Acid-Mediated Intermolecular C–F/C–H Cross-Coupling

of 2-Fluorobenzofurans with Arenes:

Synthesis of 2-Arylbenzofurans

Takeshi Fujita,* Ryutaro Morioka, Takuya Fukuda, Naoto Suzuki, and Junji Ichikawa*

Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba Tsukuba, Ibaraki 305-8571, Japan fujita@chem.tsukuba.ac.jp junji@chem.tsukuba.ac.jp

Supporting Information

Table of Contents

1. General Statement	S2
2. Synthesis of 2-Arylbenzofurans 3	S2
3. Orthogonal Synthesis of Eupomatenoid 6 (4)	S15
4. Mechanistic Studies	S18
5. Reaction Mechanisms	S20
6. References	S20
7. ¹ H, ¹³ C, and ¹⁹ F NMR Charts	S22

1. General Statement

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Bruker Avance 500. Chemical shift values are given in ppm relative to internal Me₄Si (for ¹H NMR: $\delta = 0.00$ ppm), CDCl₃ (for ¹³C NMR: $\delta = 77.0$ ppm), and C₆F₆ (for ¹⁹F NMR: $\delta = 0.00$ ppm). IR spectra were recorded on a Horiba FT-300S spectrometer by the attenuated total reflectance (ATR) method. Mass spectra were measured on a JEOL JMS-T100GCV and a JEOL JMS-T100CS spectrometer. Gel permeation chromatography (GPC) was performed on a Japan Analytical Industry LC-908 apparatus equipped with a JAIGEL-1H and -2H assembly. Elemental analyses were carried out at the Elemental Analysis Laboratory, Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba. X-ray diffraction studies were performed on a Bruker APEXII ULTRA instrument equipped with a CCD diffractometer using MoK α (graphite monochromated, $\lambda = 0.71069$ Å) radiation. The structure refinement was performed using the Yadokari-XG software.¹ The structure was solved by direct methods (SIR97).² The positional and thermal parameters of non-hydrogen atoms were refined anisotropically on F2 by the full-matrix least-squares method using SHELX-97.³ Hydrogen atoms were placed at calculated positions and refined with the riding mode on their corresponding carbon atoms. The CCDC deposition number of compound **4** is 2075144.

Column chromatography and preparative thin-layer chromatography were conducted on silica gel (Silica Gel 60 N, Kanto Chemical Co., Inc. for column chromatography and Wakogel B-5F, Wako Pure Chemical Industries for preparative thin-layer chromatography). Dichloromethane was purified by a solvent-purification system (GlassContour) equipped with columns of activated alumina and supported-copper catalyst (Q-5) before use. 1,1,1,3,3,3-Hexafluoropropan-2-ol (HFIP) was distilled from molecular sieves 4A and stored over activated molecular sieves 4A. 1,2-Dichloroethane (DCE) was distilled from P_2O_5 and stored over activated molecular sieves 4A. p-Xylene (2a) and m-xylene (2b) were distilled from CaH₂ and stored over activated molecular **1n**,^{4,5} 2-Fluorobenzofurans 2-fluorobenzothiophene $(1m)^{6}$ 1a–11 and sieves 4A. acid.^{7,8} (1a-Cl).^{9,10} 2-chlorobenzofuran 5-bromo-3-methylbenzofuran-2-carboxylic 2-bromobenzofuran (1a-Br),^{11,12} and 2-iodobenzofuran (1a-I)^{13,14} were prepared according to the literature procedures, and their spectral data showed good agreement with the literature data. Unless otherwise noted, materials were obtained from commercial sources and used directly without further purifications.

2. Synthesis of 2-Arylbenzofurans 32-(2,5-Dimethylphenyl)benzofuran (3aa)

Method A:

To a dichloromethane (2.0 mL) suspension of AlCl₃ (41 mg, 0.31 mmol) and p-xylene (2a, 0.12

mL, 1.0 mmol) was added 2-fluorobenzofuran (**1a**, 27 mg, 0.20 mmol) at -20 °C. After stirring at the same temperature for 1 h, aqueous NaOH (2 M, 1 mL) was added and allowed to warm to room temperature. To the mixture was added aqueous HCl (2 M, 1 mL), and organic materials were extracted with dichloromethane (2 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) to give **3aa** (28 mg, 63%) as a colorless crystal.

Method B:

To a mixture of AlCl₃ (41 mg, 0.31 mmol) and *p*-xylene (**2a**, 0.50 mL, 4.1 mmol) was added 2-fluorobenzofuran (**1a**, 28 mg, 0.20 mmol) at room temperature. After stirring at room temperature for 1 h, aqueous NaOH (2 M, 1 mL) was added. To the mixture was added aqueous HCl (2 M, 1 mL), and organic materials were extracted with dichloromethane (2 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) to give **3aa** (41 mg, 91%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 2.39 (s, 3H), 2.53 (s, 3H), 6.88 (d, J = 0.9 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.22–7.30 (m, 2H), 7.52 (dd, J = 8.2, 0.8 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.68 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 20.9, 21.4, 104.9, 111.0, 120.8, 122.7, 124.1, 128.5, 129.16, 129.23, 129.6, 131.2, 132.7, 135.5, 154.3, 155.7.

Spectral data for this compound showed good agreement with literature data.¹⁴

2-(2,4-Dimethylphenyl)benzofuran (3ab)

2-Arylbenzofuran **3ab** was synthesized by Method A using 2-fluorobenzofuran (**1a**, 27 mg, 0.20 mmol), *m*-xylene (**2b**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ab** (29 mg, 67%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 2.38 (s, 3H), 2.56 (s, 3H), 6.86 (s, 1H), 7.13–7.14 (m, 2H), 7.23–7.31 (m, 2H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.61 (dd, *J* = 7.6, 0.7 Hz, 1H), 7.76 (d, *J* = 8.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 21.2, 21.9, 104.5, 111.1, 120.8, 122.7, 124.0, 126.9, 127.2, 128.1, 129.3, 132.1, 135.7, 138.5, 154.3, 155.9.

Spectral data for this compound showed good agreement with literature data.¹⁵

2-(Thiophen-2-yl)benzofuran (3ac)

2-Arylbenzofuran **3ac** was synthesized by Method A using 2-fluorobenzofuran (**1a**, 27 mg, 0.20 mmol), thiophene (**2c**, 80 μ L, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ac** (33 mg, 84%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 6.87 (d, J = 0.9 Hz, 1H), 7.11 (dd, J = 5.1, 3.7 Hz, 1H), 7.20–7.29 (m, 2H), 7.34 (dd, J = 5.1, 1.1 Hz, 1H), 7.48–7.50 (m, 2H), 7.54 (ddd, J = 7.6, 1.4, 0.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 101.1, 111.1, 120.7, 123.1, 124.3, 124.6, 125.8, 127.9, 129.1, 133.3, 151.3, 154.5.

