Electronic Supporting Information

Reductive elimination of [AIH₂]⁺ from a cationic Ga-AI dihydride

Louis J. Morris,^a Ambre Carpentier,^b Laurent Maron^{*, b} and Jun Okuda^{*, a}

^a Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany. Email: jun.okuda@ac.rwth-aachen.de

^b CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 avenue de Rangueil, 31077 Toulouse, France. Email: Laurent.maron@irsamc.ups-tlse.fr.

Table of Contents

1	Ger	neral remarks	3
2	Syn	thetic procedures and characterisation	3
	2.1	Synthesis of [(TMEDA)·AIH ₃] _n	3
	2.2	NMR spectra of [(TMEDA)·AIH ₃] _n	4
	2.3 [(TME	Synthesis of [(TMEDA)AIH ₂ ·(OEt ₂)][B(C ₆ H ₃ -3,5-Me ₂) ₄] 1 EDA)AIH ₂ ·(thf) ₂][B(C ₆ H ₃ -3,5-Me ₂) ₄] 1•thf ₂ 1	and 8
	2.4	NMR and IR spectra of [(TMEDA)AIH ₂ ·(OEt ₂)][B(C ₆ H ₃ -3,5-Me ₂) ₄] 1	9
	2.5	NMR and IR spectra of [(TMEDA)AlH ₂ ·(thf) ₂][B(C ₆ H ₃ -3,5-Me ₂) ₄] 1·thf ₂	13
	2.6	X-ray crystal structure of [(TMEDA)AlH ₂ ·(thf) ₂][B(C ₆ H ₃ -3,5-Me ₂) ₄] 1·thf₂	15
	2.7	Synthesis of [(IMe ₄) ₂ AIH ₂][B(C ₆ H ₃ -3,5-Me ₂) ₄] 2	16
	2.8	NMR and IR spectra of [(IMe ₄) ₂ AIH ₂][B(C ₆ H ₃ -3,5-Me ₂) ₄] 2	17
	2.9	X-ray crystal structure of $[(IMe_4)_2AIH_2][B(C_6H_3-3,5-Me_2)_4]$ 2.	21
	2.10	Synthesis of [{TMEDA}AI(H)(H)AI{BDI}][B(C ₆ H ₃ -3,5-Me ₂) ₄] 3 ^{AI}	21
	2.11	NMR and IR spectra of [{TMEDA}AI(H)(H)AI{BDI}][B(C ₆ H ₃ -3,5-Me ₂) ₄] 3^{AI}	23
	2.12	X-ray crystal structure of 3^{AI}	32
	2.13	Synthesis of [{TMEDA}Al(H)(H)Ga{BDI}][B(C ₆ H ₃ -3,5-Me ₂) ₄] 3 ^{Ga}	32
	2.14	NMR and IR spectra of [{TMEDA}Al(H)(H)Ga{BDI}][B(C ₆ H ₃ -3,5-Me ₂) ₄] 3 ^{Ga}	33
	2.15	In situ NMR spectra of the reaction of 3^{Ga} with THF-d ₈	38
	2.16	Synthesis of [(IMe ₄) ₂ AI(H)(H)AI{BDI}][B(C ₆ H ₃ -3,5-Me ₂) ₄] 4 ^{AI}	39

	2.17	In situ ¹ H NMR spectrum (400 MHz, THF-d ₈) of the reaction between 3 ^{AI} and IMe ₄ 41
	2.18	NMR and IR spectra of [(IMe ₄) ₂ Al(H)(H)Al{BDI}][B(C ₆ H ₃ -3,5-Me ₂) ₄] 4^{AI} 42
	2.19 3,5-M	Reaction of 3 ^{Ga} with IMe ₄ : <i>in situ</i> NMR analysis of [(IMe ₄) ₂ Al(H)(H)Ga{BDI}][B(C ₆ H ₃ - e ₂) ₄] 4 ^{Ga} and crystallisation of 2
	2.20	<i>In situ</i> NMR spectra from reaction of 3 ^{Ga} with IMe ₄ and isolated crystals of 2 thereof. 48
3	X-ra	y crystallography54
4	Cor	nputational analysis56
	4.1	Computational details
	4.2	NBO information for compound 3^{AI}
	4.3	NBO information for compound 3 ^{Ga}
	4.4	NBO information for compound 4 ^{AI} 60
	4.5	NBO information for compound 4 ^{Ga} 62
	4.6	Calculated energies
	4.7	Coordinates of calculated structures 64
5	Ref	erences

