Electronic Supplementary Information

Long-lived emission beyond 1000 nm : Control of excited-state dynamics in a dinuclear $\mathbf{T b}($ III $)-\mathrm{Nd}($ III $)$ complex

Yuichi Kitagawa, ${ }^{*, c}$ K Kenji Matsuda, ${ }^{\text {b }}$ P. P. Ferreira da Rosa, ${ }^{\text {b }}$ Koji Fushimi, ${ }^{\text {a }}$ and Yasuchika Hasegawa ${ }^{*, c}$
a. Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, Hokkaido, 060-8628, Japan.
b. Graduate School of Chemical Sciences and Engineering Hokkaido University, Kita-13,

Nishi-8, Sapporo, Hokkaido, 060-8628, Japan.
c. Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido

University, Kita-21, Nishi-10, Sapporo, Hokkaido 001-0021, Japan.

Corresponding authors

E-mail: y-kitagawa@eng.hokudai.ac.jp (Yuichi Kitagawa);
hasegaway@eng.hokudai.ac.jp (Yasuchika Hasegawa)

Experimental section

General method: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and CDCl_{3} on a JEOL ECS-400 (400 MHz) spectrometer; TMS $\left(\delta_{\mathrm{H}}=0 \mathrm{ppm}\right)$ was used as the internal reference. Electrospray ionization (ESI) mass spectrometry was performed using JEOL JMS-T100 LP instrument. Elemental analyses were performed using MICRO CORDER JM10. Emission spectra and emission lifetimes were measured using a Horiba Fluorolog ${ }^{\circledR 3}$ spectrofluorometer under degassed condition. Emission quantum yields were measured using a FP-6300 spectrofluorometer with an integration sphere (ILF-533). Infrared spectra were measured using a JASCO FT/IR-4600 spectrometer. XRD data were recorded at on a Rigaku SmartLab diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation and $\mathrm{D} /$ teX Ultra detector.

Materials: Terbium chloride hexahydrate (99.9 \%), ytterbium chloride hexahydrate (99.9%), neodymium chloride hexahydrate (99.9%), n-BuLi (in hexane, 1.6 M), magnesium sulfate, anhydrous (>98.0\% (titration)), dichloromethane- $\mathrm{d}_{2}(99.5 \%)$, and chloroform- $\mathrm{d}_{1}(99.8 \%)$ were purchased from Kanto Chemical Co., Inc. Hydrogen peroxide (30 \%) was purchased from Wako Pure Chemical Industries, Ltd. 2,2,6,6-Tetramethyl-3,5-heptanedione (> 97\%), 1-bromo-4-iodobenzene (>98.0\%), chlorodiphenylphosphine (> 98%, and dichlorophenylphosphine (>98.0\%) were purchased from Tokyo Chemical Industry Co., Ltd..

Preparation of dpb (1,4-bis(diphenylphosphoryl)benzene): We prepared the dpb ligand according to a previous report. ${ }^{\mathrm{S} 1}$

IR (ATR): 1191 (st, $\mathrm{P}=\mathrm{O}$) cm^{-1}; Elemental analysis calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{P}_{2}$: $\mathrm{C}, 75.31$; H , 5.06\%. Found: C, 74.86; H, 5.11\%

Preparation of (4-bromophenyl)diphenylphosphine: A solution of n-BuLi (1.6 M in hexane, $19 \mathrm{ml}, 31 \mathrm{mmol}$) was added dropwise to a solution of 1-bromo-4-iodobenzene ($8.5 \mathrm{~g}, 30 \mathrm{mmol}$) in dry THF (80 mL) at $-78^{\circ} \mathrm{C}$ under Ar. After cooling for 45 min ,
chlorodiphenylphosphine ($5.5 \mathrm{~mL}, 30 \mathrm{mmol}$) was added to the solution, and then stirred for 17 h at room temperature. The product was evaporated, and extracted using dichloromethane, and the extract was washed with distilled water and then dried over anhydrous MgSO_{4}. The compounds were separated by silica gel chromatography (Hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 1$)

Yield: $76 \%(6.99 \mathrm{~g}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta / \mathrm{ppm}=7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ 7.34 (m, 10H), 7.12-7.15 (m, 2H).

Preparation of dpppo (bis[p-(diphenylphosphoryl)phenyl]phosphine oxide): A solution of n - $\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $6.8 \mathrm{ml}, 11 \mathrm{mmol})$ was added dropwise to a solution of (4-bromophenyl)diphenylphosphine ($3.4 \mathrm{~g}, 10 \mathrm{mmol}$) in dry THF (50 mL) at $-78^{\circ} \mathrm{C}$ under Ar. After cooling for 30 minutes, dichlorophenylphosphine ($0.7 \mathrm{~mL}, 5.5 \mathrm{mmol}$) was added to the solution, and then stirred for 3 h at room temperature. The product was evaporated, and extracted using dichloromethane, and the extract was washed with distilled water and then dried over anhydrous MgSO_{4}. The solution was cooled, and then $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution $(10 \mathrm{~mL})$ was added. The reaction mixture was stirred for 4 h . The product was extracted using dichloromethane, and the extract was washed with distilled water and then dried over anhydrous MgSO_{4}. The compounds were separated by
silica gel chromatography (Ethyl acetate : methanol = 5:1)

Yield: $53 \%(3.60 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.70-7.81(\mathrm{~m}, 8 \mathrm{H}), 7.61-$ $7.70(\mathrm{~m}, 10 \mathrm{H}), 7.54-7.60(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.53$ (m, 10H); Elemental analysis calcd. for $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}_{3}$: C, 74.33%; H, 4.90%, found: C, $73.80 \% ; \mathrm{H}, 4.82 \%$; ESI-MS (m/z): calcd. for $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{NaO}_{3} \mathrm{P}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 701.15$, found: 701.15.

