Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information for

Reductive Hydrobenzylation of Terminal Alkynes via Photoredox and Nickel Dual Catalysis

Xian Zhao, Sheng-Qing Zhu, Feng-Ling Qing, and Lingling Chu*

Table of Contents

1. General Information.	S1
2. Preparation of Substrates	S2
3. General Procedure for the Catalytic Hydrobenzylation of Alkynes	S5
4. Characterization of Products	S6
5. Optimization of the Reaction Conditions	S29
6. Mechanistic Studies	
7. NMR Spectra	S42

1. General Information.

Commercial reagents were purchased from Aldrich, TCI, Energy Chemical and J&K chemical, and were used as received. All reactions were carried out in screw cap reaction tube under an atmosphere of nitrogen unless otherwise noted. Chromatographic purification of products was accomplished by flash chromatography using silica gel. Thin-layer chromatography (TLC) was performed on Silicycle 250 mm silica gel F-254 plates.¹H, ¹⁹F NMR, and ¹³C NMR spectra were recorded on Bruker 400 (400, 376, and 100 MHz) and Bruker 600 (600, 564, and 150 MHz), and are internally referenced to residual solvent signals (for CDCl₃, δ 7.26 and 77.0 ppm). Data for ¹H NMR and ¹⁹F NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, coupling constant (Hz). ¹³C spectra were obtained at Shanghai Institute of Organic Chemistry mass spectrometry facilities. All alkenes were used from commercial suppliers or prepared according to literature procedures or the preparation procedures described in this Supporting Information.

2. Preparation of Substrates

General procedure for the preparation of alkynes substrates: A solution of but-3-yn-1-ol (2.0 mmol, 1.0 equiv.) in CH_2Cl_2 (2 mL) was slowly added via cannula to a solution of dicyclohexylcarbodiimide (DCC) (2.4 mmol, 1.2 equiv.), 4-dimethylaminopyridine (DMAP) (0.2 mmol, 0.1 equiv.) and carboxylic acid (2.1 mmol, 1.05 equiv.) in CH_2Cl_2 (25 mL) at 22 °C. After overnight at the same temperature, the reaction mixture was filtrated, and the filtrate was concentrated. The residue was subsequently purified by silica gel flash chromatography to provide compounds.

5-(2-(but-3-yn-1-yloxy)-2-oxoethyl)-1-Methyl-1H-pyrrol-2-yl 4-methylbenzoate (S1): According to the general procedure, but-3-yn-1-ol (0.15 mL, 2.0 mmol, 1 equiv.), 2-(1-methyl-5-((4-methylbenzoyl)oxy)-1H-pyrrol-2-yl)acetic acid (540.3 mg, 2.1 mmol, 1.05 equiv.), dicyclohexylcarbodiimide (DCC) (495.2 mg, 2.4 mmol, 1.2 equiv.), 4-dimethylaminopyridine (DMAP) (24.4 mg, 0.2 mmol, 0.1 equiv.) and CH_2Cl_2 (27 mL) were used. After overnight, the product was isolated by flash chromatography (PE: EA= 5:1) as a white solid (556.8 mg, 90%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.71 (d, *J* = 7.9 Hz, 2H), 7.24 (d, *J* = 7.9 Hz, 2H), 6.67 (d, *J* = 4.0 Hz, 1H), 6.12 (d, *J* = 4.0 Hz, 1H), 4.26 (td, *J* = 6.7, 0.8 Hz, 2H), 3.95 (d, *J* = 0.8 Hz, 3H), 3.75 (s, 2H), 2.68 – 2.45 (m, 2H), 2.42 (s, 3H), 2.01 (td, *J* = 2.7, 0.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 185.9, 169.1, 141.9, 137.3, 134.2, 131.5, 129.4, 128.7, 122.2, 109.5, 79.7, 70.2, 63.0, 33.3, 32.8, 21.6, 19.0.

to the general procedure, but-3-yn-1-ol (0.15 mL, 2.0 mmol, 1 equiv.), 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylic acid (664.4 mg, 2.1 mmol, 1.05 equiv.), dicyclohexylcarbodiimide (DCC) (495.2 mg, 2.4 mmol, 1.2 equiv.), 4-dimethylaminopyridine (DMAP) (24.4 mg, 0.2 mmol, 0.1 equiv.) and CH_2Cl_2 (27 mL) were used. After overnight, the product was isolated by flash chromatography (PE: EA= 10:1) as a white solid (353.8 mg, 48%).

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 2.3 Hz, 1H), 8.09 (dd, J = 8.9, 2.3 Hz, 1H), 7.01 (d, J = 8.9 Hz, 1H), 4.40 (t, J = 6.7 Hz, 2H), 3.90 (d, J = 6.5 Hz, 2H), 2.77 (s, 3H), 2.66 (td, J = 6.7, 2.6 Hz, 2H), 2.20 (dt, J = 13.3, 6.7 Hz, 1H), 2.04 (t, J = 2.7 Hz, 1H), 1.09 (d, J = 6.7 Hz, 6H).
¹³C NMR (100 MHz, CDCl₃) δ 167.5, 162.5, 161.7, 161.6, 132.6, 132.1, 126.0, 121.4, 115.3, 112.6,

103.0, 79.7, 75.7, 70.2, 62.9, 28.2, 19.1, 19.0, 17.6.

4-(chloromethyl)Benzyl (3r,5r,7r)-adamantane-1-carboxylate (S3): A solution of (4-(chloromethyl)phenyl)methanol (313.2 mg, 2.0 mmol, 1.0 equiv.) in CH₂Cl₂ (2 mL) was slowly added via cannula to a solution of dicyclohexylcarbodiimide (DCC) (495.2 mg, 2.4 mmol, 1.2 equiv.), 4-dimethylaminopyridine (DMAP) (24.4 mg, 0.2 mmol, 0.1 equiv.) and (3r,5r,7r)adamantane-1-carboxylic acid (378.5 mg, 2.1 mmol, 1.05 equiv.) in CH₂Cl₂ (25 mL) at 22 °C. After overnight at the same temperature, the reaction mixture was filtrated, and the filtrate was concentrated. The residue was subsequently purified by silica gel flash chromatography to provide compounds as a white solid (439.9 mg, 69%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.09 (s, 2H), 4.59 (s, 2H), 2.09 – 1.98 (m, 3H), 1.95 – 1.89 (m, 6H), 1.79 – 1.61 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 177.4, 137.2, 136.9, 128.8, 128.0, 65.3, 45.9, 40.8, 38.8, 36.5, 27.9.

(1*S*,2*R*,4*S*)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl 3-(chloromethyl)benzoate (S4): A

solution of (1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (771.5 mg, 5.0 mmol) in CH_2Cl_2 (5 mL) was slowly added via cannula to a solution of dicyclohexylcarbodiimide (DCC) (1.2 g, 6.0 mmol, 1.2 equiv.), 4-dimethylaminopyridine (DMAP) (61.1 mg, 0.5 mmol, 0.1 equiv.) and 3- (chloromethyl)benzoic acid (895.7 mg, 5.3 mmol, 1.05 equiv) in CH_2Cl_2 (50 mL) at 22 °C. After overnight at the same temperature, the reaction mixture was filtrated, and the filtrate was concentrated. The residue was subsequently purified by silica gel flash chromatography to provide compounds as a white solid (900 mg, 59%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.06 (t, *J* = 1.9 Hz, 1H), 8.02 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.67 – 7.58 (m, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 5.17 – 5.08 (m, 1H), 4.64 (s, 2H), 2.54 – 2.40 (m, 1H), 2.18 – 2.08 (m, 1H), 1.88 – 1.77 (m, 1H), 1.75 (t, *J* = 4.5 Hz, 1H), 1.49 – 1.38 (m, 1H), 1.35 – 1.28 (m, 1H), 1.12 (dd, *J* = 13.9, 3.5 Hz, 1H), 0.97 (s, 3H), 0.92 (d, *J* = 1.9 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 166.3, 137.8, 132.9, 131.5, 129.5, 129.5, 128.9, 80.8, 49.1, 47.9, 45.6, 45.0, 36.9, 28.1, 27.4, 19.8, 18.9, 13.7.

