1H), 7.45 – 7.34 (m, 4H), 6.99 – 6.93 (m, 2H), 6.21 (d, *J* = 10.0 Hz, 1H), 4.45 (d, *J* = 14.5 Hz, 1H), 3.99 (d, *J* = 14.5 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (150 MHz, Chloroform-d): δ 197.9, 164.1, 162.5, 145.6, 142.4, 130.9, 130.5, 129.6, 129.0, 128.8, 125.6, 123.7, 119.4, 113.9, 86.5, 69.7, 55.5. HR-MS (APCI): calculated for [C₁₉H₁₅NO₃]⁺: m/z= 305.1285, found: 305.1288 (Dev.: 0.33 mu; 0.76 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3345, 3106, 2845, 1680, 1640, 1265, 1104, 934, 900, 831.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 320 nm, 90:10 hexane/*i*-PrOH, 0.7 mL/min, t = 14.48 min (*minor*), t = 15.26 min (*major*).

2.3.17. Synthesis of (S)-2'-(2-ethoxyphenyl)-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (5q)

Following GP3, 2-ethoxy-*N*-((2-hydroxynaphthalen-1-yl)methyl) benzamide (48.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column

chromatography (70:30 Cyclohexane /EtOAc) to furnish **5q** (41.0 mg, 0.130 mmol, 86%) as a pale-yellow solid. **Mp:** 176-178 °C. $[\alpha]_{D}^{23}$: -8.00 (c 1.0 in CHCl₃); ¹H **NMR** (600 MHz, Chloroform-d): δ 8.19 (dd, J = 7.8, 1.8 Hz, 1H), 8.08 (t, J = 1.7 Hz, 1H), 7.99 – 7.92 (m, 2H), 7.87 (dd, J = 7.6, 1.8 Hz, 1H), 7.70 – 7.65 (m, 1H), 7.57 (dt, J = 2.1, 1.0 Hz, 1H), 7.06 – 7.01 (m, 2H), 6.33 (d, J = 9.9 Hz, 1H), 4.49 (d, J = 14.6 Hz, 1H), 4.22 (q, J = 6.9 Hz, 2H), 4.04 (d, J = 14.6 Hz, 1H), 1.47 (t, J = 7.0 Hz, 3H). ¹³C **NMR (150 MHz, Chloroform-d):** δ 194.7, 165.6, 157.2, 140.0, 133.6, 131.8, 130.7, 130.0, 129.8, 128.7, 128.2, 124.3, 123.6, 121.1, 120.4, 112.3, 86.3, 64.8, 64.6, 14.7. **HR-MS (APCI):** calculated for [C₂₀H₁₇NO₃]⁺: m/z= 319.1433, found: 319.1437 (Dev.: 0.41 mu; 0.97 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3394, 3104, 2901, 1674, 1452, 1334, 1024, 941, 874, 714.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 254 nm, 80:20 hexane/*i*-PrOH, 1 mL/min, t = 6.93 min (*major*), t = 9.15 min (*minor*).

2.3.18. Synthesis of (S)-2'-(3,4,5-trimethoxyphenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5r)

Following GP3, N-((2-hydroxynaphthalen-1-yl)methyl)-3,4,5trimethoxybenzamide (55.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography (65:35

Cyclohexane /EtOAc) to furnish **5r** (50.0 mg, 0.140 mmol, 91%) as a brown solid. **Mp:** 172-174 °C. **[\alpha]**_D²³**:** -20.7 (c 1.0 in CHCl₃); ¹**H NMR (600 MHz, Chloroform-d):** δ 7.49 (d, *J* = 10.0 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.41 – 7.35 (m, 2H), 7.32 (s, 2H), 6.22 (d, *J* = 10.0 Hz, 1H), 4.47 (d, *J* = 14.7 Hz, 1H), 4.01 (d, *J* = 14.7 Hz, 1H), 3.90 (s, 9H). ¹³**C**

NMR (150 MHz, Chloroform-d): δ 197.7, 164.1, 153.2, 145.7, 142.1, 141.2, 130.9, 129.6, 129.0, 129.0, 125.7, 123.6, 122.1, 105.9, 86.5, 69.8, 61.0, 56.3. **HR-MS (APCI):** calculated for [C₂₁H₁₉NO₅]⁺: m/z= 365.1302, found: 365.1303 (Dev.: 0.12 mu; 0.26 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3346, 3125, 2871, 1688, 1654, 1447, 1399, 1268, 1164, 943, 877, 801, 685.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 254 nm, 90:10 hexane/*i*-PrOH, 1 mL/min, t = 9.35 min (*major*), t = 10.73 min (*minor*).