Preparation of [Tb2(tmh) $\mathbf{6}(\mathbf{d p b})]$: A methanol solution (5 ml) containing dpb (55.9 mg , $0.12 \mathrm{mmol})$ was added to a methanol solution $(5 \mathrm{ml})$ containing $\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6}\right](170.1 \mathrm{mg}$, $0.12 \mathrm{mmol})^{\mathrm{S} 2}$, and the mixed solution was refluxed for 5 h . The reactant solution was evaporated. The solid was dissolved into ethyl acetate and recrystallized. The obtained crystal was filtrated and washed with hexane to afford a colorless solid.

Yield: 57 \% (108.8 mg). IR (ATR): 1573 (st, C=O), 1180 (st, P=O) cm^{-1}; Elemental analysis calcd. for $\mathrm{C}_{96} \mathrm{H}_{138} \mathrm{O}_{14} \mathrm{P}_{2} \mathrm{~Tb}_{2}$: $\mathrm{C}, 60.82 \% ; \mathrm{H}, 7.34 \%$, found: $\mathrm{C}, 60.49 \% ; \mathrm{H}$, 7.29 \%; ESI-MS (m/z): calcd. for $\mathrm{C}_{52} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~Tb}\left[\mathrm{~Tb}(\mathrm{tmh})_{2}(\mathrm{dpb})\right]^{+}: 1003.33$, found: 1003.34.

Preparation of $[\mathbf{N d} \mathbf{2}(\mathbf{t m h}) \mathbf{6}(\mathbf{d p b})]:$ A methanol solution $(5 \mathrm{ml})$ containing $\mathrm{dpb}(47.8 \mathrm{mg}$, $0.10 \mathrm{mmol})$ was added to a methanol solution (5 ml) containing $\left[\mathrm{Nd}_{2}(\mathrm{tmh})_{6}\right](138.8 \mathrm{mg}$, $0.10 \mathrm{mmol})^{\mathrm{S} 2}$, and the mixed solution was refluxed for 5 h . The reactant solution was evaporated. The solid was dissolved into ethyl acetate and recrystallized. The obtained crystal was filtrated and washed with hexane to afford a solid.

Yield: 49 \% (91.2 mg). IR (ATR): 1573 (st, C=O), 1186 (st, $\mathrm{P}=\mathrm{O}$) cm^{-1}; Elemental analysis calcd. for $\mathrm{C}_{100} \mathrm{H}_{146} \mathrm{Nd}_{2} \mathrm{O}_{16} \mathrm{P}_{2}\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]$: $\mathrm{C}, 61.45 \% ; \mathrm{H}, 7.53 \%$, found: C, 60.59 \%; H, 6.59 \%

Preparation of $[\mathbf{T b N d}(\mathbf{t m h}) \mathbf{6}(\mathbf{d p b})]$: A methanol solution (5 ml) containing dpb (0.0478 $\mathrm{m}, 0.10 \mathrm{mmol})$ was added to a methanol solution $(5 \mathrm{ml})$ containing $\left[\mathrm{Nd}_{2}(\mathrm{tmh})_{6}\right](69.4 \mathrm{mg}$, $0.05 \mathrm{mmol})$ and $\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6}\right](70.9 \mathrm{mg}, 0.05 \mathrm{mmol})$, and the mixed solution was refluxed for 5 h . The reactant solution was evaporated. The solid was dissolved into ethyl acetate and recrystallized. The obtained crystal was filtrated and washed with hexane to afford a colorless solid.

Yield: 35 \% (65.3 mg). IR (ATR): 1573 (st, C=O), 1181 (st, P=O) cm^{-1}; Elemental analysis calcd. for $\mathrm{C}_{100} \mathrm{H}_{146} \mathrm{NdO}_{16} \mathrm{P} 2 \mathrm{~Tb}\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]: \mathrm{C}, 60.99 \% ; \mathrm{H}, 7.47 \%$, found: C, 60.03%; H, 7.20\%.

Fig. S1. Experimental $\left(\left[\operatorname{TbNd}(\operatorname{tmh})_{6}(\mathrm{dpb})\right)\right.$ and calculated mass spectra $\left(\left[\mathrm{TbNd}(\mathrm{tmh})_{6}(\mathrm{dpb})+3 \mathrm{CH}_{3} \mathrm{OH}\right]^{+}\right)$. The ESI-MS measurements showed the existence of a $\left[\mathrm{TbNd}(\operatorname{tmh})_{6}(\mathrm{dpb})\right]$ framework.

Preparation of $\left[\mathbf{T b}_{\mathbf{3}}(\mathbf{t m h}) \mathbf{9}(\mathbf{d p p p o})\right]:$ A methanol solution (5 ml) containing dpppo $(0.0679 \mathrm{~g}, 0.10 \mathrm{mmol})$ was added to a methanol solution (5 ml) containing [$\mathrm{Tb}_{2}(\mathrm{tmh})_{6}$] ($0.2835 \mathrm{~g}, 0.20 \mathrm{mmol}$), and the mixed solution was refluxed for 5 h . The reactant solution was evaporated. The solid was dissolved into ethyl acetate and recrystallized. The obtained crystal was filtrated and washed with hexane to afford a colorless solid.

