Supporting Information

Diastereoselective trifunctionalization of pyridinium salts to access structurally crowded azaheteropolycycles

Zhaohui Cui, Kuan Zhang, Lijie Gu, Zhanwei Bu,* Junwei Zhao,* Qilin Wang*College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, ChinaE-mail: buzhanwei@henu.edu.cn, zhaojunwei@henu.edu.cn, wangqilin@henu.edu.cn
Table of Contents

1. General methods S2
2. Experimental data for the formation of $\mathbf{3}$ S2
3. Scalable preparation of $\mathbf{3 a}$ S18
4. Late-stage modifications S18
5. Crystal structures S23
6. NMR spectra S30

1. General methods

NMR spectra were recorded with tetramethylsilane as the internal standard. For compounds $\mathbf{3 o}, 7$ and 10, ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz (JNM-ECZ 400S/L1). For compounds 3u-z, 3ab and 3ab, ${ }^{1}$ H NMR spectra were recorded at 300 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz (Bruker Avance). For other compounds, ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz (Bruker Avance). ${ }^{1} \mathrm{H}$ NMR chemical shifts (δ) are reported in ppm relative to tetramethylsilane (TMS) with the solvent signal as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.26 ppm , $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at 2.50 ppm$) .{ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $77.00 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at 39.52 ppm). Data are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (double of doublet), br (broad) or m (multiplets), coupling constants (Hz) and integration. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Reactions were monitored by TLC and visualized with ultraviolet light. IR spectra were recorded on a Thermo Fisher Nicolet Avatar 360 FTIR spectrometer on a KBr beam splitter. All the solvents were used directly without any purification.

2. Experimental data for the formation of 3

General procedure: To a 5.0 mL vial were successively added azomethine ylides $\mathbf{1}$ (0.36 mmol, 1.8 equiv), pyridinium salts $2(0.20 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{HPO}_{4}(28.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 1.0 mL of $i-\mathrm{PrOH}$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for $42-48 \mathrm{~h}$, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products $\mathbf{3}$. Notably, when methanol was employed as the solvent, 3a was afforded in 51% yield together with a 9% yield of $\mathbf{4}$. For the preparation of 3aa, slightly modified conditions were used and the detailed conditions were: 0.15 mmol of $\mathbf{1 a}, 2.5$ equivalents of N -benzyl quinolinium salt, 2.0 equivalents of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and 1.0 mL of ethanol at $60{ }^{\circ} \mathrm{C}$ for 2 h .

Diethyl 5-benzyl-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3a)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $80.0 \mathrm{mg}, 81 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 126.3-126.8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60\left(\mathrm{dd}, J_{I}=4.0 \mathrm{~Hz}, J_{2}=12.0\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.08-3.02 (m, 1H), $2.83(\mathrm{br}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,168.5,155.0,142.3,134.8,129.0,129.0,128.6,128.5,128.1,128.0,123.9$, $123.8,117.5,82.8,74.5,62.5,61.5,57.7,57.7,42.3,41.3,13.8,13.3$. IR (KBr) v 3432, 2923, 1735, 1637, 1195, $762 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 494.1922, found: 494.1921.

Diethyl 5-benzyl-7-fluoro-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3b)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $72.1 \mathrm{mg}, 71 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=42 \mathrm{~h} ; \mathrm{mp} 150.1-150.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 3 \mathrm{H}), 4.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.21(\mathrm{~m}, 2 \mathrm{H})$, 4.10-4.02 (m, 1H), 3.95-3.87(m, 1H), 3.11-3.05 (m, 1H), $2.87(\mathrm{br}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,168.5,151.5(\mathrm{~d}, J=247.0 \mathrm{~Hz}, 1 \mathrm{C})$, $142.7(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{C}), 142.1,134.5,130.7,129.1,128.6,128.3,124.1,123.6(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{C}), 123.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{C}), 115.8(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{C}), 83.2,74.6,62.5,61.7,57.7,57.3,42.2$, 41.1, 13.7, 13.3; ${ }^{19} \mathrm{~F}$ NMR (375 MHz, CDCl_{3}) δ-135.2. IR (KBr) v 3357, 2929, 1735, 1640, 1246, 1210, $745 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{FN}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 512.1828$, found: 512.1828.

Diethyl 5-benzyl-7-chloro-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3c)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $84.6 \mathrm{mg}, 80 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 152.3-152.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.31-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 1 \mathrm{H})$, 3.11-3.05 (m, 1H), $2.84(\mathrm{br}, 1 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.09-1.04(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,168.4,150.8,142.3,134.4,129.9,129.4,129.1,128.6,128.3,127.0,124.1,122.8$, $83.2,74.5,62.6,61.8,57.7,57.5,42.3,41.1,13.8,13.3$, one carbon missing in the aromatic region. IR (KBr) v 3472, 3416, 1987, 1744, 1634, 1297, 1205, $742 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 528.1532$, found: 528.1531.

Diethyl 5-benzyl-7-bromo-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3d)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $73.5 \mathrm{mg}, 64 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 158.2-158.8{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.86$ $(\mathrm{m}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{br}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,168.3,151.8,142.3,134.4,132.4,130.0,129.1,128.7,128.3$, $127.7,124.8,124.1,111.8,83.2,74.5,62.6,61.8,57.9,57.4,42.3,41.2,13.8,13.4$. IR (KBr) v 3470, 3416, 1931, 1744, 1635, 1296, 1204, $740 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{7}$
$[\mathrm{M}+\mathrm{H}]^{+}: 572.1027$, found: 572.1028.