Spectral data for this compound showed good agreement with literature data.¹⁶

4-(Benzofuran-2-yl)phenol (3ad)

2-Arylbenzofuran **3ad** was synthesized by Method A using 2-fluorobenzofuran (**1a**, 27 mg, 0.20 mmol), phenol (**2d**, 94 mg, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 3/1) gave **3ad** (14 mg, 34%) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 4.99 (s, 1H), 6.88 (d, J = 0.8 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 7.19–7.27 (m, 2H), 7.49 (d, J = 8.2 Hz, 1H), 7.55 (d, J = 6.5 Hz, 1H), 7.76 (d, J = 8.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 99.7, 111.0, 115.7, 120.6, 122.8, 123.6, 123.8, 126.7, 129.4, 154.7, 155.9, 156.0.

Spectral data for this compound showed good agreement with literature data.¹⁷

2-(2,4-Dimethoxyphenyl)benzofuran (3ae)

2-Arylbenzofuran **3ae** was synthesized by Method A using 2-fluorobenzofuran (**1a**, 56 mg, 0.41 mmol), 1,3-dimethoxybenzene (**2e**, 0.26 mL, 2.0 mmol), AlCl₃ (82 mg, 0.61 mmol), and dichloromethane (4.0 mL) at 40 °C for 24 h. Purification by GPC (chloroform) gave **3ae** (67 mg, 64%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 3.85 (s, 3H), 3.96 (s, 3H), 6.56 (d, J = 2.3 Hz, 1H), 6.61 (dd, J = 8.6, 2.3 Hz, 1H), 7.17–7.24 (m, 3H), 7.47 (d, J = 8.0 Hz, 1H), 7.55 (dd, J = 7.5, 1.4 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.55 (dd, J = 7.5, 1.4 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8

J = 8.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 55.45, 55.48, 98.8, 104.2, 104.8, 110.6, 112.8, 120.7, 122.5, 123.5, 128.0, 130.0, 152.4, 153.7, 157.8, 160.9. IR (neat): v 2960, 2939, 2837, 1612, 1504, 1452, 1290, 1254, 1211, 1159, 1049, 1032, 798, 750 cm⁻¹. HRMS (EI): m/z Calcd. for C₁₆H₁₄O₃ [M]⁺: 254.0943; Found: 254.0947.

3-Butyl-2-(2,5-dimethylphenyl)benzofuran (3ba)

2-Arylbenzofuran **3ba** was synthesized by Method A using 3-butyl-2-fluorobenzofuran (**1b**, 39 mg, 0.20 mmol), *p*-xylene (**2a**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (1.0 mL) at -20 °C for 3 h. Purification by silica gel column chromatography (hexane/ethyl acetate = 25/1) gave **3ba** (40 mg, 70%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 0.86 (t, J = 7.3 Hz, 3H), 1.29–1.36 (m, 2H), 1.62–1.68 (m, 2H), 2.27 (s, 3H), 2.36 (s, 3H), 2.65 (t, J = 7.7 Hz, 2H), 7.16 (d, J = 8.0 Hz, 1H), 7.19–7.21 (m, 2H), 7.23–7.30 (m, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 13.8, 19.7, 20.9, 22.5, 23.7, 31.7, 111.1, 116.8, 119.7, 122.1, 123.7, 129.6, 129.8, 130.2, 130.4, 131.1, 134.9, 135.2, 152.3, 154.3. IR (neat): v 2954, 2927, 2858, 1452, 1257, 1101, 872, 812, 743 cm⁻¹. HRMS (EI): m/z Calcd. for C₂₀H₂₂O [M]⁺: 278.1671; Found: 278.1670.

3-Butyl-2-(2,4-dimethylphenyl)benzofuran (3bb)

2-Arylbenzofuran **3bb** was synthesized by Method A using 3-butyl-2-fluorobenzofuran (**1b**, 48 mg, 0.25 mmol), *m*-xylene (**2b**, 133 mg, 1.3 mmol), AlCl₃ (52 mg, 0.39 mmol), and dichloromethane (2.5 mL) at room temperature for 2 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3bb** (39 mg, 57%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 0.87 (t, *J* = 7.5 Hz, 3H), 1.33 (qt, *J* = 7.5, 7.5 Hz, 2H), 1.65 (tt, *J* = 7.5, 7.5 Hz, 2H), 2.30 (s, 3H), 2.40 (s, 3H), 2.66 (t, *J* = 7.5 Hz, 2H), 7.09 (d, *J* = 7.8 Hz, 1H), 7.15 (s, 1H), 7.24–7.30 (m, 3H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 13.8, 20.1, 21.3, 22.6, 23.7, 31.8, 111.1, 116.8, 119.7, 122.0, 123.6, 126.2, 127.5, 129.7, 130.5, 131.3, 138.2, 138.9, 152.3, 154.3. IR (neat): *v* 2956, 2927, 2858, 1614, 1454, 1259, 744, 592 cm⁻¹. HRMS (EI): *m*/*z* Calcd. for C₂₀H₂₂O [M]⁺: 278.1671; Found: 278.1680.

3-Butyl-2-(thiophen-2-yl)benzofuran (3bc)

2-Arylbenzofuran **3bc** was synthesized by Method A using 3-butyl-2-fluorobenzofuran (**1b**, 39 mg, 0.20 mmol), thiophene (**2c**, 84 mg, 1.0 mmol), AlCl₃ (42 mg, 0.31 mmol), and dichloromethane (2.0 mL) at room temperature for 1 h. Purification by silica gel column chromatography (hexane) gave **3bb** (20 mg, 38%) as a pale yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 0.97 (t, *J* = 7.3 Hz, 3H), 1.46–1.54 (m, 2H), 1.69–1.74 (m, 2H), 2.92 (t, *J* = 8.0 Hz, 2H), 7.14–7.15 (m, 1H), 7.21–7.29 (m, 2H), 7.37 (ddd, *J* = 5.1, 1.2, 1.2 Hz, 1H), 7.45–7.48 (m, 2H), 7.53 (dd, *J* = 7.7, 0.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 14.0, 22.9, 24.0, 31.5, 110.9, 116.0, 119.4, 122.5, 124.3, 124.8, 125.5, 127.5, 130.4, 133.2, 146.5, 153.8. IR (neat): *v* 2954, 2927, 2858, 1454, 1259, 1214, 1103, 1013, 851, 743, 694 cm⁻¹. HRMS (EI): *m/z* Calcd. for C₁₆H₁₆OS [M]⁺: 256.0922; Found: 256.0925.

3-Butyl-2-(2,4-dimethoxyphenyl)benzofuran (3bf)

2-Arylbenzofuran **3bf** was synthesized by Method A using 3-butyl-2-fluorobenzofuran (**1b**, 39 mg, 0.20 mmol), 1,4-dimethoxybenzene (**2f**, 57 mg, 0.41 mmol), AlCl₃ (41 mg, 0.31 mmol), and dichloromethane (2.0 mL) at room temperature for 2 h. Purification by silica gel column chromatography (toluene/dichloromethane = 10/1) gave **3bf** (47 mg, 75%) as a pale yellow oil.