3. General Procedure for the Catalytic Hydrobenzylation of Alkynes

To a flame-dried 10 mL reaction vial equipped with a magnetic stir bar was charged with $Ir[dF(CF_3)(ppy)(Phen)](PF_6)$ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%). After were added as a 0.025 M solution in DMAc (8 mL). The reaction mixture was degassed by nitrogen sparging for 15 min, followed by the addition of benzyl chloride (0.26 mol, 1.3 equiv.), 1-ethylpiperidine (82.4 µL, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 µL, 0.4 mmol, 2.0 equiv.) and alkynes (0.2 mmol, 1.0 equiv.). The reaction mixture was then irradiated with a 90 W blue LED for 24 h at 35 °C. The reaction mixture was quenched with water, extracted with ethyl acetate. The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The crude material was purified by flash chromatography to afford the products.

4. Characterization of Products

1-(Tert-butyl)-4-(3-phenylprop-1-en-2-yl)benzene (3): According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (36.0 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE: EA=50:1) as a colourless oil liquid (46.6 mg, 93%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.39 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.28 – 7.24 (m, 3H), 7.23 – 7.15 (m, 2H), 5.51 (d, *J* = 0.6 Hz, 1H), 4.96 (d, *J* = 1.2 Hz, 1H), 3.82 (s, 2H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 150.5, 146.4, 139.8, 137.8, 129.0, 128.4, 126.1, 125.7, 125.2, 114.0, 41.6, 34.5, 31.3.

HRMS (ESI+): calcd for $C_{19}H_{23}^+$ (M+H) 251.1794, found 251.1795.

Prop-2-ene-1,2-diyldibenzene (4): According to the general procedure, ethynylbenzene (22.0 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE: EA=50:1) as a colourless oil liquid (32.3 mg, 83%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.47 (d, *J* = 7.3 Hz, 2H), 7.35 – 7.29 (m, 3H), 7.29 – 7.24 (m, 4H), 7.24 – 7.17 (m, 1H), 5.53 (s, 1H), 5.05 (s, 1H), 3.87 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 147.0, 140.9, 139.6, 129.0, 128.4, 128.3, 127.5, 126.2, 126.1, 114.6,

41.7.

HRMS (ESI+): calcd for $C_{15}H_{15}^+$ (M+H) 195.1168, found 195.1165.

Bn Ft

1-Ethyl-4-(3-phenylprop-1-en-2-yl)benzene (5): According to the general procedure, 1-ethyl-4ethynylbenzene (28.0 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (40.0 mg, 90%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.43 (d, *J* = 8.2 Hz, 2H), 7.35 – 7.31 (m, 2H), 7.31 – 7.28 (m, 2H), 7.24 (t, *J* = 7.1 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 5.54 (s, 1H), 5.03 (d, *J* = 0.6 Hz, 1H), 3.89 (s, 2H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.28 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 146.7, 143.6, 139.7, 138.1, 129.0, 128.4, 127.8, 126.1, 126.1, 113.9, 41.6, 28.5, 15.5.

HRMS (ESI+): calcd for $C_{17}H_{19}^+$ (M+H) 223.1481, found 223.1485.

Bn MeO

Methoxy-4-(3-phenylprop-1-en-2-yl)benzene (6): According to the general procedure, 1-ethynyl-4-methoxybenzene (25.9 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE: EA=50:1) as a colourless oil liquid (44.4 mg, 99%).

¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, J = 9.0 Hz, 2H), 7.28 – 7.21 (m, 4H), 7.19 – 7.14 (m, 1H), 6.81 (d, J = 9.0 Hz, 2H), 5.43 (s, 1H), 4.94 (s, 1H), 3.81 (s, 2H), 3.78 (s, 3H).
¹³C NMR (150 MHz, CDCl₃) δ 159.1, 146.1, 139.7, 133.2, 128.9, 128.3, 127.3, 126.1, 113.6, 113.0, 55.3, 41.7.

HRMS (ESI+): calcd for $C_{16}H_{17}O^+(M+H)$ 225.1724, found 225.1722.

Methyl 4-(3-phenylprop-1-en-2-yl)benzoate (7): According to the general procedure, methyl 4ethynylbenzoate (32.0 mg, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE: EA=20:1) as a colourless oil liquid (49.5 mg, 98%).

¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.32 – 7.22 (m, 3H), 5.67 (s, 1H), 5.23 (d, J = 1.1 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 2H).
¹³C NMR (150 MHz, CDCl₃) δ 166.9, 146.2, 145.3, 139.0, 129.6, 129.0, 128.9, 128.4, 126.3 126.1,

116.5, 52.1, 41.5.

HRMS (ESI+): calcd for $C_{17}H_{17}O_2^+$ (M+H) 253.1223, found 253.1229.

1-Fluoro-4-(3-phenylprop-1-en-2-yl)benzene (8): According to the general procedure, 1-ethynyl-4-fluorobenzene (22.9 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the

result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (31.0 mg, 73%).

¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.30 – 7.25 (m, 2H), 7.24 – 7.17 (m, 3H), 7.00 – 6.94 (m, 2H), 5.44 (d, J = 0.6 Hz, 1H), 5.04 (d, J = 1.2 Hz, 1H), 3.82 (s, 2H).
¹⁹F NMR (564 MHz, CDCl₃) δ -115.11 – -115.19 (m).

¹³C NMR (150 MHz, CDCl₃) δ 162.3 (d, *J* = 246.4 Hz), 145.9, 139.2, 136.8 (d, *J* = 3.3 Hz), 128.9, 128.4, 127.8 (d, *J* = 7.9 Hz), 126.2, 115.1 (d, *J* = 21.3 Hz), 114.5 (d, *J* = 1.0 Hz), 41.8.

HRMS (ESI+): calcd for $C_{15}H_{14}F^+$ (M+H) 213.1074, found 213.1074.

1-Chloro-4-(3-phenylprop-1-en-2-yl)benzene (9): According to the general procedure, 1-chloro-4-ethynylbenzene (22.0 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (30.2 mg, 66%).

¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.29 – 7.22 (m, 5H), 7.21 – 7.14 (m, 2H), 5.47 (s, 1H), 5.05 (s, 1H), 3.80 (s, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 145.8, 139.1, 133.2, 128.9, 128.5, 128.4, 127.5, 126.3, 115.2, 115.1, 41.6.

HRMS (ESI+): calcd for C₁₅H₁₄Cl⁺ (M+H) 229.0779, found 229.0775.

1-(3-Phenylprop-1-en-2-yl)-4-(trifluoromethyl)benzene (10): According to the general procedure, 1-ethynyl-4-(trifluoromethyl)benzene (32.7 μL, 0.2 mmol, 1.0 equiv.),

(chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (35.7 mg, 68%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.64 – 7.49 (m, 4H), 7.35 – 7.28 (m, 2H), 7.26 – 7.21 (m, 3H), 5.59 (s, 1H), 5.19 (s, 1H), 3.88 (s, 2H).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.49 (s).

¹³C NMR (100 MHz, CDCl₃) δ 145.9, 144.3, 138.9, 129.4 (q, *J* = 32.5 Hz), 128.9, 128.5, 126.5, 126.4, 125.3 (q, *J* = 3.7 Hz), 124.7 (q, *J* = 271.9 Hz), 116.6, 41.6.

HRMS (ESI+): calcd for $C_{16}H_{14}F_3^+$ (M+H) 263.1042, found 263.1044.

1-Methyl-3-(3-phenylprop-1-en-2-yl)benzene (11): According to the general procedure, 1ethynyl-3-methylbenzene (25.8 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (38.3 mg, 92%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.22 – 7.14 (m, 6H), 7.13 – 7.08 (m, 2H), 6.98 (d, *J* = 7.3 Hz, 1H), 5.39 (s, 1H), 4.90 (d, *J* = 0.6 Hz, 1H), 3.75 (s, 2H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.2, 141.0, 139.7, 137.8, 129.1, 128.4, 128.3, 128.2, 127.0, 126.2, 123.4, 114.5, 41.7, 21.6.

HRMS (ESI+): calcd for $C_{16}H_{17}^+$ (M+H) 209.1325, found 209.1325.

1-Chloro-3-(3-phenylprop-1-en-2-yl)benzene (12): According to the general procedure, 1-chloro-3-ethynylbenzene (24.6 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (32.9 mg, 72%).

¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.34 – 7.26 (m, 3H), 7.26 – 7.18 (m, 5H), 5.51 (s, 1H), 5.09 (s, 1H), 3.83 (s, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 145.9, 142.7, 139.0, 134.2, 129.5, 128.9, 128.5, 127.5, 126.4, 126.3, 124.4, 115.7, 41.5.

HRMS (ESI+): calcd for C₁₅H₁₄Cl⁺ (M+H) 229.0779, found 229.0775.