Diethyl 5-benzyl-7-methyl-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3e)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $71.8 \mathrm{mg}, 71 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 78.6-79.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 1 \mathrm{H})$, 3.07-3.01 (m, 1H), $2.83(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,168.5,153.3,142.4,134.9,130.4,129.2,128.7,127.8,126.8$, $126.2,124.1,123.3,83.2,74.6,62.6,61.5,58.0,57.9,42.3,41.5,15.1,13.8,13.4$, one carbon missing in the aromatic region. IR $(\mathrm{KBr}) \vee 3417,2982,1735,1631,1300,1198,747 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 508.2078, found: 503.2078.

Diethyl
5-benzyl-7-methoxy-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3f)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $99.6 \mathrm{mg}, 95 \%$ yield; dr>20:1; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 85.2-85.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.04-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.99(\mathrm{~m}$, $1 \mathrm{H}), 2.81(\mathrm{br}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 170.9,168.4,149.1,144.1,142.5,134.8,129.1,129.0,128.5,128.3,123.8,123.6,120.1,111.9$, 83.1, 74.6, 62.5, 61.7, 57.7, 57.6, 56.0, 42.3, 41.5, 13.8, 13.3. IR (KBr) v 3422, 2933, 1726, 1642,

1318, 1201, $728 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 524.2027$, found: 524.2029.

Diethyl 5-benzyl-8-bromo-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3g)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $80.3 \mathrm{mg}, 70 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 176.2-176.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=8.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 2 \mathrm{H})$, 4.09-4.01 (m, 1H), 3.91-3.83(m, 1H), 3.08-3.02 (m, 1H), $2.82(\mathrm{br}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,168.6,155.9$, 142.1, 134.7, 130.0, $129.2,128.8,128.2,127.3,127.1,124.3,122.2,121.0,83.3,74.7,62.7,61.8,57.9,57.4,42.4,41.2$, 13.9, 13.5. IR (KBr) v 3473, 3416, 2927, 1732, 1636, 1301, 1195, $754 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 572.1027$, found: 572.1030.

Diethyl 5-benzyl-8-methyl-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3h)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $93.7 \mathrm{mg}, 92 \%$ yield; dr $>20: 1$; reaction time $=48 \mathrm{~h}$; mp $182.3-182.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 1 \mathrm{H})$, 3.91-3.83 (m, 1H), 3.05-2.99 (m, 1H), $2.81(\mathrm{br}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,168.6,155.0,142.3,139.3,134.8,129.0$, $128.6,128.3,128.0,125.1,124.6,123.9,118.0,82.9,74.6,62.4,61.6,57.7,57.5,42.2,41.3,21.2$,
13.8, 13.3. IR $(\mathrm{KBr}) \vee 3431,3324,1735,1635,1305,1263,757 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 508.2078$, found: 508.2078.

Diethyl
5-benzyl-8-methoxy-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3i)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $80.3 \mathrm{mg}, 77 \%$ yield; dr>20:1; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 97.2-97.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H})$, $6.40(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.61(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.84(\mathrm{~m}$, $1 \mathrm{H}), 3.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 1 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.07-1.02$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,168.6,160.2,156.0,142.2,134.8,129.1,128.9$, $128.4,128.0,123.9,120.2,109.4,103.1,82.9,74.4,62.3,61.5,57.7,57.2,55.2,42.1,41.1,13.7$, 13.3. IR (KBr) v 3417, 2933, 1732, 1633, 1302, 1265, $754 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 524.2027$, found: 524.2028.

Diethyl 5-benzyl-3,9-dinitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3j) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $65.2 \mathrm{mg}, 61 \%$ yield; dr $>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 172.1-172.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.41-7.36$ $(\mathrm{m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.61(\mathrm{~m}$, $3 \mathrm{H}), 4.39(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.20-3.14 (m, 1H), $2.90(\mathrm{br}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,168.6,160.4,143.5,141.9,134.5,129.3,129.0,128.9,128.3,125.0,124.9$, $124.7,118.4,83.6,74.8,62.9,61.9,58.1,57.3,42.6,40.9,13.9,13.5 . \mathrm{IR}(\mathrm{KBr})$ v 3445, 3357,

2984, 1733, 1637, 1206, $749 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 539.1773$, found: 539.1776.

Diethyl 5-benzyl-9-fluoro-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3k)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $75.2 \mathrm{mg}, 74 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=43 \mathrm{~h} ; \mathrm{mp} 147.1-147.8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.97\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.81\left(\mathrm{dd}, J_{l}=4.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.19(\mathrm{~m}, 2 \mathrm{H})$, 4.09-4.01 (m, 1H), 3.91-3.83(m, 1H), 3.06-3.00 (m, 1H), $2.87(\mathrm{br}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,168.4,158.4(\mathrm{~d}, J=242.0 \mathrm{~Hz}, 1 \mathrm{C})$, $151.0(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{C}), 142.2,134.7,129.3(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{C}), 129.0,128.6,128.1,124.0$, $118.6(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{C}), 115.7(\mathrm{~d}, J=23.0 \mathrm{~Hz}, 1 \mathrm{C}), 115.0(\mathrm{~d}, J=24.0 \mathrm{~Hz}, 1 \mathrm{C}), 83.1,74.6,62.6$, 61.6, 57.8, 57.7, 42.3, 41.0, 13.7, 13.4; ${ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.5 . \mathrm{IR}(\mathrm{KBr})$ v 3357, 2937, 1733, 1638, 1494, 1206, $747 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{FN}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 512.1828$, found: 512.1827.

Diethyl 5-benzyl-9-chloro-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (31)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $89.7 \mathrm{mg}, 85 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 86.7-87.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14\left(\mathrm{dd}, J_{l}=\right.$ $\left.4.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.06-3.98$
$(\mathrm{m}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{br}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=$ 8.0 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.6,168.4,153.6,142.1,134.6,129.6,129.0,128.9$, $128.6,128.4,128.4,128.1,124.0,118.8,83.0,74.5,62.5,61.6,57.8,57.4,42.3,40.9,13.7,13.3$. IR (KBr) v 3462, 3324, 2985, 1730, 1628, 1292, 1188, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 528.1532$, found: 528.1531.