1 General remarks

All operations were performed under an inert atmosphere of dry argon using standard Schlenk line and glovebox techniques. THF-d₈, C₆D₆, toluene, THF, and diethylether were distilled under argon from sodium/benzophenone ketyl before use. n-pentane was distilled under argon from sodium before use. Commercially available TMEDA, CD_2CI_2 , and C_6D_5Br were dried over CaH₂ and distilled before use. [Et₃NH]Cl was purchased from TCl and purified by sublimation before use. LiAlH₄ was purchased from Sigma Aldrich and recrystallised from diethylether. All other commercially available materials were used as received. Et₃N·AIH₃ was prepared from $[Et_3NH]CI$ and an excess of LiAIH₄ in *n*-pentane by a procedure analogous to that reported in the literature for $Me_3N \cdot AIH_3$.¹ It was distilled as a liquid at room temperature, and stored at -40°C. $[Et_3NH][B(C_6H_3-3,5-Me_2)_4]^2$ [{BDI}AI] (IAI, {BDI} = {HC(C(CH_3)Ndipp)_2}; dipp = $2,6-iPr_2-C_6H_3$,³ [{BDI}Ga] (I^{Ga}),³ 1,3,4,5-tetramethyl-imidazol-2-ylidene (IMe₄)⁴ were prepared according to literature procedures. NMR spectra were recorded on a Bruker Avance II 400 or a Bruker Avance III HD 400 spectrometer in J. Young's NMR tubes at 25°C unless stated otherwise. Chemical shifts for ¹H and ¹³C{¹H} were referenced internally to residual solvent peaks, reported relative to tetramethylsilane. ¹¹B{¹H} and ²⁷Al were referenced externally to BF₃(OEt₂) and aqueous Al(NO₃)₃, respectively. IR spectra were recorded in KBr pellets using an AVATAR 360 FT-IR spectrometer. Elemental analysis were performed on an elementar vario EL instrument.

2 Synthetic procedures and characterisation

2.1 Synthesis of [(TMEDA)·AIH₃]_n

[(TMEDA)·AlH₃]_n was prepared according to modified literature procedures.^{5, 6} A Schlenk tube was charged with 400 mg Et₃N·AlH₃ (3.05 mmol), 2 ml pentane was added via cannula and the solution cooled to -20°C in a salt-ice bath. A 5 ml pentane solution of 1.28 g TMEDA (11.01 mmol) was added dropwise by cannula with stirring. A colourless precipitate formed immediately, and the reaction mixture was allowed to warm to room temperature over the course of 1 hour. The reaction mixture was cooled again to -20°C, the precipitate was collected by cannula filtration, and washed with two portions of pentane. The product was isolated as a colourless powder in a yield of 311 mg (70%), after thorough drying under vacuum.

 $[(TMEDA)\cdot AIH_3]_n$ is highly soluble in THF, benzene, and toluene, but insoluble in diethylether and aliphatic hydrocarbons. It has been previously characterised by NMR spectroscopy⁶ and single crystal X-ray diffraction.^{5, 6} Here, we additionally include the NMR spectra recorded in THF-d₈. We note that the ²⁷AI chemical shift in C₆D₆ was similar to those of other amine adducts of AIH₃, but differed significantly to that reported previously for [(TMEDA)·AIH₃]_n.⁶ ¹H NMR (400 MHz, THF-d₈) δ 3.50-2.70 (br, 3H, Al<u>H</u>), 2.46 (s, 4H, C<u>H</u>₂), 2.20 (s, 12H, C<u>H</u>₃). ¹³C{¹H} NMR (101 MHz, THF-d₈) δ 57.85 (<u>C</u>H₂), 46.05 (<u>C</u>H₃).

²⁷AI NMR (104 MHz, THF-d₈) δ 113.78 (br).

¹H NMR (400 MHz, C₆D₆) δ 4.05 (3H, br, Al<u>H₃</u>), 2.44 (s, 4H, C<u>H₂</u>), 2.03 (s, 12H, C<u>H₃</u>).

¹³C{¹H} NMR (101 MHz, C₆D₆) δ 55.81 (<u>C</u>H₂), 45.58 (<u>C</u>H₃).

²⁷AI NMR (104 MHz, C₆D₆) δ 136.88 (br).

IR spectroscopy (KBr pellet): v = 1713 cm⁻¹ (br, Al-H)

Elemental analysis calculated for $C_6H_{19}AIN_2$: C 49.29, H 13.10, N 19.16%. Found: C 48.22, H 12.69, N 19.46%. Despite repeated attempts, we were unable to obtain more accurate elemental analysis for this compound. This may result from partial hydrolysis of the compound when handled outside of the glovebox immediately prior to analysis.

2.2 NMR spectra of [(TMEDA)·AIH₃]_n

Figure S 1: ¹H NMR (400 MHz, THF-d₈).

Figure S 3: ²⁷AI NMR (104 MHz, THF-d₈). * background signal from spectrometer probe.

Figure S 5: $^{13}C\{^{1}H\}$ NMR (101 MHz, C₆D₆).

Figure S 6: ²⁷Al NMR (104 MHz, C₆D₆). * background signal from spectrometer probe.

Figure S 7: IR spectrum (KBr pellet) of [(tmeda)·AlH₃]_n.

2.3 Synthesis of [(TMEDA)AIH₂·(OEt₂)][B(C₆H₃-3,5-Me₂)₄] **1** and [(TMEDA)AIH₂·(thf)₂][B(C₆H₃-3,5-Me₂)₄] **1·thf₂**

A Schlenk flask was charged with 100 mg $[(TMEDA) \cdot AIH_3]_n$ (0.6₈4 mmol) and 364 mg $[Et_3NH][B(C_6H_3-3,5-Me_2)_4]$ (0.684 mmol). Diethylether (5 ml) was added to the stirring mixture by cannula, resulting in the evolution hydrogen gas. The resulting colourless suspension was stirred for 4 hours. The product was isolated by cannula filtration, washed with pentane, and vacuum dried to obtain **1** as a colourless powder. Yield 367 mg, 82%. Partial loss of diethylether occurs when exposed to high vacuum for several hours.