2.3.19. Synthesis of (S)-2'-(pyridin-2-yl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5s)

Following GP3, *N*-((2-hydroxynaphthalen-1-yl)methyl)picolinamide (48.0 mg, 0.150 mmol, 1.00 eq.) was dissolved in MeCN (3.00 mL). Then, **6d** (9.00 mg, 0.015 mmol, 10 mol%) and *m*-CPBA (52.0 mg, 0.230 mmol, 1.50 eq.) were added and the reaction mixture was stirred for 16 h at 0 °C. The product was purified by column chromatography

(85:15 Cyclohexane /EtOAc) to furnish **5s** (32.0 mg, 0.120 mmol, 82%) as a white solid. **Mp:** 191-193 °C. **[\alpha]**²³_D -6.90 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, Chloroformd): δ 8.71 (ddd, *J* = 4.8, 1.6, 0.9 Hz, 1H), 8.37 (dt, *J* = 7.9, 1.0 Hz, 1H), 8.16 (d, *J* = 8.6 Hz, 1H), 7.95 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.74 (ddd, *J* = 8.4, 6.9, 1.3 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.55 – 7.52 (m, 2H), 7.01 (dd, *J* = 8.2, 1.3 Hz, 1H), 5.20 (d, *J* = 6.9 Hz, 2H). ¹³C NMR (150 MHz, Chloroform-d): δ 193.5, 163.9, 148.9, 145.4, 139.5, 137.4, 132.4, 130.8, 129.5, 128.8, 127.0, 123.8, 123.3, 122.5, 89.4, 66.1. HR-MS (APCI): calculated for [C₁₇H₁₂N₂O₂]⁺: m/z= 276.0964, found: 276.0964 (Dev.: 0.08 mu; 0.19 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3392, 3212, 2714, 1690, 1644, 1454, 1381, 1140, 942, 814, 742.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 85:15 hexane/*i*-PrOH, 1 mL/min, t = 7.22 min (*minor*), t = 9.13 min (*major*).

2.4. Derivetizations

2.4.1. Synthesis of (1*S*,2*R*)-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2-ol (7)

To a solution of **5a** (22.0 mg, 0.080 mmol, 1.00 eq.) and CeCl3 (5.00 mg, 0.080 mmol, 1.00 eq.) in (4.00 mL) of a mixture solution of MeOH:THF (1:1) was added NaBH₄ (4.00 mg, 0.080 mmol, 1.00 eq.) at -78 °C. The reaction mixture was stirred for 20 min, then diluted with EtOAc (5.00 mL), washed with 1M HCl, dried over Na₂SO₄ and

evaporate the solvent under reduced pressure. The product was purified by column chromatography (80:20 Cyclohexane /EtOAc) to furnish **7** (19.0 mg, 0.070 mmol, 86%) as off-white solid. **Mp:** 188-190 °C. $[\alpha]_{D}^{23}$: -18.33 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, **Chloroform-d)**: δ 7.90 (d, *J* = 8.2 Hz, 1H), 7.84 – 7.75 (m, 3H), 7.57 – 7.48 (m, 2H), 7.47 – 7.39 (m, 2H), 7.36 (dd, *J* = 12.6, 5.9 Hz, 3H), 7.07 (bs, 1H), 5.08 – 4.96 (m, 2H), 4.71 (d, *J* = 7.4 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-d): δ 170.0, 154.5, 132.3, 130.3, 129.1, 128.8, 128.6, 127.2, 125.6, 123.0, 121.0, 120.7, 115.7, 99.7, 35.7, 30.3. HR-MS (APCI): calculated for [C₁₈H₁₅NO₂]⁺: m/z= 277.0642, found: 277.0644 (Dev.: 0.23 mu; 0.52 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3411, 3145, 2632, 1661, 1642, 1366, 1185, 965, 830, 702.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 254 nm, 90:10 hexane/*i*-PrOH, 1 mL/min, t = 12.82 min (*minor*), t = 19.54 min (*major*). The suggested relative stereochemistry is based on an NOE-Experiment showing no cross peaks between the oxazolines methylene protons 5.08 - 4.96 ppm) and the tertiary proton of the 2-naphthalenone (4.71 ppm).