4,4,5,5-Tetramethyl-2-(4-(3-phenylprop-1-en-2-yl)phenyl)-1,3,2-dioxaborolane (13): According to the general procedure, 2-(4-ethynylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (45.6 mg, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=20:1) as a white solide (32.2 mg, 50%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.23 – 7.18 (m, 3H), 5.51 (s, 1H), 5.04 (d, *J* = 1.2 Hz, 1H), 3.84 (s, 2H), 1.32 (s, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 147.0, 143.5, 139.4, 134.8, 129.0, 128.3, 126.1, 125.5, 115.2, 83.8,

41.5, 24.9.

HRMS (ESI+): calcd for $C_{21}H_{26}BO_2^+$ (M+H) 321.2020, found 321.2018.

1-Methoxy-2-(3-phenylprop-1-en-2-yl)benzene (14): According to the general procedure, 1ethynyl-2-methoxybenzene (25.9 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=50:1) as a colourless oil liquid (40.8 mg, 91%).

¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.20 (m, 3H), 7.19 – 7.13 (m, 3H), 7.09 – 7.03 (m, 1H). 6.91 – 6.82 (m, 2H), 5.14 (s, 1H), 5.08 (s, 1H), 3.87 (s, 3H), 3.81 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 156.6, 148.4, 134.0, 131.9, 130.3, 129.3, 128.5, 128.1, 125.9, 120.5, 115.9, 110.7, 55.5, 42.7.

HRMS (ESI+): calcd for C₁₆H₁₇O⁺(M+H) 225.1274, found 225.1277.

1-Fluoro-2-(3-phenylprop-1-en-2-yl)benzene (15): According to the general procedure, 1ethynyl-2-fluorobenzene (22.7 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (34.4 mg, 81%). ¹**H NMR (400 MHz, CDCl₃)** δ 7.29 – 7.15 (m, 7H), 7.07 – 6.99 (m, 2H), 5.32 (s, 1H), 5.20 (s, 1H), 3.82 (s, 2H).

¹⁹F NMR (376 MHz, CDCl₃) δ -114.70 – -114.79 (m).

¹³C NMR (100 MHz, CDCl₃) δ 159.91 (d, *J* = 248.5 Hz), 144.12 (d, *J* = 1.1 Hz), 139.2, 130.17 (d, *J* = 4.3 Hz), 129.58 (d, *J* = 13.9 Hz), 129.1, 128.83 (d, *J* = 8.3 Hz), 128.3, 126.2, 123.91 (d, *J* = 3.5 Hz), 117.76 (d, *J* = 2.8 Hz), 115.72 (d, *J* = 22.7 Hz), 42.81 (d, *J* = 3.5 Hz).

HRMS (ESI+): calcd for $C_{15}H_{14}F^+$ (M+H) 213.1074, found 213.1074.

1-Chloro-2-(3-phenylprop-1-en-2-yl)benzene (16): According to the general procedure, 1-chloro-2-ethynylbenzene (24.3 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (28.4 mg, 62%).

¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 7.7 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.20 – 7.14 (m, 4H), 7.14 – 7.10 (m, 1H), 7.03 – 6.98 (m, 1H), 5.13 (d, J = 0.8 Hz, 1H), 5.05 (s, 1H), 3.73 (s, 2H).
¹³C NMR (150 MHz, CDCl₃) δ 148.1, 141.5, 138.8, 132.1, 130.6, 129.5, 129.4, 128.3, 128.3, 126.5, 126.2, 116.9, 43.1.

HRMS (ESI+): calcd for C₁₅H₁₄Cl⁺ (M+H) 229.0779, found 229.0773.

2-(3-Phenylprop-1-en-2-yl)thiophene (17): According to the general procedure, 2ethynylthiophene (20.0 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF_2HCOOH (25.2 µL, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=60:1) as a colourless oil liquid (24.2 mg, 60%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 – 7.19 (m, 5H), 7.12 (d, *J* = 5.1 Hz, 1H), 7.00 (d, *J* = 3.5 Hz, 1H), 6.95 – 6.88 (m, 1H), 5.55 (s, 1H), 4.89 (s, 1H), 3.80 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 145.0, 140.5, 139.0, 128.9, 128.4, 127.3, 126.3, 124.2, 124.0, 113.2, 41.8.

HRMS (ESI+): calcd for C₁₃H₁₃S⁺(M+H) 201.0732, found 201.0739.

3-(3-Phenylprop-1-en-2-yl)thiophene (18): According to the general procedure, 3ethynylthiophene (19.7 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=60:1) as a colourless oil liquid (29.2 mg, 73%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 – 7.17 (m, 6H), 7.16 – 7.14 (m, 1H), 5.53 (s, 1H), 4.97 (d, *J* = 1.2 Hz, 1H), 3.78 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.3, 141.5, 139.4, 128.9, 128.5, 126.3, 125.8, 125.4, 121.0, 113.5, 41.8.

HRMS (ESI+): calcd for C₁₃H₁₃S⁺(M+H) 201.0732, found 201.0737.

5-(3-phenylprop-1-en-2-yl)-1-Tosyl-1H-indole (19): According to the general procedure, 5ethynyl-1-tosyl-1H-indole (59.1 mg, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μL, 0.26 mmol, 1.3 equiv.), $Ir[dF(CF_3)(ppy)_2(Phen)]PF_6$ (2.1 mg, 0.002 mmol, 1 mol%), $Ni(acac)_2$ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 µL, 0.6 mmol, 3.0 equiv.), CF_2HCOOH (25.2 µL, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=10:1) as a white solide (55.0 mg, 71%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.88 (d, *J* = 8.5 Hz, 1H), 7.73 (d, *J* = 7.7 Hz, 2H), 7.54 (s, 1H), 7.52 – 7.49 (m, 1H), 7.41 (d, *J* = 8.5 Hz, 1H), 7.25 – 7.20 (m, 4H), 7.19 – 7.15 (m, 3H), 6.57 (s, 1H), 5.46 (s, 1H), 5.00 (s, 1H), 3.84 (s, 2H), 2.30 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 146.8, 145.0, 139.5, 136.3, 135.3, 134.2, 130.8, 129.9, 128.9, 128.3, 126.8, 126.7, 126.1, 123.2, 118.9, 114.5, 113.2, 109.3, 41.9, 21.6.

HRMS (ESI+): calcd for C₂₄H₂₂NO₂S⁺ (M+H) 388.1366, found 388.1362.

(2-Methylenehexyl)benzene (20): According to the general procedure, hex-1-yne (23.0 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (21.8 mg, 63%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 (t, *J* = 7.4 Hz, 2H), 7.24 – 7.15 (m, 3H), 4.82 (s, 1H), 4.73 (s, 1H), 3.34 (s, 2H), 2.02 – 1.93 (m, 2H), 1.48 – 1.38 (m, 2H), 1.35 – 1.27 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.3, 134.0, 129.0, 128.3, 126.0, 110.9, 43.0, 35.2, 29.9, 22.4, 14.0.

HRMS (ESI+): calcd for $C_{13}H_{19}^+$ (M+H) 175.1481, found 175.1481.

(2-methylenebutane-1,4-diyl)Dibenzene (21): According to the general procedure, but-3-yn-1ylbenzene (28.1 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (43.1 mg, 97%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.23 – 7.15 (m, 4H), 7.14 – 7.03 (m, 6H), 4.79 (s, 1H), 4.72 (s, 1H), 3.29 (s, 2H), 2.67 (t, *J* = 8.0, Hz 2H), 2.20 (t, *J* = 7.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 148.5, 142.1, 139.7, 129.1, 128.4, 128.4, 128.3, 126.2, 125.8, 111.6, 43.4, 37.2, 34.3.

HRMS (ESI+): calcd for $C_{17}H_{19}^+$ (M+H) 223.1481, found 223.1478.

PhO

((2-Benzylallyl)oxy)benzene (22): According to the general procedure, (prop-2-yn-1yloxy)benzene (25.7 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (37.2 mg, 83%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 – 6.99 (m, 7H), 6.84 (t, *J* = 7.3 Hz, 1H), 6.81 – 6.76 (m, 2H), 5.14 (s, 1H), 4.94 (d, *J* = 1.0 Hz, 1H), 4.31 (s, 2H), 3.40 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 158.7, 144.3, 138.8, 129.4, 129.1, 128.5, 126.4, 120.9, 114.9, 114.0, 70.0, 40.1.