¹H NMR (400 MHz, CD_2Cl_2) δ 7.10 (t, J = 2.8 Hz, 8H, ortho- $C_6\underline{H_3}$), 6.52 (m,4H, para- $C_6\underline{H_3}$), 3.65 (q, J = 7.0 Hz, 4H, $OC\underline{H_2}$), 3.60-3.05 (br, 2H, Al- \underline{H}), 2.29 (s, 12H, $NC\underline{H_3}$), 2.18 (s, 24H, $C_6H_3C\underline{H_3}$), 2.05 (s, 4H, $NC\underline{H_2}$), 1.21 (t, J = 7.0 Hz, 6H, $OCH_2C\underline{H_3}$).

¹H NMR (400 MHz, THF-*d*₈) δ 6.96 (s, 8H, *ortho*-C₆<u>H₃</u>), 6.34 (s, 4H, *para*- C₆<u>H₃</u>), 3.39 (q, *J* = 7.0 Hz, 4H, OC<u>H₂</u>), 2.36 (s, 4H, NC<u>H₂</u>), 2.24 (s, 12H, NC<u>H₃</u>), 2.08 (s, 24H, C₆H₃C<u>H₃</u>), 1.12 (t, *J* = 7.0 Hz, 6H OCH₂C<u>H₃</u>).

¹³C{¹H} NMR (101 MHz, CD₂Cl₂) δ 165.34 (q, ¹*J*_(B-C) = 49.0 Hz, *ipso*-B<u>C</u>₆H₃), 134.60 (q, ³*J*_(B-C) = 2.8 Hz, *meta*-B<u>C</u>₆H₃), 134.48 (d, *J* = 1.0 Hz, *ortho*-B<u>C</u>₆H₃), 123.82 (*para*-B<u>C</u>₆H₃),), 66.02 (O<u>C</u>H₂CH₃), 56.44 (N<u>C</u>H₂), 47.66 (NCH₃), 22.09 (C₆H₃<u>C</u>H₃), 14.72 (OCH₂<u>C</u>H₃).

²⁷AI NMR (104 MHz, CD₂Cl₂) δ 147.76 (br).

¹¹B{¹H} NMR (128 MHz, CD₂Cl₂) δ -6.73.

IR (KBr pellet): $v = 1852 \text{ cm}^{-1}$ (Al-H).

Analysis calculated for $C_{42}H_{64}AIBN_2O$: C 77.52, H 9.91, N 4.30%. Found: C 76.33, H 9.92, N 5.03%. Despite repeated attempts, we were unable to obtain more accurate elemental analysis of this compound. This may be due to traces of [(tmeda)₂AIH₂][BAr₄] or other impurities which could not be separated by washing. Attempts to further purify the compound by crystallisation were unsuccessful and the as obtained material was suitable for further use.

Colourless needle-like single crystals suitable for X-ray diffraction analysis of the bis-THF complex, $1 \cdot thf_2$ were obtained by slow diffusion of pentane into a THF solution of 90 mg 1 (0.1383 mmol) at -40°C. The mother liquor was decanted, the crystals washed with cold THF and *n*-pentane, then vacuum dried to yield 81 mg of $1 \cdot thf_2$, 81%.

¹H NMR (400 MHz, THF-*d*₈) δ 7.01 – 6.94 (m, 8H, 2,6-Ar), 6.34 (s, 4H, 4-Ar), 3.68 – 3.59 (m, 8H, 2,5-THF), 2.33 (s, 4H, C<u>*H*</u>₂), 2.22 (s, 12H, NC<u>*H*</u>₃), 2.09 (s, 24H, Ar-C<u>*H*</u>₃), 1.83 – 1.75 (m, 8H, 3,4-THF).

¹³C{¹H} NMR (101 MHz, THF-d₈) δ 165.77 (q, ¹J(¹¹B) = 49.3 Hz, 1-Ar), 135.62 (2,6-Ar), 132.96 (q, ³J(¹¹B) = 2.8 Hz, 3,5-Ar), 123.62 (4-Ar), 68.39 (2,5-THF), 56.18 (<u>C</u>H₂), 46.84 (N<u>C</u>H₃), 26.55 (3,4-THF), 22.46 (Ar-<u>C</u>H₃).

¹¹B{¹H} NMR (128 MHz, THF-d₈) δ -6.92.

No signal could be observed in the ²⁷AI NMR spectrum.

IR (KBr pellet): $v = 1731 \text{ cm}^{-1}$ (Al-H).

Elemental analysis calculated for $C_{46}H_{70}AIBN_2O_2$: C 76.64, H 9.79, N 3.89%. Found: C 75.48, H 9.75, N 3.89%. Despite repeated attempts, we were unable to obtain more accurate elemental analysis for this compound. This is tentatively ascribed to residual non-coordinating THF in the crystal lattice.

2.4 NMR and IR spectra of $[(TMEDA)AIH_2 (OEt_2)][B(C_6H_3-3,5-Me_2)_4]$ 1.

Figure S 8: ¹H NMR spectrum (400 MHz, THF-d₈).

Figure S 10: ¹³C{¹H} NMR (101 MHz, CD₂Cl₂).

Figure S 11: ¹³C-¹H HSQC spectrum (CD₂Cl₂).

Figure S 12: ²⁷Al NMR (104 MHz, CD₂Cl₂). * background signal from spectrometer probe.

Figure S 13: $^{11}B\{^{1}H\}$ NMR (128 MHz, CD_2Cl_2).