2.4.2. Synthesis of (S)-2'-phenyl-2H,4'H-spiro[benzo[d]oxepine-1,5'-oxazol]-2one (8)

To a solution of **5a** (22.0 mg, 0.080 mmol, 1.00 eq.) dissolved in DCM (0.4 mL) was added phosphate buffer (pH = 7.00, 0.4 mL) and *m*- CPBA (28.0 mg, 0.080 mmol, 1.00 eq.). The reaction mixture was stirred at room temperature for 4 h at -78 °C. Then, diluted with Et₂O (5.00 mL) and guenched with agueous Na₂S₂O₃ and extract with Et₂O

(2x 5), washed with brine. dried over Na₂SO₄ and evaporate the solvent under reduced pressure. The product was purified by column chromatography (90:10 Cyclohexane /EtOAc) to furnish **8** (14.7 mg, 0.050 mmol, 63%) as colorless oil.

[α]²³_D: -23.82 (c 1.0 in CHCl₃); ¹H NMR (600 MHz, Chloroform-d): δ 7.90 (dd, J = 8.2, 1.2 Hz, 2H), 7.39 – 7.34 (m, 1H), 7.34 – 7.26 (m, 4H), 7.24 (dd, J = 6.6, 2.0 Hz, 1H), 7.23 – 7.17 (m, 2H), 6.04 (d, J = 10.0 Hz, 1H), 4.31 (d, J = 14.7 Hz, 1H), 3.84 (d, J = 14.7 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-d): δ 167.9, 165.7, 138.9, 136.9, 130.3, 130.1, 129.5, 128.9, 128.5, 128.0, 127.5, 126.7, 126.6, 112.2, 94.0, 67.0. HR-MS (APCI): calculated for [C₁₈H₁₃NO₃]⁺: m/z= 291.0842, found: 291.0841 (Dev.: 0.18 mu; 0.47 ppm). IR (ATR): $\tilde{\nu}$ (cm⁻¹)= 3241, 3015, 2744, 2480, 1653, 1455, 1268, 1102, 866, 714.

The enantiomeric excess was determined by HPLC analysis on the purified product: Chiracel OM column, 214 nm, 90:10 hexane/*i*-PrOH, 1 mL/min, t = 10.43 min (*minor*), t = 11.41 min (*major*).

2.4.3. Synthesis of (Z)-3-(2-(2-phenyloxazol-5-yl)phenyl)acrylaldehyde (9)

5a (27.0 mg, 0.100 mmol, 1.00 eq.) was dissolved in DCM (2.00 mL) and irradiate by UV lamp 350 nm for 2 h. After evaporating the solvent under reduced pressure. The product **9** isolated (26.5 mg, 0.100 mmol, 98%) as a yellow oil.

¹H NMR (600 MHz, Chloroform-d): δ 9.16 (d, J = 10.3 Hz, 1H), 8.16 (d, J = 7.2 Hz, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.57 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.35 (t, J = 8.0 Hz, 1H), 6.66 (d, J = 9.6 Hz, 1H). ¹³C NMR (150 MHz, Chloroform-d): δ 195.1, 157.9, 143.5, 141.8, 133.7, 131.6, 129.8, 129.7, 129.2, 129.0, 128.7, 128.5, 127.4, 126.9, 126.1, 120.3. HR-MS (APCI): calculated for

 $[C_{18}H_{13}NO_2]^+$: m/z= 275.0955, found: 275.0953 (Dev.: 0.28 mu; 0.62 ppm). **IR (ATR):** $\tilde{\nu}$ (cm⁻¹)= 3310, 3124, 2842, 2455, 1641, 1510, 1320, 1144, 976, 850.