HRMS (ESI+): calcd for $C_{16}H_{17}O^+$ (M+H) 225.1274, found 225.1270.

3-Benzylbut-3-en-1-ol (23): According to the general procedure, but-3-yn-1-ol (15.1 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=10:1) as a colourless oil liquid (25.0 mg, 77%).

¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, J = 7.3 Hz, 2H), 7.25 – 7.15 (m, 3H), 4.94 (s, 1H), 4.92 (s, 1H), 3.69 (t, J = 6.4 Hz, 2H), 3.38 (s, 2H), 2.27 (t, J = 6.3 Hz, 2H), 1.59 (s, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 145.4, 139.2, 129.0, 128.4, 126.3, 113.8, 60.4, 42.9, 38.5.
HRMS (ESI+): calcd for C₁₁H₁₅O⁺ (M+H) 163.1117, found 163.1115.

4-Benzylpent-4-en-2-one (24): According to the general procedure, pent-4-yn-2-one (18.4 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=20:1) as a colourless oil liquid (25.8 mg, 74%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.30 (t, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 7.3 Hz, 2H), 5.14 (s, 1H), 4.97 (s, 1H), 4.49 (s, 2H), 3.41 (s, 2H), 2.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 142.2, 137.5, 127.9, 127.4, 125.4, 113.3, 65.3, 39.2, 19.8.
 HRMS (ESI+): calcd for C₁₂H₁₅O⁺ (M+H) 175.1117, found 175.1122.

O Bn

3-Benzylbut-3-en-1-yl benzoate (25): According to the general procedure, but-3-yn-1-yl benzoate (32.1 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=40:1) as a colourless oil liquid (49.9 mg, 94%).

¹**H NMR (600 MHz, CDCl₃)** δ 8.05 (d, *J* = 7.1 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.25 – 7.21 (m, 3H), 5.00 (s, 1H), 4.93 (s, 1H), 4.44 (t, *J* = 6.8 Hz, 2H), 3.45 (s, 2H), 2.47 (t, *J* = 6.8 Hz, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 166.5, 144.8, 139.2, 132.9, 130.4, 129.6, 129.0, 128.4, 128.4, 126.3, 113.7, 63.1, 43.2, 34.4.

HRMS (ESI+): calcd for $C_{18}H_{19}O_2^+$ (M+H) 267.1380, found 267.1385.

(2-cyclopropylallyl)Benzene (26): According to the general procedure, ethynylcyclopropane (16.9 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=40:1) as a colourless oil liquid (22.9 mg, 72%).

¹H NMR (600 MHz, CDCl₃) δ 7.32 - 7.28 (m, 2H), 7.25 - 7.19 (m, 3H), 4.75 (s, 1H), 4.64 (d, J = 1.3 Hz, 1H), 3.40 (s, 2H), 1.32 - 1.25 (m, 1H), 0.63 - 0.58 (m, 2H), 0.47 - 0.43 (m, 2H).
¹³C NMR (150 MHz, CDCl₃) δ 150.3, 139.9, 129.0, 128.2, 126.0, 108.4, 42.9, 16.0, 6.3.

HRMS (ESI+): calcd for $C_{12}H_{15}^+$ (M+H) 159.1168, found 159.1163.

(2-(Cyclohex-1-en-1-yl)allyl)benzene (27): According to the general procedure, 1-Ethynylcyclohex-1-ene (23.5 μ L, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (27.0 mg, 68%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.29 (t, *J* = 7.6 Hz, 2H), 7.23 – 7.17 (m, 3H), 5.94 (t, *J* = 4.0 Hz, 1H), 5.17 (s, 1H), 4.76 (s, 1H), 3.61 (s, 2H), 2.27 – 2.19 (m, 2H), 2.15 – 2.05 (m, 2H), 1.72 – 1.65 (m, 2H), 1.60 – 1.54 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 147.1, 140.6, 135.6, 128.8, 128.2, 125.8, 125.5, 111.4, 40.1, 26.1, 25.9, 22.9, 22.2.

HRMS (ESI+): calcd for $C_{15}H_{19}^+$ (M+H) 199.1481, found 199.1488.

1-(*tert*-butyl)-4-(3-(4-methoxyphenyl)prop-1-en-2-yl)Benzene (28): According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (36.1 μ L, 0.2 mmol, 1.0 equiv.), 1-(chloromethyl)-4- methoxybenzene (35.3 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=80:1) as a colourless oil liquid (50.3 mg, 90%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.41 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 5.51 (s, 1H), 4.97 (d, *J* = 0.9 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 2H), 1.32 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 158.0, 150.4, 146.8, 137.9, 131.8, 129.9, 125.7, 125.2, 113.8, 113.7, 55.2, 40.7, 34.5, 31.3.

HRMS (ESI+): calcd for $C_{20}H_{25}O^+$ (M+H) 281.1900, found 281.1905.

1-(Tert-butyl)-4-(3-(p-tolyl)prop-1-en-2-yl)benzene (29): According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (36.1 μ L, 0.2 mmol, 1.0 equiv.), 1-(chloromethyl)-4-methylbenzene (34.4 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (45.5 mg, 86%).

¹**H NMR (600 MHz, CDCl₃)** δ 7.45 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 5.56 (s, 1H), 5.02 (d, *J* = 1.1 Hz, 1H), 3.85 (s, 2H), 2.37 (s, 3H), 1.36 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 150.4, 146.6, 137.9, 136.7, 135.5, 129.1, 128.9, 125.8, 125.2, 113.8, 41.1, 34.5, 31.4, 21.1.

HRMS (ESI+): calcd for C₂₀H₂₅⁺ (M+H) 265.1951, found 265.1953.

4,4'-(Prop-2-ene-1,2-diyl)bis(tert-butylbenzene) (30): According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (36.1 μL, 0.2 mmol, 1.0 equiv.), 1-(tert-butyl)-4-(chloromethyl)benzene (50.3 µL, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μL, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μL, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a colourless oil liquid (48.2 mg, 79%). ¹**H NMR (400 MHz, CDCl₃)** δ 7.35 (d, J = 8.5 Hz, 2H), 7.28 – 7.21 (m, 4H), 7.11 (d, J = 8.2 Hz, 2H), 5.44 (s, 1H), 4.89 (d, J = 1.1 Hz, 1H), 3.73 (s, 2H), 1.24 (s, 9H), 1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 148.9, 146.5, 138.0, 136.7, 128.6, 125.7, 125.3, 125.2, 113.9, 40.9, 34.5, 34.4, 31.5, 31.3.

HRMS (ESI+): calcd for $C_{23}H_{31}^+$ (M+H) 307.2420, found 307.2416.

4-(2-(4-(Tert-butyl)phenyl)allyl)-1,2-dimethylbenzene (31): According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (36.1 μ L, 0.2 mmol, 1.0 equiv.), 4-(chloromethyl)-1,2-dimethylbenzene (38.1 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE) as a white solid (45.2 mg, 81%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.41 (d, *J* = 8.6 Hz, 2H), 7.32 (d, *J* = 8.6 Hz, 2H), 7.07 – 7.02 (m, 2H), 7.02 – 6.95 (m, 1H), 5.50 (d, *J* = 1.2 Hz, 1H), 4.97 (d, *J* = 1.3 Hz, 1H), 3.76 (s, 2H), 2.23 (s, 6H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 150.4, 146.6, 138.0, 137.1, 136.4, 134.1, 130.2, 129.6, 126.3, 125.7, 125.2, 113.7, 41.1, 34.5, 31.3, 19.8, 19.4.

HRMS (ESI+): calcd for C₂₁H₂₇⁺ (M+H) 279.2107, found 279.2105.

1-(2-(4-(Tert-butyl)phenyl)allyl)-3-phenoxybenzene (32): According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (36.1 μ L, 0.2 mmol, 1.0 equiv.), 1-(chloromethyl)-3-phenoxybenzene (47.8 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=80:1) as a white solid (49.9 mg, 73%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.41 – 7.37 (m, 2H), 7.36 – 7.30 (m, 4H), 7.25 (t, *J* = 7.8 Hz, 1H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.03 (d, *J* = 7.6 Hz, 1H), 6.99 (s, 1H), 6.98 – 6.94 (m, 2H), 6.85 (dd, *J* = 8.1, 2.1 Hz, 1H), 5.52 (s, 1H), 5.02 (s, 1H), 3.83 (s, 2H), 1.34 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 157.4, 157.1, 150.5, 146.1, 141.9, 137.6, 129.7, 129.6, 125.8, 125.2, 124.0, 123.0, 119.7, 118.7, 116.7, 114.2, 41.4, 34.5, 31.3.

