Sulfonyl Radical Triggered Selective Iodosulfonylation and Bicyclizations of 1,6-Dienes

Shi-Ping Wu,^a Dong-Kai Wang,^a Qing-Qing Kang,^a Guo-Ping Ge,^a Hongxing Zheng,^b Meiling Zhu,^c Ting Li,^{*c} Jun-Qi Zhang,^d and Wen-Ting Wei^{*a}

^a Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of

Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.

^b Institution of Functional Organic Molecules and Materials, School of Chemistry and

Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China.

^c College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China.

^d Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China.

E-mail: weiwenting@nbu.edu.cn

Supporting Information

List of Contents

(A) Typical experimental procedure for the selective cyclization	S2
(B) Analytical data	S2-19
(C) Reference	S20
(D) Spectra	S21-58
(E) The X-ray single-crystal diffraction analysis of product 3a	S59-70

(A) Typical experimental procedure for the selective cyclization

To a Schlenk tube were added 1,6-dienes 1 (0.2 mmol), sulfonyl hydrazides 2 (0.4 mmol), CuI (1.2 equiv), TBHP (2.0 equiv), and MeCN (2.0 mL). Then the tube was stirred at 90 °C sealed in air for the indicated time until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. After the reaction was finished, the mixture was extracted three times with EtOAc. The organic layer was dried over Na₂SO₄, filtration and evaporation of the solvent. The mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate = 3:1) to afford the desired products **4**.

To a Schlenk tube were added 1,6-dienes 1 (0.2 mmol), sulfonyl hydrazides 2 (0.4 mmol), Cu(OAc)₂ (20 mol%), TBHP (2.0 equiv), and MeCN (2.0 mL). Then the tube was stirred at 90 °C sealed in air for the indicated time until complete consumption of starting material as monitored by TLC and/or GC-MS analysis. After the reaction was finished, the mixture was extracted three times with EtOAc. The organic layer was dried over Na₂SO₄, filtration and evaporation of the solvent. The mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate = 6:1) to afford the desired products **3**.

(B) Analytical data

3a,6,9a-Trimethyl-2-phenyl-2,3,3a,4,9,9a-hexahydro-1*H***-b enzo**[*f*]**isoindol-1-one (3a)**, white solid (0.0439 g, 72% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.45 (d, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 2H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.97 (t, *J* = 3.5 Hz, 2H), 6.92 (t, *J* = 9.5 Hz, 1H), 3.54 (t, *J* = 4.5 Hz, 1H), 3.42 (d, *J* = 9.5 Hz, 1H), 3.10 (d, *J* = 15.5 Hz, 1H), 2.71 (d, *J* = 14.5 Hz, 1H), 2.64 (d, *J* = 14.5 Hz, 1H), 2.58 (d, *J* = 15.5 Hz, 1H), 2.28 (s, 3H), 1.27 (s, 3H), 1.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 178.1, 139.4, 136.1 (2), 133.3, 128.7, 128.6, 127.4, 127.0, 124.5, 120.1, 59.5, 49.2, 41.8, 38.9, 38.2, 24.0, 21.1, 21.0; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₄NO ([M+H]⁺) 306.1852, found 306.1856.

6-Methoxy-3a,9a-dimethyl-2-phenyl-2,3,3a,4,9,9a-hex
ahydro-1*H*-benzo[*f*]isoindol-1-one (3b), white solid
(0.0475 g, 74% yield, d.r. > 20:1); ¹H NMR (500 MHz,
CDCl₃) δ: 7.46 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 8.0 Hz,

2H), 7.09 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 6.72 (d, J = 2.5 Hz, 1H), 6.68-6.66 (m, 1H), 3.75 (s, 3H), 3.54 (d, J = 9.5 Hz, 1H), 3.42 (d, J = 9.5 Hz, 1H), 3.12 (d, J = 15.5 Hz, 1H), 2.69 (t, J = 7.5 Hz, 1H), 2.62-2.57 (m, 2H), 1.27 (s, 3H), 1.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 178.1, 158.4, 139.4, 137.5, 128.8, 128.5, 128.4, 124.5, 120.2, 113.2, 112.1, 59.5, 55.3, 49.2, 41.4, 39.2, 38.2, 23.9, 21.0; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₄NO₂ ([M+H]⁺) 322.1802, found 322.1808.

6-Methoxy-3a,9a-dimethyl-2-(*p*-tolyl)-2,3,3a,4,9,9ahexahydro-1*H*-benzo[*f*]isoindol-1-one (3c), white solid (0.0503 g, 75% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.31 (d, *J* = 8.5 Hz, 2H), 7.09 (d, *J* =

8.5 Hz, 2H), 6.98 (d, J = 8.0 Hz, 1H), 6.72 (d, J = 2.0 Hz, 1H), 6.68-6.66 (m, 1H),

3.75 (s, 3H), 3.52 (d, J = 9.5 Hz, 1H), 3.38 (d, J = 10.0 Hz, 1H), 3.11 (d, J = 15.5 Hz, 1H), 2.68 (t, J = 7.5 Hz, 1H), 2.59 (t, J = 14.0 Hz, 2H), 2.28 (s, 3H), 1.27 (s, 3H), 1.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 177.9, 158.4, 137.6, 136.8, 134.3, 129.3, 128.5, 128.3, 120.3, 113.2, 112.1, 59.8, 55.3, 49.2, 41.5, 39.3, 38.3, 24.0, 21.0, 20.8; HRMS m/z (ESI) calcd for C₂₂H₂₆NO₂ ([M+H]⁺) 336.1958, found 336.1950.

2-(4-Butylphenyl)-6-methoxy-3a,9a-dimethyl-2,
3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoindol-1-on
e (3d), white solid (0.0543 g, 72% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ: 7.36 (d, J =

9.0 Hz, 2H), 7.11 (d, J = 9.5 Hz, 2H), 6.99 (d, J = 10.0 Hz, 1H), 6.72 (s, 1H), 6.67 (d, J = 9.5 Hz, 1H), 3.76 (s, 3H), 3.52 (d, J = 12.0 Hz, 1H), 3.39 (d, J = 11.5 Hz, 1H), 3.11 (d, J = 18.5 Hz, 1H), 2.66 (s, 1H), 2.61 (d, J = 12.5 Hz, 1H), 2.57-2.51 (m, 3H), 1.54 (t, J = 9.0 Hz, 2H), 1.32 (t, J = 8.5 Hz, 2H), 1.27 (s, 3H), 1.20 (s, 3H), 0.90 (t, J = 8.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 177.8, 158.3, 139.3, 137.6, 137.0, 128.7, 128.6, 128.4, 120.1, 113.1, 112.0, 59.6, 55.3, 49.1, 41.4, 39.3, 38.2, 35.0, 33.7, 24.1, 22.3, 21.1, 14.0; HRMS m/z (ESI) calcd for C₂₅H₃₂NO₂ ([M+H]⁺) 378.2428, found 378.2432.

¹3 2-(4-Fluorophenyl)-6-methoxy-3a,9a-dimethyl-2,3, 3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoindol-1-one

(3e), yellow oil (0.0461 g, 68% yield, d.r. > 20:1); 1 H

NMR (500 MHz, CDCl₃) δ: 7.39-7.36 (m, 2H),

7.00-6.95 (m, 3H), 6.76 (s, 1H), 6.72 (d, J = 2.5 Hz, 1H), 3.75 (s, 3H), 3.51 (d, J = 9.5

Hz, 1H), 3.37 (d, J = 9.5 Hz, 1H), 3.10 (d, J = 15.0 Hz, 1H), 2.69-2.66 (m, 1H), 2.60 (t, J = 14.5 Hz, 2H), 1.28 (s, 3H), 1.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 177.9, 159.0 (d, $J_{C-F} = 242.8$ Hz), 158.4, 137.6, 135.3 (d, $J_{C-F} = 2.9$ Hz), 128.4, 128.3,122.0 (d, $J_{C-F} = 7.9$ Hz), 115.4 (d, $J_{C-F} = 22.3$ Hz), 113.0, 112.1, 59.9, 55.3, 49.1, 41.5, 39.3, 38.3, 24.0, 21.0; ¹⁹F NMR (471 MHz, CDCl₃) δ : -117.6; HRMS m/z (ESI) calcd for C₂₁H₂₃FNO₂ ([M+H]⁺) 340.1707, found 340.1701.