¹H NMR (500 MHz, CDCl₃): δ 0.88 (t, *J* = 7.4 Hz, 3H), 1.35 (qt, *J* = 7.5, 7.4 Hz, 2H), 1.63–1.69 (m, 2H), 2.69 (t, *J* = 7.8 Hz, 2H), 3.79 (s, 3H), 3.82 (s, 3H), 6.93–6.97 (m, 2H), 7.05 (dd, *J* = 1.1, 1.1 Hz, 1H), 7.22–7.29 (m, 2H), 7.48 (dd, *J* = 7.8, 0.7 Hz, 1H), 7.59 (dd, *J* = 7.6, 0.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 13.9, 22.8, 24.1, 31.6, 55.8, 56.3, 111.1, 112.8, 115.6, 116.6, 118.1, 119.8, 121.0, 122.0, 123.8, 129.9, 148.6, 151.8, 153.4, 154.5. IR (neat): *v* 2954, 2858, 2832, 2360, 1498, 1454, 1473, 1223, 1174, 1039, 804, 733 cm⁻¹. HRMS (EI): *m*/*z* Calcd. for C₂₀H₂₂O₃ [M]⁺: 310.1569; Found: 310.1564.

2-(2,5-Dimethylphenyl)-3-phenylbenzofuran (3ca)

2-Arylbenzofuran **3ca** was synthesized by Method A using 2-fluoro-3-phenylbenzofuran (**1c**, 42 mg, 0.20 mmol), *p*-xylene (**2a**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 20/1) gave **3ca** (12 mg, 21%) as a white solid.

2-Arylbenzofuran **3ca** was also synthesized by Method B using 2-fluoro-3-phenylbenzofuran (**1c**, 25 mg, 0.12 mmol), *p*-xylene (**2a**, 0.38 mL, 3.1 mmol), and AlCl₃ (31 mg, 0.23 mmol) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ca** (9.0 mg, 26%) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 2.03 (s, 3H), 2.29 (s, 3H), 7.10 (d, J = 1.7 Hz, 1H), 7.24–7.39 (m, 9H), 7.55 (d, J = 8.2 Hz, 1H), 7.74–7.76 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 19.6, 20.8, 111.2, 118.3, 120.0, 122.8, 124.3, 126.9, 127.1, 128.6, 128.67, 128.72, 130.0, 130.5, 131.2, 132.8, 134.5, 135.1, 152.1, 154.5. IR (neat): v 3033, 2924, 1653, 1606, 1452, 814, 742, 698 cm⁻¹. HRMS (EI): m/z Calcd. for C₂₂H₁₈O [M]⁺: 298.1358; Found: 298.1350.

2-(2,5-Dimethylphenyl)-3-(4-fluorophenyl)benzofuran (3da)

2-Arylbenzofuran **3da** was synthesized by Method A using 2-fluoro-3-(4-fluorophenyl)benzofuran (**1d**, 46 mg, 0.20 mmol), *p*-xylene (**2a**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 20/1) gave **3da** (16 mg, 25%) as a white solid.

2-Arylbenzofuran **3da** was also synthesized by Method B using 2-fluoro-3-(4-fluorophenyl)benzofuran (**1d**, 31 mg, 0.14 mmol), *p*-xylene (**2a**, 0.38 mL, 3.1 mmol), and AlCl₃ (30 mg, 0.22 mmol) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3da** (14 mg, 33%) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 2.03 (s, 3H), 2.28 (s, 3H), 7.03 (dd, $J_{HF} = 8.6$ Hz, J = 8.6 Hz, 2H), 7.10 (s, 1H), 7.21 (br s, 1H), 7.27–7.35 (m, 4H), 7.53 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 19.6, 20.8, 111.4, 115.7 (d, $J_{CF} = 21$ Hz, 1H), 117.4, 119.8, 122.9, 124.4, 128.4, 128.9 (d, $J_{CF} = 3$ Hz, 1H), 129.9 (d, $J_{CF} = 5$ Hz, 1H), 130.1, 130.4 (d, $J_{CF} = 8$ Hz, 1H), 130.6, 131.2, 134.5, 135.2, 152.2, 154.5, 161.9 (d, $J_{CF} = 247$ Hz, 1H). δ 47.8 (tt, $J_{\text{FH}} = 9$, 5 Hz). IR (neat): v 2962, 2922, 1512, 1450, 1221, 837, 812, 744, 525 cm⁻¹. HRMS (EI): *m/z* Calcd. for C₂₂H₁₇FO [M]⁺: 316.1263; Found: 316.1265.

2-(2,5-Dimethylphenyl)-5-phenylbenzofuran (3ea)

2-Arylbenzofuran **3ea** was synthesized by Method A using 2-fluoro-5-phenylbenzofuran (**1e**, 42 mg, 0.20 mmol), *p*-xylene (**2a**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ea** (42 mg, 70%) as a white solid.

2-Arylbenzofuran **3ea** was also synthesized by Method B using 2-fluoro-5-phenylbenzofuran (**1e**, 43 mg, 0.20 mmol), *p*-xylene (**2a**, 0.50 mL, 4.1 mmol), and AlCl₃ (39 mg, 0.29 mmol) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ea** (59 mg, 96%) as a white solid.

¹H NMR (500 MHz, CDCl₃): δ 2.40 (s, 3H), 2.55 (s, 3H), 6.91 (s, 1H), 7.10–7.19 (m, 2H), 7.33–7.36 (m, 1H), 7.43–7.78 (m, 8H). ¹³C NMR (126 MHz, CDCl₃): δ 21.0, 21.4, 105.1, 111.1, 119.3, 123.9, 126.8, 127.4, 128.6, 128.7, 129.3, 129.5, 129.7, 131.2, 132.7, 135.5, 136.4, 141.7, 153.9, 156.5. IR (neat): *v* 3030, 2922, 2862, 1458, 1036, 804, 760, 698 cm⁻¹. HRMS (EI): *m/z* Calcd. for C₂₂H₁₈O [M]⁺: 298.1358; Found: 298.1361. Elem. Anal. Calcd. for C₂₂H₁₈O: C, 88.56; H, 6.08. Found: C, 88.52; H, 6.12.

2-(2,4-Dimethylphenyl)-5-phenylbenzofuran (3eb)

2-Arylbenzofuran **3eb** was synthesized by Method A using 2-fluoro-5-phenylbenzofuran (**1e**, 44 mg, 0.21 mmol), *m*-xylene (**2b**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane) gave **3eb** (31 mg, 51%) as a colorless crystal.

2-Arylbenzofuran **3eb** was also synthesized by Method B using 2-fluoro-5-phenylbenzofuran (**1e**, 43 mg, 0.20 mmol), *m*-xylene (**2b**, 0.50 mL, 4.1 mmol), and AlCl₃ (40 mg, 0.30 mmol) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane) gave **3eb** (61 mg, 99%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 2.35 (s, 3H), 2.54 (s, 3H), 6.86 (s, 1H), 7.10–7.11 (m, 2H), 7.31–

7.34 (m, 1H), 7.43 (dd, J = 8.0, 7.9 Hz, 2H), 7.49 (dd, J = 8.5, 1.9 Hz, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.61 (dd, J = 8.0, 0.9 Hz, 2H), 7.74–7.76 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 21.2, 21.8, 104.6, 111.1, 119.2, 123.7, 126.79, 126.84, 127.0, 127.4, 128.1, 128.7, 129.8, 132.0, 135.6, 136.4, 138.5, 141.7, 153.9, 156.6. IR (neat): ν 3030, 2922, 1462, 1036, 800, 760, 696 cm⁻¹. HRMS (EI): m/zCalcd. for C₂₂H₁₈O [M]⁺: 298.1358, Found: 298.1359.