3. NMR Spectra for New Compounds

3.1.NMR of 4-bromo-*N*-(hydroxymethyl)benzamide (a1) in DMSO-*d*₆

3.2.NMR of 4-chloro-*N*-(hydroxymethyl)benzamide (b1) in CDCI₃

-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (pp	-110 m)	-120	-130	-140	-150	-160	-170	-180	-190	-21
											Ι								
											118.40								

3.4.NMR of N-(hydroxymethyl)-4-(trifluoromethyl)benzamide in (d1) CDCI₃

3.6.NMR of *N*-(hydroxymethyl)-4-nitrobenzamide (f1) in DMSO-d₆

3.7.NMR of 2-bromo-N-(hydroxymethyl)benzamide (g1) CDCI₃

3.8.NMR of 3-bromo-N-(hydroxymethyl)benzamide (h1) in CDCI₃

3.9.NMR of 2-ethoxy-N-(hydroxymethyl)benzamide (i1) in CDCI₃

3.10. NMR of 3,5-dibromo-N-(hydroxymethyl)benzamide (j1) in DMSO-d₆

3.12.NMR of *N*-(hydroxymethyl)picolinamide (I1) in CDCI₃

3.13. NMR of *N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4a) in DMSO-*d*₆

f1 (ppm)

3.14.NMR of *N*-((6-bromo-2-hydroxynaphthalen-1-yl)methyl)benzamide (4b) in CDCI₃

3.15. NMR of N-((2-hydroxy-7-methoxynaphthalen-1-yl)methyl)benzamide (4c) in CDCI₃

3.16. NMR of *N*-((2,7-dihydroxynaphthalen-1-yl)methyl)benzamide (4d) in CDCI₃

3.17.NMR of 4-(benzamidomethyl)-3-hydroxy-2-naphthoate (4e) in CDCI₃

3.18. NMR of ethyl 4-(benzamidomethyl)-3-hydroxy-2-naphthoate (4f) in CDCI₃

3.20.NMR of 4-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4h) in CDCI₃

3.21. NMR of 4-chloro-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4i) in CDCI₃

3.22. NMR of 4-fluoro-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4j) in CDCI₃

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -2(f1 (ppm)

3.23. NMR of 2-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide mide (4k) in CDCl₃

3.24. NMR of 3-bromo-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4l) in CDCl₃

3.25. NMR of 3,5-dibromo-N-((2-hydroxynaphthalen-1-yl)methyl) benzamide (4m) in CDCI₃

3.26. NMR of *N*-((2-hydroxynaphthalen-1-yl)methyl)-4-(trifluoromethyl) benzamide (4n) in CDCI₃

3.27. NMR of *N*-((2-hydroxynaphthalen-1-yl)methyl)-4-nitrobenzamide (40) in CDCI₃

3.28. NMR of *N*-((2-hydroxynaphthalen-1-yl)methyl)-4-methoxy benzamide (4p) in CDCl₃

3.29. NMR of 2-ethoxy-*N*-((2-hydroxynaphthalen-1-yl)methyl)benzamide (4q) in CDCI₃

3.30. NMR *N*-((2-hydroxynaphthalen-1-yl)methyl)-3,4,5-trimethoxy of

3.31. NMR of *N*-((2-hydroxynaphthalen-1-yl)methyl)picolinamide (4s) in CDCI₃

3.32. NMR of (S)-2'-phenyl-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5a) in CDCI₃

3.33. NMR of (S)-6-bromo-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2one (5b) in CDCl₃

3.34. NMR of (S)-7-methoxy-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2-one (5c) in CDCl₃

3.35. NMR of (S)-7-hydroxy-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2-one (5d) in CDCl₃

3.36. NMR of (S)-methyl 2-oxo-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'oxazole]-3-carboxylate (5e) in CDCl₃

3.37. NMR of (S)-2'-phenyl-3-propionyl-2*H*,4'*H*-spiro[naphthalene-1,5'oxazol]-2-one (5f) in CDCl₃

3.39. NMR of (S)-2'-(4-bromophenyl)-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2-one (5h) in CDCl₃

3.40. NMR of (S)-2'-(4-chlorophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5i) in CDCI₃

3.41. NMR of (S)-2'-(4-fluorophenyl)-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2one (5j) in CDCI₃

	ł	
 	 ,	

																			· · · · ·
-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-20
									f1 (ppm))									