^{OCH3} 2-(4-Chlorophenyl)-6-methoxy-3a,9a-dimethyl-2,3 ,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoindol-1-one (3f), colorless oil (0.0469 g, 66% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ: 7.42 (d, J = 9.0 Hz,

2H), 7.25 (d, J = 10.5 Hz, 2H), 6.99 (d, J = 9.5 Hz, 1H), 6.72 (s, 1H), 6.68 (d, J = 10.0 Hz, 1H), 3.76 (s, 3H), 3.51 (d, J = 11.5 Hz, 1H), 3.38 (d, J = 11.5 Hz, 1H), 3.10 (d, J = 18.0 Hz, 1H), 2.68 (t, J = 9.0 Hz, 1H), 2.61 (t, J = 16.0 Hz, 2H), 1.28 (s, 3H), 1.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 178.1, 158.4, 137.8, 137.5, 129.5, 128.7, 128.6, 128.4, 121.1, 113.1, 112.0, 59.4, 55.3, 49.2, 41.4, 39.3, 38.2, 24.0, 21.1; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₃ClNO₂ ([M+H]⁺) 356.1412, found 356.1414.

6-Methoxy-3a,9a-dimethyl-2-(*m*-tolyl)-2,3,3a,4,9,9a-he xahydro-1*H*-benzo[*f*]isoindol-1-one (3g), white solid (0.0489 g, 73% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ: 7.32 (s, 1H), 7.21-7.16 (m, 2H), 6.99 (d, *J* =

8.0 Hz, 1H), 6.91 (d, J = 7.0 Hz, 1H), 6.76 (s, 1H), 6.72 (d, J = 2.5 Hz, 1H), 3.75 (s, 3H), 3.53 (d, J = 10.0 Hz, 1H), 3.41 (d, J = 10.0 Hz, 1H), 3.11 (d, J = 15.5 Hz, 1H),

2.68 (d, J = 15.0 Hz, 1H), 2.62-2.57 (m, 2H), 2.30 (s, 3H), 1.27 (s, 3H), 1.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 178.2, 158.4, 139.2, 138.7, 137.5, 128.6, 128.5, 128.4, 125.5, 121.1, 117.3, 113.2, 112.1, 59.8, 55.3, 49.2, 41.4, 39.2, 38.3, 24.0, 21.5, 21.0; HRMS m/z (ESI) calcd for C₂₂H₂₆NO₂ ([M+H]⁺) 336.1958, found 336.1962.

2-(3-Fluorophenyl)-6-methoxy-3a,9a-dimethyl-2,3,3a, 4,9,9a-hexahydro-1*H*-benzo[*f*]isoindol-1-one (3h), yellow oil (0.0454 g, 67% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.38 (d, J = 14.0 Hz, 1H),

7.25-7.18 (m, 2H), 7.00 (d, J = 9.5 Hz, 1H), 6.83-6.78 (m, 2H), 6.69 (t, J = 12.0 Hz, 1H), 3.75 (s, 3H), 3.52 (d, J = 11.5 Hz, 1H), 3.40 (d, J = 12.0 Hz, 1H), 3.09 (t, J = 17.5 Hz, 1H), 2.70-2.53 (m, 3H), 1.28 (s, 3H), 1.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 178.6, 162.5 (d, $J_{C-F} = 303.9$ Hz), 158.4, 140.6 (d, $J_{C-F} = 13.3$ Hz), 137.4, 129.9 (d, $J_{C-F} = 11.5$ Hz), 128.4 (d, $J_{C-F} = 12.5$ Hz), 116.1, 115.1 (d, $J_{C-F} = 3.5$ Hz), 114.8, 112.5, 112.2, 59.5, 55.3, 49.5, 41.4, 39.2, 38.2, 24.0, 21.1; ¹⁹F NMR (471 MHz, CDCl₃) δ : -111.5; HRMS m/z (ESI) calcd for C₂₁H₂₃FNO₂ ([M+H]⁺) 340.1707, found 340.1703.

2-(3,4-Dimethylphenyl)-6-methoxy-3a,9a-dimethyl 2,3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoindol-1-one
 (3i), white solid (0.0531 g, 76% yield, d.r. > 20:1); ¹H
 NMR (500 MHz, CDCl₃) δ: 7.27 (d, J = 9.5 Hz, 1H),

7.12 (d, *J* = 7.0 Hz, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.74 (d, *J* = 22.5 Hz, 1H), 6.67 (d, *J* = 7.5 Hz, 1H), 3.76 (s, 3H), 3.51 (d, *J* = 9.5 Hz, 1H), 3.38

(d, J = 9.5 Hz, 1H), 3.11 (d, J = 15.5 Hz, 1H), 2.69-2.56 (m, 3H), 2.20 (d, J = 10.5 Hz, 6H), 1.26 (s, 3H), 1.19 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 177.8, 158.4, 137.6, 137.2, 137.0, 133.0, 129.7, 128.6, 128.3, 121.6, 117.7, 113.1, 112.0, 59.7, 55.3, 49.1, 41.4, 39.3, 38.2, 24.0, 21.0, 20.0, 19.2; HRMS m/z (ESI) calcd for C₂₃H₂₈NO₂ ([M+H]⁺) 350.2115, found 350.2117.

2-(4-Chloro-3-methoxyphenyl)-6-methoxy-3a,9adimethyl-2,3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoi ndol-1-one (3j), white solid (0.0547 g, 71% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ :

7.88-7.85 (m, 2H), 7.68 (d, J = 2.5 Hz, 1H), 7.31 (d, J = 8.5 Hz, 1H), 7.02-6.99 (m, 2H), 3.93-3.92 (m, 1H), 3.88 (d, J = 2.5 Hz, 6H), 3.85-3.75 (m, 1H), 3.66 (d, J = 10.0 Hz, 1H), 3.60 (d, J = 15.0 Hz, 1H), 3.39 (d, J = 9.5 Hz, 1H), 3.27 (d, J = 15.0 Hz, 1H), 1.47 (s, 3H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 175.8, 163.7, 155.1, 139.0, 133.2, 129.8 (2), 129.1, 118.2, 114.7, 114.5, 111.3, 104.5, 59.5, 59.2, 56.1, 55.7, 52.6, 38.7, 25.2, 21.5, 18.1; HRMS *m*/*z* (ESI) calcd for C₂₂H₂₅ClNO₃ ([M+H]⁺) 386.1517, found 386.1511.

colorless oil (0.0564 g, 71% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ: 7.77 (d, *J* = 9.5 Hz, 2H), 7.66 (d, *J* = 10.0 Hz, 2H), 7.38 (t, *J* = 9.0 Hz, 2H), 7.21-7.10 (m, 5H), 6.97 (d, *J* = 9.5 Hz, 2H), 4.29 (d, *J* = 13.0 Hz, 1H), 3.92 (d, *J* = 13.5 Hz, 1H), 3.87 (s, 3H), 3.40 (d, *J* = 21.0 Hz, 1H), 3.24 (d, *J* = 17.5 Hz, 1H), 3.11 (t, *J* = 10.0 Hz,

3H), 2.99 (d, J = 18.0 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 175.7, 163.9, 140.9, 139.4, 139.3, 132.6, 129.7, 128.9, 127.1, 127.0, 124.6, 124.2, 123.9, 119.7, 114.6, 61.8, 61.0, 55.8, 41.6, 37.5, 35.5, 21.2; HRMS m/z (ESI) calcd for C₂₇H₂₈NO₂([M+H]⁺) 398.2115, found 398.2119.

6-Methoxy-3a-methyl-2,9a-diphenyl-2,3,3a,4,9,9a-hex ahydro-1*H***-benzo[***f***]isoindol-1-one (3l), colorless oil (0.0475 g, 62% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ: 7.54-7.52 (m, 2H), 7.36 (t,** *J* **= 8.0 Hz, 2H),**

7.29 (t, J = 7.5 Hz, 2H), 7.23 (d, J = 7.0 Hz, 1H), 7.18-7.15 (m, 3H), 7.05 (d, J = 8.5 Hz, 1H), 6.90 (d, J = 2.5 Hz, 1H), 6.74-6.72 (m, 1H), 3.82 (s, 3H), 3.70 (d, J = 9.5 Hz, 1H), 3.59 (d, J = 9.5 Hz, 1H), 3.44-3.35 (m, 2H), 2.82 (d, J = 14.0 Hz, 1H), 2.67 (d, J = 14.5 Hz, 1H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 176.7, 158.7, 142.1, 139.0, 138.0, 128.9, 128.7, 128.4, 128.3, 127.4, 126.8, 125.0, 120.6, 113.4, 111.9, 59.8, 58.9, 55.4, 42.3, 40.8, 38.1, 25.5; HRMS m/z (ESI) calcd for C₂₆H₂₆NO₂ ([M+H]⁺) 384.1985, found 384.1989.