Yield: 67 \% (186.9 mg). IR (ATR): 1572 (st, C=O), 1181 (st, P=O) cm^{-1}; Elemental analysis calcd. for $\mathrm{C}_{141} \mathrm{H}_{204} \mathrm{O}_{21} \mathrm{P}_{3} \mathrm{~Tb}_{3}: \mathrm{C}, 60.38 \% ; \mathrm{H}, 7.33 \%$, found: $\mathrm{C}, 59.87 \% ; \mathrm{H}$, 7.34%. ESI-MS (m/z): calcd. for $\mathrm{C}_{64} \mathrm{H}_{71} \mathrm{O}_{7} \mathrm{P}_{3} \mathrm{~Tb}\left[\mathrm{~Tb}(\mathrm{tmh})_{2} \mathrm{dpppo}\right]^{+}:$1203.37, found: 1203.37.

Preparation of $[\mathbf{T b} \mathbf{2} \mathbf{N d}(\mathbf{t m h}) 9(\mathbf{d p p p o})]$: A methanol solution (5 ml) containing dpppo $(0.0679 \mathrm{~g}, 0.10 \mathrm{mmol})$ was added to a methanol solution $(5 \mathrm{ml})$ containing [$\mathrm{Nd}_{2}(\mathrm{tmh})_{6}$] $(0.0930 \mathrm{~g}, 0.067 \mathrm{mmol})$ and $\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6}\right](0.1890 \mathrm{mg}, 0.13 \mathrm{mmol})$, and the mixed solution was refluxed for 5 h . The reactant solution was evaporated. The solid was dissolved into ethyl acetate and recrystallized. The obtained crystal was filtrated and washed with hexane to afford a solid powder.

Yield: 35% (98.2 mg). IR (ATR): 1572 (st, C=O), 1180 ($\mathrm{st}, \mathrm{P}=\mathrm{O}$) cm^{-1}; Elemental analysis calcd. for $\mathrm{C}_{181} \mathrm{H}_{284} \mathrm{NdO}_{41} \mathrm{P}_{3} \mathrm{~Tb}_{2}\left[\mathrm{M}+10 \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]$: C, 59.22%; $\mathrm{H}, 7.80 \%$, found: C, 58.22%; H, 7.23%.

Fig. S2. Experimental $\left(\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh})_{6}(\right.\right.$ dpppo $\left.\left.)\right]\right)$ and calculated mass spectra $\left(\left[\mathrm{TbNd}(\operatorname{tmh})_{6}(\text { dpppo })+5 \mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+2 \mathrm{Na}\right]^{2+}\right)$. The ESI-MS measurements might show the existence of a $\left[\mathrm{TbNd}(\mathrm{tmh})_{6}(\mathrm{dpppo})\right]$ framework.

Preparation of [$\mathbf{N d} 3(\mathbf{t m h})$ gdpppo]: A methanol solution (5 ml) containing dpppo $(0.0679 \mathrm{~g}, 0.10 \mathrm{mmol})$ was added to a methanol solution $(5 \mathrm{ml})$ containing $\left[\mathrm{Nd}_{2}(\mathrm{tmh})_{6}\right]$ $(0.2776 \mathrm{~g}, 0.20 \mathrm{mmol})$, and the mixed solution was refluxed for 5 h . The solid was dissolved into ethyl acetate and recrystallized. The reactant solution was evaporated and washed with hexane to afford a solid powder.

Yield: 43 \% (119.3 mg). IR (ATR): 1573 (st, C=O), 1186 (st, P=O) cm^{-1}; Elemental analysis calcd (\%) for $\mathrm{C}_{193} \mathrm{H}_{308} \mathrm{Nd}_{3} \mathrm{O}_{47} \mathrm{P}_{3}\left[\mathrm{M}+13 \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]$; C 59.34, H 7.98, found: C 58.38, H 7.46.

Preparation of $\left[\mathbf{T} \mathbf{b}_{2} \mathbf{Y b}(\mathbf{t m h}) 9(\mathbf{d p p p o})\right]$: A methanol solution (5 ml) containing dpppo $(0.0679 \mathrm{~g}, 0.10 \mathrm{mmol})$ was added to a methanol solution $(5 \mathrm{ml})$ containing [$\mathrm{Yb}_{2}(\mathrm{tmh})_{6}$] $(0.0969 \mathrm{~g}, 0.067 \mathrm{mmol})$ and $\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6}\right](0.1890 \mathrm{mg}, 0.13 \mathrm{mmol})$, and the mixed solution was refluxed for 5 h . The reactant solution was evaporated. The solid was dissolved into ethyl acetate and recrystallized. The obtained crystal was filtrated and washed with hexane to afford a colorless solid.

Yield: 42% (118.9 mg). IR (ATR): 1572 (st, C=O), 1182 (st, $\mathrm{P}=\mathrm{O}$) cm^{-1}; Elemental analysis calcd. for $\mathrm{C}_{149} \mathrm{H}_{220} \mathrm{O}_{25} \mathrm{P}_{3} \mathrm{~Tb}_{2} \mathrm{Yb}\left[\mathrm{M}+2 \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]: \mathrm{C}, 59.75 \% ; \mathrm{H}, 7.40 \%$, found: C, 58.80%; H, 7.40%.

Fig. S3. Experimental $\left(\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh})_{9}(\right.\right.$ dpppo $\left.\left.)\right]\right)$ and calculated mass spectra $\left(\left[\mathrm{TbYb}(\mathrm{tmh})_{6}(\mathrm{dpppo})+2 \mathrm{H}_{2} \mathrm{O}\right]^{+}\right)$. The ESI-MS measurements show the existence of a $\left[\mathrm{TbYb}(\mathrm{tmh})_{6}(\mathrm{dpppo})\right]$ framework.