HRMS (ESI+): calcd for C₂₅H₂₇O⁺(M+H) 343.2056, found 343.2056.

Ethyl 3-(2-(4-(tert-butyl)phenyl)allyl)benzoate (33): According to the general procedure, 1-(tertbutyl)-4-ethynylbenzene (36.1 μ L, 0.2 mmol, 1.0 equiv.), ethyl 3-(chloromethyl)benzoate (34.4 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=20:1) as a colourless oil liquid (44.9 mg, 70%). ¹**H NMR (400 MHz, CDCl₃)** δ 7.94 (s, 1H), 7.88 (d, *J* = 7.7 Hz, 1H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.35 – 7.29 (m, 3H), 5.53 (s, 1H), 4.96 (d, *J* = 1.2 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.87 (s, 2H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 150.6, 146.0, 140.0, 137.5, 133.4, 130.6, 130.1, 128.4, 127.4, 125.7, 125.2, 114.4, 60.9, 41.3, 31.5, 31.3, 14.4.

HRMS (ESI+): calcd for C₂₂H₂₇O⁺(M+H) 323.2006, found 323.2008.

1-Fluoro-3-(2-(4-methoxyphenyl)allyl)benzene (34): According to the general procedure, 1ethynyl-4-methoxybenzene (25.9 μ L, 0.2 mmol, 1.0 equiv.), 1-(chloromethyl)-3-fluorobenzene (31.5 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=40:1) as a colorless oil liquid (28.1 mg, 58%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.39 – 7.32 (m, 2H), 7.25 – 7.16 (m, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 10.0 Hz, 1H), 6.90 – 6.78 (m, 3H), 5.45 (d, *J* = 0.8 Hz, 1H), 4.98 (d, *J* = 1.1 Hz, 1H), 3.81 (s, 2H), 3.79 (s, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -109.79 – -122.80 (m, 1F).

¹³C NMR (100 MHz, CDCl₃) δ 163.0 (d, *J* = 245.4 Hz), 159.2, 145.4, 142.4 (d, *J* = 7.2 Hz), 132.8, 129.7 (d, *J* = 8.2 Hz), 127.3, 124.5 (d, *J* = 2.6 Hz), 115.7 (d, *J* = 21.3 Hz), 113.7, 113.4, 113.0 (d, *J* = 21.1 Hz), 55.2, 41.5 (d, *J* = 1.4 Hz).

HRMS (ESI+): calcd for C₁₆H₁₆FO⁺ (M+H) 243.1180, found 243.1181.

Methyl 4-(3-(3-chlorophenyl)prop-1-en-2-yl)benzoate (35): According to the general procedure, methyl 4-ethynylbenzoate (32.0 mg, 0.2 mmol, 1.0 equiv.), 1-chloro-3-(chloromethyl)benzene (33.0 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=20:1) as a colorless oil liquid (26.4 mg, 46%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.96 (d, *J* = 8.6 Hz, 2H), 7.46 (d, *J* = 8.6 Hz, 2H), 7.23 – 7.15 (m, 3H), 7.11 – 7.06 (m, 1H), 5.60 (s, 1H), 5.16 (d, *J* = 1.1 Hz, 1H), 3.90 (s, 3H), 3.82 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 145.5, 144.8, 141.1, 134.3, 129.7, 129.7, 129.2, 128.9, 127.1, 126.6, 126.1, 117.0, 52.1, 41.1.

HRMS (ESI+): calcd for C₁₇H₁₆ClO₂⁺ (M+H) 287.0833, found 287.0836.

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-3-(3-phenylprop-1-en-2-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[a]phenanthren-17-one (36): According to the general procedure, (8*R*,9*S*,13*S*,14*S*)-3-ethynyl-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-

cyclopenta[a]phenanthren-17-one (27.8 mg, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=40:1) as a white solid (55.6 mg, 75%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.22 – 7.13 (m, 6H), 7.12 – 7.09 (m, 2H), 5.40 (s, 1H), 4.87 (d, *J* = 1.1 Hz, 1H), 3.73 (s, 2H), 2.94 – 2.72 (m, 2H), 2.50 – 2.38 (m, 1H), 2.36 – 2.28 (m, 1H), 2.24 – 2.15 (m, 1H), 2.09 – 1.84 (m, 4H), 1.58 – 1.36 (m, 6H), 0.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 220.9, 146.6, 139.7, 139.1, 138.4, 136.3, 129.0, 128.4, 126.7, 126.1, 125.3, 123.6, 114.1, 50.5, 48.0, 44.4, 41.5, 38.2, 35.9, 31.6, 29.5, 26.6, 25.7, 21.6, 13.9.

HRMS (ESI+): calcd for $C_{27}H_{31}O^+$ (M+H) 371.2369, found 371.2366.

3-(3-phenylprop-1-en-2-yl)Phenyl 2-(3-isobutylphenyl)propanoate (37): According to the general procedure, 3-ethynylphenyl 2-(3-isobutylphenyl)propanoate (61.2 mg, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=40:1) as a white solid (60.6 mg, 76%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.25 – 7.14 (m, 6H), 7.12 – 7.04 (m, 5H), 6.98 (s, 1H), 6.84 – 6.75 (m, 1H), 5.37 (s, 1H), 4.91 (s, 1H), 3.84 (q, *J* = 7.1 Hz, 1H), 3.69 (s, 2H), 2.39 (d, *J* = 7.2 Hz, 2H), 1.87 – 1.69 (m, 1H), 1.52 (d, *J* = 7.1 Hz, 3H), 0.83 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 150.9, 146.2, 142.4, 140.8, 139.2, 137.3, 129.5, 129.1, 129.0, 128.4, 127.3, 126.2, 123.5, 120.4, 119.12, 115.3, 45.3, 45.1, 41.5, 30.2, 22.4, 18.6.

HRMS (ESI+): calcd for C₂₈H₃₁O₂⁺ (M+H) 399.2319, found 399.2321.

3-Benzylbut-3-en-1-yl 2-(1-methyl-5-(4-methylbenzoyl)-1*H***-pyrrol-2-yl)acetate (38): According to the general procedure, 5-(2-(but-3-yn-1-yloxy)-2-oxoethyl)-1-methyl-1H-pyrrol-2-yl 4-methylbenzoate (65.1 mg, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μL, 0.26 mmol,** 1.3 equiv.), $Ir[dF(CF_3)(ppy)_2(Phen)]PF_6$ (2.1 mg, 0.002 mmol, 1 mol%), $Ni(acac)_2$ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 µL, 0.6 mmol, 3.0 equiv.), CF_2HCOOH (25.2 µL, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=10:1) as a white solid (64.8 mg, 81%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 3H), 7.16 (d, *J* = 7.2 Hz, 2H), 6.66 (d, *J* = 4.0 Hz, 1H), 6.09 (d, *J* = 4.0 Hz, 1H), 4.84 (s, 2H), 4.23 (t, *J* = 6.7 Hz, 2H), 3.92 (s, 3H), 3.67 (s, 2H), 3.34 (s, 2H), 2.41 (s, 3H), 2.30 (t, *J* = 6.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 185.9, 169.3, 144.5, 141.9, 139.0, 137.4, 134.5, 131.4, 129.4, 129.0, 128.7, 128.4, 126.4, 122.3, 113.8, 109.5, 63.5, 43.0, 34.3, 33.2, 32.9, 21.5.

HRMS (ESI+): calcd for C₂₆H₂₈NO₃⁺(M+H) 402.2064, found 402.2073.

3-Benzylbut-3-en-1-yl 2-(3-cyano-4-isobutoxyphenyl)-5-methylthiazole-4-carboxylate (39): According to the general procedure, but-3-yn-1-yl 2-(3-cyano-4-isobutoxyphenyl)-5methylthiazole-4-carboxylate (73.7 mg, 0.2 mmol, 1.0 equiv.), (chloromethyl)benzene (29.9 μ L, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=10:1) as a white solid (70.5 mg, 77%).