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-(tosylmethy l)pyrrolidin-2-one (4a), colorless oil (0.0805 g, 81% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ :

7.86-7.81 (m, 2H), 7.60-7.54 (m, 2H), 7.42-7.34 (m, 4H), 7.18 (t, J = 9.5 Hz, 1H), 4.04-3.90 (m, 2H), 3.65-3.61 (m, 2H), 3.59-3.51 (m, 1H), 3.40-3.37 (m, 1H), 2.46 (s, 3H), 1.66 (s, 3H), 1.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.4, 145.0, 138.6, 138.2, 130.0, 129.0, 127.6, 125.3, 120.3, 59.2, 57.8, 51.5, 41.7, 21.7, 20.8, 20.2, 16.1; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₅INO₃S ([M+H]⁺) 498.0594, found 498.0598.

20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.89-7.84 (m, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.38-7.33 (m, 2H), 7.18-7.14 (m, 1H), 7.01 (d, J = 8.5 Hz, 2H), 3.92 (d, J = 10.5 Hz, 2H), 3.88 (s, 3H), 3.70-3.60 (m, 2H), 3.58 (d, J = 10.0 Hz, 1H), 3.39 (t, J = 7.5 Hz, 1H), 1.64 (s, 3H), 1.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.4, 163.9, 138.6, 132.8, 129.8, 129.0, 125.2, 120.3, 114.6, 59.5, 57.8, 55.8, 51.5, 41.7, 20.9, 20.1, 16.1; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₅INO₄S ([M+H]⁺) 514.0543, found 514.0547.

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-((phenylsulfo nyl)methyl)pyrrolidin-2-one (4c), colorless oil (0.0773 g, 80% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ :

7.96-7.90 (m, 2H), 7.68-7.65 (m, 1H), 7.60-7.56 (m, 2H), 7.56-7.54 (m, 2H), 7.39-7.35 (m, 2H), 7.19-7.16 (m, 1H), 3.94-3.90 (m, 2H), 3.66-3.63 (m, 2H), 3.58 (d, J = 10.0 Hz, 1H), 3.41 (d, J = 15.5 Hz, 1H), 1.66 (s, 3H), 1.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.3, 141.0, 138.6, 134.0, 129.5, 129.0, 127.6, 125.3, 120.3, 59.2, 57.8, 51.6, 41.7, 20.8, 20.2, 16.0; HRMS *m*/*z* (ESI) calcd for C₂₀H₂₃INO₃S ([M+H]⁺) 484.0438, found 484.0434.

3-(((4-Fluorophenyl)sulfonyl)methyl)-4-(iodomethyl)-3,4-dimethyl-1-phenylpyrrolidin-2-one (4d), colorless oil (0.0782 g, 78% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.98-7.95 (m, 2H), 7.55-7.53 (m, 2H), 7.39-7.36 (m, 2H), 7.27-7.24 (m, 2H), 7.20-7.17 (m, 1H), 3.92-3.89 (m, 2H), 3.65-3.62 (m, 2H), 3.58 (d, *J* = 10.5 Hz, 1H), 3.41 (d, *J* = 15.0 Hz, 1H), 1.66 (s, 3H), 1.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.2, 165.9 (d, *J*_{C-F} = 255.5 Hz), 138.5, 137.1, 130.5 (d, *J*_{C-F} = 9.5 Hz), 129.1, 125.3, 120.3, 116.8 (d, *J*_{C-F} = 22.5 Hz), 59.4, 57.8, 51.6, 41.7, 20.8, 20.2, 15.8; ¹⁹F NMR (471 MHz, CDCl₃) δ : -102.8; HRMS *m*/*z* (ESI) calcd for C₂₀H₂₂FINO₃S ([M+H]⁺) 502.0344, found 502.0340.

3-(((4-Chlorophenyl)sulfonyl)methyl)-4-(iodomethy l)-3,4-dimethyl-1-phenylpyrrolidin-2-one (4e),

colorless oil (0.0796 g, 77% yield, d.r. > 20:1); ¹H

NMR (500 MHz, CDCl₃) δ : 7.92-7.87 (m, 2H), 7.59-7.51 (m, 4H), 7.38 (t, J = 8.0 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 3.97-3.87 (m, 2H), 3.65-3.62 (m, 2H), 3.57 (d, J = 10.5 Hz, 1H), 3.40 (d, J = 15.0 Hz, 1H), 1.65 (s, 3H), 1.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.1, 140.8, 139.4, 138.5, 129.8, 129.1 (2), 125.4, 120.3, 59.3, 57.8, 51.6, 41.7, 20.9, 20.2, 15.7; HRMS m/z (ESI) calcd for C₂₀H₂₂ClINO₃S ([M+H]⁺) 518.0048, found 518.0054.

3-(((4-Bromophenyl)sulfonyl)methyl)-4-(iodometh

yl)-3,4-dimethyl-1-phenylpyrrolidin-2-one (4f),

colorless oil (0.0853 g, 76% yield, d.r. > 20:1); 1 H

NMR (500 MHz, CDCl₃) δ: 7.84-7.78 (m, 2H), 7.73-7.69 (m, 2H), 7.53 (t, *J* = 4.0 Hz, 2H), 7.40-7.36 (m, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 3.92-3.87 (m, 2H), 3.67-3.61 (m,

2H), 3.57 (d, J = 10.0 Hz, 1H), 3.40 (d, J = 15.0 Hz, 1H), 1.65 (s, 3H), 1.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ: 174.1, 139.9, 138.5, 132.8, 129.4, 129.2, 129.1, 125.4, 120.3, 59.2, 57.8, 51.6, 41.7, 20.9, 20.2, 15.7; HRMS m/z (ESI) calcd for C₂₀H₂₂BrINO₃S ([M+H]⁺) 561.9543, found 561.9547.

4-(Iodomethyl)-3,4-dimethyl-3-(((4-nitrophenyl)s ulfonyl)methyl)-1-phenylpyrrolidin-2-one (4g),colorless oil (0.0718 g, 68% yield, d.r. > 20:1); 1 H

NMR (500 MHz, CDCl₃) δ: 8.37-8.35 (m, 2H), 8.08-8.05 (m, 2H), 7.47-7.44 (m, 2H), 7.41-7.38 (m, 1H), 7.31 (d, J = 7.5 Hz, 2H), 4.78 (d, J = 52.0 Hz, 2H), 4.31-4.22 (m, 2H), 4.03-3.99 (m, 1H), 2.98-2.95 (m, 1H), 1.78 (s, 3H), 1.12 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ: 172.9, 150.8, 145.6, 141.6, 140.3, 129.7, 129.3, 128.4, 124.4, 59.5, 56.7, 55.8, 41.3, 32.0, 20.3, 18.7; HRMS m/z (ESI) calcd for C₂₀H₂₂IN₂O₅S ([M+H]⁺) 529.0289, found 529.0293.

4-(Iodomethyl)-3-(((2-methoxyphenyl)sulfonyl)meth yl)-3,4-dimethyl-1-phenylpyrrolidin-2-one (4h),

NMR (500 MHz, CDCl₃) δ : 7.97-7.95 (m, 1H), 7.61-7.56 (m, 3H), 7.37 (t, J = 8.0 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 8.0 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 4.01 (s, 3H), 3.95 (d, J = 10.0 Hz, 1H), 3.90 (t, J = 10.0 Hz, 1H), 3.85 (d, J = 14.5 Hz, 2H), 3.74-3.64 (m, 2H), 1.65 (s, 3H), 1.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ: 174.6, 157.2, 138.6, 135.8, 130.1, 129.0, 128.7, 125.2, 120.9, 120.3, 112.4, 57.9, 57.0, 56.6,

51.4, 41.6, 21.1, 20.3, 16.2; HRMS m/z (ESI) calcd for C₂₁H₂₅INO₄S ([M+H]⁺) 514.0543, found 514.0547.