Diethyl
5-benzyl-7,9-dichloro-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate

(3m)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $81.2 \mathrm{mg}, 72 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 89.3-89.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.30-4.18 (m, 2H), 4.15-4.07 (m, 1H), 3.94-3.86(m, 1H), 3.11-3.05 (m, 1H), $2.86(\mathrm{br}, 1 \mathrm{H}), 1.25(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,168.3,149.6$, $142.1,134.3,130.9,129.1,129.0,128.7,128.4,128.3,127.0,124.3,123.5,83.3,74.5,62.7,61.8$, 57.6, 57.5, 42.3, 40.9, 13.7, 13.4. IR (KBr) v 3465, 3419, 1740, 1640, 1299, 1193, $789 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 562.1142$, found: 562.1141.

Diethyl 5-benzyl-9-bromo-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3n)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $71.3 \mathrm{mg}, 62 \%$ yield; dr $>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 143.6-143.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.19$
$(\mathrm{m}, 2 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{br}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.7, 168.4, 154.1, 142.1, $134.6,131.9,131.5,130.1,129.1,128.7,128.1,124.2,119.3,115.9,82.9,74.6,62.6,61.7,57.8$, 57.4, 42.4, 41.1, 13.8, 13.4. IR $(\mathrm{KBr}) \vee 3418,3325,2984,1727,1628,1293,1188,754 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 572.1027$, found: 572.1034.

Diethyl 5-benzyl-9-iodo-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (30)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $100.2 \mathrm{mg}, 81 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 132.3-132.8{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49\left(\mathrm{~d}, J_{l}=4.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.09-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.80$ $(\mathrm{m}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,168.5,154.9,142.1,138.0,137.4,134.6,130.5,129.2,128.8$, $128.1,124.2,119.7,86.4,82.8,74.6,62.7,61.3,57.9,57.2,42.4,41.2,13.8,13.5$. IR (KBr) v 3417, 2378, 1735, 1636, 1207, $753 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{IN}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 620.0888$, found: 620.0889 .

Diethyl
5-benzyl-9-methyl-3-nitro--hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3p)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $62.2 \mathrm{mg}, 61 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 79.1-79.8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~d}$,
$J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.07-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.82$ (br, 1H), $2.27(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,168.6,152.9,142.5,134.9,133.4,129.7,129.1,128.7,128.2,127.8,124.0,117.3$, 82.9, 74.7, $62.6,61.7,57.9,57.9,42.6,41.5,20.8,13.9,13.5$, one carbon missing in the aromatic region. IR $(\mathrm{KBr}) \vee 3416,1728,1630,1196,748 \mathrm{~cm}^{-1}$. $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 508.2078, found: 503.2079.

Diethyl
5-benzyl-9-methoxy-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate ($\mathbf{3 q}$) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $83.2 \mathrm{mg}, 80 \%$ yield; dr $>20: 1$; reaction time $=48 \mathrm{~h}$; mp 112.3-112.7 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 3 \mathrm{H}), 4.81(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.95(\mathrm{~m}$, $1 \mathrm{H}), 2.88(\mathrm{br}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,168.6,155.8,148.9,142.5,134.9,129.2,128.8,128.7,128.2,123.9,118.4,114.6,113.3$, 83.1, 74.8, 62.6, 61.7, 58.2, 57.9, 55.7, 42.5, 41.4, 13.9, 13.5. IR (KBr) v 3471, 3417, 2982, 1735, 1631, 1299, 1198, $747 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 524.2027$, found: 524.2028.

Diethyl
5-benzyl-3-nitro-hexahydro-2H-6-oxa-1,5-diazacyclopenta[no]tetraphene-2,2-dicarboxylate (3r)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $92.3 \mathrm{mg}, 85 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 92.3-92.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}$,
$J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.62(\mathrm{~m}$, $1 \mathrm{H}), 3.20-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{br}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,168.4,152.6,142.3,134.8,131.3,130.4,129.4,128.9,128.7,128.5$, $128.1,127.3,124.4,121.9,120.0,117.9,82.1,74.3,62.3,61.3,57.8,53.2,41.9,40.8,13.7,13.1$, one carbon missing in the aromatic region. IR $(\mathrm{KBr}) \vee 3444,3353,1731,1637,1311,1204,731$ cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 544.2078$, found: 544.2079.

Diethyl 5-methyl-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3s) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $58.3 \mathrm{mg}, 70 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 142.1-142.8^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.28\left(\mathrm{dd}, J_{I}=4.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.83(\mathrm{br}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.9,168.5,155.0,143.1,129.1,128.7,128.0,123.87,123.4,117.6,84.8,74.6,62.5$, 61.6, 57.6, 42.0, 41.5, 41.3, 13.8, 13.4. IR (KBr) v 3463, 2934, 1740, 1634, 1298, 1266, 1225, 759 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 418.1609$, found: 418.1609.

Diethyl 5-ethyl-3-nitro-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3t)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $55.1 \mathrm{mg}, 64 \%$ yield; dr $>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 104.6-104.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.31-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}$, $1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{br}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,168.7,155.3,142.0,129.2,128.8,128.2$, $123.9,123.5,117.7,83.9,74.7,62.6,61.6,57.9,49.6,42.3,41.5,15.0,13.9,13.5$. $\mathrm{IR}(\mathrm{KBr}) v$ 3445, 2983, 1735, 1639, 1260, 1211, $760 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 432.1765, found: 432.1765 .