5-Phenyl-2-(thiophen-2-yl)benzofuran (3ec)

2-Arylbenzofuran **3ec** was synthesized by Method A using 2-fluoro-5-phenylbenzofuran (**1e**, 42 mg, 0.20 mmol), thiophene (**2c**, 80 μ L, 1.0 mmol), AlCl₃ (41 mg, 0.31 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ec** (17 mg, 30%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 6.91 (s, 1H), 7.11–7.13 (m, 1H), 7.34–7.37 (m, 2H), 7.44–7.56 (m, 5H), 7.62–7.64 (m, 2H), 7.73 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 101.2, 111.1, 119.2, 124.0, 124.7, 125.9, 126.9, 127.4, 127.9, 128.7, 129.6, 133.2, 136.8, 141.6, 151.9, 154.2. IR (neat): *v* 1464, 1265, 1201, 1147, 999, 879, 827, 800, 762, 696 cm⁻¹. HRMS (EI): *m/z* Calcd for C₁₈H₁₂OS [M]⁺: 276.0609; Found: 276.0617.

2-(2,5-Dimethylphenyl)-5-(4-fluorophenyl)benzofuran (3fa)

2-Arylbenzofuran **3fa** was synthesized by Method A using 2-fluoro-5-(4-fluorophenyl)benzofuran (**1f**, 46 mg, 0.20 mmol), *p*-xylene (**2a**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 20/1) gave **3fa** (47 mg, 74%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 2.38 (s, 3H), 2.53 (s, 3H), 6.88 (s, 1H), 7.09–7.13 (m, 3H), 7.17 (d, J = 7.7 Hz, 1H), 7.43 (dd, J = 8.5, 1.9 Hz, 1H), 7.53–7.56 (m, 3H), 7.68 (br s, 1H), 7.70 (d, J = 1.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 21.0, 21.5, 105.0, 111.2, 115.5 (d, $J_{CF} = 21$ Hz), 119.2, 123.7, 128.6, 128.9 (d, $J_{CF} = 8$ Hz), 129.4, 129.5, 129.8, 131.3, 132.7, 135.5, 135.6, 137.8 (d, $J_{CF} = 3$ Hz), 153.9, 156.6, 162.2 (d, $J_{CF} = 260$ Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ 46.3 (tt, $J_{FH} = 9$, 5 Hz). IR (neat): v 3039, 2927, 2864, 1514, 1460, 1219, 1157, 837, 802, 526 cm⁻¹. HRMS (EI): m/z Calcd. for C₂₂H₁₇FO [M]⁺: 316.1263; Found: 316.1262.

2-(2,4-Dimethylphenyl)-5-(4-fluorophenyl)benzofuran (3fb)

2-Arylbenzofuran **3fb** was synthesized by Method A using 2-fluoro-5-(4-fluorophenyl)benzofuran (**1f**, 47 mg, 0.21 mmol), *m*-xylene (**2b**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3fb** (37 mg, 56%) as a colorless crystal.

2-Arylbenzofuran **3fb** was also synthesized by Method B using 2-fluoro-5-(4-fluorophenyl)benzofuran (**1f**, 51 mg, 0.22 mmol), *m*-xylene (**2b**, 0.50 mL, 4.1 mmol), and AlCl₃ (41 mg, 0.31 mmol) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3fb** (46 mg, 65%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 2.36 (s, 3H), 2.55 (s, 3H), 6.85 (s, 1H), 7.10–7.14 (m, 4H), 7.42 (dd, J = 8.5, 1.9 Hz, 1H), 7.53–7.57 (m, 3H), 7.70 (d, J = 1.9 Hz, 1H), 7.74 (d, J = 8.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 21.2, 21.8, 104.5, 111.1, 115.5 (d, $J_{CF} = 21$ Hz), 119.1, 123.6, 126.9, 127.0, 128.1, 128.9 (d, $J_{CF} = 8$ Hz), 129.9, 132.1, 135.5, 135.7, 137.9 (d, $J_{CF} = 3$ Hz), 138.6, 153.8, 156.7, 162.2 (d, $J_{CF} = 246$ Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ 46.2 (tt, $J_{FH} = 9, 5$ Hz). IR (neat): v 2983, 2918, 1514, 1464, 1225, 1161, 1018, 798 cm⁻¹. HRMS (EI): m/z Calcd. for C₂₂H₁₇FO [M]⁺: 316.1263; Found: 316.1260.

Ethyl 4-[2-(2,5-Dimethylphenyl)benzofuran-5-yl]benzoate (3ga)

2-Arylbenzofuran **3ga** was synthesized by Method A using ethyl 4-(2-fluorobenzofuran-5-yl)benzoate (**1g**, 57 mg, 0.20 mmol), *p*-xylene (**2a**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 10/1) gave **3ga** (38 mg, 52%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 1.43 (t, *J* = 7.2 Hz, 3H), 2.41 (s, 3H), 2.56 (s, 3H), 4.41 (q, *J* = 7.2 Hz, 2H), 6.94 (d, *J* = 0.8 Hz, 1H), 7.13 (d, *J* = 7.7 Hz, 1H), 7.20 (d, *J* = 7.7 Hz, 1H), 7.55 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.60 (d, *J* = 8.5 Hz, 1H), 7.70–7.71 (m, 3H), 7.83–7.84 (m, 1H), 8.13 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 14.4, 21.0, 21.5, 60.9, 105.1, 111.3, 119.6, 123.9, 127.2,

128.6, 128.8, 129.4, 129.5, 129.9, 130.1, 131.3, 132.8, 135.3, 135.6, 146.1, 154.3, 156.8, 166.6. IR (neat): v 2976, 2927, 1714, 1608, 1275, 1103, 810, 771 cm⁻¹. HRMS (ESI+): m/z Calcd. for $C_{25}H_{23}O_3 [M + H]^+$: 371.1647; Found: 371.1644.

5-Bromo-2-(2,5-dimethylphenyl)benzofuran (3ha)

2-Arylbenzofuran **3ha** was synthesized by Method A using 5-bromo-2-fluorobenzofuran (**1h**, 43 mg, 0.20 mmol), *p*-xylene (**2a**, 0.12 mL, 1.0 mmol), AlCl₃ (41 mg, 0.31 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ha** (45 mg, 74%) as a colorless crystal.