Preparation of $\left[\mathbf{Y b}_{3}(\mathbf{t m h}) \boldsymbol{9}(\mathbf{d p p p o})\right]:$ A methanol solution $(5 \mathrm{ml})$ containing dpppo $(0.0679 \mathrm{~g}, 0.10 \mathrm{mmol})$ was added to a methanol solution $(5 \mathrm{ml})$ containing $\left[\mathrm{Yb}_{2}(\mathrm{tmh})_{6}\right.$] $(0.2891 \mathrm{~g}, 0.20 \mathrm{mmol})^{\mathrm{S} 2}$, and the mixed solution was refluxed for 5 h . The reactant solution was evaporated. The solid was dissolved into ethyl acetate and recrystallized. The obtained crystal was filtrated and washed with hexane to afford a colorless solid.

Yield: $67 \%(186.9 \mathrm{mg})$. IR (ATR): 1574 ($\mathrm{st}, \mathrm{C}=\mathrm{O}$), 1187 ($\mathrm{st}, \mathrm{P}=\mathrm{O}$) cm^{-1}; Elemental analysis calcd. for $\mathrm{C}_{149} \mathrm{H}_{220} \mathrm{O}_{25} \mathrm{P}_{3} \mathrm{Yb}_{3}\left[\mathrm{M}+2 \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]$: $\mathrm{C}, 59.19 \% ; \mathrm{H}, 7.33 \%$, found: $\mathrm{C}, 58.46 \% ; \mathrm{H}, 7.26 \%$. ESI-MS (m/z): calcd. for $\mathrm{C}_{64} \mathrm{H}_{71} \mathrm{O}_{7} \mathrm{P}_{3} \mathrm{Yb}$ $\left[\mathrm{Yb}(\mathrm{tmh})_{2} \mathrm{dpppo}^{+}: 1218.38\right.$, found: 1218.46.

Single-Crystal X-ray Structure Determination

X-ray crystal structures and crystallographic data for $\left[\mathrm{Tb}_{2}(\operatorname{tmh})_{6}(\mathrm{dpb})\right]$ and $\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\mathrm{dppppo})\right]$ are shown in Fig. 2, Fig. S6, and Tab. S1. Single crystals of the compounds were mounted on micromesh (MiTeGen M3-L19-25L) using paraffin oil. Measurements were made by using a Rigaku RAXIS RAPID (for $\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6} \mathrm{dpb}\right)$ imaging-plate area detector with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation or a Rigaku VariMax RAPID (for $\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$) imaging-plate diffractometer with confocal mirror-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. All calculations were performed using a crystal-structure crystallographic software package. The CIF data were confirmed by the check CIF/PLATON service. These data $\left(\mathrm{CCDC}-1990682: \quad\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6}(\mathrm{dpb})\right]\right.$ and $\mathrm{CCDC}-1990683$: $\left.\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]\right)$ can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Tab. S1. Crystal data of $\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6}(\mathrm{dpb})\right]$ and $\left[\mathrm{Tb}_{3}(\operatorname{tmh})_{9}(\mathrm{dpppo})\right]$

	$\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6}(\mathrm{dpb})\right]$	$\left.\left[\mathrm{Tb}_{3}(\mathrm{tmh})\right)_{9}(\mathrm{dpppo})\right]$
chemical formula	$\mathrm{C}_{98} \mathrm{H}_{138} \mathrm{O}_{14} \mathrm{P}_{2} \mathrm{~Tb}_{2}$	$\mathrm{C}_{141} \mathrm{H}_{204} \mathrm{O}_{21} \mathrm{P}_{3} \mathrm{~Tb}_{3}$
formula weight	1919.86	2804.70
crystal system	Triclinic	Orthorhombic
space group	$\mathrm{P}-1$	$\mathrm{P}_{1} 2_{1} 2_{1}$
a / \AA	$13.4524(5)$	$17.3827(3)$
b / \AA	$16.5651(6)$	$22.9977(4)$
c / \AA	$22.9953(9)$	$38.2920(6)$
$\alpha /$ deg	$88.5491(13)$	90
$\beta /$ deg	$75.5823(11)$	90
$\gamma /$ deg	$87.8446(11)$	90
volume $/ \AA^{3}$	$4958.7(3)$	$15307.7(4)$
Z	2	4
density $/ \mathrm{g} \mathrm{cm}{ }^{-3}$	1.286	1.460
Temperature $/{ }^{\circ} \mathrm{C}$	-150	-150
R	0.0700	0.0398
$w R_{2}$	0.1693	0.0949

Tab. S2. Shape measure calculation results

	$C_{2 \mathrm{v}}$	$C_{3 \mathrm{v}}$
$\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6}(\mathrm{dpb})\right]$	0.468	1.480
$\left[\mathrm{~Tb}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]($ Side Tb$)$	1.640	0.381
$\left[\mathrm{~Tb}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]($ Middle Tb $)$	0.468	1.480

Fig. S4. XRD patterns of $\left[\mathrm{Tb}_{2}(\operatorname{tmh})_{6}(\mathrm{dpb})\right]$ (black line) and $\left[\mathrm{TbNd}(\operatorname{tmh})_{6}(\mathrm{dpb})\right]$ (red line).

Fig. S5. Diffuse reflectance spectra of dpb ligand (black line), $\left[\mathrm{Tb}_{2}(\mathrm{tmh})_{6}(\mathrm{dpb})\right]$ (red line), and $\left[\mathrm{TbNd}(\mathrm{tmh})_{6}(\mathrm{dpb})\right]$ (blue line). The samples were 100 -fold dilution using KBr . The spectra are normalized by intensity maxima. The diffuse reflectance spectra indicate that the selective excitation of tmh ligands is occurred for the measurement of emission spectra $\left(\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right)$, lifetimes $\left(\lambda_{\mathrm{ex}}=356 \mathrm{~nm}\right)$, and emission quantum yields $\left(\lambda_{\mathrm{ex}}=360\right.$ $\mathrm{nm})$.