¹**H NMR (400 MHz, CDCl₃)** δ 8.17 (d, *J* = 2.2 Hz, 1H), 8.12 – 8.04 (m, 1H), 7.35 – 7.27 (m, 2H), 7.22 (t, *J* = 6.5 Hz, 3H), 7.01 (d, *J* = 8.9 Hz, 1H), 4.97 (s, 1H), 4.92 (s, 1H), 4.39 (t, *J* = 6.7 Hz, 2H), 3.90 (d, *J* = 6.5 Hz, 2H), 3.42 (s, 2H), 2.74 (s, 3H), 2.42 (t, *J* = 6.7 Hz, 2H), 2.28 – 2.16 (m, 1H), 1.09 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 162.5, 161.9, 161.2, 144.5, 139.1, 132.6, 132.1, 129.0, 128.4, 126.4, 126.0, 121.8, 115.4, 113.9, 112.7, 103.0, 75.7, 63.4, 43.1, 34.4, 28.2, 19.1, 17.5.

HRMS (ESI+): calcd for $C_{27}H_{29}N_2O_3S^+$ (M+H) 461.1893, found 461.1885.

4-(2-(4-(tert-butyl)phenyl)allyl)Benzyl (3*r***,5***r***,7***r***)-adamantane-1-carboxylate (40): According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (36.1 µL, 0.2 mmol, 1.0 equiv.), 4- (chloromethyl)benzyl (3***r***,5***r***,7***r***)-adamantane-1-carboxylate (82.9 mg, 0.26 mmol, 1.3 equiv.), Ir[dF(CF_3)(ppy)_2(Phen)]PF_6 (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 µL, 0.6 mmol, 3.0 equiv.), CF_2HCOOH (25.2 µL, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=20:1) as a white solid (82.6 mg, 93%).**

¹**H NMR (400 MHz, CDCl₃)** δ 7.40 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.25 (s, 4H), 5.53 (s, 1H), 5.07 (s, 2H), 4.98 (s, 1H), 3.83 (s, 2H), 2.02 (s, 3H), 1.93 (d, *J* = 2.5 Hz, 6H), 1.72 (d, *J* = 1.8 Hz, 6H), 1.31 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 177.5, 150.5, 146.2, 139.5, 137.7, 134.3, 129.0, 127.8, 125.7, 125.2, 114.0, 65.6, 41.2, 40.8, 38.9, 36.53 34.5, 31.3, 28.0.

HRMS (ESI+): calcd for C₃₁H₃₉O₂⁺ (M+H) 443.2945, found 443.2951.

(1*S*,2*R*,4*S*)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl 3-(2-(4-(tert-butyl)phenyl)allyl)benzoate (41): According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (36.1 μ L, 0.2 mmol, 1.0 equiv.), (1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 3-(chloromethyl)benzoate (79.8 mg, 0.26 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 μ L, 0.6 mmol, 3.0 equiv.), CF₂HCOOH (25.2 μ L, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=40:1) as a white solid (49.9 mg, 58%).

¹**H NMR (400 MHz, CDCl₃)** δ 7.95 (s, 1H), 7.90 (d, *J* = 7.7 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.38 – 7.30 (m, 3H), 5.54 (s, 1H), 5.15 – 5.06 (m, 1H), 5.00 (d, *J* = 0.8 Hz, 1H), 3.90 (s, 2H), 2.54 – 2.40 (m, 1H), 2.21 – 2.02 (m, 1H), 1.89 – 1.76 (m, 1H), 1.74 (t, *J* = 4.5 Hz, 1H), 1.47 – 1.33 (m, 2H), 1.31 (s, 9H), 1.12 (dd, *J* = 13.8, 3.5 Hz, 1H), 0.98 (s, 3H), 0.92 (d, *J* = 5.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 150.6, 146.0, 140.1, 137.5, 133.4, 131.0, 130.1, 128.4, 127.4,
125.7, 125.3, 114.4, 80.5, 49.1, 47.9, 45.0, 41.2, 36.9, 34.5, 31.3, 28.1, 27.4, 19.8, 19.0, 13.7.
HRMS (ESI+): calcd for C₃₀H₃₉O₂⁺ (M+H) 431.2945, found 431.2954.

4,4'-(buta-1,3-diene-2,3-diyl)Bis(tert-butylbenzene) (43): According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (36.1 µL, 0.2 mmol, 1.0 equiv.), $Ir[dF(CF_3)(ppy)_2(Phen)]PF_6$ (2.1 mg, 0.002 mmol, 1 mol%), Ni(acac)₂ (5.2 mg, 0.02 mmol, 10 mol%), dtbbpy (7.0 mg, 0.026 mmol, 13 mol%), 1-ethylpiperidine (82.4 µL, 0.6 mmol, 3.0 equiv.), CF_2HCOOH (25.2 µL, 0.4 mmol, 2.0 equiv.) in DMAc (8 ml) were used. After 24 h, the result mixture was concentrated in vacuo and the product was isolated by flash chromatography (PE:EA=100:1) as a white solid (14.9 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.5 Hz, 4H), 7.30 (d, *J* = 8.5 Hz, 4H), 5.55 (d, *J* = 1.8

Hz, 2H), 5.23 (d, J = 1.8 Hz, 2H), 1.30 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 150.4, 149.5, 137.3, 126.9, 125.1, 115.5, 34.5, 31.3.

HRMS (ESI+): calcd for $C_{24}H_{31}^+$ (M+H) 319.2420, found 319.2425.

5. Optimization of the Reaction Conditions

Table S1 Photocatalyst effect

	PC(1 mol%) NiCl ₂ •dtbbpy•4H ₂ O (10 mol% dtbbpy (15 mol%)) Ph
^t Bu 1 , 0.1 mmol	 Ph Cl CF₂HCO₂H (2.0 equiv.) 1-ethylpiperidine (4.0 equiv.) 2, 1.0 equiv. DMA [0.025 M], 35 °C 24 h, 90W blue LEDs 	^t Bu 3
entry	photocatalyst	GC yield of 3
1	Ir[dF(CF ₃)(ppy) ₂ (Phen)](PF ₆)	78%
2	Ir[dF(CF ₃)(ppy) ₂ (dtbbpy)](PF ₆)	
3	Ir[(ppy) ₂ (dtbbpy)](PF ₆)	55%
4	Ir(ppy) ₃	17%
5	4-CzIPN	60%
6	Eosin Y	0%

Yields were determined by GC using dodecane as an internal standard.

Table S2 Nickel catalyst effect

	Ir[d+	(CF ₃)(ppy) ₂ (Phen)](PF ₆) (1 mo [Ni] (10 mol%) dtbbpy (15 mol%)	Ph
^t Bu 1 , 0.1 mmol	[•] Pn Ci 2 , 1.0 equiv.	CF ₂ HCO ₂ H (2.0 equiv.) 1-ethylpiperidine (4.0 equiv.) DMA [0.025 M], 35 °C 24 h, 90W blue LEDs	^t Bu 3
entry	nicke	el catalyst	GC yield of 3
1	Ni(acac) ₂		82%
2	NiCl ₂ •DME		48%
3	1	NiCl ₂	62%
4	NiB	r ₂ •DME	58%
5	NiI ₂		70%
6	Ni(Clo	O ₄) ₂ •6H ₂ O	63%
7	1	NiBr ₂	61%

Yields were determined by GC using dodecane as an internal standard.

entry	ligand	GC yield of 3
1	dtbbpy	82%
2	4,4'-di(OMe)-bpy	80%
3	6,6-di(Me)-bpy	10%
4	Phen	67%
5	Py ₃	2%
6	5,5'-Bn-BiOX	35%
7	TMEDA	6%
8	dppBz	4%
9	PPh ₃	8%

Yields were determined by GC using dodecane as an internal standard.

Table S4 Reductant effect

entry	reductant	GC yield of 3
1	1-ethylpiperidine	82%
2	NEt ₃	69%
3	ⁱ Pr ₂ NEt	79%
4	^{<i>i</i>} Pr ₂ NH	12%
5	DABCO	0%
6	Ph ₃ N	0%
7	DBU	0%
8	BnNEt ₂	66%

Yields were determined by GC using dodecane as an internal standard.

^t Bu 1 , 0.1 mmol	Ir[dF(CF ₃)(ppy) ₂ (Phen)](PF ₆) (1 Ni(acac) ₂ (10 mol%) dtbbpy (15 mol%) acid (2.0 equiv.) 1-ethylpiperidine(4.0 equiv 2 , 1.0 equiv. DMA [0.025 M], 35 °C 24 h, 90W blue LEDs	mol%) Ph t_{Bu} 3
entry	acid	GC yield of 3
1	CF ₃ CO ₂ H	19%
2	(CF ₂ HCO) ₂ O	80%
3	HCO ₂ H	54%
4	AcOH	5%
5	PhCO ₂ H	20%
6 ^a	CF ₂ HCO ₂ H	85%
7 ^{a,b}	CF ₂ HCO ₂ H	99% (93%)

Yields were determined by GC using dodecane as an internal standard. 1-ethylpiperidine (3.0 equiv.), ^b **2** (1.3 equiv.), dtbbpy (13 mol%).