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-((*o*-tolylsulfon yl)methyl)pyrrolidin-2-one (4i), colorless oil (0.0805 g, 81% yield, d.r. = 1.5:1); ¹H NMR (500 MHz, CDCl₃) δ :

8.02 (d, J = 7.5 Hz, 0.4H), 7.81 (d, J = 8.5 Hz, 0.6H), 7.56-7.53 (m, 3H), 7.39-7.34 (m, 4H), 7.18 (t, J = 7.0 Hz, 1H), 3.95-3.89 (m, 2H), 3.66-3.57(m, 3H), 3.45-3.37 (m, 1H), 2.75 (s, 1.8H), 2.45 (s, 1.2H), 1.66 (s, 1.8H), 1.65 (s, 1.2H), 1.59 (s, 1.8H), 1.59 (s, 1.2H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.4 (2), 145.0, 139.2, 138.6 (2), 137.8, 134.0, 133.0, 130.0, 129.5, 128.9, 127.6, 126.9, 125.3, 120.3, 59.3, 58.0, 57.8, 51.6, 51.5, 41.7 (2), 21.7, 20.8, 20.5, 20.3, 16.1, 16.0; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₅INO₃S ([M+H]⁺) 498.0594, found 498.0590.

3-(((2-Chlorophenyl)sulfonyl)methyl)-4-(iodomethyl)-3 ,**4-dimethyl-1-phenylpyrrolidin-2-one (4j)**, colorless oil (0.0786 g, 76% yield, d.r. > 20:1); ¹H NMR (500 MHz,

CDCl₃) δ : 8.16-8.14 (m, 1H), 7.60-7.54 (m, 4H), 7.50-7.47 (m, 1H), 7.39-7.36 (m, 2H), 7.18 (t, J = 7.0 Hz, 1H), 3.97-3.87 (m, 3H), 3.73 (d, J = 15.0 Hz, 1H), 3.64 (t, J = 11.0 Hz, 2H), 1.68 (s, 3H), 1.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.1, 138.5, 138.2, 135.0, 132.8, 132.1, 131.2, 129.0, 127.6, 125.2, 120.2, 57.8, 56.9, 51.5, 41.8, 20.9, 20.2, 15.8; HRMS *m*/*z* (ESI) calcd for C₂₀H₂₂ClINO₃S ([M+H]⁺) 518.0048, found 581.0054.

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-((*m*-tolylsul fonyl)methyl)pyrrolidin-2-one (4k), colorless oil (0.0796 g, 80% yield, d.r. > 20:1); ¹H NMR (500 MHz,

CDCl₃) δ : 7.74-7.70 (m, 2H), 7.56-7.53 (m, 2H), 7.47-7.45 (m, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.17 (t, J = 7.0 Hz, 1H), 3.97-3.90 (m, 2H), 3.62 (t, J = 7.5 Hz, 2H), 3.58 (d, J = 10.0 Hz, 1H), 3.39 (t, J = 7.5 Hz, 1H), 2.45 (s, 3H), 1.67 (s, 3H), 1.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.4, 140.9, 139.8, 138.6, 134.7, 129.3, 129.0, 127.9, 125.3, 124.6, 120.3, 59.1, 57.8, 51.6, 41.8, 21.4, 20.8, 20.2, 16.2; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₅INO₃S ([M+H]⁺) 498.0594, found 498.0590.

3-(((3-Chlorophenyl)sulfonyl)methyl)-4-(iodometh yl)-3,4-dimethyl-1-phenylpyrrolidin-2-one (4l),

yellow oil (0.0775 g, 75% yield, d.r. > 20:1); ¹H NMR

(500 MHz, CDCl₃) δ : 7.93 (t, J = 2.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 9.0 Hz, 1H), 7.55-7.50 (m, 3H), 7.37 (t, J = 8.0 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 3.90 (t, J = 10.0 Hz, 2H), 3.65 (t, J = 7.5 Hz, 2H), 3.56 (d, J = 10.0 Hz, 1H), 3.41 (d, J = 15.0 Hz, 1H), 1.66 (s, 3H), 1.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.1, 142.6, 138.5, 135.8, 134.2, 130.8, 129.1, 127.7, 125.7, 125.3, 120.3, 59.2, 57.8, 51.6, 41.8, 20.8, 20.2, 15.8; HRMS m/z (ESI) calcd for C₂₀H₂₂ClINO₃S ([M+H]⁺) 518.0048, found 518.0052.

4-(Iodomethyl)-3,4-dimethyl-3-((naphthalen-2-yls ulfonyl)methyl)-1-phenylpyrrolidin-2-one (4m), colorless oil (0.0757 g, 71% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ : 8.50 (d, J = 1.0 Hz, 1H), 8.00-7.97 (m, 2H), 7.92-7.87 (m, 2H), 7.66-7.62 (m, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.37-7.33 (m, 2H), 7.15 (t, J = 7.0 Hz, 1H), 3.98-3.91 (m, 2H), 3.73 (d, J = 15.0 Hz, 1H), 3.62 (t, J = 10.0 Hz, 2H), 3.48 (d, J = 15.0 Hz, 1H), 1.68 (s, 3H), 1.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.3, 138.6, 137.8, 135.4, 132.2, 129.9, 129.5 (2), 129.4, 129.0, 128.1, 127.9, 125.3, 122.2, 120.3, 59.2, 57.8, 51.6, 41.8, 20.9, 20.2, 16.2; HRMS m/z (ESI) calcd for C₂₄H₂₅INO₃S ([M+H]⁺) 534.0594, found 534.0590.

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-((thiophen-2-y lsulfonyl)methyl)pyrrolidin-2-one (4n), colorless oil (0.0665 g, 68% yield, d.r. > 20:1); ¹H NMR (500 MHz,

CDCl₃) δ : 7.74-7.72 (m, 2H), 7.56-7.54 (m, 2H), 7.40-7.37 (m, 2H), 7.19-7.15 (m, 2H), 3.92-3.88 (m, 2H), 3.82 (d, *J* = 15.0 Hz, 1H), 3.65-3.63 (m, 1H), 3.58 (t, *J* = 12.0 Hz, 2H), 1.66 (s, 3H), 1.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.2, 142.3, 138.5, 134.1, 133.9, 129.1, 128.0, 125.3, 120.3, 60.9, 57.8, 51.6, 41.8, 20.7, 20.1, 15.9; HRMS *m*/*z* (ESI) calcd for C₁₈H₂₁INO₃S₂ ([M+H]⁺) 490.0002, found 490.0008.

3-((Ethylsulfonyl)methyl)-4-(iodomethyl)-3,4-dimethyl-1phenylpyrrolidin-2-one (40), colorless oil (0.0548 g, 63% yield, d.r.= 1:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.59-7.57

(m, 2H), 7.41-7.36 (m, 2H), 7.21-7,16 (m, 1H), 3.89 (d, J = 10.5 Hz, 0.5H), 3.80-3.78 (m, 0.5Hz), 3.69 (d, J = 10.0 Hz, 0.5H), 3.64-3.62 (m, 0.5H), 3.56-3.52 (m, 1H), 3.39 (d, J = 10.0 Hz, 0.5H), 3.33 (d, J = 15.0 Hz, 0.5H), 3.13-3.05 (m, 2H), 1.62 (t, J = 8.0 Hz, 2H), 1.51 (s, 3H), 1.45-1.42 (m, 3H), 1.38 (s, 1.5H), 1.29 (s, 1.5H); ¹³C NMR

(125 MHz, CDCl₃) δ : 175.6, 174.5, 139.2, 138.5, 129.1, 129.0, 125.4, 125.0, 120.4, 119.9, 59.3, 57.8, 54.3, 54.1, 51.9, 50.9, 50.5 (2), 41.6, 38.9, 25.1, 21.2, 20.8, 20.1, 17.9, 15.7, 6.9, 6.8; HRMS *m*/*z* (ESI) calcd for C₁₆H₂₃INO₃S ([M+H]⁺) 436.0438, found 436.0442.