3.42. NMR of (S)-2'-(2-bromophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2-one (5k) in CDCl₃

3.43. NMR of (*S*)-2'-(3-bromophenyl)-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2-one (5l) in CDCl₃

3.44. NMR of (S)-2'-(3,5-dibromophenyl)-2H,4'H-spiro[naphthalene-1,5'oxazol]-2-one (5m) in CDCI₃

3.45. NMR of (S)-2'-(4-(trifluoromethyl)phenyl)-2H,4'H-spiro[naphth alene - 1,5'-oxazol]-2-one (5n) in CDCl₃

3.46. NMR of (S)-2'-(4-nitrophenyl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2one (50) in CDCl₃

3.47. NMR of (S)-2'-(4-methoxyphenyl)-2*H*,4'*H*-spiro[naphthalene-1,5'oxazol]-2-one (5p) in CDCl₃

3.48. NMR of (S)-2'-(2-ethoxyphenyl)-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2-one (5q) in CDCI₃

3.50. NMR of (S)-2'-(pyridin-2-yl)-2H,4'H-spiro[naphthalene-1,5'-oxazol]-2one (5s) in CDCl₃

3.51. NMR of (1S,2*R*)-2'-phenyl-2*H*,4'*H*-spiro[naphthalene-1,5'-oxazol]-2-ol (7) in CDCl₃

3.52. NMR of (S)-2'-phenyl-2H,4'H-spiro[benzo[d]oxepine-1,5'-oxazol]-2-one(8) in CDCl₃

3.53. NMR of (Z)-3-(2-(2-phenyloxazol-5-yl)phenyl)acrylaldehyde (9) in CDCI₃

4. HPLC Chromatograms

4.1. HPLC Chromatograms of Compound (5a)

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	17,260	4425,185	122,520	97,8	96,5	0,54	
2	24,093	98,400	4,479	2,2	3,5	0,34	
	Total	4523,584	126,998	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mAU]	[%]	[%]	[min]	
1	17,330	3930,622	108,320	49,7	57,4	0,54	
2	24,207	3972,113	80,415	50,3	42,6	0,74	
	Total	7902,735	188,734	100,0	100,0		

4.2. HPLC Chromatograms of Compound (5b)

	Reten. Time	Area	Height	Area	Height	W05	Compound Name
	[min]	[mAU.s]	[mAU]	[%]	[%]	[min]	
1	16,268	909,205	36,895	3,6	11,9	0,37	
2	26,287	24154,894	272,556	96,4	88,1	1,37	
	Total	25064,099	309,451	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mĀU]	[%]	[%]	[min]	-
1	16,240	24981,599	564,890	50,2	67,2	0,67	
2	26,317	24760,345	276,015	49,8	32,8	1,38	
	Total	49741, 9 44	840,906	100,0	100,0		

4.3. HPLC Chromatograms of Compound (5c)

5

0

0

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	13,317	1592,499	89,206	7,8	10,3	0,30	
2	17,193	18824,158	776,876	92,2	89,7	0,41	
	Total	20416,657	866,082	100,0	100,0		

10

Time

20 [min]

15

	Reten. Time	Area	Height	Area	Height	W05	Compound Name
	[min]	[mAU.s]	[mĀU]	[%]	[%]	[min]	-
1	13,482	4135,212	196,249	50,9	48,0	0,32	
2	17,417	3988,977	212,604	49,1	52,0	0,29	
	Total	8124,189	408,853	100,0	100,0		

4.4. HPLC Chromatograms of Compound (5d)

		Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W05 [min]	Compound Name
Γ	1	19,438	12950,030	548,207	96,6	95,8	0,46	
ľ	2	22,204	455,798	24,034	3,4	4,2	0,35	
Ľ		Total	13405,828	572,241	100,0	100,0		

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	19,537	4431,821	174,797	50,7	48,5	0,47	
2	22,377	4309,444	185,610	49,3	51,5	0,41	
	Total	8741,265	360,407	100,0	100,0		

4.5. HPLC Chromatograms of Compound (5e)

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W05 [min]	Compound Name
1	28,783	256,94	18,267	5,9	8,3	1,23	
2	36,310	4074,1	201,054	94,1	91,7	1,60	
	Total	4331,07	219,321	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mAU]	[%]	[%]	[min]	
1	28,630	4160,653	40,246	50,2	55,3	1,60	
2	36,193	4130,122	32,570	49,8	44,7	1,87	
	Total	8290,774	72,815	100,0	100,0		