-100

-110 ' -120

Figure S 14: IR spectrum (KBr pellet) of **1**.

2.5 NMR and IR spectra of $[(TMEDA)AIH_2 \cdot (thf)_2][B(C_6H_3-3,5-Me_2)_4]$ **1·thf**₂

Figure S 16: $^{13}C{^{1}H}$ NMR (101 MHz, THF-d₈)

Figure S 18: ¹³C-¹H HSQC spectrum (THF-d₈).

Figure S 19: IR spectrum (KBr pellet).

2.6 X-ray crystal structure of [(TMEDA)AlH₂·(thf)₂][B(C₆H₃-3,5-Me₂)₄] 1·thf₂

2.7 Synthesis of [(IMe₄)₂AIH₂][B(C₆H₃-3,5-Me₂)₄] 2

To a Schlenk flask containing 200 mg IMe_4 (1.61 mmol), was added a 10 ml diethylether solution of 106 mg Et₃N·AIH₃ (0.805 mmol). The stirring reaction mixture was cooled to -78°C, and 430 mg [Et₃NH][BAr₄] (0.805 mmol) was added portion-wise as a solid by means of a bent glass joint. The reaction was removed from the cold bath, and after 2 hours, a colourless precipitate was collected by canula filtration and washed twice with *n*-pentane to yield 420 mg **2** as a colourless powder in 74% yield. Single crystals suitable for X-ray diffraction analysis were obtained directly from the reaction of **3**^{Ga} with IMe₄ in C₆D₆, see section 2.20.

Although **2** could be straightforwardly recrystallised from a THF/pentane mixture at -40°C, complete removal of lattice-THF from these samples under vacuum proved difficult, and given the known reactivity of **I**^{AI} towards THF,⁷ the precipitate from diethylether was used without further purification.

The chemical shifts and FWHM for the NHC resonances (particularly the *N*-methyl protons) of **2** were found to be concentration dependent in THF-d₈, a characteristic which we tentatively assign to an equilibrium between the $[(IMe_4)_2AIH_2]^+$ cation and $[AIH_2 \cdot (thf)_4]^+$ ⁸ and free-carbene. This accounts for the variation in NMR spectra between those of crystals isolated from the reaction of **3**^{Ga} and IMe₄ (7 mg/ml), and those shown below (25 mg/ml). Although we did not investigate this phenomenon in detail, the NMR, IR, and elemental analysis are consistent with the crystallographically determined structure regardless of synthetic route (i.e. preparative scale from Et₃N·AIH₃ or NMR-scale from **3**^{Ga}).

¹H NMR (400 MHz, THF-d₈) δ 6.96 (m, 8H, *ortho*-C₆H₃), 6.29 (s, 4H, *para*-C₆H₃)), 3.45 (s, 12H, NCH₃), 2.01 (s, 24H, C₆H₃(CH₃)₂), 1.93 (s, 12H, CCH₃^{NHC}).

¹³C{¹H} NMR (101 MHz, THF-d₈) δ 165.73 (q, ¹ $J_{(C-B)}$ = 49 Hz, *ipso*-C₆H₃), 161.91 (br, Al-C), 135.53 (s, *ortho*-C₆H₃), 133.19 (q, ³ $J_{(C-B)}$ = 2.9 Hz), 128.93 (H₃CC=CCH₃), 123.57 (*para*-C₆H₃), 34.47 (NCH₃), 22.30 (C₆H₃(CH₃)₂), 8.41 (H₃CC=CCH₃).

¹¹B{¹H} NMR (128 MHz, THF-d₈) δ -6.81.

²⁷Al NMR (104 MHz, THF-d₈) δ 108.12 (very broad).

IR spectroscopy (KBr pellet): $v = 1812 \text{ cm}^{-1}$ (Al-H).

Elemental analysis calculated for $C_{46}H_{62}AIBN_4$: C 77.95, H 8.82, N 7.90%. Found: C 76.50, H 8.90, N 8.04%. Despite repeated attempts, we were unable to obtain more accurate elemental analysis for this compound. This is tentatively ascribed to traces of additional non-coordinated IMe₄ in the precipitated and washed product, or to residual lattice THF after recrystallisation from THF/pentane.

Figure S 21: ¹H NMR (400 MHz, THF-d₈, 25 mg/ml).*residual THF from crystallisation, # n-pentane.

Figure S 22: $^{13}C\{^{1}H\}$ NMR (101 MHz, THF-d_8)

Figure S 23: ¹³C-¹H HSQC spectrum (THF-d₈).

Figure S 24: ¹³C-¹H HMBC spectrum (THF-d₈).

LM410.25.fid B11-CPD THF C:\\ LMorris 10

__-6.81

Figure S 25: $^{11}B\{^{1}H\}$ NMR (128 MHz, THF-d_8)

300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -300 f1 (ppm)

Figure S 27: IR spectrum (KBr pellet) of **2**.