CDCl₃) δ : 7.59-7.57 (m, 2H), 7.41-7.36 (m, 2H), 7.21-7.16 (m, 1H), 3.89 (d, J = 10.5 Hz, 0.5H), 3.79 (d, J = 10.0 Hz, 0.5H), 3.68 (d, J = 9.5 Hz, 0.5H), 3.62 (d, J = 10.5 Hz, 0.5H), 3.58-3.52 (m, 1.5H), 3.39 (d, J = 10.0 Hz, 1H), 3.33 (d, J = 14.5 Hz, 0.5H), 3.19 (d, J = 14.5 Hz, 0.5H), 3.09-3.05 (m, 1.5H), 3.04-3.01 (m, 1H), 1.88-1.83 (m, 2H), 1.50 (s, 3H), 1.48-1.41 (m, 2H), 1.38 (s, 1.5H), 1.29 (s, 1.5H), 0.99-0.95 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 175.7, 174.5, 139.2, 138.5, 129.1, 129.0, 125.3, 125.0, 120.3, 119.9, 59.2, 57.8, 55.9 (2), 54.9, 54.8, 52.0, 51.0, 41.6, 38.9, 25.1, 24.3, 24.2, 21.7 (2), 21.2, 20.8, 20.1, 17.9, 15.7, 13.6, 13.5; HRMS *m*/*z* (ESI) calcd for C₁₈H₂₇INO₃S ([M+H]⁺) 464.0751, found 464.0754.

4-(Iodomethyl)-1-(4-methoxyphenyl)-3-(((4-methoxyphenyl)sulfonyl)methyl)-3,4-d

imethylpyrrolidin-2-one (4q), colorless

oil (0.0945 g, 87% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ: 7.87-7.84 (m, 2H), 7.45-7.42 (m, 2H), 7.02-7.00 (m, 2H), 6.90-6.88 (m, 2H), 3.92 (d, *J* = 9.5 Hz, 1H), 3.87 (s, 3H), 3.85 (d, *J* = 10.5 Hz, 1H), 3.78 (s, 3H), 3.62-3.59 (m, 2H), 3.58 (d,

J = 2.5 Hz, 1H), 3.38 (d, J = 15.0 Hz, 1H), 1.63 (s, 3H), 1.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.0, 163.9, 157.1, 132.7, 131.7, 129.8, 122.1, 114.6, 114.2, 59.5, 58.2, 55.8, 55.5, 51.3, 41.8, 20.8, 20.1, 16.3; HRMS *m*/*z* (ESI) calcd for C₂₂H₂₇INO₅S ([M+H]⁺) 544.0649, found 544.0655.

d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.85 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.5 Hz, 2H), 3.92 (d, J = 10.0 Hz, 1H), 3.87 (s, 3H), 3.84 (d, J = 20.5 Hz, 1H), 3.69-3.52 (m, 3H), 3.38 (d, J = 15.0 Hz, 1H), 2.32 (s, 3H), 1.63 (s, 3H), 1.57 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.2, 163.9, 136.1, 135.0, 132.8, 129.8, 129.5, 120.4, 114.6, 59.5, 57.9, 55.8, 51.4, 41.8, 20.9, 20.8, 20.1, 16.3; HRMS m/z (ESI) calcd for C₂₂H₂₇INO₄S ([M+H]⁺) 528.0700, found 528.0704.

79% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.87-7.84 (m, 2H), 7.52-7.49 (m, 2H), 7.07-7.01 (m, 4H), 3.91 (d, *J* = 7.5 Hz, 1H), 3.88 (s, 3H), 3.86 (d, *J* = 10.5 Hz, 1H), 3.62-3.59 (m, 3H), 3.39 (d, *J* = 15.0 Hz, 1H), 1.63 (s, 3H), 1.57 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.3, 163.9, 159.9 (d, *J*_{C-F} = 243.6 Hz), 134.7 (d, *J*_{C-F} = 2.9 Hz), 132.6, 129.8, 122.1 (d, *J*_{C-F} = 7.9 Hz), 115.7 (d, *J*_{C-F} = 22.4 Hz), 114.6, 59.5,

58.1, 55.8, 51.4, 41.8, 21.0, 20.1, 15.9; ¹⁹F NMR (471 MHz, CDCl₃) δ : -116.5; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₄FINO₄S ([M+H]⁺) 532.0449, found 532.0453.

1-(4-Bromophenyl)-4-(iodomethyl)-3-(((4-m ethoxyphenyl)sulfonyl)methyl)-3,4-dimethyl pyrrolidin-2-one (4t), colorless oil (0.0886 g,

75% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.86-7.83 (m, 2H), 7.49-7.44 (m, 4H), 7.02-7.00 (m, 2H), 3.89 (d, *J* = 3.0 Hz, 1H), 3.88 (s, 3H), 3.85 (d, *J* = 10.5 Hz, 1H), 3.61-3.57 (m, 3H), 3.39 (d, *J* = 15.0 Hz, 1H), 1.62 (s, 3H), 1.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.5, 163.9, 137.7, 132.6, 132.0, 129.8, 121.6, 118.1, 114.6, 59.4, 57.7, 55.8, 51.5, 41.6, 21.0, 20.2, 15.8; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₄BrINO₄S ([M+H]⁺) 591.9649, found 591.9653.

4-(Iodomethyl)-3-(((4-methoxyphenyl)sulfonyl) methyl)-3,4-dimethyl-1-(*m*-tolyl)pyrrolidin-2-on

e (4u), colorless oil (0.0864 g, 82% yield, d.r. >

20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.87-7.83 (m, 2H), 7.37 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.24 (t, *J* = 8.0 Hz, 1H), 7.01-6.97 (m, 3H), 3.92 (d, *J* = 10.0 Hz, 1H), 3.88 (d, *J* = 2.5 Hz, 1H), 3.86 (s, 3H), 3.63-3.56 (m, 3H), 3.39 (d, *J* = 15.0 Hz, 1H), 2.35 (s, 3H), 1.63 (s, 3H), 1.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.4, 163.9, 138.9, 138.6, 132.8, 129.8, 128.8, 126.1, 121.0, 117.4, 114.6, 59.5, 57.9, 55.8, 51.5, 41.7, 21.6, 20.9, 20.1, 16.2; HRMS *m*/*z* (ESI) calcd for C₂₂H₂₇INO₄S ([M+H]⁺) 528.0700, found 528.0704.

20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.93 (t, J = 2.0 Hz, 1H), 7.84-7,82 (m, 1H), 7.65-7.63 (m, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.52-7.49 (m, 2H), 7.08-7.05 (m, 2H), 3.87 (d, J = 10.5 Hz, 2H), 3.64-3.57 (m, 3H), 3.41 (d, J = 15.0 Hz, 1H), 1.66 (s, 3H), 1.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.0, 160.0 (d, $J_{C-F} = 243.9$ Hz), 142.5, 135.8, 134.5 (d, $J_{C-F} = 2.9$ Hz), 134.2, 130.8, 127.7, 125.7, 122.2 (d, $J_{C-F} = 8.0$ Hz), 115.8 (d, $J_{C-F} = 22.4$ Hz), 59.2, 58.1, 51.5, 41.8, 20.9, 20.2, 15.5; ¹⁹F NMR (471 MHz, CDCl₃) δ : -116.3; HRMS *m*/*z* (ESI) calcd for C₂₀H₂₁CIFINO₃S ([M+H]⁺) 535.9954, found 535.9950.