4.6. HPLC Chromatograms of Compound (5f)

	Reten. Time	Area	Height	Area	Height	W05	Compound Name
	[[IIIII]	[IIIAO.5]	[IIIAO]	[70]	[70]	Liimil	
1	13,221	2328,065	135,243	8,1	10,3	0,30	
2	17,033	26413,482	1177,799	91,9	89,7	0,41	
	Total	28741,547	1313,042	100,0	100,0		

	Reten. Time	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	13,527	9734,285	909,065	49,1	48,2	0,31	
2	17,258	10091,142	976,963	50,9	51,8	0,40	
	Total	19825,427	1886,028	100,0	100,0		

4.7. HPLC Chromatograms of compound (5g)

	Reten. Time	Area [mAlls]	Height	Area [%]	Height	W05 [min]	Compound Name
1	6,283	136,279	10,020	2,5	4,1	0,24	
2	7,713	5317,273	234,586	97,5	95,9	0,32	
	Total	5453,552	244,606	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W05	Compound Name
	[min]	[mAU.s]	[mau]	[%]	[%]	[min]	
1	6,413	5320,597	234,381	49,0	55,5	0,32	
2	8,011	5548,439	187,389	51,0	44,5	0,43	
	Total	10869,036	421,770	100,0	100,0		

4.8. HPLC Chromatograms of compound (5h)

	Reten. Time	Area	Height	Area	Height	W05	Compound Name
	[min]	[mau.s]	[MAU]	[%]	[%]	[min]	
1	10,381	128,611	3,967	1,4	1,8	0,56	
2	12,918	8776,824	219,861	98,6	98,2	0,60	
	Total	8905,435	223,827	100,0	100,0		

		Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
:	1	10,527	2054,644	<mark>89,86</mark> 8	49,8	56,0	0,32	
	2	13,082	2071,147	70,610	50,2	44,0	0,43	
		Total	4125,791	160,478	100,0	100,0		

4.9. HPLC Chromatograms of compound (5i)

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	7,113	404,915	11,287	1,4	1,3	0,32	
2	10,870	28517,580	874,663	98,6	98,7	0,48	
	Total	28922,495	885,950	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mĀU]	[%]	[%]	[min]	
1	7,753	3680,792	227,292	49,2	53,1	0,25	
2	11,727	3800,493	201,152	50,8	46,9	0,30	
	Total	7481,285	428,445	100,0	100,0		

4.10. HPLC Chromatograms of compound (5j)

	Reten. Time	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W05 [min]	Compound Name
1	20,210	444,816	33,485	11,9	11,9	0,31	
2	23,513	3283,540	247,311	88,1	88,1	0,30	
	Total	3728,356	280,796	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mĀU]	[%]	[%]	[min]	
1	20,452	4682,379	165,231	50,7	48,0	0,46	
2	23,677	4553,083	179,001	49,3	52,0	0,42	
	Total	9235,462	344,232	100,0	100,0		

4.11. HPLC Chromatograms of compound(5k)

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	12,281	11199,251	683,214	95,6	93,2	0,81	
2	15,570	515,447	54,703	4,4	6,8	0,47	
	Total	11714,698	737,917	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W05	Compound Name
1	12,387	4068,952	162,602	[⁹⁰] 50,6	[⁷⁰] 44,9	0,34	
2	15,631	3972,455	204,641	49,4	55,1	0,29	
	Total	8041,407	367,243	100,0	100,0		

4.12. HPLC Chromatograms of compound (5I)

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mAU]	[%]	[%]	[min]	-
1	12,620	4708,612	119,867	94,1	93,5	0,57	
2	15,740	293,988	8,281	5,9	6,5	0,51	
	Total	5002,599	128,147	100,0	100,0		

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	12,420	4267,242	183,678	50,6	48,2	0,33	
2	15,578	4166,042	197,397	49,4	51,8	0,30	
	Total	8433,284	381,075	100,0	100,0		

4.13. HPLC Chromatograms of compound (5m)

	Reten. Time	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W05 [min]	Compound Name
1	9,430	447,184	5,686	5,9	1,7	0,15	
2	10,831	7139,793	324,178	94,1	98,3	0,32	
	Total	7586,977	329,864	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W05	Compound Name
	[[min]	[mau.s]	[mau]	[%]	[%]	[min]	
1	9,240	7688,476	366,351	50,6	56,6	0,32	
2	10,713	7536,530	281,128	49,4	43,4	0,39	
	Total	15225,006	647,479	100,0	100,0		