2-Arylbenzofuran **3ha** was also synthesized by Method B using 5-bromo-2-fluorobenzofuran (**1h**, 46 mg, 0.21 mmol), *p*-xylene (**2a**, 0.50 mL, 4.1 mmol), and AlCl₃ (41 mg, 0.30 mmol) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ha** (55 mg, 86%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 2.38 (s, 3H), 2.51 (s, 3H), 6.80 (s, 1H), 7.10–7.19 (m, 2H), 7.37–7.38 (m, 2H), 7.67 (s, 1H), 7.71 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 20.9, 21.4, 104.2, 112.4, 115.7, 123.4, 126.9, 128.6, 129.0, 129.6, 131.2, 131.3, 132.8, 135.6, 153.0, 157.1. IR (neat): *v* 2922, 2862, 1504, 1442, 1263, 1178, 904, 795, 771, 669 cm⁻¹. HRMS (EI): *m/z* Calcd. for C₁₆H₁₃⁷⁹BrO [M]⁺: 300.0150; Found: 300.0155.

5-Bromo-2-(2,4-dimethylphenyl)benzofuran (3hb)

2-Arylbenzofuran **3hb** was synthesized by Method A using 5-bromo-2-fluorobenzofuran (**1h**, 43 mg, 0.20 mmol), *m*-xylene (**2b**, 0.12 mL, 1.0 mmol), AlCl₃ (41 mg, 0.31 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3hb** (47 mg, 79%) as a colorless crystal.

2-Arylbenzofuran **3hb** was also synthesized by Method B using 5-bromo-2-fluorobenzofuran (**1h**, 44 mg, 0.20 mmol), *m*-xylene (**2b**, 0.50 mL, 4.1 mmol), and AlCl₃ (41 mg, 0.31 mmol) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3hb** (53 mg, 86%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 2.36 (s, 3H), 2.51 (s, 3H), 6.75 (s, 1H), 7.09–7.10 (m, 2H), 7.33–7.37 (m, 2H), 7.68–7.71 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 21.2, 21.8, 103.7, 112.4, 115.7, 123.3, 126.5, 126.8, 126.9, 128.1, 131.3, 132.1, 135.7, 138.9, 153.0, 157.2. IR (neat): *n* 3016, 2922, 2862, 1610, 1454, 1441, 1259, 1049, 1020, 793, 671 cm⁻¹. HRMS (EI): *m/z* Calcd. for C₁₆H₁₃⁷⁹BrO [M]⁺: 300.0150; Found: 300.0155.

5-Bromo-2-(thiophen-2-yl)benzofuran (3hc)

2-Arylbenzofuran **3hc** was synthesized by Method A using 5-bromo-2-fluorobenzofuran (**1h**, 43 mg, 0.20 mmol), thiophene (**2c**, 80 μ L, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3hc** (23 mg, 40%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 6.80 (s, 1H), 7.11 (dd, J = 5.0, 3.6 Hz, 1H), 7.35–7.37 (m, 3H), 7.49 (d, J = 3.6, 1.0 Hz, 1H), 7.66 (dd, J = 1.2, 1.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 100.3, 112.4, 116.1, 123.2, 125.1, 126.3, 127.0, 127.9, 131.1, 132.6, 152.5, 153.2. IR (neat): v 1442, 1263, 1200, 1051, 997, 876, 850, 795, 706 cm⁻¹. HRMS (EI): m/z Calcd. for C₁₂H₇⁷⁹BrOS [M]⁺: 277.9401; Found: 277.9394.

2-(2,5-Dimethylphenyl)-5-methoxybenzofuran (3ia)

2-Arylbenzofuran **3ia** was synthesized by Method A using 2-fluoro-5-methoxybenzofuran (**1i**, 28 mg, 0.17 mmol), *p*-xylene (**2a**, 0.10 mL, 0.84 mmol), AlCl₃ (33 mg, 0.25 mmol), and dichloromethane (2.0 mL) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ia** (18 mg, 43%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 2.37 (s, 3H), 2.51 (s, 3H), 3.84 (s, 3H), 6.80 (d, J = 0.8 Hz, 1H), 6.88 (dd, J = 8.9, 2.6 Hz, 1H), 7.05 (d, J = 2.6 Hz, 1H), 7.07 (d, J = 7.8 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.9 Hz, 1H), 7.64 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 20.9, 21.4, 55.9, 103.2, 105.1, 111.4, 112.8, 128.5, 129.2, 129.65, 129.68, 131.2, 132.6, 135.5, 149.3, 155.9, 156.5. IR (neat): v 2954, 2831, 1616, 1477, 1205, 1032, 808 cm⁻¹. HRMS (EI): m/z Calcd. for C₁₇H₁₆O₂ [M]⁺: 252.1150; Found: 252.1145.

2-(2,5-Dimethylphenyl)-6-methoxybenzofuran (3ja)

2-Arylbenzofuran **3ja** was synthesized by Method A using 2-fluoro-6-methoxybenzofuran (**1j**, 28 mg, 0.17 mmol), *p*-xylene (**2a**, 0.10 mL, 0.84 mmol), AlCl₃ (33 mg, 0.25 mmol), and dichloromethane (2.0 mL) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ja** (18 mg, 43%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 2.40 (s, 3H), 2.53 (s, 3H), 3.88 (s, 3H), 6.82 (s, 1H), 6.89 (dd, J = 8.5, 2.3 Hz, 1H), 7.08–7.09 (m, 2H), 7.18 (d, J = 7.7 Hz, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.67 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 21.0, 21.5, 55.7, 95.7, 104.8, 111.8, 120.9, 122.6, 128.2, 128.8, 129.8, 131.2, 132.2, 135.5, 154.9, 155.3, 158.0. IR (neat): v 2952, 2833, 1620, 1491, 1306, 1275, 1151, 1111, 812 cm⁻¹. HRMS (EI): m/z Calcd for C₁₇H₁₆O₂ [M]⁺: 252.1150; Found: 252.1157. Elem. Anal. Calcd. for C₁₇H₁₆O₂: C, 80.93; H, 6.39. Found: C, 80.80; H, 6.66.

2-(2,5-Dimethylphenyl)-7-methoxybenzofuran (3ka)

2-Arylbenzofuran **3ka** was synthesized by Method A using 2-fluoro-7-methoxybenzofuran (**1k**, 33 mg, 0.20 mmol), *p*-xylene (**2a**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane (2.0 mL) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3ka** (23 mg, 46%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 2.38 (s, 3H), 2.53 (s, 3H), 4.05 (s, 3H), 6.82 (d, J = 7.8 Hz, 1H), 6.87 (s, 1H), 7.09 (d, J = 7.9 Hz, 1H), 7.14–7.21 (m, 3H), 7.71 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 20.9, 21.4, 56.2, 105.3, 106.6, 113.3, 123.4, 128.7, 129.3, 129.5, 130.9, 131.1, 132.6, 135.5, 143.6, 145.3, 155.8. IR (neat): ν 2966, 2839, 1493, 1321, 1271, 1198, 1101, 983, 808, 731 cm⁻¹. HRMS (EI): m/z Calcd. for C₁₇H₁₆O₂ [M]⁺: 252.1150; Found: 252.1159.

2-(2,5-Dimethylphenyl)naphtho[2,1-b]furan (3la)

2-Arylnaphthofuran **3la** was synthesized by Method A using fluoronaptho[2,1-*b*]furan (**1l**, 37 mg, 0.20 mmol), *p*-xylene (**2a**, 0.12 mL, 1.0 mmol), AlCl₃ (40 mg, 0.30 mmol), and dichloromethane

(2.0 mL) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3la** (20 mg, 37%) as a yellow solid.