Diethyl
5-allyl-3-nitro-1,2a,2a1,5,5a,10b-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3u)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); 67.5 $\mathrm{mg}, 76 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H})$, 7.23-7.13 (m, 2H), 7.02-6.97 (m, 1H), $6.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H})$, $5.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22-3.92(\mathrm{~m}, 5 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{br}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,168.3,154.9,142.0,131.8$, $128.8,128.5,127.9,123.5,123.5,119.9,117.3,83.1,74.3,62.2,61.3,57.5,56.5,42.1,41.0,13.6$, 13.2. IR (KBr) v 3421, 2927, 1735, 1639, 1207, $765 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{7}$ $[\mathrm{M}+\mathrm{H}]^{+}: 444.1760$, found: 444.1762.

Diethyl
5-(4-methoxybenzyl)-3-nitro-1,2a,2a1,5,5a,10b-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2dicarboxylate (3v)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); 71.1 $\mathrm{mg}, 70 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~s}, 1 \mathrm{H})$, 7.24-7.15 (m, 4H), $7.02(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 3 \mathrm{H}), 4.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.49$
$(\mathrm{m}, 3 \mathrm{H}), 4.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.05-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 4 \mathrm{H})$, 3.04-2.96(m, 1H), $2.78(\mathrm{br}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,168.4,159.7,155.0,142.3,129.6,129.0,128.6,128.0,126.4,123.7,123.6$, $117.4,114.3,82.5,74.4,62.4,61.5,57.6,57.2,55.1,42.3,41.2,13.7,13.3$. IR (KBr) v 3419, 2926, 1735, 1639, 1301, $764 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 524.2085$, found: 524.2082.

Diethyl 5-benzyl-3-cyano-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylate (3w) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $57.2 \mathrm{mg}, 60 \%$ yield; dr $>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 87.6-88.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31-4.16(\mathrm{~m}, 3 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{br}$, $1 \mathrm{H}), 1.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,168.3$, $154.5,146.0,135.5,129.0,128.9,128.4,128.3,128.0,127.7,123.5,120.3,117.8,82.0,78.8,75.3$, $62.5,61.9,56.8,56.6,41.3,40.7,13.8,13.6$. IR (KBr) v 3445, 2985, 1735, 1638, 1201, $763 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 474.2023$, found: 474.2023.

Diethyl
3-benzoyl-5-benzyl-1,2a,2a1,5,5a,10b-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxy late ($\mathbf{3 x}$)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); 29.1 $\mathrm{mg}, 26 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.61(\mathrm{~m}, 2 \mathrm{H})$, 7.42-7.27 (m, 7H), 7.23-7.11 (m, 4H), 7.05-7.00 (m, 1H), $6.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62\left(\mathrm{dd}, J_{l}=3.0 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.40-4.21(\mathrm{~m}, 4 \mathrm{H}), 4.04-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.78$ $(\mathrm{m}, 1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, one hydrogen for

N-H was missing; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.1,171.1,168.8,155.0,148.5,139.8,135.9$, $130.0,128.8,128.7,128.6,128.5,128.0,127.9,127.7,123.4,117.4,110.6,83.2,74.6,62.4,61.0$, $57.3,57.2,41.5,40.8,13.8,13.5$, one carbon missing in the aromatic region. $\mathrm{IR}(\mathrm{KBr}) \vee 3430$, 2924, 2856, $1637 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 553.2333$, found: 553.2332.

Diethyl
3-acetyl-5-benzyl-1,2a,2a1,5,5a,10b-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxyla te ($\mathbf{3 y}$)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); 10.8 $\mathrm{mg}, 11 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 5 \mathrm{H})$, 7.25-7.22 (m, 2H), $7.18\left(\mathrm{dd}, J_{l}=6.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38-4.21(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.72(\mathrm{~m}, 1 \mathrm{H})$, 2.98-2.90(m, 1H), $2.23(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.1,194.7,171.5,168.9,155.4,144.4,136.2,128.9,128.8,128.7,128.6,128.2$, $127.8,123.4,117.5,83.4,75.0,62.3,61.1,57.7,57.3,41.5,41.3,24.3,14.0,13.5 . \operatorname{IR}(\mathrm{KBr}) v$ 3428, 2926, 1733, 1620, 1205, $759 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 491.2023$, found: 491.2021.

Triethyl
5-benzyl-1,2a,2a1,5,5a,10b-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2,3-tricarboxylate ($\mathbf{3 z}$) Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); 10.6 $\mathrm{mg}, 10 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~s}, 1 \mathrm{H})$, 7.39-7.22 (m, 7H), $7.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ $(\mathrm{d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.14(\mathrm{~m}, 5 \mathrm{H})$, 4.12-3.95 (m, 2H), 2.98-2.90(m, 1H), $1.30(\mathrm{t}, J=9.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.12(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, one
hydrogen for $\mathrm{N}-\mathrm{H}$ was missing; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,169.3,167.7,155.7,142.8$, $136.4,128.9,128.8,128.6,128.6,127.9,127.7,123.2,117.8,98.7,83.5,75.6,61.9,61.4,59.4$, $58.5,56.9,42.1,41.8,14.4,13.9,13.6 . \mathrm{IR}(\mathrm{KBr}) \vee 3420,2925,1732,1623,1208,768 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 521.1218$, found: 521.1216.