3-(((3-Chlorophenyl)sulfonyl)methyl)-4-(iodo methyl)-3,4-dimethyl-1-(4-(trifluoromethyl)p

(4w),

yellow

oil

(0.0725 g, 62% yield, d.r. > 20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.94 (t, *J* = 2.0 Hz, 1H), 7.85-7.83 (m, 1H), 7.71 (d, *J* = 8.5 Hz, 2H), 7.66-7.63 (m, 3H), 7.54 (t, *J* = 8.0 Hz, 1H), 3.94 (d, *J* = 10.5 Hz, 1H), 3.86 (d, *J* = 10.0 Hz, 1H), 3.67 (d, *J* = 10.5 Hz, 1H), 3.63 (d, *J* = 15.0 Hz, 1H), 3.58 (d, *J* = 10.0 Hz, 1H), 3.42 (d, *J* = 15.0 Hz, 1H), 1.67 (s, 3H), 1.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 174.6, 142.4, 141.4, 135.8, 134.3, 130.9, 127.7, 126.3 (*q*, *J*_{C-F} = 2.7 Hz), 125.7, 125.0, 122.9, 119.7, 59.1, 57.5, 51.7, 41.6, 21.0, 20.3, 15.2; ¹⁹F NMR (471 MHz, CDCl₃) δ : -62.2; HRMS *m*/*z* (ESI) calcd for C₂₁H₂₁ClF₃INO₃S ([M+H]⁺) 585.9922, found 585,9926.

henyl)pyrrolidin-2-one

4-(Iodomethyl)-3-(((4-methoxyphenyl)sulfonyl)met hyl)-3,4-dimethyl-1-tosylpyrrolidin-2-one (4x), colorless oil (0.0733 g, 62% yield, d.r. > 20:1); ¹H

NMR (500 MHz, CDCl₃) δ : 7.95 (d, J = 8.5 Hz, 2H), 7.81-7.79 (m, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.04-7.02 (m, 2H), 4.47 (d, J = 11.0 Hz, 1H), 3.89 (s, 3H), 3.73 (d, J = 11.0 Hz, 1H), 3.21-3.17 (m, 2H), 3.11 (d, J = 14.0 Hz, 1H), 3.01 (d, J = 11.0 Hz, 1H), 2.45 (s, 3H), 1.38 (s, 3H), 1.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 172.7, 164.1, 145.6, 134.6, 133.8, 132.4, 129.8, 128.3, 114.8, 59.1, 55.8, 53.9, 51.3, 42.5, 21.8, 21.0, 18.8, 6.5; HRMS m/z (ESI) calcd for C₂₂H₂₇INO₆S₂ ([M+H]⁺) 592.0319, found 592.0323.

3-Benzyl-4-(iodomethyl)-3-(((4-methoxyphenyl)

sulfonyl)methyl)-4-methyl-1-phenylpyrrolidin-2

-one (4y), colorless oil (0.0931 g, 79% yield, d.r. >

20:1); ¹H NMR (500 MHz, CDCl₃) δ : 7.88 (d, *J* = 8.0 Hz, 2H), 7.51-7.45 (m, 2H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.29 (s, 2H), 7.23 (t, *J* = 10.0 Hz, 4H), 7.03 (d, *J* = 7.5 Hz, 2H), 4.28 (t, *J* = 13.0 Hz, 1H), 3.89 (s, 3H), 3.82-3.77 (m, 1H), 3.68 (t, *J* = 22.0 Hz, 1H), 3.59-3.52 (m, 3H), 3.27-3.16 (m, 2H), 1.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 172.7, 164.0, 135.9, 132.7, 130.9, 130.6, 129.7, 129.1, 128.2, 127.3, 125.1, 120.0, 114.6, 57.4, 56.8, 56.3, 55.8, 43.2, 37.7, 19.2, 17.2; HRMS *m*/*z* (ESI) calcd for C₂₇H₂₉INO4S ([M+H]⁺) 590.0856, found 590.0852.

4-(Tosylmethyl)-1,2-dihydronaphthalene (5a),^[1] (0.0423 g, 71% yield); ¹H NMR (500 MHz, CDCl₃) δ : 7.78 (d, J = 8.5 Hz, 2H), 7.29 (t,

J = 4.0 Hz, 5H), 7.25-7.22 (m, 1H), 5.58-5.54 (m, 1H), 4.11 (t, *J* = 7.0 Hz, 2H), 2.58-2.54 (m, 2H), 2.42 (s, 3H), 1.98 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ: 144.7, 143.1, 138.5, 133.2, 129.8, 128.2, 127.9, 127.0, 125.6, 121.3, 69.6, 28.5, 21.6, 16.0. (C) Reference

[1] Chen, P.; Zhou, Q.; Chen, Z.; Liu, Y.; Liang, Y.; Tang, K.; Liu, Y.
Silver-promoted oxidative sulfonylation and ring-expansion of vinylcyclopropanes with sodium sulfinates leading to dihydronaphthalene derivatives. *Org. Biomol. Chem.* **2020**, *18*, 7345-7354.

•

(D) Spectra

3a,6,9a-Trimethyl-2-phenyl-2,3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoindol-1-one (3a)

6-Methoxy-3a,9a-dimethyl-2-phenyl-2,3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoindo l-1-one (3b)

6-Methoxy-3a,9a-dimethyl-2-(*p*-tolyl)-2,3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoind ol-1-one (3c)

2-(4-Butylphenyl)-6-methoxy-3a,9a-dimethyl-2,3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoindol-1-one (3d)

2-(4-Fluorophenyl)-6-methoxy-3a,9a-dimethyl-2,3,3a,4,9,9a-hexahydro-1*H*-benzo [*f*]isoindol-1-one (3e)

9 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -160 -150 -160 -170 -160 -190 -200 -210 -2 17 (cm)

2-(4-Chlorophenyl)-6-methoxy-3a,9a-dimethyl-2,3,3a,4,9,9a-hexahydro-1*H*-benz o[*f*]isoindol-1-one (3f)

6-Methoxy-3a,9a-dimethyl-2-(*m*-tolyl)-2,3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoind ol-1-one (3g)

2-(3-Fluorophenyl)-6-methoxy-3a,9a-dimethyl-2,3,3a,4,9,9a-hexahydro-1*H*-benzo [*f*]isoindol-1-one (3h)

90 -100 -110 -120 F1 (gen)

10

-130

-200 -210

2-(3,4-Dimethylphenyl)-6-methoxy-3a,9a-dimethyl-2,3,3a,4,9,9a-hexahydro-1*H*-b enzo[*f*]isoindol-1-one (3i)

2-(4-Chloro-3-methoxyphenyl)-6-methoxy-3a,9a-dimethyl-2,3,3a,4,9,9a-hexahydr o-1*H*-benzo[*f*]isoindol-1-one (3j)

9a-Benzyl-6-methoxy-3a-methyl-2-phenyl-2,3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]is oindol-1-one (3k)

6-Methoxy-3a-methyl-2,9a-diphenyl-2,3,3a,4,9,9a-hexahydro-1*H*-benzo[*f*]isoindo l-1-one (3l)

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-(tosylmethyl)pyrrolidin-2-one (4a)

4-(Iodomethyl)-3-(((4-methoxyphenyl)sulfonyl)methyl)-3,4-dimethyl-1-phenylpyr rolidin-2-one (4b)

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-((phenylsulfonyl)methyl)pyrrolidin-2-on e (4c)

3-(((4-Fluorophenyl)sulfonyl)methyl)-4-(iodomethyl)-3,4-dimethyl-1-phenylpyrro lidin-2-one (4d)

3-(((4-Chlorophenyl)sulfonyl)methyl)-4-(iodomethyl)-3,4-dimethyl-1-phenylpyrr olidin-2-one (4e)

3-(((4-Bromophenyl)sulfonyl)methyl)-4-(iodomethyl)-3,4-dimethyl-1-phenylpyrr olidin-2-one (4f)

4-(Iodomethyl)-3,4-dimethyl-3-(((4-nitrophenyl)sulfonyl)methyl)-1-phenylpyrroli din-2-one (4g)

4-(Iodomethyl)-3-(((2-methoxyphenyl)sulfonyl)methyl)-3,4-dimethyl-1-phenylpyr rolidin-2-one (4h)

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-((*o*-tolylsulfonyl)methyl)pyrrolidin-2-on e (4i)

3-(((2-Chlorophenyl)sulfonyl)methyl)-4-(iodomethyl)-3,4-dimethyl-1-phenylpyrr olidin-2-one (4j)

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-((*m*-tolylsulfonyl)methyl)pyrrolidin-2-on e (4k)

3-(((3-Chlorophenyl)sulfonyl)methyl)-4-(iodomethyl)-3,4-dimethyl-1-phenylpyrr olidin-2-one (4l)

4-(Iodomethyl)-3,4-dimethyl-3-((naphthalen-2-ylsulfonyl)methyl)-1-phenylpyrrol idin-2-one (4m)

4-(Iodomethyl)-3,4-dimethyl-1-phenyl-3-((thiophen-2-ylsulfonyl)methyl)pyrrolidi n-2-one (4n)

3-((Ethylsulfonyl)methyl)-4-(iodomethyl)-3,4-dimethyl-1-phenylpyrrolidin-2-one (40)