Table S6 Control experiments

entry	conditions	GC yield of 3
1	none	99%
2	w/o Ir[dF(CF ₃)(ppy) ₂ (Phen)](PF ₆)	0%
3	w/o Ni(acac) ₂	0%
4	w/o dtbbpy	16%
5	w/o 1-ethylpiperidine	trace
6	w/o CF ₂ HCO ₂ H	trace
7	w/o light	0%

Yields were determined by GC using dodecane as an internal standard.

6. Mechanistic Studies

6.1 Radical inhibition reaction

To a flame-dried 10 mL reaction vial equipped with a magnetic stir bar was charged with $Ir[dF(CF_3)(ppy)(Phen)](PF_6)$ (1.1 mg, 0.001 mmol, 1 mol%), Ni(acac)₂ (2.6 mg, 0.01 mmol, 10 mol%), dtbbpy (3.5 mg, 0.013 mmol, 13 mol%) and TEMPO (X equiv.). After DMAc were added as a solution (4 mL). The reaction mixture was degassed by nitrogen sparging for 15 min, followed by the addition of benzyl chloride (15 µL, 0.13 mol, 1.3 equiv.), 1-ethylpiperidine (41.2 µL, 0.3 mmol, 3.0 equiv.), CF₂HCOOH (12.6 µL, 0.1 mmol, 2.0 equiv.) and 1-(tert-butyl)-4-ethynylbenzene (18 µL, 0.2 mmol, 1.0 equiv.). The reaction mixture was then irradiated with a 90 W blue LEDs for 24 h at 35 °C. Dodecane (22.7 µL, 0.1 mmol, 1.0 equiv) was added and the mixture was analyzed by GC.

6.2 Control experiments

To a flame-dried 10 mL reaction vial equipped with a magnetic stir bar was charged with $Ir[dF(CF_3)(ppy)(Phen)](PF_6)$ (1.1 mg, 0.001 mmol, 1 mol%), Ni(acac)₂ (2.6 mg, 0.01 mmol, 10 mol%), dtbbpy (3.5 mg, 0.013 mmol, 13 mol%) and TEMPO (X equiv.). After DMAc were added as a solution (4 mL). The reaction mixture was degassed by nitrogen sparging for 15 min, followed by the addition of 1-ethylpiperidine (41.2 µL, 0.3 mmol, 3.0 equiv.), CF₂HCOOH (12.6 µL, 0.1

mmol, 2.0 equiv.) and 1-(tert-butyl)-4-ethynylbenzene (18 μ L, 0.2 mmol, 1.0 equiv.). The reaction mixture was then irradiated with a 90 W blue LEDs for 24 h at 35 °C. The reaction mixture was quenched with water, extracted with ethyl acetate. The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The crude material was purified by flash chromatography to afford the alkene **42** and 1,3-diene **43**.

6.3 Deuterium experiments

To a flame-dried 10 mL reaction vial equipped with a magnetic stir bar was charged with $Ir[dF(CF_3)(ppy)(Phen)](PF_6)$ (1.1 mg, 0.001 mmol, 1 mol%), Ni(acac)₂ (2.6 mg, 0.01 mmol, 10 mol%), dtbbpy (3.5 mg, 0.013 mmol, 13 mol%). After DMAc were added as a solution (4 mL). The reaction mixture was degassed by nitrogen sparging for 15 min, followed by the addition of benzyl chloride (15 µL, 0.13 mol, 1.3 equiv.), 1-ethylpiperidine (41.2 µL, 0.3 mmol, 3.0 equiv.), DCO₂D (7.5 µL, 0.2 mmol, 2.0 equiv.) and 1-(tert-butyl)-4-ethynylbenzene (18 µL, 0.1 mmol, 1.0 equiv.). The reaction mixture was then irradiated with a 90 W blue LEDs for 24 h at 35 °C. The reaction mixture was quenched with water, extracted with ethyl acetate. The combined organic layers were dried with MgSO₄, filtered and concentrated in vacuo. The crude material was purified by flash chromatography to afford the products **3** and **43**, but **3-D**₁ not observed.

6.4 Determination of quantum yield

We utilized protocol reported by Shunsuke and co-workers to determine the photon flux of blue LED. All solutions were stored in the black vial and stored in the dark when not in use. Measurements were performed with the lights off to protect the samples from ambient light as much as possible.

a) Preparation of stock solutions

A 0.15 M solution of ferrioxalate was obtained by dissolving potassium ferrioxalate trihydrate($[K_3Fe^{III}(C_2O_4)_3]$ •3H₂O; 1.11 g, 2.26 mmol) in 0.05 M H₂SO₄ (prepared by fresh deionized water) (15 mL total volume).

A buffered phenanthroline solution was obtained by dissolving 1,10-phenanthroline (10.0mg) and sodium acetate (2.25g) in $0.5M H_2SO_4$ (prepared by fresh deionized water) (10 mL total volume).

b) Determination of background Fe²⁺ concentration

2 mL of the ferrioxalate solution was added to a 8 mL vial. Next, 0.35 mL of the phenanthroline solution was added and the mixture was stored in the dark for 1 hour. Then the solution was transferred to a cuvette and a UV-vis spectrum was measured using UV-vis absorption spectrometer (lambda 950). The absorbance value at 510 nm was recorded. This process was repeated twice. Average value: 0.635334.

c) Determination of photon flux

2 mL of the ferrioxalate solution was added to a 8 mL vial. The vial was immediately irradiated with blue LED (λ_{max} = 469 nm) for 10 seconds and removed from the blue LED. Then, 0.35 mL of the phenanthroline solution was added to the ferrioxalate solution, and the resulting mixture was stored in the dark for 1 hour. Then the solution was transferred to a cuvette and the UV–vis spectrum was measured. The absorbance value at 510 nm was recorded. This process was repeated twice. Average value: 2.12699.

d) Calculations

The amount of Fe²⁺formed was calculated according to the following equation:

$$mol \, Fe^{2\,+} = \frac{V \cdot \Delta A}{l \cdot \varepsilon}$$

where V is the volume of the sample analyzed (2.35 mL), ΔA is the difference in average absorbances (between irradiated and unirradiated ferrioxalate solutions) at 510 nm, *l* is the path length, and ε is the molar absorptivity at 510 nm^[11].

$$mol Fe^{2+} = \frac{V \cdot \Delta A}{l \cdot \varepsilon} = \frac{(0.00235 L)(1.491656)}{(3 cm)(11100^{L}/mol \cdot cm)} = 10.5267 \cdot 10^{-8} mol$$

The fraction of light absorbed by the ferrioxalate actinometer was calculated by the following
equation:

$$f = 1 - 10^{-A}$$

where A is the absorbance at 468 nm of the ferrioxalate actinometer solution prior to irradiation and

addition of phenanthroline (Figure S1).

$$f = 1 - 10^{-A} = 1 - 10^{-0.89826} = 0.87360$$

The photon flux was calculated using the following equation:

$$photon flux = \frac{mol Fe^{2+t}}{\Phi \cdot t \cdot f}$$

Where Φ is the quantum yield for the ferrioxalate actinometer at 468 nm, t is the time and f is the

fraction of light absorbed by the ferrioxalate actinometer solution.

$$photon \ flux = \frac{mol \ Fe^{2+}}{\Phi \cdot t \cdot f} = \frac{10.5267 \cdot 10^{-8} mol}{(0.92) \cdot (10s) \cdot (0.87360)} = 1.30976 \cdot 10^{-8} einsterin / s$$

e) Determination of fraction of light absorbed at 468 nm for the ferrioxalate solution

The absorbance at 468 nm of the ferrioxalate actinometer solution prior to irradiation and addition of phenanthroline was measured to be 0.89826.

Figure S1 UV-vis absorbance spectra of ferrioxalate solution

f) Absorbance of photocatalyst Ir[dF(CF₃)(ppy)₂(Phen)](PF₆)

The absorbance of $Ir[dF(CF_3)(ppy)_2(Phen)](PF_6)$ in DMAc was measured at the reaction concentration of 250 μ M or a dilute concentration of 25 μ M (**Figure S2**). The absorbance at 468 nm for a 250 μ M is 0.4318.