Diethyl
5-benzyl-3-(2-hydroxyphenyl)-8-nitro-2,3,5,9b-tetrahydro-1 H -pyrrolo[3,4-c]quinoline-1,1-dicarbo xylate (3aa)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$); 74.0 mg , 91% yield; dr $>20: 1$; reaction time $=2 \mathrm{~h} ; \mathrm{mp} 179.7-181.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88$ $(\mathrm{s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}$, $1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.70-4.43(\mathrm{~m}, 4 \mathrm{H}), 3.99-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{br}, 1 \mathrm{H}), 1.52(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 171.0,170.2,157.6,144.3$, $140.5,135.8,129.7,129.7,129.0,127.7,126.8,126.6,125.9,124.3,120.3,119.0,118.8,117.7$, $112.7,111.6,75.5,63.4,62.7,62.4,55.1,45.8,14.0,13.4 . \mathrm{IR}(\mathrm{KBr})$ v 3416, 2923, 1726, 1613, 1328, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 544.2078$, found: 544.2078.

Diethyl
5-benzyl-4-methoxy-7-nitro-3-phenyl-2,3,3a,4,5,7a-hexahydro-1 H-pyrrolo[3,4-c]pyridine-1,1-dic arboxylate (3ab)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $50.6 \mathrm{mg}, 50 \%$ yield; dr $>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 182.3-182.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.04\left(\mathrm{dd}, J_{l}=6.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 4.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.12(\mathrm{~m}$,
$5 \mathrm{H}), 3.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 3 \mathrm{H}$), one hydrogen for $\mathrm{N}-\mathrm{H}$ was missing; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,169.5$, $141.1,137.1,135.4,129.2,128.5,128.3,127.4,127.2,126.2,125.7,85.3,75.2,64.2,62.2,61.7$, 59.9, 54.9, 45.9, 42.8, 13.9, 13.6. IR (KBr) v 3419, 2924, 2377, 1739, 1617, $753 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 510.2076$, found: 510.2078.

Diethyl
5-benzyl-4-methoxy-7-nitro-3-phenyl-3a,4,5,7a-tetrahydro-1H-pyrrolo[3,4-c]pyridine-1,1-dicarbo xylate (3ab')

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $1: 1$); $21.7 \mathrm{mg}, 21 \%$ yield; dr $>20: 1$; reaction time $=48 \mathrm{~h}$; mp 198.1-198.8 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.51(\mathrm{~m}$, $3 \mathrm{H}), 4.42-4.27(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.43\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.8,169.9,167.0,140.7,135.3,132.3,131.7,129.3,128.8,128.8,128.1,127.7,126.0,87.2$, 84.1, 62.7, 61.0, 59.6, 56.8, 49.7, 40.5, 13.9, 13.8. IR (KBr) v 3445, 2929, 1738, 1618, 1298, 747 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 508.2074, found: 508.2076.

Diethyl
5-benzyl-3-(2-hydroxyphenyl)-4-methoxy-7-nitro-tetrahydro-1H-pyrrolo[3,4-c]pyridine-1,1-dicar boxylate (4)

Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$); 8.9 $\mathrm{mg}, 9 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 273.2-273.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $12.81(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 7.06-7.00(\mathrm{~m}$, 2H), $6.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.0$
$\mathrm{Hz}, 1 \mathrm{H}), 4.39-4.29(\mathrm{~m}, 3 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.48\left(\mathrm{dd}, J_{l}=4.0 \mathrm{~Hz}, J_{2}=12.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 177.0,169.1,165.8,160.2,142.3,137.0,133.9,130.0,128.9,128.1,128.0,123.7$, $119.1,117.1,115.3,85.3,84.0,62.1,60.5,58.0,55.5,48.8,39.2,13.8,13.6 . \operatorname{IR}(\mathrm{KBr}) \vee 3415$, 2930, 1740, 1617, 1302, 1266, $770 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 524.2027$, found: 524.2027.

3. Scalable preparation of 3a

General procedure: To a solution of azomethine ylide $1 \mathbf{1 a}(1.21 \mathrm{~g}, 4.32 \mathrm{mmol})$ and pyridinium salt 2a $(0.71 \mathrm{~g}, 2.40 \mathrm{mmol})$ in $i-\mathrm{PrOH}(12 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{HPO}_{4}(0.34 \mathrm{~g}, 2.40$ mmol) successively. After being stirred at $60^{\circ} \mathrm{C}$ for 48 h , the mixture was concentrated in vacuum. The residue was purified via flash column chromatography on silica gel (petroleum ether/ ethyl acetate $=3: 1$ to $1: 1$) to afford the corresponding product $\mathbf{3 a}$ as yellow solid in 76% yield $(0.90 \mathrm{~g})$.

4. Late-stage modifications

General procedure for the formation of 5: A solution of $\mathbf{3 a}(98.7 \mathrm{mg}, 0.20 \mathrm{mmol})$ and DDQ ($68.1 \mathrm{mg}, 0.3 \mathrm{mmol}$) in 2.0 mL of DCE was heated to $60^{\circ} \mathrm{C}$. The reaction mixture was stirred 33 h until the complete consumption of 3a as monitored by thin layer chromatography. Then, the mixture was concentrated and purified with silica gel column chromatography to obtain 5 as yellow solid in 22% yield.

Diethyl
5-benzyl-3-(2-hydroxyphenyl)-7-nitro-5,7a-dihydro-1H-pyrrolo[3,4-c]pyridine-1,1-dicarboxylate

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$); 21.2 mg , 22% yield; dr $>20: 1$; reaction time $=33 \mathrm{~h} ; \mathrm{mp} 223.4-223.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $12.35(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.23-4.08 (m, 2H), $1.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 172.8,168.9,165.8,160.8,137.2,134.5,133.6,129.4,129.1,129.0,128.3,127.2$, $126.2,119.6,118.8,118.2,114.3,83.3,62.7,62.0,58.3,43.8,14.0,13.7$. IR (KBr) v 3420, 2929, 1735, 1594, 1296, $758 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 492.1765$, found: 492.1765.