2.9 X-ray crystal structure of $[(IMe_4)_2AIH_2][B(C_6H_3-3,5-Me_2)_4]$ 2.

Figure S 28: X-ray crystal structure of the cationic part of compound **2**. Thermal ellipsoids are shown at the 50% probability level. Selected distances (Å) and angles (°): Al1-C1 2.0283(17), Al1-C8 2.0203(16), Al1-H1 1.490(18), Al1-H2 1.50(2), N2-C1 1.357(2), N2-C5 1.385(2), C3-C5 1.360(2), N1-C3 1.389(2), N1-C1 1.346(2), N3-C8 1.352(2), N3-C10 1.389(2), C10-C12 1.350(2), C12-N4 1.3831(19), C4-C8 1.353(2), C1-Al1-C8 102.92(7), C1-Al1-H1 110.8(7), C1-Al1-H2 108.5(7), H1-Al1-H2 115.6(10), C8-Al1-H1 107.9(7), C8-Al1-H2 110.3(7), N1-C1-Al1 128.84(11), N2-C1-Al1 129.75(12), N3-C8-Al1 1.352(2), N4-C8-Al1 130.13(11).

2.10 Synthesis of [{TMEDA}AI(H)(H)AI{BDI}][B(C₆H₃-3,5-Me₂)₄] 3^{AI}

A Schlenk tube was charged with 53 mg I^{AI} (0.117 mmol),* 76 mg **1** (0.117 mmol) and 5 ml toluene. The initially red-orange suspension rapidly decoloured to yellow, and the reaction mixture was stirred at room temperature for 20 hours. The product was isolated by cannula filtration and washed twice with toluene (2x 5 ml), and once with pentane (5 ml), to obtain 88 mg **3**^{AI} as a pale-cream coloured powder in 74% isolated yield after drying under vacuum. *In our hands, **I**^{AI} prepared from [Cp*AI]₄ by the reported literature procedure³ was often found to contain residual [Cp*AI]₄ (approx. 5%) following crystallisation of the BDI-complex from the crude product mixture. [Cp*AI]₄ is unreactive towards **1** and the minor impurity could be straightforwardly removed from the product by washing with excess toluene.

Single crystals suitable for X-ray diffraction analysis were obtained by layering a 0.6 ml toluene solution of I^{AI} (30 mg, 0.099 mmol) above a heterogeneous mixture of poorly soluble **1** (64 mg, 0.099 mmol) and 0.6 ml toluene in a 5 mm diameter NMR tube. The mixture was left to stand for seven days, upon which most of the insoluble powder was replaced by very large colourless block-like single crystals of **3**^{AI}.

3^{AI} is insoluble in aliphatic hydrocarbons, very poorly soluble in benzene and toluene, moderately soluble in THF and fluorobenzene, and readily soluble in bromobenzene.

¹H NMR (400 MHz, C_6D_5Br) δ 7.45 (br, 8H, *ortho*-BC₆H₃),7.17-7.10 (m, 2H, *para*-NC₆H₃), 7.10 – 7.02 (m, 4H, *meta*-NC₆H₃), 6.50 (br, 4H, *para*-BC₆H₃), 4.96 (s, 1H, *H*C{C(CH₃)Ndipp}₂), 4.45 (br, 1H, (BDI)AIH), 3.36 (br, 1H, (TMEDA)AIH), 3.21 (hept, *J* = 6.6 Hz, 2H, *H*C(CH₃)₂), 3.01 (hept, *J* = 6.4 Hz, 2H, *H*C(CH₃)₂), 2.13 (s, 24H, BAr-CH₃), 1.58 (s, 6H, HC{C(CH₃)Ndipp}₂), 1.51 (s, 6H, NCH₃), 1.48 – 1.36 (m, 4H, NCH₂), 1.30 (d, *J* = 6.8 Hz, 6H, HC(CH₃)₂), 1.23 (s, 6H, NCH₃), 1.10 (d, *J* = 6.7 Hz, 6H, HC(CH₃)₂), 1.05 (d, *J* = 6.9 Hz, 6H, HC(CH₃)₂), 1.00 (d, *J* = 6.7 Hz, 6H, HC(CH₃)₂).

¹³C{¹H} NMR (101 MHz, C₆D₅Br) δ 170.73 (HC{C(CH₃)Ndipp}₂), 165.21 (q, J = 49.0, 48.5 Hz, *ipso*-BC₆H₃), 145.85 (*ortho*-NC₆H₃), 142.35 (*ortho*-NC₆H₃), 140.70 (*ipso*-NC₆H₃), 134.82 (*ortho*-BC₆H₃), 133.34 (m, *meta*-BC₆H₃), 127.62 (*para*-NC₆H₃), 125.64 (*meta*- NC₆H₃), 124.46 (*meta*- NC₆H₃), 123.86 (*para*-BC₆H₃), 97.01 (HC{C(CH₃)Ndipp}₂), 56.62 (NCH₂), 47.52 (NCH₃), 47.44 (NCH₃), 29.62 (HC(CH₃)₂), 27.65 (HC(CH₃)₂), 25.91 (HC(CH₃)₂), 24.71 (HC(CH₃)₂), 24.62 (HC(CH₃)₂), 23.90 (HC(CH₃)₂), 23.19 (HC{C(CH₃)Ndipp}₂), 22.23 (BC₆H₃CH₃).

 ^{11}B NMR (128 MHz, $C_6D_5Br)$ δ -6.27.