Comparative study for understanding photophysics using lanthanide-

lanthanide energy transfer

We prepared trinuclear $\operatorname{Ln}(\mathrm{III})-\mathrm{Ln}(\mathrm{III})-\mathrm{Ln}(\mathrm{III})(\mathrm{Ln}=\mathrm{Tb}$ or Nd or Yb$)$ complexes (Fig. S6a), a hetero-trinuclear $\mathrm{Tb}(\mathrm{III})-\mathrm{Tb}(\mathrm{III})-\mathrm{Nd}(\mathrm{III})$ complex, and a hetero-trinuclear $\mathrm{Tb}(\mathrm{III})-\mathrm{Tb}(\mathrm{III})-\mathrm{Yb}(\mathrm{III})$ complex for elucidating lanthanide-lanthanide energy transfer. In this study, dpppo (bis[p-(diphenylphosphoryl)phenyl]phosphine oxide) ligand was used as a nano-spacer. The single crystals of the trinuclear $\mathrm{Tb}(\mathrm{III})-\mathrm{Tb}(\mathrm{III})-\mathrm{Tb}(\mathrm{III})$ complex were obtained by recrystallization from an ethyl acetate solution. The crystal structure (Fig. S6b) was found to be orthorhombic, with space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$ (for the crystallographic data, see Table S1, ESI \dagger). The coordination site in the $\mathrm{Tb}(\mathrm{III})$ complex comprised three tmh ligands and one phosphine oxide ligand as a nano-spacer, such that the coordination geometries around the Tb (III) ions consisted of a characteristic 7coordinated capped octahedron and a capped trigonal prism (Tab. S2). ${ }^{\text {S3 }}$ The intra- and intermolecular distances between the $\mathrm{Tb}(\mathrm{III})$ ions were about 1.1 (1.3) and 1.2 nm , respectively. The heterotrinuclear $\mathrm{Tb}(\mathrm{III})-\mathrm{Tb}(\mathrm{III})-\mathrm{Nd}(\mathrm{III})$ and $\mathrm{Tb}(\mathrm{III})-\mathrm{Tb}(\mathrm{III})-\mathrm{Yb}(\mathrm{III})$ complexes were prepared by the complexation of $\left[\mathrm{Tb}_{2}(\operatorname{tmh})_{6}\right]$ and $\left[\operatorname{Ln}_{2}(\operatorname{tmh})_{6}\right](\mathrm{Ln}=\mathrm{Nd}$ or Yb) with dpppo in methanol. The XRD patterns of these heteronuclear complexes were similar to that of the trinuclear $\mathrm{Tb}(\mathrm{III})-\mathrm{Tb}(\mathrm{III})-\mathrm{Tb}(\mathrm{III})$ complex (Fig. S7).
(a)

(b)

Fig. S6. (a) Chemical structure of a trinuclear $\operatorname{Ln}($ III) complex. (b) ORTEP drawing (ellipsoid probability: 50\%) of the trinuclear Tb (III) complex.

Fig. S7. XRD patterns of $\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$ (black line), $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh})_{6}(\mathrm{dpppo})\right]$ (red line), and $\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh})_{6}(\mathrm{dpppo})\right]$ (blue line).

The emission spectra of $\quad\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right], \quad\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$, and $\left[\mathrm{Nd}_{3}(\mathrm{tmh}){ }_{9}(\mathrm{dpppo})\right]$ at RT are shown in Fig. S8. The emission peaks of $\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$ and $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$ at $491,548,583,618$, and 655 nm were assigned to the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{6},{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5},{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{4},{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{3}$, and ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{2}$ transitions, respectively, of Tb (III) ions (Fig. S8). The similar shapes of the emission spectra of $\left[\mathrm{Tb}_{3}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]$ and $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\operatorname{tmh})\right)_{9}($ dpppo $\left.)\right]$ indicated the formation of similar coordination geometries around the Tb (III) ion. The emission peaks of $\left[\mathrm{Nd}_{3}(\operatorname{tmh})_{9}(\right.$ dpppo $\left.)\right]$ and $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]$ at 877 and 1057 nm were assigned to the ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{9 / 2}$ and ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ transitions, respectively, of $\mathrm{Nd}(\mathrm{III})$ ions.

Fig. S8. Emission spectra of $\left[\mathrm{Tb}_{3}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]$ (black line, $\left.\lambda_{\text {ex }}=330 \mathrm{~nm}\right)$, $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]\left(\right.$ red broken line, $\left.\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right)$, and $\left[\mathrm{Nd}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$ (blue line, $\lambda_{\mathrm{ex}}=590 \mathrm{~nm}$). The spectra are normalized by intensity maxima: (a) detection of $\mathrm{Tb}(\mathrm{III})$ emission and (b) detection of $\mathrm{Nd}(\mathrm{III})$ emission.