2-Arylnaphthofuran **3la** was also synthesized by Method B using fluoronaptho[2,1-*b*]furan (**1l**, 37 mg, 0.20 mmol), *p*-xylene (**2a**, 0.50 mL, 4.1 mmol), and AlCl₃ (41.2 mg, 0.30 mmol) at room temperature for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) gave **3la** (23 mg, 43%) as a yellow solid.

¹H NMR (500 MHz, CDCl₃): δ 2.39 (s, 3H), 2.59 (s, 3H), 7.08 (d, J = 6.9 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.34 (s, 1H), 7.46 (dd, J = 7.0, 6.9 Hz, 1H), 7.57 (dd, J = 7.0, 7.0 Hz, 1H), 7.67–7.73 (m, 3H), 7.93 (d, J = 8.1 Hz, 1H), 8.16 (d, J = 8.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 21.0, 21.6, 104.0, 112.2, 123.4, 124.38, 124.44, 125.0, 126.2, 127.6, 128.4, 128.8, 129.1, 129.7, 130.3, 131.3, 132.4, 135.6, 151.8, 155.2. IR (neat): v 3051, 2922, 2862, 1504, 1385, 1169, 993, 798, 771, 774 cm⁻¹. HRMS (EI): m/z Calcd. for C₂₀H₁₆O [M]⁺: 272.1201, Found 272.1191.

2-(2,4-Dimethylphenyl)benzo[b]thiophene (3mb)

2-Arylbenzothiophene **3mb** was synthesized by Method A using 2-fluorobenzo[*b*]thiophene (**1m**, 30 mg, 0.20 mmol), *m*-xylene (**2b**, 0.12 mL, 1.0 mmol), AlCl₃ (41 mg, 0.31 mmol), and dichloromethane (2.0 mL) at -20 °C for 1 h. Purification by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) and GPC (chloroform) gave **3mb** (16 mg, 33%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 2.36 (s, 3H), 2.43 (s, 3H), 7.06 (d, J = 7.8 Hz, 1H), 7.11 (s, 1H), 7.21 (s, 1H), 7.29–7.37 (m, 3H), 7.76 (d, J = 7.7 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 21.0, 21.1, 122.0, 122.7, 123.3, 123.9, 124.3, 126.7, 130.5, 131.2, 131.6, 136.2, 138.2, 140.0, 140.2, 143.6. IR (neat): v 3060, 3012, 2952, 2918, 1493, 1456, 1435, 814, 744, 725 cm⁻¹. HRMS (EI): m/z Calcd for C₁₆H₁₄S [M]⁺: 238.0816; Found: 238.0812.

4-(Benzofuran-2-yl)benzene-1,2-diol (3ag, DHBF)

To a HFIP (12.0 mL) and dichloromethane (1.2 mL) solution of AlCl₃ (40 mg, 0.30 mmol) and resorcinol (**2g**, 110 mg, 1.0 mmol) was added 2-fluorobenzofuran (**1a**, 27 mg, 0.20 mmol) at room temperature. After stirring at room temperature for 2 h, aqueous NaOH (2 M, 3 mL) was added. To the mixture was added aqueous HCl (2 M, 3 mL), and organic materials were extracted with dichloromethane (3 mL) three times. The combined extracts were dried over Na₂SO₄. After removal

of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 4/1 to 2/1) to give **3ag** (22 mg, 49%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 4.97 (br s, 1H), 6.48–6.50 (m, 2H), 6.90 (d, J = 0.9 Hz, 1H), 7.22–7.28 (m, 2H), 7.35 (br s, 1H), 7.48–7.50 (m, 1H), 7.53–7.57 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 101.4, 104.0, 107.9, 108.7, 109.4, 110.9, 120.7, 123.4, 124.0, 128.6, 153.7, 154.6, 154.9, 157.5. IR (neat): v 3494, 3379, 1624, 1599, 1506, 1446, 1304, 1242, 1151, 976, 916, 796, 735 cm⁻¹. HRMS (ESI–): m/z Calcd for C₁₄H₉O₃ [M – H]⁻: 225.0552; Found: 225.0550.

4-(7-Chlorobenzofuran-2-yl)phenol (3nd)

To a dichloromethane (2.0 mL) suspension of AlCl₃ (39 mg, 0.29 mmol) and phenol (2d, 96 mg, 1.0 mmol) was added 7-chloro-2-fluorobenzofuran (1n, 34 mg, 0.20 mmol) at room temperature. After stirring at room temperature for 1 h, aqueous NaOH (2 M, 1 mL) was added. To the mixture was added aqueous HCl (2 M, 1 mL), and organic materials were extracted with dichloromethane (1 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate = 4/1) to give 3nd (27 mg, 54%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 6.87 (s, 1H), 6.91 (d, J = 8.8 Hz, 2H), 7.12 (dd, J = 7.8, 7.8 Hz, 1H), 7.22 (dd, J = 7.8, 1.0 Hz, 1H), 7.42 (dd, J = 7.8, 1.0 Hz, 1H), 7.77 (d, J = 8.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 100.1, 115.8, 116.4, 119.1, 122.9, 123.7, 123.9, 126.9, 131.1, 150.4, 156.4, 156.8. IR (neat): v 3336, 1502, 1473, 1423, 1290, 1244, 1236, 906, 835, 808, 735 cm⁻¹. HRMS (ESI–): m/z Calcd for C₁₄H₈ClO₂ [M – H]⁻: 243.0213; Found: 243.0210.

3. Orthogonal Synthesis of Eupomatenoid 6 (4) **5-Bromo-2-fluoro-3-methylbenzofuran** (10)¹⁸

To a 1,2-dichloroethane (20 mL) and H₂O (10 mL) suspension of Selectfluor (4.25 g, 12.0 mmol) and KF (1.39 g, 23.9 mmol) was added 5-bromo-3-methylbenzofuran-2-carboxylic acid (1.47 g, 5.76 mmol) at room temperature. After stirring at 70 °C for 12 h, H₂O (20 mL) was added, and organic materials were extracted with dichloromethane (20 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane) to give **1o** (1.07 g, 81%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 2.06 (d, J_{HF} = 1.7 Hz, 3H) 7.20 (d, J = 8.6 Hz, 1H), 7.32 (dd, J = 8.6, 2.1 Hz, 1H), 7.51 (d, J = 2.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 5.4, 86.1 (d, J_{CF} = 13 Hz), 112.2, 116.4, 121.8 (d, J_{CF} = 6 Hz), 126.1 (d, J_{CF} = 4 Hz), 131.6, 145.6, 157.4 (d, J_{CF} = 280 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ 44.7 (s). IR (neat): v 2931, 1676, 1454, 1442, 1354, 1194, 796, 744, 623, 519 cm⁻¹. HRMS (EI): m/z Calcd. for C₉H₆⁷⁹BrFO [M]⁺: 227.9586; Found: 227.9581.