4.14. HPLC Chromatograms of compound (5n)

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W05 [min]	Compound Name
1	15,813	16135,837	540,961	<mark>96,</mark> 8	95,9	0,46	
2	22,182	539,911	23,380	3,2	4,1	0,35	
	Total	16675,748	564,341	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mĀU]	[%]	[%]	[min]	-
1	15,940	6853,907	246,387	50,3	<mark>66,</mark> 8	0,40	
2	22,053	6783,854	122,254	49,7	33,2	0,84	
	Total	13637,761	368,642	100,0	100,0		

4.15. HPLC Chromatograms of compound (50)

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	10,933	312,135	14,897	4,6	5,6	0,31	
2	14,362	6473,403	251,123	95,4	94,4	0,40	
	Total	6785,538	266,020	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mĀU]	[%]	[%]	[min]	
1	10,747	2880,843	175,341	50,4	46,2	0,34	
2	14,132	2835,115	204,186	49,6	53,8	0,29	
	Total	5715,958	379,527	100,0	100,0		

4.16. HPLC Chromatograms of compound (5p)

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	14,479	41,326	2,457	2,3	2,3	0,28	
2	15,263	1720,084	104,526	97,7	97,7	0,23	
	Total	1761,411	106,982	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W05	Compound Name
	[min]	[mAU.s]	[mAU]	[%]	[%]	[min]	
1	14,527	4156,360	185,038	50,5	47,9	0,35	
2	16,487	4074,055	201,263	49,5	52,1	0,31	
	Total	8230,415	386,301	100,0	100,0		

4.17. HPLC Chromatograms of compound (5q)

	Reten. Time	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	6,930	1866,073	105,956	86,6	91,0	0,23	
2	9,153	287,944	10,514	13,4	9,0	0,40	
	Total	2154,017	116,470	100,0	100,0		

	Reten. Time	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	6,861	3718,137	334,107	49,3	52,8	0,18	
2	9,067	3823,723	297,682	50,7	47,2	0,25	
	Total	7541,860	631,789	100,0	100,0		

4.18. HPLC Chromatograms of compound (5r)

	Reten. Time	Area	Height	Area	Height	W05	Compound Name
	[[min]	[[mau.s]	[mau]	[%]	[%]	[[min]	
1	9,347	1060,707	41,624	85,0	83,8	0,39	
2	10,730	187,785	8,062	15,0	16,2	0,38	
	Total	1248,491	49,686	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mĀU]	[%]	[%]	[min]	
1	9,468	6877,854	487,259	50,1	54,6	0,28	
2	10,841	6850,397	406,156	49,9	45,4	0,39	
	Total	13728,251	892,415	100,0	100,0		

4.19. HPLC Chromatograms of compound (5s)

	Reten. Time	Area	Height	Area	Height	W 05	Compound Name
	[min]	[mAU.s]	[mAU]	[%]	[%]	[min]	
1	7,223	9106,941	668,811	9,4	18,9	0,21	
2	9,130	87600,422	2878,629	90,6	81,1	0,47	
	Total	96707,363	3547,440	100,0	100,0		

		Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
	1	7,371	6443,097	522,567	50,5	45,1	0,25	
	2	9,314	6315,511	636,118	49,5	54,9	0,19	
· · · · ·		Total	12758,608	1158,685	100,0	100,0		

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W 05 [min]	Compound Name
1	12,817	494,767	22,274	2,7	3,9	0,35	
2	19,541	17829,946	519,249	97,3	96,1	0,46	
	Total	18324,713	571,140	100,0	100,0		

	Reten. Time	Area	Height	Area	Height	W05 [min]	Compound Name
1	10,427	404,009	35,294	2,2	2,5	0,29	
2	11,410	17960,018	1376,457	97,8	97,5	0,22	
	Total	18364,027	1411,751	100,0	100,0		

5. Computational Studies

5.1. Computational Details

All quantum chemical calculations were performed with Gaussian 09.⁷ Geometries were optimized with B3LYPmethod and 6-31++G^{**} basis set. Minimum structures were confirmed by the absence of imaginary frequencies in the harmonic frequency calculation. Calculations were done in chloroform applying polarizable continuum solvation model (PCM). The CD-spectrum to confirm the absolute configuration of the spirooxazoline (S)-**5a** was calculated with TDDFT on a B3LYB/6-31++G^{**} level of theory.