We also investigated the emission lifetimes of $\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$, $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\operatorname{tmh})_{9}(\mathrm{dpppo})\right]$, and $\left[\mathrm{Nd}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$ at RT, as summarized in Tab. S3. The time-resolved $\mathrm{Nd}(\mathrm{III})$ emission of $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh}) 9(\mathrm{dpppo})\right]$ showed a multiexponential decay (Fig. S9). The emission lifetimes were estimated to be $0.83,99$, and $280 \mu \mathrm{~s}$. The shortest lifetime component ($\tau=0.83 \mu \mathrm{~s}$) was consistent with the lifetime of $\left[\mathrm{Nd}_{3}(\operatorname{tmh})_{9}(\right.$ dpppo $\left.)\right](\tau=0.90 \mu \mathrm{~s})$. The intermolecular distance $(11.9 \AA)$ between lanthanide ions is longer than the intramolecular distance ($10.6 \AA$). At this stage, we consider that the $99-\mu \mathrm{s}$ and $280-\mu \mathrm{s}$ emission lifetime components were associated with the intra- and inter-molecular energy transfer, respectively. In this study, we compared the emission lifetimes of the trinuclear complex ($99 \mu \mathrm{~s}$ and $280 \mu \mathrm{~s}$) with that of the dinuclear complex. The nearest intramolecular distance between lanthanide ions in the trinuclear complex $(10.6 \AA)$ is longer than that in the dinuclear complex $(10.0 \AA)$, leading to longer emission lifetime for the trinuclear complex ($99 \mu \mathrm{~s}>78 \mu \mathrm{~s}$). The nearest intermolecular distance between lanthanide ions of trinuclear complex (11.6 \AA) is slightly shorter to that of dinuclear complex ($11.9 \AA$), which might lead to slightly shorter emission lifetime for the trinuclear complex ($280 \mu \mathrm{~s}<290 \mu \mathrm{~s}$). These results suggest that the distance between lanthanide ions is critical for determining the rate of energy transfer from Tb (III) to $\mathrm{Nd}(\mathrm{III})$ ion. We also measured the $\mathrm{Nd}(\mathrm{III})$ and $\mathrm{Tb}(\mathrm{III})$ emission lifetimes in the ground
and mixed powder of $\left[\mathrm{Nd}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$ and $\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$ (Fig. S10). Effective emission lifetime changes were not observed, indicating that energy transfer occurred in a crystal state.

Tab. S3. Photophysical properties of trinuclear $\operatorname{Ln}($ III $)$ complexes in solid powder states at RT.

	$\tau_{T b} / \mu \mathrm{s}^{[\mathrm{ab]}}$	$\tau_{N d} / \mu \mathrm{s}^{[\mathrm{b}]}$	$\tau_{Y b} / \mu \mathrm{S}^{[\mathrm{b}]}$	$\Phi_{T b} / \%^{[\mathrm{cd}}$
$\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$	720	-	-	69
$\left[\mathrm{~Tb}_{2} \mathrm{Nd}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$	170,490	$0.83,99,280$	-	16
$\left[\mathrm{Nd}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$	-	0.90	-	-

[a] $\lambda_{\mathrm{ex}}=356 \mathrm{~nm}, \lambda_{\mathrm{em}}=547 \mathrm{~nm},[\mathrm{~b}] \lambda_{\mathrm{ex}}=356 \mathrm{~nm}, \lambda_{\mathrm{em}}=1057 \mathrm{~nm},[\mathrm{c}] \lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. S9. (a) Time-resolved $\mathrm{Nd}(\mathrm{III})$ emission $\left(\lambda_{\mathrm{em}}=1057 \mathrm{~nm}\right)$ of $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]$ (red line) and instrument response function (black line). Inset: Time-resolved $\mathrm{Nd}(\mathrm{III})$ emissions ($\lambda_{\text {em }}=1057 \mathrm{~nm}$) of $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$ (red line), $\left[\mathrm{Nd}_{3}(\mathrm{tmh}) 9(\mathrm{dpppo})\right]$ (blue line), and instrument response function (black line). (b) Time-resolved $\mathrm{Tb}(\mathrm{III})$ emissions $\left(\lambda_{\mathrm{em}}=548 \mathrm{~nm}\right)$ of $\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]($ black line $)$ and $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$ (red line $)$.

Fig. S10. (a) Time-resolved $\mathrm{Nd}(\mathrm{III})$ emissions $\left(\lambda_{\mathrm{em}}=1057 \mathrm{~nm}\right)$ of $\left[\mathrm{Nd}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$ (blue line) and ground and mixed powder of $\left[\mathrm{Nd}_{3}(\operatorname{tmh})_{9}(\right.$ dpppo $\left.)\right]$ and $\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$ (green line). (b) Time-resolved Tb (III) emissions $\left(\lambda_{\mathrm{em}}=548 \mathrm{~nm}\right)$ of $\left[\mathrm{Tb}_{3}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]$ (black line) and ground and mixed powder of $\left[\mathrm{Nd}_{3}(\operatorname{tmh}) 9(\right.$ dpppo $\left.)\right]$ and $\left[\mathrm{Tb}_{3}(\mathrm{tmh}) 9(\right.$ dpppo $\left.)\right]($ red line $)$