General procedure for the formation of 6: To a solution of compound 3a ($98.7 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in EtOAc (2 mL) was added $\mathrm{Pd} / \mathrm{C}(21.3 \mathrm{mg}, 10 \%$ by weight on activated carbon). Hydrogenation was carried out under hydrogen atmosphere at $75^{\circ} \mathrm{C}$ under atmospheric pressure for 72 h . Then, the reaction mixture was filtered and the filtrate was concentrated in vacuo. Purification of the residue by flash column chromatography afford the desired product $\mathbf{6}(19.6 \mathrm{mg}$, 26% yield).

Diethyl 7-amino-3-(2-hydroxyphenyl)- tetrahydro-1H-pyrrolo[3,4-c]pyridine-1,1-dicarboxylate (6)

Yellow solid obtained by column chromatography (dichloromethane/methanol $=60: 1$ to $30: 1$); $19.6 \mathrm{mg}, 26 \%$ yield; dr $>20: 1$; reaction time $=72 \mathrm{~h}$; mp 115.7-116.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.27(\mathrm{br}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.19(\mathrm{~m}, 4 \mathrm{H})$, $4.11(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{br}, 2 \mathrm{H}), 3.15(\mathrm{br}, 1 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8$, $167.1,156.9,143.1,138.3,136.6,129.6,129.2,122.9,120.5,119.9,117.7,62.5,62.5,62.4,62.2$,
29.7, 14.0, 13.9. IR (KBr) v 3417, 2924, 1740, 1626, 1255, $758 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 374.1710$, found: 374.1711 .

General procedure for the formation of 7: To a 5.0 mL vial were successively added $\mathbf{3 a}$ ($98.7 \mathrm{mg}, 0.2 \mathrm{mmol}$), benzyne precursor $(0.40 \mathrm{mmol})$, $\mathrm{CsF}(0.80 \mathrm{mmol})$ and 2.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 5 h , and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding product 7 .

Ethyl
6-benzyl-8-nitro-9-oxo-5a1,6,8a,13c-tetrahydro-9H-5-oxa-6,13b-diazaindeno[1,2-a]aceanthrylene $-8 \mathrm{~b}(5 \mathrm{a} H)$-carboxylate (7)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=5: 1$); 63.8 mg , 61% yield; $\mathrm{dr}>20: 1$; reaction time $=5 \mathrm{~h} ; \mathrm{mp} 130.2-130.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}, $\left.\mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37-7.29 (m, 5H), $7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.81-3.69 (m, 3H), 3.55-3.49 (m, 1H), $0.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}, $\left.\mathrm{CDCl}_{3}\right) \delta 167.8,167.1,156.9,143.1,138.3,136.6,129.6,129.2,122.9,120.5,119.9,117.7,62.5$, 62.5, 62.4, 62.2, 29.7, 14.0, 13.9. IR $(\mathrm{KBr}) \vee 3417,2924,1740,1626,1255,758 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 374.1710$, found: 374.1711.

General procedure for the formation of 8: Under nitrogen atmosphere, compound $\mathbf{3 n}$ $(114.5 \mathrm{mg}, 0.2 \mathrm{mmol})$, 4-chlorophenyl boronic acid ($46.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (130.3 mg, 0.4 mmol, 2.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.05 equiv) and butyl di-1-adamantylphosphine (0.06 equiv) were successively added to a 15 mL dried tube, followed by addition of 2.0 mL DME. The resulting mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 24 h , and then the reaction mixture was directly subjected to silica gel column chromatography (petroleum ether/ ethyl acetate as eluent) to afford the corresponding product $\mathbf{8}$ as brown oil in 69% yield.

Diethyl
5-benzyl-9-(4-chlorophenyl)-3-nitro-1,2a,2a1,5,5a,10b-hexahydro-2H-6-oxa-1,5-diazaaceanthryle ne-2,2-dicarboxylate (8)

Brown oil obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$); $83.5 \mathrm{mg}, 69 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=24 \mathrm{~h} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.33(\mathrm{~m}$, $9 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94\left(\mathrm{dd}, J_{l}=4.0 \mathrm{~Hz}, J_{l}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.75(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.11-4.03 (m, 1H), 3.94-3.86(m, 1H), 3.11-3.05 (m, 1H), $2.92(\mathrm{~s}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.9,164.8,162.0,155.9,144.3,137.6$, $136.2,129.3,128.9,128.5,128.4,127.9,127.7,125.0,123.6,120.9,120.7,118.2,117.8,112.8$, 84.1, 81.5, 60.7, 59.4, 56.9, 45.4, 38.0, 13.4. IR (KBr) v 3440, 2927, 2377, 1742, 1642, 1304, 753 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 524.1816$, found: 524.1814.

General procedure for the formation of 9: Under nitrogen atmosphere, compound $\mathbf{3 n}$
($114.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), N-Boc 2-indolyl boronic acid ($78.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($130.3 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.05 equiv) and butyl di-1-adamantylphosphine (0.06 equiv) were successively added to a 15 mL dried tube, followed by addition of 2.0 mL DME. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 6 h , and then the reaction mixture was directly subjected to silica gel column chromatography (petroleum ether/ ethyl acetate as eluent) to afford the corresponding product 9 as brown oil in 62% yield.

Diethyl
5-benzyl-9-(1-(tert-butoxycarbonyl)-1H-indol-2-yl)-3-nitro-1,2a,2a1,5,5a,10b-hexahydro-2H-6-ox a-1,5-diazaaceanthrylene-2,2-dicarboxylate (9)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$); $88.5 \mathrm{mg}, 62 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=6 \mathrm{~h} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 9 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.89$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.02$ $(\mathrm{m}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,168.7,154.7,150.0,142.2,139.5,137.2,134.6,130.5,129.6,129.1$, $129.1,128.7,128.7,128.2,127.7,124.3,123.9,122.9,120.4,117.1,115.2,110.2,83.4,83.0,74.8$, 62.5, 61.7, 57.8, 57.8, 42.2, 41.6, 27.7, 13.8, 13.5. IR (KBr) v 3434, 2924, 1734, 1641, 1320, 750 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 709.2868$, found: 709.2882.