¹H NMR (400 MHz, THF- d_8) δ 7.31 (m, 6H, NC₆ H_3), 7.11 – 6.88 (m, 8H, *ortho*-BC₆ H_3), 6.32 (s, 4H, *para*-BC₆ H_3), 5.27 (s, 1H, *H*C{C(CH₃)Ndipp}₂), 4.44 (br, 1H, (BDI)AIH), 3.51 (br, 1H, (TMEDA)AIH), 3.39 (hept, *J* = 6.8 Hz, 2H, *H*C(CH₃)₂), 3.13 (hept, *J* = 6.8 Hz, 2H, *H*C(CH₃)₂), 2.05 (s, 26H, BAr-CH₃), 1.89 (m, 4H, NCH₂), 1.83 (s, 6H, HC{C(CH₃)Ndipp}₂), 1.76 (s, 6H, NCH₃),* 1.54 (s, 6H, NCH₃), 1.42 (d, *J* = 6.8 Hz, 6H, HC(CH₃)₂), 1.25 (d, *J* = 6.9 Hz, 6H, HC(CH₃)₂), 1.21 (d, *J* = 6.7 Hz, 6H, HC(CH₃)₂), 1.13 (d, *J* = 6.8 Hz, 6H, HC(CH₃)₂).*this resonance overlaps with that of the residual solvent peak.

¹³C{¹H} NMR (101 MHz, THF-d8) δ 172.08 (HC{C(CH₃)Ndipp}₂), 165.00 (*ipso*-BC₆H₃), 147.05 (*ortho*-NC₆H₃), 143.68 (*ortho*-NC₆H₃), 142.07 (*ipso* -NC₆H₃), 135.54 (*ortho*-BC₆H₃), 133.22 (q, ³J_(B-C) = 2.9 Hz, *meta*-BC₆H₃), 128.55 (*meta/para*-NC₆H₃), 126.67 (*meta/para*-NC₆H₃), 125.63 (*meta/para*-NC₆H₃), 123.78 (*para*-BC₆H₃), 97.87 (HC{C(CH₃)Ndipp}₂), 57.66 (NCH₂), 48.35 (NCH₃), 48.30 (NCH₃), 30.72 (HC(CH₃)₂), 28.73 (HC(CH₃)₂), 26.46 ((HC(CH₃)₂), 24.37 ((HC(CH₃)₂), 23.74 (HC{C(CH₃)Ndipp}₂), 22.38 (BC₆H₃CH₃).* two of the resonances corresponding to HC(CH₃)₂ were obscured by that of THF-d8.

 $^{11}B{^{1}H} NMR (128 MHz, THF-d8) \delta -7.02.$

Elemental analysis calculated for C₆₇H₉₅Al₂BN₄: C 78.80, H 9.38, N 5.49. Found: C 78.98, H 8.90, N 5.10%.

IR spectroscopy (KBr pellet): v = 1822, 1728 cm⁻¹ (Al-H)

2.11 NMR and IR spectra of [{TMEDA}AI(H)(H)AI{BDI}][B(C₆H₃-3,5-Me₂)₄] 3^{AI}

Figure S 29: ¹H NMR (400 MHz, C_6D_5Br).

Figure S 30: $^{1}H-^{1}H$ COSY spectrum (C₆D₅Br).

Figure S 31: ¹H-¹H NOESY spectrum (C₆D₅Br).

Figure S 32: Expanded ¹H-¹H NOESY spectrum (C₆D₅Br). Relevant coupling relationships are highlighted according to the following scheme: Green = (BDI)AlH \leftrightarrow HC(CH₃)₂^(dipp). Blue = (BDI)AlH \leftrightarrow H₃C^(Dipp). Red = (TMEDA)AlH \leftrightarrow H₃C^(TMEDA). Purple = (TMEDA)AlH \leftrightarrow H₃C^(dipp).

Figure S 34: 13 C DEPT 135 NMR spectrum (101 MHz, C₆D₅Br).

Figure S 35: ¹³C-¹H HSQC spectrum (C₆D₅Br).

Figure S 36: ¹³C-¹H HMBC spectrum (C₆D₅Br).

Figure S 37: $^{11}B\{^{1}H\}$ NMR (128 MHz, $C_{6}D_{5}Br).$

Figure S 38: ¹H NMR (400 MHz, THF-*d*₈ (*)).

Figure S 40: ¹³C{¹H} NMR (101 MHz, THF-d₈).

Figure S 41: ¹³C-¹H HSQC spectrum (THF-d₈).

Figure S 42: ¹³C-¹H HMBC spectrum (THF-d₈).

Figure S 43: ¹¹B{¹H} NMR (128 MHz, THF-d₈).

Figure S 44: IR spectrum (KBr pellet) of 3^{AI}

2.12 X-ray crystal structure of 3^{AI}

Figure S 45: Selected distances (Å) and angles (°) for **3**^A: Al1-Al2 2.6117(10), Al1-N1 1.9127(11), Al1-N2 1.9070(11), Al2-N3 2.0272(12), Al2-N4 2.0579(12), Al1-H1 1.565(17), Al2-H2 1.491(16), N1-Al1-Al2 115.03(4), N2-Al1-Al2 115.17(4), N2-Al1-N1 95.43(5), N3-Al2-Al1 114.73(4), N3-Al2-N4 87.43(5), N4-Al2-Al1 116.22(4), C2-N1-Al1 121.11(9), C2-N1-C6 121.05(10), C6-N1-Al1 117.09(8), C4-N2-Al1 121.85(9), C4-N2-C18 118.68(8).