 $\label{eq:action} 3-((Butyl sulfonyl) methyl)-4-(iodomethyl)-3, 4-dimethyl-1-phenyl pyrrolidin-2-one$

4-(Iodomethyl)-1-(4-methoxyphenyl)-3-(((4-methoxyphenyl)sulfonyl)methyl)-3,4dimethylpyrrolidin-2-one (4q)

4-(Iodomethyl)-3-(((4-methoxyphenyl)sulfonyl)methyl)-3,4-dimethyl-1-(*p*-tolyl)py rrolidin-2-one (4r)

1-(4-Fluorophenyl)-4-(iodomethyl)-3-(((4-methoxyphenyl)sulfonyl)methyl)-3,4-di methylpyrrolidin-2-one (4s)

1-(4-Bromophenyl)-4-(iodomethyl)-3-(((4-methoxyphenyl)sulfonyl)methyl)-3,4-di methylpyrrolidin-2-one (4t)

4-(Iodomethyl)-3-(((4-methoxyphenyl)sulfonyl)methyl)-3,4-dimethyl-1-(*m*-tolyl)p yrrolidin-2-one (4u)

3-(((3-Chlorophenyl)sulfonyl)methyl)-1-(4-fluorophenyl)-4-(iodomethyl)-3,4-dim ethylpyrrolidin-2-one (4v)

3-(((3-Chlorophenyl)sulfonyl)methyl)-4-(iodomethyl)-3,4-dimethyl-1-(4-(trifluoro methyl)phenyl)pyrrolidin-2-one (4w)

4-(Iodomethyl)-3-(((4-methoxyphenyl)sulfonyl)methyl)-3,4-dimethyl-1-tosylpyrro lidin-2-one (4x)

3-Benzyl-4-(iodomethyl)-3-(((4-methoxyphenyl)sulfonyl)methyl)-4-methyl-1-phen ylpyrrolidin-2-one (4y)

(E) The X-ray single-crystal diffraction analysis of product 3a

CCDC 2080216

Table 1. Crystal data and structure refinement for 3a.

Identification code	3a		
Empirical formula	$C_{21}H_{23}NO$		
Formula weight	305.40		
Temperature	297.0 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 6.747(2) Å	a= 90°.	
	b = 9.863(3) Å	b= 95.475(9)°.	
	c = 25.692(7) Å	g = 90°.	
Volume	1702.0(9) Å ³		
Z	4		
Density (calculated)	1.192 Mg/m ³		
Absorption coefficient	0.072 mm ⁻¹		
F(000)	656		
Crystal size	0.22 x 0.21 x 0.16 mm ³		
Theta range for data collection	2.608 to 25.389°.		
Index ranges	-8<=h<=8, -11<=k<=11, -30<=l<=30		
Reflections collected	17903		

S59

Independent reflections 3124 [R(int) = 0.0273] Completeness to theta = 25.242° 99.9 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7452 and 0.6922 Full-matrix least-squares on F² Refinement method 3124 / 0 / 212 Data / restraints / parameters Goodness-of-fit on F² 1.027 Final R indices [I>2sigma(I)] R1 = 0.0470, wR2 = 0.1323R indices (all data) R1 = 0.0573, wR2 = 0.1424Extinction coefficient 0.021(3) 0.358~and -0.181 e.Å $^{\text{-3}}$ Largest diff. peak and hole

Table 2. Atomic coordinates ($x\;10^4)$ and equivalent $\;\;$ isotropic displacement parameters (Å 2x

10³)

	Х	у	Z	U(eq)
O(1)	4782(2)	7272(2)	6729(1)	87(1)
N(1)	8074(2)	7129(1)	6569(1)	44(1)
C(1)	6259(2)	7736(2)	6554(1)	52(1)
C(2)	6302(2)	9119(2)	6294(1)	47(1)
C(3)	8460(2)	9260(2)	6128(1)	45(1)
C(4)	9496(2)	7920(2)	6304(1)	48(1)
C(5)	8464(2)	9408(2)	5531(1)	53(1)
C(6)	7150(3)	8406(2)	5229(1)	53(1)
C(7)	5239(2)	8252(2)	5380(1)	52(1)
C(8)	4702(2)	9121(2)	5823(1)	55(1)
C(9)	3924(3)	7362(2)	5108(1)	66(1)
C(10)	4457(4)	6633(2)	4681(1)	77(1)
C(11)	6367(4)	6788(2)	4538(1)	82(1)
C(12)	7714(3)	7656(2)	4810(1)	70(1)
C(13)	3002(5)	5712(3)	4376(1)	118(1)
C(14)	9624(3)	10453(2)	6385(1)	64(1)
C(15)	5703(3)	10179(2)	6688(1)	67(1)
C(16)	8629(2)	5851(2)	6793(1)	48(1)
C(17)	10548(3)	5376(2)	6759(1)	62(1)
C(18)	11122(4)	4126(2)	6966(1)	77(1)
C(19)	9803(4)	3345(2)	7214(1)	83(1)
C(20)	7931(4)	3821(2)	7257(1)	82(1)
C(21)	7315(3)	5063(2)	7050(1)	65(1)

for **3a**. U(eq) is defined as one third of the trace of the orthogonalized U^{iJ} tensor.

O(1)-C(1)	1.220(2)
N(1)-C(1)	1.361(2)
N(1)-C(4)	1.4549(19)
N(1)-C(16)	1.421(2)
C(1)-C(2)	1.521(2)
C(2)-C(3)	1.562(2)
C(2)-C(8)	1.543(2)
C(2)-C(15)	1.536(2)
C(3)-C(4)	1.543(2)
C(3)-C(5)	1.541(2)
C(3)-C(14)	1.529(2)
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700
C(5)-C(6)	1.495(2)
C(6)-C(7)	1.389(2)
C(6)-C(12)	1.389(2)
C(7)-C(8)	1.496(2)
C(7)-C(9)	1.388(2)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-H(9)	0.9300
C(9)-C(10)	1.387(3)
C(10)-C(11)	1.382(3)
C(10)-C(13)	1.502(3)
C(11)-H(11)	0.9300
C(11)-C(12)	1.388(3)
C(12)-H(12)	0.9300
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(15)-H(15A)	0.9600

 Table 3.
 Bond lengths [Å] and angles [deg] for 3a.

C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-C(17)	1.387(3)
C(16)-C(21)	1.392(2)
C(17)-H(17)	0.9300
C(17)-C(18)	1.384(3)
C(18)-H(18)	0.9300
C(18)-C(19)	1.377(3)
C(19)-H(19)	0.9300
C(19)-C(20)	1.362(3)
C(20)-H(20)	0.9300
C(20)-C(21)	1.383(3)
C(21)-H(21)	0.9300
C(1)-N(1)-C(4)	112.52(13)
C(1)-N(1)-C(16)	127.13(13)
C(16)-N(1)-C(4)	120.32(13)
O(1)-C(1)-N(1)	126.06(16)
O(1)-C(1)-C(2)	123.32(15)
N(1)-C(1)-C(2)	110.61(13)
C(1)-C(2)-C(3)	104.91(12)
C(1)-C(2)-C(8)	107.74(13)
C(1)-C(2)-C(15)	107.63(14)
C(8)-C(2)-C(3)	112.76(13)
C(15)-C(2)-C(3)	115.46(14)
C(15)-C(2)-C(8)	107.95(13)
C(4)-C(3)-C(2)	104.62(12)
C(5)-C(3)-C(2)	111.70(12)
C(5)-C(3)-C(4)	109.22(13)
C(14)-C(3)-C(2)	113.89(13)
C(14)-C(3)-C(4)	109.48(13)
C(14)-C(3)-C(5)	107.84(13)
N(1)-C(4)-C(3)	107.20(12)
N(1)-C(4)-H(4A)	110.3
N(1)-C(4)-H(4B)	110.3
C(3)-C(4)-H(4A)	110.3
C(3)-C(4)-H(4B)	110.3
H(4A)-C(4)-H(4B)	108.5
C(3)-C(5)-H(5A)	108.9