General procedure for the formation of 10: Under nitrogen atmosphere, compound $\mathbf{3 o}$ (123.9 mg, 0.2 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.06$ equiv), CuI (0.05 equiv), phenylacetylene ($24.5 \mathrm{mg}, 1.2$ equiv) and NEt_{3} (24.3 mg , 1.2 equiv) were successively added to a 15 mL dried tube, followed by addition of 2.0 mL THF. The resulting mixture was stirred at $75^{\circ} \mathrm{C}$ for 24 h , and then the reaction mixture was directly subjected to silica gel column chromatography (petroleum ether/ ethyl
acetate as eluent) to afford the corresponding product $\mathbf{1 0}$ as brown solid in $\mathbf{9 2 \%}$ yield.

Diethyl
5-benzyl-3-nitro-9-(phenylethynyl)-hexahydro-2H-6-oxa-1,5-diazaaceanthrylene-2,2-dicarboxylat e (10)

Brown solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$); 109.2 mg , 92% yield; dr $>20: 1$; reaction time $=24 \mathrm{~h} ; \mathrm{mp} 98.3-98.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23$ $(\mathrm{s}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.25(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.00$ $(\mathrm{m}, 1 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=$ 8.0 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.8,168.5,155.0,142.2,134.6,132.5,132.0,131.5$, $129.2,128.7,128.3,128.3,128.2,128.1,124.2,123.0,118.8,117.7,89.0,88.4,82.9,74.6,62.7$, $61.7,57.9,57.4,42.3,41.1,13.8,13.5 . \mathrm{IR}(\mathrm{KBr}) \vee 3418,2928,1734,1638,1263,751 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 594.2235$, found: 594.2242.

5. Crystal structures

5.1 Crystal structure of 3n

Preparation of the single crystals of $\mathbf{3 n}$: 15.0 mg of pure compound $\mathbf{3 n}$ was dissolved in the combined solvents of dichloromethane and methanol ($3 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 2$) at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at $0{ }^{\circ} \mathrm{C}$. After about one day, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of $\mathbf{3 n}$. The data were collected by a Bruker D8 VENTURE PHOTON II CCD diffractometer at 273.0 K .

Table S1. Crystal data and structure refinement for $\mathbf{3 n}$.

Bond precision:		$\mathrm{C}-\mathrm{C}=0.0029 \mathrm{~A}$	Wavelength $=0.71073$
Cell:	$\mathrm{a}=11.194(5)$	$\mathrm{b}=12.288(3)$	$\mathrm{c}=18.063(6)$
	alpha $=90$	beta $=95.088(14)$	gamma $=90$

Temperature: 150 K

	Calculated	Reported
Volume	$2474.8(15)$	$2474.7(16)$
Space group	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P} 121 / \mathrm{n} 1$
Hall group	-P 2 yn	-P 2 yn
Moiety formula	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}_{7}$	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}_{7}$
Sum formula	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}_{7}$	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}_{7}$
Mr	572.40	572.41
Dx,g cm-3	1.536	1.536
Z	4	4
Mu (mm-1)	1.714	1.714
F000	1176.0	1176.0
F000'	1175.40	
h,k,lmax	$13,15,22$	$13,15,22$
Nref	5060	5059
Tmin,Tmax	$0.742,0.814$	$0.669,0.746$
Tmin'		

Correction method= \# Reported T Limits: Tmin=0.669 Tmax=0.746 AbsCorr =

MULTI-SCAN

Data completeness $=1.000$
$R($ reflections $)=0.0263$ (4318)
$\mathrm{S}=1.028$

5.2 Crystal structure of 3aa

Preparation of the single crystals of 3aa: 15.0 mg of pure compound 3aa was dissolved in the combined solvents of dichloromethane and methanol ($3 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 2$) at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at $0^{\circ} \mathrm{C}$. After about one day, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of 3aa. The data were collected by a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 150.00 (10) K during data collection.

Table S2. Crystal data and structure refinement for 3aa.

Identification code	3aa
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7}$
Formula weight	543.56
Temperature/K	$150.00(10)$
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a/A	$8.9802(5)$
b/A	$12.3650(6)$
c/ \AA	$12.6363(6)$

$\alpha /{ }^{\circ}$	109.475(4)
$\beta /{ }^{\circ}$	94.551(4)
$\gamma /{ }^{\circ}$	90.087(4)
Volume/ \AA^{3}	1318.10(12)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.370
μ / mm^{-1}	0.099
$\mathrm{F}(000)$	572.0
Crystal size/mm ${ }^{3}$	$0.13 \times 0.1 \times 0.08$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection/	3.996 to 49.994
Index ranges	$-10 \leq \mathrm{h} \leq 10,-14 \leq \mathrm{k} \leq 13,-15 \leq 1 \leq 14$
Reflections collected	9912
Independent reflections	$4641\left[\mathrm{R}_{\text {int }}=0.0303, \mathrm{R}_{\text {sigma }}=0.0467\right]$
Data/restraints/parameters	4641/0/380
Goodness-of-fit on F^{2}	1.030
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0414, \mathrm{wR}_{2}=0.0938$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0561, \mathrm{wR}_{2}=0.1039$
Largest diff. peak/hole / e \AA^{-3}	0.19/-0.18

5.3 Crystal structure of 4

Preparation of the single crystals of $\mathbf{4}: 10.0 \mathrm{mg}$ of pure compound $\mathbf{4}$ was dissolved in the combined solvents of dichloromethane and methanol $(2 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 1)$ at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at $0{ }^{\circ} \mathrm{C}$. After about two days, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of 4 . The data were collected by a Bruker D8 QUEST PHOTON II diffractometer at 273.0 K.