Figure S-1. Calculated and observed CD Spectra of compound 5a.

Figure S-2 Calculated CD Spectrum of (*R*) enantiomer of compound 5a.

a. Calculated Coordinates of the Optimized Structure

Compound 5a

Center	Atomic	A	tomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-2.573730	2.802130	0.095600
2	6	0	-1.585580	1.813160	0.152620
3	6	0	-3.915020	2.449111	-0.084040
4	6	0	-4.261030	1.105771	-0.222540
5	6	0	-3.274730	0.104670	-0.182080
6	6	0	-1.923990	0.465100	0.020340
7	1	0	-0.547310	2.097590	0.294330
8	1	0	-2.293340	3.847280	0.193570
9	1	0	-4.683370	3.216101	-0.121540
10	1	0	-5.299200	0.821051	-0.375680
11	6	0	-0.880090	-0.621170	0.172630
12	6	0	-1.277560	-1.989090	-0.417120
13	6	0	-2.707030	-2.280570	-0.511060
14	6	0	-3.626940	-1.292920	-0.398780
15	1	0	-2.988340	-3.303350	-0.743850
16	1	0	-4.683100	-1.525749	-0.521150
17	8	0	0.368770	-0.205740	-0.418850
18	6	0	-0.471020	-0.854360	1.694130
19	7	0	0.965990	-0.618240	1.727300
20	1	0	-0.697170	-1.872130	2.028810
21	1	0	-0.992580	-0.156190	2.357330
22	6	0	1.336070	-0.279530	0.551490

2	3	6	0	2.702460	0.065490	0.126990
2	4	6	0	3.740330	0.072880	1.074690
2	5	6	0	2.981430	0.388110	-1.210560
2	6	6	0	4.284060	0.716420	-1.593040
2	7	6	0	5.038020	0.401240	0.687260
2	8	6	0	5.313370	0.724620	-0.647420
2	9	1	0	3.517410	-0.180340	2.106120
3	0	1	0	5.835980	0.404840	1.424900
3	1	1	0	6.326330	0.979950	-0.947490
3	2	1	0	2.183020	0.377300	-1.944730
3	3	1	0	4.493640	0.963670	-2.630210
3	4	8	0	-0.409770	-2.805350	-0.714420

6. References

- 1 W. L. F. Armarego and C. L. L. Chai, eds., *Purification of laboratory chemicals*, Butterworth-Heinemann, Amsterdam, Oxford, 6th edn., 2009.
- 2 S. Zhou, G. Chen and G. Huang, Design, synthesis and biological evaluation of lazabemide derivatives as inhibitors of monoamine oxidase, *Bioorg. Med. Chem.*, 2018, **26**, 4863–4870.
- 3 G. B. Barlin, L. P. Davies, S. J. Ireland, M. M. Ngu and J. K. Zhang, Imidazo[1,2-b]pyridazines. X. Syntheses and Central Nervous System Activities of Some 3-(Acetamido, benzamido, substituted benzamido or dimethylamino)methyl-2-(phenyl or substituted phenyl)-6-(halogeno, alkylthio, alkoxy, phenylthio, phenoxy, benzylthio or benzyloxy)imidazo[1,2-b]pyridazines, *Aust. J. Chem.*, 1992, **45**, 731.
- 4 J. L. Murphy, W. J. Tenn, J. J. Labuda and R. W. Nagorski, Rapid amidic hydrolysis: a competitive reaction pathway under basic conditions for N-(hydroxymethyl)benzamide derivatives bearing electron-donating groups, *Tetrahedron Lett.*, 2009, **50**, 7358–7361.
- 5 L.-P. Liu, L.-M. Yu, Z.-M. Zhang and X.-F. Yan, Synthesis of 1-Amidoalkyl-2-Naphthols by Two-Component Friedel-Crafts Reaction, *Asian J. Chem.*, 2013, **25**, 4121–4122.
- 6 M. U. Tariq and W. J. Moran, Spirooxazoline Synthesis by an Oxidative Dearomatizing Cyclization, *Eur. J. Org. Chem.*, 2020, 5153–5160.
- (7) Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.