4-(5-Bromo-3-methylbenzofuran-2-yl)phenol (3od)

To a 1,2-dichloroethane (4.0 mL) suspension of AlCl₃ (70 mg, 0.52 mmol) and phenol (**2d**, 189 mg, 2.0 mmol) was added 5-bromo-3-methyl-2-fluorobenzofuran (**1o**, 93 mg, 0.40 mmol) at room temperature. After stirring at 80 °C for 4 h, aqueous NaOH (2 M, 3 mL) was added. To the mixture was added aqueous HCl (2 M, 3 mL), and organic materials were extracted with dichloromethane (3 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/diethyl ether = 5/1) to give **3od** (87 mg, 71%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 2.37 (s, 3H), 5.00 (s, 1H), 6.93 (d, *J* = 8.8 Hz, 2H) 7.30 (d, *J* = 8.6 Hz, 1H), 7.33 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.60 (d, *J* = 1.9 Hz, 1H), 7.66 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 9.3, 109.2, 112.2, 115.4, 115.7, 121.8, 123.8, 126.6, 128.5, 133.3, 152.0, 152.3, 155.6.

Spectral data for this compound showed good agreement with literature data.¹⁷

Eupomatenoid 6 (4)

Α t-BuOH (0.5)mL) and H₂O (0.1)mL) suspension of 4-(5-bromo-3-methylbenzofuran-2-yl)phenol (**3od**, 16 0.051 mmol), mg, potassium (E)-propenyltetrafluoroborate (9.9 mg, 0.067 mmol), Pd(PPh₃)₄ (2.9 mg, 2.5 μ mol), and Cs₂CO₃ (52 mg, 0.16 mmol) was degassed by using freeze-pump-thaw method three times. After stirring at 80 °C for 16 h, H₂O (2 mL) was added, and organic materials were extracted with dichloromethane (2 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by preparative thin-layer chromatography (hexane/ether = 5/1) to give 4 (13 mg, 99%) as a colorless crystal.

¹H NMR (500 MHz, CDCl₃): δ 1.91 (dd, J = 6.6, 1.7 Hz, 3H), 2.42 (s, 3H), 4.92 (s, 1H), 6.23 (dq, J = 15.5, 6.6 Hz, 1H), 6.51 (dd, J = 15.5, 1.7 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 7.27 (dd, J = 8.4, 1.7 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.43 (d, J = 1.7 Hz, 1H), 7.68 (d, J = 8.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 9.4, 18.5, 109.8, 110.6, 115.6, 116.1, 122.2, 124.2, 124.4, 128.3, 131.3, 131.5,

132.6, 151.1, 152.9, 155.3.

Spectral data for this compound showed good agreement with literature data.¹⁹ The structure of **4** was also confirmed by X-ray diffraction analysis (Figure S1 and Table S1).

Figure S1. ORTEP Drawing of 4 with 50% Ellipsoid Probability

compound	4
formula	$C_{18}H_{16}O_2$
crystal system	Orthorhombic
space group	Pbca
$R, R_w (I > 2\sigma(I))$	0.0884, 0.1791
R1, wR2 (all data)	0.1546, 0.2040
GOF on F^2	1.079
<i>a</i> (Å)	4.768(2)
<i>b</i> (Å)	18.775(9)
<i>c</i> (Å)	31.234(15)
α (deg)	90
β (deg)	90
γ (deg)	90
$V(\text{\AA}^3)$	2796(2)
Ζ	8
<i>T</i> (K)	120(2)
crystal size (mm)	0.47, 0.35, 0.01
$D_{\text{calcd}} (\text{g/cm}^3)$	1.256
$2\theta_{\min}, 2\theta_{\max}$ (deg)	2.60, 50.00

Table S1. Crystal Data Collection Parameters for 4

4. Mechanistic Studies Control Experiments Using 1a and 2a-*d*₁₀

To a dichloromethane (2.0 mL) suspension of AlCl₃ (41 mg, 0.31 mmol) and *p*-xylene- d_{10} (**2a**- d_{10} , 0.12 mL, 1.0 mmol) was added 2-fluorobenzofuran (**1a**, 28 mg, 0.20 mmol) at -20 °C. After stirring at the same temperature for 1 h, aqueous NaOH (2 M, 1 mL) was added and allowed to warm to room temperature. To the mixture was added aqueous HCl (2 M, 1 mL), and organic materials were extracted with dichloromethane (2 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate = 30/1) to give **3aa** (30 mg, 64%) as a colorless oil. The ratio of deuterium incorporation of each position was determined by ¹H NMR spectroscopy.

Control Experiments Using 1a, 2a, and 2a-d₁₀

To a dichloromethane (2.0 mL) suspension of AlCl₃ (40 mg, 0.30 mmol), *p*-xylene (**2a**, 62 μ L, 0.50 mmol), and *p*-xylene-*d*₁₀ (**2a**-*d*₁₀, 61 μ L, 0.50 mmol) was added 2-fluorobenzofuran (**1a**, 27 mg, 0.20 mmol) at -20 °C. After stirring at the same temperature for 1 h, aqueous NaOH (2 M, 1 mL) was added and allowed to warm to room temperature. To the mixture was added aqueous HCl (2 M, 1 mL), and organic materials were extracted with dichloromethane (2 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the yields of **3aa** and **3aa**-*d* were determined by ¹H NMR spectroscopy using CH₂Br₂ as an internal standard.

Control Experiments Using 3aa and 2a-d₁₀

To a dichloromethane (1.0 mL) suspension of AlCl₃ (20 mg, 0.15 mmol) and *p*-xylene- d_{10} (**2a**- d_{10} , 61 µL, 0.50 mmol) was added 2-arylbenzofuran **3aa** (22 mg, 0.10 mmol) at -20 °C. After stirring at the same temperature for 1 h, aqueous NaOH (2 M, 1 mL) was added and allowed to warm to room temperature. To the mixture was added aqueous HCl (2 M, 1 mL), and organic materials were extracted with dichloromethane (2 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the yield of **3aa**-d' and the ratio of deuterium incorporation of each position was determined by ¹H NMR spectroscopy.

Effect of Halogens on the 2-Positions in Benzofurans

To a dichloromethane (2.0 mL) suspension of AlCl₃ (1.5 equiv) and *p*-xylene (**2a**, 5.0 equiv) was added 2-halobenzofuran (**1a**: X = F; **1a-Cl**: X = Cl; **1a-Br**: X = Br; **1a-I**: X = I) at -20 °C. After stirring at the same temperature for 1 h, aqueous NaOH (2 M, 1 mL) was added and allowed to warm to room temperature. To the mixture was added aqueous HCl (2 M, 1 mL), and organic materials were extracted with dichloromethane (2 mL) three times. The combined extracts were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the yield of **3aa** was determined by ¹H NMR spectroscopy using CH₂Br₂ as an internal standard.