The emission spectra of $\left[\mathrm{Tb}_{3}(\mathrm{tmh}){ }_{9}(\mathrm{dpppo})\right],\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh}) 9(\mathrm{dpppo})\right]$, and $\left[\mathrm{Yb}_{3}\right.$ $\left.(\mathrm{tmh}){ }_{9}(\mathrm{dpppo})\right]$ at RT are shown in Fig. S11. The emission peaks of $\left[\mathrm{Tb}_{3}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]$ and $\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$ at $491,548,583,618$, and 655 nm were assigned to the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{6},{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5},{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{4},{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{3}$, and ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{2}$ transitions, respectively, of $\mathrm{Tb}(\mathrm{III})$ ions (Fig. S11a). The similar shapes of the $\left[\mathrm{Tb}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$ and $\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]$ emission spectra indicated the formation of similar coordination geometries around the $\mathrm{Tb}(\mathrm{III})$ ion. The emission peaks of $\left[\mathrm{Yb}_{3}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$ and $\left[\mathrm{Tb}_{2} \mathrm{Yb}(\operatorname{tmh})_{9}(\mathrm{dpppo})\right]$ at 975 nm (Fig S11b) were assigned to the ${ }^{2} \mathrm{~F}_{5 / 2} \rightarrow{ }^{7} \mathrm{~F}_{7 / 2}$ transition. No effective Yb and Tb emission decay change between $\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$ and $\left[\operatorname{Ln}_{3}(\operatorname{tmh})_{9}(\mathrm{dpppo})\right](\mathrm{Ln}=\mathrm{Tb}$
and Yb) was observed (Fig. S12), indicating that the energy transfer from Tb (III) ion to $\mathrm{Yb}($ III) ion was ineffective. This was probably because the luminescent bands of Tb (III) ions ($491,548,583$, and 618 nm) are not close to the absorption bands of $\mathrm{Yb}(\mathrm{III})$ at ~ 970 $\mathrm{nm} .{ }^{\mathrm{S4}}$

Fig. S11. (a) Emission spectra of $\left[\mathrm{Tb}_{3}(\operatorname{tmh})_{9}(\mathrm{dpppo})\right]$ (black line, $\left.\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right)$, $\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]\left(\right.$ red broken line, $\left.\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right)$, and $\left[\mathrm{Yb}_{3}(\mathrm{tmh}) 9(\mathrm{dpppo})\right]$ (blue line, $\lambda_{\mathrm{ex}}=330 \mathrm{~nm}$): (a) detection of $\mathrm{Tb}(\mathrm{III})$ emission and (b) detection of Yb (III) emission.

Fig. S12. (a) Time-resolved $\mathrm{Yb}(\mathrm{III})$ emissions $\left(\lambda_{\mathrm{em}}=1057 \mathrm{~nm}\right)$ of $\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]$ (red line) and $\left[\mathrm{Yb}_{3}(\mathrm{tmh})_{9}(\right.$ dpppo $\left.)\right]$ (blue line). (b) Time-resolved $\mathrm{Tb}(\mathrm{III})$ emissions $\left(\lambda_{\mathrm{em}}=\right.$ $548 \mathrm{~nm})$ of $\left[\mathrm{Tb}_{3}(\mathrm{tmh}){ }_{9}(\mathrm{dpppo})\right]$ (black line) and $\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh}) 9(\right.$ dpppo $\left.)\right]$ (red line $)$.

Fig. S13. Diffuse reflectance spectra of dpppo ligand (black line), $\left[\mathrm{Tb}_{3}(\mathrm{tmh}){ }_{9}(\right.$ dpppo $\left.)\right]$ (red line), $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh})_{9}(\mathrm{dpppo})\right]$ (blue line), and $\left[\mathrm{Tb}_{2} \mathrm{Yb}(\mathrm{tmh})_{6}(\mathrm{dpppo})\right]$ (green line). The samples used were diluted 100 -fold using KBr . The spectra are normalized in terms of intensity maxima. These spectra indicate that the selective excitation of tmh ligands occurred for the measurement of emission spectra $\left(\lambda_{\text {ex }}=330 \mathrm{~nm}\right)$, lifetimes $\left(\lambda_{\text {ex }}=356\right.$ nm), and emission quantum yields ($\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$).

Fitting parameter for emission decay analysis

We used Decay Analysis Software v6.8 for emission lifetime analysis.

One exponential: $\mathrm{A}+\mathrm{B} 1 * \operatorname{EXP}(-\mathrm{i} / \mathrm{T} 1)$

Two exponentials: $\mathrm{A}+\mathrm{B} 1 * \operatorname{EXP}(-\mathrm{i} / \mathrm{T} 1)+\mathrm{B} 2 * \operatorname{EXP}(-\mathrm{i} / \mathrm{T} 2)$

1. $\left[\mathrm{Tb}_{2}(\mathrm{tmh}) 6(\mathrm{dpb})\right]$

1-1. $\mathrm{Tb}($ III $)$ emission
$\mathrm{T} 1=300.7895 \mathrm{ch}, 8.021069 \mathrm{E}-04 \mathrm{sec}(\mathrm{S} . \mathrm{Dev}=2.236448 \mathrm{E}-07 \mathrm{sec})$
$\mathrm{A}=30.77479(\mathrm{~S} . \mathrm{Dev}=0.1785773)$
$\mathrm{B} 1=52804.12$ [100.00 Rel.Ampl] $(\mathrm{S} . \mathrm{Dev}=13.33349)$
2. $\left[\mathrm{TbNd}(\mathrm{tmh})_{6}(\mathrm{dpb})\right]$