2.13 Synthesis of [{TMEDA}AI(H)(H)Ga{BDI}][B(C₆H₃-3,5-Me₂)₄] 3^{Ga}

A Schlenk flask was charged with 100 mg [(TMEDA)AlH₂·OEt₂][BAr₄^{Me2}] (**1**, 0.154 mmol) and 75 mg BDIGa (I^{Ga}) (0.154 mmol) and 3 ml toluene was added via cannula. The pale-yellow suspension was stirred at room temperature for 48 hours. The resulting colourless precipitate was isolated by cannula filtration, washed with toluene and pentane, and dried under vacuum to provide 127 mg of [(BDI)Ga(H)-(H)Al(TMEDA)][BAr₄^{Me2}], 76% yield.

Single crystals suitable for X-ray diffraction analysis were obtained by layering a 0.5 ml toluene solution of I^{Ga} (15 mg, 0.0308 mmol) on a heterogeneous mixture of **1** (20 mg, 0.0308 mmol) and 0.4 ml toluene in a 5 mm diameter NMR tube. The mixture was left to stand for seven days, upon which most of the insoluble powder was replaced by very large colourless block-like single crystals of **3**^{Ga}.

3^{Ga} is insoluble in hydrocarbon solvents and diethylether, but readily soluble in fluorobenzene and bromobenzene. When dissolved in THF, it decomposes to give **I**^{Ga} and **1**•**thf**₂.

¹H NMR (400 MHz, C_6D_5Br) δ 7.45 (s, 8H, 2,6-BC₆H₃), 7.13 – 7.01 (m, 6H, NC₆H₃), 6.50 (s, 4H, , 4-BC₆H₃), 5.39 (d, br, ³J_(H-H) = 11.0 Hz, 1H, GaH), 4.80 (s, 1H, HC{C(CH₃)Ndipp}₂), 3.50-3.30 (br, 1H, AIH), 3.28 (hept, J = 6.1 Hz, 2H, $HC(CH_3)_2$), 3.01 (hept, J = 6.7, Hz, 2H, $HC(CH_3)_2$), 2.13 (s, 24H, BAr-CH₃), 1.57 (s, 6H, HC{C(CH₃)Ndipp}₂), 1.49 (s, 6H, NCH₃), 1.46-1.31 (m, 4H, NCH₂), 1.28 (d, J = 6.8 Hz, 6H, HC(CH₃)₂), 1.19 (s, 6H, NCH₃), 1.11 – 0.98 (three overlapping doublets, J = 6.2, 6.8, 7.0 Hz, 18H, HC(CH₃)₂).

¹³C{¹H} NMR (101 MHz, C₆D₅Br) δ 168.39 (HC{C(CH₃)Ndipp}₂), 165.27 (q, ¹*J*_{C-B} = 49.1 Hz, *ipso*-BC₆H₃), 145.36 (*ortho*-NC₆H₃), 143.03 (*ipso*-NC₆H₃), 141.78 (*ortho*-NC₆H₃), 134.84 (*ortho*-BC₆H₃), 133.38 (q, unresolved, ³*J*_{C-B} = 3.2 Hz, *meta*-BC₆H₃), 127.01 (*para*-NC₆H₃), 125.46 (*meta*-NC₆H₃), 124.27 (*meta*-NC₆H₃), 123.88 (*para*-BC₆H₃), 95.09 (HC{C(CH₃)Ndipp}₂), 56.50 (NCH₂), 47.40 (NCH₃), 29.39 (HC(CH₃)₂), 27.51 (HC(CH₃)₂), 25.99 (HC(CH₃)₂), 24.79 (HC(CH₃)₂), 24.52 (HC(CH₃)₂), 23.74 (HC(CH₃)₂), 23.13 HC{C(CH₃)Ndipp}₂, 22.27 (BC₆H₃CH₃).

¹¹B{¹H} NMR (128 MHz, C₆D₅Br) δ -6.27.

Analysis calculated for C₄₄H₆₄BGaN₄: C 72.44, H 8.84, N 7.68%. Found: C 72.34, H 9.06, N 8.01%.

IR spectroscopy (KBr pellet): $v = 1850 \text{ cm}^{-1}$ (Al-H), 1748 cm⁻¹ (Ga-H).

2.14 NMR and IR spectra of [{TMEDA}AI(H)(H)Ga{BDI}][B(C₆H₃-3,5-Me₂)₄] 3^{Ga}

Figure S 46: ¹H NMR (400 MHz, C₆D₅Br). # unidentified impurity. * pentane.

Figure S 47: ¹H-¹H COSY spectrum (C₆D₅Br).

Figure S 48: $^{1}H-^{1}H$ NOESY spectrum (C₆D₅Br).

Figure S 49: Expanded ¹H-¹H NOESY spectrum with NOE couplings highlighted according to the following scheme: Green = $GaH \leftrightarrow HAI$. Blue = $GaH \leftrightarrow H_3C^{(Dipp)}$ Red = $AIH \leftrightarrow H_3C^{(TMEDA)}$.

Figure S 50: ${}^{13}C{}^{1}H$ NMR (101 MHz, C₆D₅Br).

Figure S 51: ${}^{13}C-{}^{1}H$ HSQC spectrum (C₆D₅Br).

Figure S 52: ¹³C-¹H HMBC spectrum (C₆D₅Br).

Figure S 53: $^{11}B\{^{1}H\}$ NMR (128 MHz, $C_{6}D_{5}Br).$

Figure S 54: IR spectrum (KBr pellet) of **3**^{Ga}.