Table S3. Crystal data and structure refinement for 4.

Identification code	global
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}$
Formula weight	523.53
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P $121 / \mathrm{n} 1$
Unit cell dimensions	$\mathrm{a}=8.0690(2) \AA \AA^{\circ} \quad \alpha=90^{\circ}$.
	$\mathrm{b}=11.2404(3) \AA \quad \beta=93.2810(10)^{\circ}$.
	$\mathrm{c}=27.7333(8) \AA$ A $\quad \gamma=90^{\circ}$.
Volume	2511.25(12) \AA^{3}
Z	4
Density (calculated)	$1.385 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.860 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	1104
Crystal size	$0.290 \times 0.080 \times 0.030 \mathrm{~mm}^{3}$
Theta range for data collection	3.19 to 72.20°.
Index ranges	$-9<=\mathrm{h}<=9,-13<=\mathrm{k}<=13,-28<=\mathrm{l}<=34$
Reflections collected	29794
Independent reflections	$4931[\mathrm{R}(\mathrm{int})=0.0812]$
Completeness to theta $=72.20^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.97 and 0.85
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4931 / 0 / 347
	,

Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)

Largest diff. peak and hole
1.033
$\mathrm{R}_{1}=0.0535, \mathrm{wR}_{2}=0.1257$
$\mathrm{R}_{1}=0.0696, \mathrm{wR}_{2}=0.1361$
1.307 and -0.740 e. \AA^{-3}

5.4 Crystal structure of 7

Preparation of the single crystals of $7: 8.0 \mathrm{mg}$ of pure compound 7 was dissolved in the combined solvents of chloroform and methanol $(1 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=2: 1)$ at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at $10^{\circ} \mathrm{C}$. After about two days, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of 7 . The data were collected by a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 149.99(10) K during data collection.

Table S4. Crystal data and structure refinement for 7.

Identification code	$\mathbf{7}$
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}$
Formula weight	642.90
Temperature/K	$149.99(10)$
Crystal system	orthorhombic
Space group	$\mathrm{P} 212^{2} 2_{1} 2_{1}$
a/A	$8.9528(3)$
b/ \AA	$12.4499(5)$
c / \AA	$26.0558(12)$
$\alpha /{ }^{\circ}$	90

$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	2904.2(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.470
μ / mm^{-1}	3.287
$\mathrm{F}(000)$	1328.0
Crystal size/mm ${ }^{3}$	$0.14 \times 0.12 \times 0.11$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/	7.87 to 147.802
Index ranges	$-7 \leq \mathrm{h} \leq 10,-15 \leq \mathrm{k} \leq 15,-31 \leq 1 \leq 23$
Reflections collected	7183
Independent reflections	$4952\left[\mathrm{R}_{\mathrm{int}}=0.0526, \mathrm{R}_{\text {sigma }}=0.0819\right]$
Data/restraints/parameters	4952/38/409
Goodness-of-fit on F^{2}	1.050
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0624, \mathrm{wR}_{2}=0.1571$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0721, \mathrm{wR}_{2}=0.1694$
Largest diff. peak/hole / e \AA^{-3}	0.50/-0.39
Flack parameter	0.01(2)

6. NMR spectra

$$
{ }^{1} \mathrm{H} \text { NMR spectrum of } \mathbf{3 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
zk-206

N $\stackrel{\text { Rem }}{\stackrel{\text { mim }}{5}}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
2K-231
$\stackrel{\text { लें }}{\text { ले }}$
ন
$\stackrel{\sim}{\sim} \stackrel{m}{\sim}$

[^0]${ }^{19}$ F NMR spectrum of $\mathbf{3 b}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ZK-231

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\mathrm{CZH}-90$

N0	
-	

$\stackrel{\omega}{\sim}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
C-3C

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

M	
\bigcirc	
「j	$\xrightarrow{\square}$

$\stackrel{\text { ®. }}{\substack{\text { ® }}}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR spectrum of $\mathbf{3 h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
CZH-98

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 j}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
cu*

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 j}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 k}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ZK-230

$\stackrel{\stackrel{\bullet}{6}}{\stackrel{\infty}{\infty}}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 n}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ZK-207

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 p}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 q}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CZH-96

$$
\begin{aligned}
& \stackrel{\sim}{i} \stackrel{\leftrightarrow}{\top}
\end{aligned}
$$

Oim
$\stackrel{\text { ๗゙ゥ }}{\sim}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 s}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 t}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 t}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
CZH-99

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 u}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 v}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 v}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
CZH-238

¢ ${ }_{\text {W }}$	$\stackrel{8}{6}$		
$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\circ}$		

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 w}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 \int r

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 w}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
CZH-102

Et

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 x}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 y}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 y}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 z}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 z}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
CZH-244

品NNNNNNNNTNNN

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a b}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a b}{ }^{\prime}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]${ }^{1} \mathrm{H}$ NMR spectrum of $4\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
ZK-218

 ゅim

${ }^{1} \mathrm{H}$ NMR spectrum of $5\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $5\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ZK-237

-43.75 13.96
13.66

${ }^{13} \mathrm{C}$ NMR spectrum of $6\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ZK-234

$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppa})\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $7\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^3]${ }^{1} \mathrm{H}$ NMR spectrum of $9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & 100\end{array}$

[^1]:

[^2]:

[^3]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & 9 & (\mathrm{ppa})\end{array}$