2-1. Tb(III) emission
$\mathrm{T} 1=247.8876 \mathrm{ch}, 6.610349 \mathrm{E}-04 \mathrm{sec}(\mathrm{S} . \mathrm{Dev}=1.01104 \mathrm{E}-06 \mathrm{sec})$
$\mathrm{T} 2=103.7506 \mathrm{ch}, 2.766689 \mathrm{E}-04 \mathrm{sec}(\mathrm{S} . \mathrm{Dev}=7.75121 \mathrm{E}-07 \mathrm{sec})$
$\mathrm{A}=17.18693(\mathrm{~S} . \mathrm{Dev}=0.1077733)$
$\mathrm{B} 1=22192.22$ [68.65 Rel.Ampl] $(\mathrm{S} . \mathrm{Dev}=17.89954)$
$\mathrm{B} 2=24211.28$ [31.35 Rel.Ampl] $(\mathrm{S} . \mathrm{Dev}=38.92216)$

```
2-2. Nd(III) emission
Long components
T1 = 58.69808 ch, 7.826427E-05 sec (S.Dev = 2.365691E-06 sec)
T2 = 214.9916 ch, 2.866561E-04 sec (S.Dev = 3.482027E-06 sec)
A=8899.725 (S.Dev = 4.143334)
B1 = 5384.509 [23.19 Rel.Ampl] (S.Dev = 41.76918)
B2 = 4868.896 [76.81 Rel.Ampl] (S.Dev = 23.91975)
Short components
T1 = 9.770375 ch, 8.141996E-07 sec (S.Dev = 5.129706E-09 sec)
A=3507.605 (S.Dev = 4.774413)
B1 = 19881.89 [ 100.00 Rel.Ampl][ 1.00 Alpha] (S.Dev = 55.12317)
3. [Nd(tmh)}\mp@subsup{)}{6}{}(\textrm{dpb})
3-1. Nd(III) emission
T1 = 12.15142 ch, 1.012621E-06 sec (S.Dev = 1.613698E-08 sec)
A = 3205.281 (S.Dev = 4.996471)
B1 = 3261.202 [100.00 Rel.Ampl] (S.Dev = 30.47378)
```

```
4. [Tb
4-1. Tb(III) emission
T1 = 269.8959 ch, 7.197239E-04 sec (S.Dev = 2.666672E-20 sec)
A=12.72742(S.Dev = 9.637973E-02)
B1 = 53865.06 [100.00 Rel.Ampl] (S.Dev = 14.1507)
```

5. $\left[\mathrm{Tb}_{2} \mathrm{Nd}(\mathrm{tmh}){ }_{6}(\right.$ dpppo $\left.)\right]$

5-1. Tb (III) emission
$\mathrm{T} 1=62.32287 \mathrm{ch}, 1.661947 \mathrm{E}-04 \mathrm{sec}(\mathrm{S} . \mathrm{Dev}=7.78185 \mathrm{E}-07 \mathrm{sec})$
$\mathrm{T} 2=183.901 \mathrm{ch}, 4.904037 \mathrm{E}-04 \sec (\mathrm{~S} . \mathrm{Dev}=5.849576 \mathrm{E}-07 \mathrm{sec})$
$\mathrm{A}=14.80685(\mathrm{~S} . \mathrm{Dev}=8.220839 \mathrm{E}-02)$
$\mathrm{B} 1=28825.91$ [36.11 Rel.Ampl] $(\mathrm{S} . \mathrm{Dev}=43.10474)$
$\mathrm{B} 2=17281.41$ [63.89 Rel.Ampl] $(\mathrm{S} . \mathrm{Dev}=16.10327)$

5-2. $\mathrm{Nd}($ III) emission
(Long components)
$\mathrm{T} 1=212.5556 \mathrm{ch}, 2.83408 \mathrm{E}-04 \mathrm{sec}(\mathrm{S} . \mathrm{Dev}=7.067118 \mathrm{E}-06 \mathrm{sec})$
$\mathrm{T} 2=74.0494 \mathrm{ch}, 9.873274 \mathrm{E}-05 \sec (\mathrm{~S} . \mathrm{Dev}=6.638168 \mathrm{E}-07 \mathrm{sec})$

$$
\mathrm{A}=11995.71(\mathrm{~S} . \mathrm{Dev}=2.044296)
$$

$$
\mathrm{B} 1=4767.708 \text { [50.03 Rel.Ampl] }(\mathrm{S} . \mathrm{Dev}=26.82746)
$$

$$
\mathrm{B} 2=13666.8 \text { [49.97 Rel.Ampl] }(\mathrm{S} . \mathrm{Dev}=48.67609)
$$

(Short component)
$\mathrm{T} 1=10.01924 \mathrm{ch}, 8.349383 \mathrm{E}-07 \mathrm{sec}(\mathrm{S} . \mathrm{Dev}=2.655181 \mathrm{E}-08 \mathrm{sec})$
$\mathrm{A}=2258.66(\mathrm{~S} . \mathrm{Dev}=3.036299)$

B1 $=1480.686$ [100.00 Rel.Ampl][1.00 Alpha] $(\mathrm{S} . \mathrm{Dev}=25.08619)$
6. $\left[\mathrm{Nd}_{3}(\mathrm{tmh}){ }_{6}(\right.$ dpppo $\left.)\right]$
$\mathrm{T} 1=10.76637 \mathrm{ch}, 8.971996 \mathrm{E}-07 \mathrm{sec}(\mathrm{S} . \mathrm{Dev}=5.633157 \mathrm{E}-09 \mathrm{sec})$
$\mathrm{A}=7543.009(\mathrm{~S} . \mathrm{Dev}=12.05993)$
$\mathrm{B} 1=23949.72[100.00$ Rel.Ampl] $(\mathrm{S} . \mathrm{Dev}=68.5882)$

References

S1. M. Yamamoto, Y. Kitagawa, T. Nakanishi, K. Fushimi and Y. Hasegawa, Chem. Eur. J. 2018, 24, 17719-17726.

S2. Fulgêncio, F. C. De Oliveira, F. F. Ivashita, A. Paesano, D. Windmöller, A. Marques-

Netto, W. F. Magalhães and J. C. MacHado, Spectrochim. Acta, Part A 2012, 92, 415-418.

S3. D. Casanova, M. Llunell, P. Alemany and S. Alvarez, Chem. - Eur. J. 2005, 11, 1479-1494.

S4. S. Kishimoto, T. Nakagawa, T. Kawai, Y. Hasegawa, Bull. Chem. Soc. Jpn. 2011, 84, 148.