5. Reaction Mechanisms

Figure S2. Plausible Mechanism

6. References

- (1) C. Kabuto, S. Akine, S. Nemoto and E. Kwon, J. Cryst. Soc. Jpn., 2009, 51, 218–224.
- (2) A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 1999, **32**, 115–119.
- (3) G. M. Sheldrick, *Programs for Crystal Structure Analysis (Release 972)*; Institut für Anorganische Chemie der Universität: Göttingen, Germany, 1998.
- (4) R. Morioka, T. Fujita and J. Ichikawa, Helv. Chim. Acta, 2020, 103, e2000159.
- (5) J. Ichikawa, Y. Wada, T. Okauchi and T. Minami, Chem. Commun., 1997, 1537–1538.
- (6) R. Hofsäß, D. Rombach and H.-A. Wagenknecht, *Synlett*, 2017, 28, 1422–1426.
- (7) J. Li, T. S. Rush III, W. Li, D. DeVincentis, X. Du, Y. Hu, J. R. Thomason, J. S. Xiang, J. S. Skotnicki, S. Tam, K. M. Cunningham, P. S. Chockalingam, E. A. Morris and J. I. Levin, *Bioorg. Med. Chem. Lett.*, 2005, **15**, 4961–4966.
- (8) N. D. Adams, C. J. Aquino, J. M. Ghergurovich, D. L. Musso, C. A. Parrish and A. J. Reif, WO2012037299, 2012.
- (9) J. Yang, S. Liu, J.-F. Zheng and J. S. Zhou, Eur. J. Org. Chem., 2012, 6248–6249.
- (10) L. Lu, H. Yan, P. Sun, Y. Zhu, H. Yang, D. Liu, G. Rong and J. Mao, *Eur. J. Org. Chem.*, 2013, 1644–1648.
- (11) M.-L. Yao, M. S. Reddy, L. Yong, I. Walfish, D. W. Blevins and G. W. Kabalka, Org. Lett., 2010, 12, 700–703.
- (12) T. T. B. Nguyen, T. Lomberget, N. C. Tran, E. Colomb, L. Nachtegaele, S. Thoret, J. Dubois, J. Guillaume, R. Abdayem, M. Haftek and R. Barret, *Bioorg. Med. Chem. Lett.*, 2012, 22, 7227–7231.
- (13) H. Naka, M. Uchiyama, Y. Matsumoto, A. E. H. Wheatley, M. McPartlin, J. V. Morey and Y. Kondo, J. Am. Chem. Soc., 2007, 129, 1921–1930.

- (14) T. A. Dwight, N. R. Rue, D. Charyk, R. Josselyn and B. DeBoef, Org. Lett., 2007, 9, 3137– 3139.
- (15) Y. Li, L. Cheng, X.Liu, B. Li and N. Sun, Beilstein J. Org. Chem., 2014, 10, 2886–2891.
- (16) X.-F. Duan, J. Zeng, Z.-B. Zhang and G.-F. Zi, J. Org. Chem., 2007, 72, 10283–10286.
- (17) N. Takeda, O. Miyata and T. Naito, Eur. J. Org. Chem., 2007, 1491–1509.
- (18) X. Yuan, J.-F. Yao and Z.-Y. Tang, Org. Lett., 2017, 19, 1410–1413.
- (19) O. Miyata, N. Takeda and T. Naito, Org. Lett., 2004, 6, 1761–1763.

7. ¹H, ¹³C, and ¹⁹F NMR Charts 2-(2,5-Dimethylphenyl)benzofuran (3aa)

ppm

2-(2,4-Dimethylphenyl)benzofuran (3ab)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

2-(Thiophen-2-yl)benzofuran (3ac)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

4-(Benzofuran-2-yl)phenol (3ad)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

2-(2,4-Dimethoxyphenyl)benzofuran (3ae)

3-Butyl-2-(2,5-dimethylphenyl)benzofuran (3ba)

3-Butyl-2-(2,4-dimethylphenyl)benzofuran (3bb)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

3-Butyl-2-(thiophen-2-yl)benzofuran (3bc)

¹H NMR (500 MHz, CDCl₃)

220 200 180 160 140 120 100 80 60 40 20 ppm

3-Butyl-2-(2,4-dimethoxyphenyl)benzofuran (3bf)

2-(2,5-Dimethylphenyl)-3-phenylbenzofuran (3ca)

2-(2,5-Dimethylphenyl)-3-(4-fluorophenyl)benzofuran (3da)

¹³C NMR (126 MHz, CDCl₃)

2-(2,5-Dimethylphenyl)-5-phenylbenzofuran (3ea)

¹H NMR (500 MHz, CDCl₃)

2-(2,4-Dimethylphenyl)-5-phenylbenzofuran (3eb)

5-Phenyl-2-(thiophen-2-yl)benzofuran (3ec)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

2-(2,5-Dimethylphenyl)-5-(4-fluorophenyl)benzofuran (3fa)

¹⁹F NMR (470 MHz, CDCl₃)

19F

2-(2,4-Dimethylphenyl)-5-(4-fluorophenyl)benzofuran (3fb)

19F

Ethyl 4-[2-(2,5-Dimethylphenyl)benzofuran-5-yl]benzoate (3ga)

¹H NMR (500 MHz, CDCl₃)

5-Bromo-2-(2,5-dimethylphenyl)benzofuran (3ha)

5-Bromo-2-(2,4-dimethylphenyl)benzofuran (3hb)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

5-Bromo-2-(thiophen-2-yl)benzofuran (3hc)

¹H NMR (500 MHz, CDCl₃)

2-(2,5-Dimethylphenyl)-5-methoxybenzofuran (3ia)

¹H NMR (500 MHz, CDCl₃)

2-(2,5-Dimethylphenyl)-6-methoxybenzofuran (3ja)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

13C

157.9938 155.2906 154.8844 135.4932 132.2484 131.1758 129.7773 129.7773 128.8370 128.8370 128.1604 122.5836 /120.9411
/111.7823
-104.8237 $<^{21.5351}_{20.9927}$ 95.6827 223-1331 NAME EXPS PROCE Date Time PROF PROF PROF PROF SSE SSE PLDR PLDR PLDR PLDR PLDR PLDR DE TS DI DL1 TD0 20198 SUCL P1 PL1 SFOL 100 CPDPI SUC2 PCPDS PL2 PL12 PL13 SP0 ST ST VDW SSB LB GB PC MeO \cap 80 220 200 180 160 140 120 100 40 20 60 ppm

2-(2,5-Dimethylphenyl)-7-methoxybenzofuran (3ka)

¹H NMR (500 MHz, CDCl₃)

2-(2,5-Dimethylphenyl)naphtho[2,1-*b*]furan (3la)

¹H NMR (500 MHz, CDCl₃)

2-(2,4-Dimethylphenyl)benzo[b]thiophene (3mb)

4-(Benzofuran-2-yl)benzene-1,2-diol (3ag, DHBF)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

4-(7-Chlorobenzofuran-2-yl)phenol (3nd)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

5-Bromo-2-fluoro-3-methylbenzofuran (10)

4-(5-Bromo-3-methylbenzofuran-2-yl)phenol (3od)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

13C 1233.3259 128.4665 126.6362 121.7872 121.7872 121.7872 1115.3606 155.6054
152.3229
152.0276 .2424 2115 112. Br OH 220 120 100 80 200 180 160 140 60 40 20 ppm

Eupomatenoid 6 (4)