C(3)-C(5)-H(5B)	108.9
H(5A)-C(5)-H(5B)	107.7
C(6)-C(5)-C(3)	113.39(13)
C(6)-C(5)-H(5A)	108.9
C(6)-C(5)-H(5B)	108.9
C(7)-C(6)-C(5)	116.60(14)
C(7)-C(6)-C(12)	119.24(17)
C(12)-C(6)-C(5)	124.14(17)
C(6)-C(7)-C(8)	116.60(15)
C(9)-C(7)-C(6)	119.63(17)
C(9)-C(7)-C(8)	123.73(17)
C(2)-C(8)-H(8A)	108.9
C(2)-C(8)-H(8B)	108.9
C(7)-C(8)-C(2)	113.21(13)
C(7)-C(8)-H(8A)	108.9
C(7)-C(8)-H(8B)	108.9
H(8A)-C(8)-H(8B)	107.8
C(7)-C(9)-H(9)	119.2
C(10)-C(9)-C(7)	121.6(2)
C(10)-C(9)-H(9)	119.2
C(9)-C(10)-C(13)	121.3(3)
C(11)-C(10)-C(9)	118.12(19)
C(11)-C(10)-C(13)	120.5(2)
C(10)-C(11)-H(11)	119.4
C(10)-C(11)-C(12)	121.16(19)
C(12)-C(11)-H(11)	119.4
C(6)-C(12)-H(12)	119.9
C(11)-C(12)-C(6)	120.2(2)
C(11)-C(12)-H(12)	119.9
C(10)-C(13)-H(13A)	109.5
C(10)-C(13)-H(13B)	109.5
C(10)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(3)-C(14)-H(14A)	109.5
C(3)-C(14)-H(14B)	109.5
C(3)-C(14)-H(14C)	109.5

H(14A)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(2)-C(15)-H(15A)	109.5
C(2)-C(15)-H(15B)	109.5
C(2)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(17)-C(16)-N(1)	119.01(14)
C(17)-C(16)-C(21)	118.83(16)
C(21)-C(16)-N(1)	122.16(16)
C(16)-C(17)-H(17)	119.8
C(18)-C(17)-C(16)	120.31(19)
C(18)-C(17)-H(17)	119.8
C(17)-C(18)-H(18)	119.8
C(19)-C(18)-C(17)	120.4(2)
C(19)-C(18)-H(18)	119.8
C(18)-C(19)-H(19)	120.3
C(20)-C(19)-C(18)	119.32(19)
C(20)-C(19)-H(19)	120.3
C(19)-C(20)-H(20)	119.3
C(19)-C(20)-C(21)	121.4(2)
C(21)-C(20)-H(20)	119.3
C(16)-C(21)-H(21)	120.2
C(20)-C(21)-C(16)	119.6(2)
C(20)-C(21)-H(21)	120.2

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(\mathring{A}^{2}x \ 10^{3})$ for 3a.

The anisotropic displacement factor exponent takes the form: -2p²[$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

U ¹² -4(1) -4(1) -4(1) 4(1)
-4(1) -4(1) -4(1) 4(1)
-4(1) -4(1) 4(1)
-4(1) 4(1)
4(1)
0(1)
0(1)
1(1)
8(1)
8(1)
9(1)
4(1)
10(1)
25(1)
17(1)
1(2)
-7(1)
8(1)
-6(1)
2(1)
12(1)
3(1)
-18(1)
-11(1)

	Х	У	Z	U(eq)
H(4A)	9891	7427	6004	57
H(4B)	10677	8102	6540	57
H(5A)	8031	10316	5431	64
H(5B)	9816	9298	5439	64
H(8A)	3455	8802	5937	66
H(8B)	4500	10044	5699	66
H(9)	2654	7253	5214	79
H(11)	6757	6301	4255	98
H(12)	8999	7737	4711	84
H(13A)	2181	5272	4610	177
H(13B)	3715	5041	4197	177
H(13C)	2179	6235	4125	177
H(14A)	8926	11282	6296	96
H(14B)	10923	10488	6262	96
H(14C)	9754	10338	6757	96
H(15A)	4397	9974	6785	100
H(15B)	5698	11064	6532	100
H(15C)	6640	10163	6994	100
H(17)	11453	5901	6596	75
H(18)	12407	3811	6939	93
H(19)	10187	2501	7350	99
H(20)	7048	3300	7429	98
H(21)	6030	5370	7083	78

Table 5. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10^{-3}$) for 3a.

O(1)-C(1)-C(2)-C(3)	-179.05(17)
O(1)-C(1)-C(2)-C(8)	-58.7(2)
O(1)-C(1)-C(2)-C(15)	57.5(2)
N(1)-C(1)-C(2)-C(3)	1.86(17)
N(1)-C(1)-C(2)-C(8)	122.22(14)
N(1)-C(1)-C(2)-C(15)	-121.60(15)
N(1)-C(16)-C(17)-C(18)	-179.02(15)
N(1)-C(16)-C(21)-C(20)	179.41(15)
C(1)-N(1)-C(4)-C(3)	4.06(17)
C(1)-N(1)-C(16)-C(17)	178.36(15)
C(1)-N(1)-C(16)-C(21)	-2.3(2)
C(1)-C(2)-C(3)-C(4)	0.56(15)
C(1)-C(2)-C(3)-C(5)	118.60(14)
C(1)-C(2)-C(3)-C(14)	-118.93(14)
C(1)-C(2)-C(8)-C(7)	-71.15(18)
C(2)-C(3)-C(4)-N(1)	-2.62(15)
C(2)-C(3)-C(5)-C(6)	-46.56(18)
C(3)-C(2)-C(8)-C(7)	44.12(19)
C(3)-C(5)-C(6)-C(7)	47.45(19)
C(3)-C(5)-C(6)-C(12)	-133.75(17)
C(4)-N(1)-C(1)-O(1)	177.17(17)
C(4)-N(1)-C(1)-C(2)	-3.77(18)
C(4)-N(1)-C(16)-C(17)	0.5(2)
C(4)-N(1)-C(16)-C(21)	179.88(14)
C(4)-C(3)-C(5)-C(6)	68.68(17)
C(5)-C(3)-C(4)-N(1)	-122.33(13)
C(5)-C(6)-C(7)-C(8)	0.8(2)
C(5)-C(6)-C(7)-C(9)	178.45(14)
C(5)-C(6)-C(12)-C(11)	-177.39(16)
C(6)-C(7)-C(8)-C(2)	-47.4(2)
C(6)-C(7)-C(9)-C(10)	-1.1(3)
C(7)-C(6)-C(12)-C(11)	1.4(3)
C(7)-C(9)-C(10)-C(11)	1.5(3)
C(7)-C(9)-C(10)-C(13)	-177.63(19)
C(8)-C(2)-C(3)-C(4)	-116.41(14)
C(8)-C(2)-C(3)-C(5)	1.63(18)

 Table 6. Torsion angles [°] for 3a.

C(8)-C(2)-C(3)-C(14)	124.10(15)
C(8)-C(7)-C(9)-C(10)	176.40(16)
C(9)-C(7)-C(8)-C(2)	135.06(17)
C(9)-C(10)-C(11)-C(12)	-0.5(3)
C(10)-C(11)-C(12)-C(6)	-0.9(3)
C(12)-C(6)-C(7)-C(8)	-178.06(15)
C(12)-C(6)-C(7)-C(9)	-0.4(2)
C(13)-C(10)-C(11)-C(12)	178.6(2)
C(14)-C(3)-C(4)-N(1)	119.80(14)
C(14)-C(3)-C(5)-C(6)	-172.43(13)
C(15)-C(2)-C(3)-C(4)	118.85(15)
C(15)-C(2)-C(3)-C(5)	-123.12(15)
C(15)-C(2)-C(3)-C(14)	-0.64(19)
C(15)-C(2)-C(8)-C(7)	172.88(15)
C(16)-N(1)-C(1)-O(1)	-0.8(3)
C(16)-N(1)-C(1)-C(2)	178.23(13)
C(16)-N(1)-C(4)-C(3)	-177.79(12)
C(16)-C(17)-C(18)-C(19)	-0.7(3)
C(17)-C(16)-C(21)-C(20)	-1.2(3)
C(17)-C(18)-C(19)-C(20)	-0.6(3)
C(18)-C(19)-C(20)-C(21)	1.0(3)
C(19)-C(20)-C(21)-C(16)	-0.1(3)
C(21)-C(16)-C(17)-C(18)	1.6(3)

Symmetry transformations used to generate equivalent atoms:

					-
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	

Table 7. Hydrogen bonds for 3a [Å and $^\circ$].