Figure S2 UV-vis absorbance spectra of $Ir[dF(CF_3)(ppy)_2(Phen)](PF_6)$ black line: 25 μ M in DMAc, red line: 250 μ M in DMAc.

g) Determination of quantum yield

According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (18.0 µL, 0.1 mmol, 1.0 equiv.), (chloromethyl)benzene (15.0 µL, 0.13 mmol, 1.3 equiv.), $Ir[dF(CF_3)(ppy)_2(Phen)]PF_6$ (1.1 mg, 0.001 mmol, 1 mol%), Ni(acac)₂ (2.6 mg, 0.01 mmol, 10 mol%), dtbbpy (3.5 mg, 0.013 mmol, 13 mol%), 1-ethylpiperidine (41.2 µL, 0.3 mmol, 3.0 equiv.), CF_2HCOOH (12.6 µL, 0.2 mmol, 2.0 equiv.) in DMAc (4 ml) were used. The reaction mixture was then irradiated with one 90 W blue LED lamp (λ_{max} = 469 nm) for 600 seconds. After irradiation, the reaction mixtures were analyzed by GC with an internal standard. Provide the desired product (4.1 % GC yield).

The quantum yield (Φ) was calculated using the following equation:

$$\Phi = \frac{mol \ product}{photon \ flux \cdot t \cdot f}$$

Where t is the reaction time and f is the fraction of light absorbed by photocatalyst that was calculated using the following equation:

$$f = 1 - 10^{-A} = 1 - 10^{-0.4318} = 0.63$$

Where A is the absorbance at 468 nm of the photocatalyst solution (250 μ M in DMAc) (Figure S4).

$$\Phi = \frac{mol \ product}{photon \ flux \cdot t \cdot f} = \frac{0.0000041 \ mol}{\left(1.30976 \cdot 10^{-8einsterin} / s\right) \cdot (600s) \cdot (0.63)} = 0.83$$

6.5 Stern-Volmer quenching experiments

Stern-Volmer quenching experiments were carried by Edinburgh Fluorescence Spectrometer FS5, using a 0.01 mM solution of photocatalyst $Ir[dF(CF_3)(ppy)_2(Phen)](PF_6)$ and variable concentrations (0.5, 1.0, 1.5, 2.0, 2.5 mM) of CF_2HCO_2H , *N*-ethylpiperidine and benzyl chloride in solvent DMAc. The samples were prepared in 4 mL quartz cuvettes, equipped with PTFE stoppers, and sealed with parafilm inside nitrogen filled glove-box. The intensity of the emission peak at 484 nm (λ ex= 376 nm) expressed as the ratio I₀/I, where I₀ is the emission intensity of photocatalyst at 484 nm in the absence of a quencher and I is the observed intensity, as a function of the quencher concentration was measured. Stern-Volmer plots for each component are given in the Supplementary Figures below.

Figure S3 Stern-Volmer plot of photocatalyst (0.01 mM) at different concentrations of

 CF_2HCO_2H

Figure S4 Stern-Volmer plot of photocatalyst (0.01 mM) at different concentrations of *N*-ethylpiperidine

Figure S4 Stern-Volmer plot of photocatalyst (0.01 mM) at different concentrations of benzyl

chloride

6.6 Light ON/OFF experiments over time

According to the general procedure, 1-(tert-butyl)-4-ethynylbenzene (18.0 μ L, 0.1 mmol, 1.0 equiv.), (chloromethyl)benzene (15.0 μ L, 0.13 mmol, 1.3 equiv.), Ir[dF(CF₃)(ppy)₂(Phen)]PF₆ (1.1 mg, 0.001 mmol, 1 mol%), Ni(acac)₂ (2.6 mg, 0.01 mmol, 10 mol%), dtbbpy (3.5 mg, 0.013 mmol, 13 mol%), 1-ethylpiperidine (41.2 μ L, 0.3 mmol, 3.0 equiv.), CF₂HCOOH (12.6 μ L, 0.2 mmol, 2.0 equiv.) and dodecane (22.7 μ L, 0.1 mmol) in DMAc (4 ml) were used. The reaction mixture was then irradiated with one 90 W blue LED lamp. The reaction mixtures were analyzed by GC.

Figure S5 light on/off experiments

6.7 Proposed mechanism.

Scheme S1. Proposed catalytic cycle

6.8 Unsuccessful substrates

Scheme S2. Examples of unsuccessful alkynes.

Unsuccessful substrates:

Scheme S3. Examples of unsuccessful halides.

7. NMR Spectra

¹H NMR of S1 (400 MHz, CDCl₃)

¹³C NMR of **S1** (100 MHz, CDCl₃)

fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $$\mathrm{fl}\xspace{10pt}{fl}\x$

¹³C NMR of **S3** (100 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $${\rm fl}$ (ppm)$

¹H NMR of **S4** (600 MHz, CDCl₃)

¹³C NMR of **3** (100 MHz, CDCl₃)

¹³C NMR of **5** (100 MHz, CDCl₃)

¹³C NMR of **6** (100 MHz, CDCl₃)

¹H NMR of 7 (600 MHz, CDCl₃)

¹³C NMR of 7 (150 MHz, CDCl₃)

¹⁹F NMR of 8 (564 MHz, CDCl₃)

3	4	5	5	5	9	9	-	∞
-	-	-		-		-	-	
S	S	S	S	S	S	S	S	S
-	-	-	-	-	-	-	-	-
-	-	-		-	-	-	-	-
1		-	1	1	1	-	-	_
			_					

¹³C NMR of 8 (150 MHz, CDCl₃)

¹³C NMR of **9** (150 MHz, CDCl₃)

:20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2(fl (ppm)

¹H NMR of **11** (400 MHz, CDCl₃)

¹³C NMR of **11** (100 MHz, CDCl₃)

¹H NMR of **12** (400 MHz, CDCl₃)

¹³C NMR of **12** (150 MHz, CDCl₃)

¹³C NMR of **13** (100 MHz, CDCl₃)

¹³C NMR of **14** (100 MHz, CDCl₃)

¹³C NMR of **15** (100 MHz, CDCl₃)

¹³C NMR of **16** (150 MHz, CDCl₃)

¹H NMR of **17** (400 MHz, CDCl₃)

¹³C NMR of **17** (100 MHz, CDCl₃)

¹³C NMR of **18** (100 MHz, CDCl₃)

¹³C NMR of **19** (150 MHz, CDCl₃)

¹³C NMR of **20** (100 MHz, CDCl₃)

S65

5.5 fl (ppm) 00.

4.5

2.03-

3.5

2.03+

1.5

2.5

6.04

6.5

7.5

0.5

9.5

8.5

¹³C NMR of **21** (100 MHz, CDCl₃)

¹H NMR of **22** (400 MHz, CDCl₃)

¹³C NMR of **22** (100 MHz, CDCl₃)

¹³C NMR of **23** (100 MHz, CDCl₃)

¹³C NMR of **24** (100 MHz, CDCl₃)

¹³C NMR of **25** (150 MHz, CDCl₃)

¹³C NMR of **26** (150 MHz, CDCl₃)

¹H NMR of **27** (600 MHz, CDCl₃)

¹³C NMR of **27** (150 MHz, CDCl₃)

¹³C NMR of **28** (150 MHz, CDCl₃)

¹³C NMR of **29** (150 MHz, CDCl₃)

¹³C NMR of **30** (100 MHz, CDCl₃)

¹³C NMR of **31** (100 MHz, CDCl₃)

¹³C NMR of **32** (100 MHz, CDCl₃)

¹H NMR of **33** (400 MHz, CDCl₃)

¹³C NMR of **33** (100 MHz, CDCl₃)

¹H NMR of **34** (400 MHz, CDCl₃)

¹³C NMR of **35** (100 MHz, CDCl₃)

¹H NMR of **36** (400 MHz, CDCl₃)

¹³C NMR of **36** (100 MHz, CDCl₃)

¹³C NMR of **37** (100 MHz, CDCl₃)

¹H NMR of **38** (400 MHz, CDCl₃)

¹³C NMR of **38** (100 MHz, CDCl₃)

¹H NMR of **39** (400 MHz, CDCl₃)

¹³C NMR of **39** (100 MHz, CDCl₃)

¹³C NMR of **40** (100 MHz, CDCl₃)


```
<sup>13</sup>C NMR of 41 (100 MHz, CDCl<sub>3</sub>)
```


¹H NMR of **43** (400 MHz, CDCl₃)