2.15 In situ NMR spectra of the reaction of $\mathbf{3}^{Ga}$ with THF-d₈

Figure S 55: 1 H NMR (400 MHz, THF-d₈) of the reaction mixture.

Figure S 56: Stacked expanded ¹H NMR spectra (400 MHz, THF-d₈) of **1**·thf₂ (top), I^{Ga} (centre), and **3**^{Ga} (bottom).

2.16 Synthesis of [(IMe₄)₂AI(H)(H)AI{BDI}][B(C₆H₃-3,5-Me₂)₄] **4**^{AI}

NMR scale reaction: A J. Young's NMR tube was charged with 20 mg 3^{AI} (0.0196 mmol) and 5 mg IMe₄ (0.0392 mmol) and 0.6 ml of THF-d₈ was added. Analysis of the resulting yellow solution by ¹H NMR spectroscopy showed quantitative conversion of the starting compounds to **4**^{AI} and uncomplexed TMEDA.

From 3^{AI}: THF (0.6 ml) was added to a mixture of 40 mg 3^{AI} (0.0392 mmol) and 10 mg IMe₄ (0.0804 mmol) and the resulting bright yellow solution stirred for 30 minutes. Solvent was removed under vacuum, yielding a yellow residue, which was washed with two portions of npentane and recrystallised by slowly cooling a saturated toluene solution from 65°C to room temperature. Yellow block-like single crystals were suitable for X-ray diffraction analysis were collected by decantation, washed with *n*-pentane, and vacuum dried to obtain the title compound. Yield 16 mg, 56%.

From 2: In the glovebox, 3 ml toluene was added to a mixture of 147 mg 2 (0.206 mmol) and 100 mg I^{AI} (0.217 mmol*) in a screw-cap vial. The reaction mixture was shaken vigorously for one minute, upon which a clear yellow solution was formed. The sample was transferred to the freezer, and cooled to -40°C overnight. A thick, bright yellow slurry of microcrystalline 4^{AI} in toluene was obtained, and washed with 5 ml cold toluene over a filter-frit, followed by 1 ml

n-pentane, and vacuum dried to obtain pure $\mathbf{4}^{AI}$ as a yellow powder. Yield 144 mg, 61%.*In our hands, \mathbf{I}^{AI} prepared from [Cp*AI]₄ by the reported literature procedure³ was often found to contain residual [Cp*AI]₄ (approx. 5%) following crystallisation of the BDI-complex from the crude product mixture. [Cp*AI]₄ is unreactive towards **2** and the minor impurity could be straightforwardly removed from the product during the workup procedure.

¹H NMR (400 MHz, THF- d_8) δ 7.33 – 7.01 (m, 6H, NC₆ H_3), 6.91 (m, 8H, *ortho*-BC₆ H_3), 6.28 (s, 4H *para*-BC₆ H_3), 5.27 (s, 1H, *H*C{C(CH₃)Ndipp}₂), 4.75 (s, br, 1H, (BDI)AI*H*), 3.86 (s, br, 1H, (NHC)₂AI*H*), 3.48 (hept, *J* = 6.5 Hz, 2H, *H*C(CH₃)₂), 3.19 (hept, *J* = 6.7 Hz, 2H, *H*C(CH₃)₂), 3.08 (s, 12H, NC H_3^{NHC}), 2.00 (s, 24H, BAr-C H_3), 1.82 (s, 12H CC H_3^{NHC}), 1.74 (s, 6H, HC{C(C H_3)Ndipp}₂), 1.22 (d, *J* = 6.8 Hz, 12H, HC(C H_3)₂), 1.10 (d, *J* = 6.7 Hz, 6H, HC(C H_3)₂), 0.89 (d, *J* = 6.7 Hz, 6H, HC(C H_3)₂).

¹³C{¹H} NMR (101 MHz, THF- d_8) δ 171.49 (HC{C(CH₃)Ndipp}₂), 166.18 (*br*, *C*^{carbene}), 165.73 (q, *J* = 49.2 Hz, *ipso*-BC₆H₃), 146.67 (*ortho*-NC₆H₃), 144.37 (*ortho*-NC₆H₃), 143.38 (*ipso* - NC₆H₃), 135.57 (m (partially resolved), *J* = 1.0 Hz, *ortho*-BC₆H₃), 132.94 (q, *J* = 2.9 Hz, *meta*-BC₆H₃), 127.93 (*C*=*C*^{NHC}), 127.79 (*para*-NC₆H₃), 125.39 (*meta*-NC₆H₃), 125.07 (*meta*-NC₆H₃), 123.49 (*para*-BC₆H₃), 98.65 (HC{C(CH₃)Ndipp}₂), 34.65 (NCH₃), 30.38 (HC(CH₃)₂), 28.66 (HC(CH₃)₂), 26.10 (HC(CH₃)₂), 25.06 (HC(CH₃)₂), 24.39 (HC(CH₃)₂), 24.00 (HC(CH₃)₂), 23.85 (HC{C(CH₃)Ndipp}₂), 22.36 (BC₆H₃CH₃), 8.45 (CCH₃^{NHC}).

¹¹B{¹H} NMR (128 MHz, THF-*d*₈) δ -6.90.

IR spectroscopy (KBr pellet): v = 1777, 1702 cm⁻¹ (Al-H).

Elemental analysis calculated for C₇₅H₁₀₃Al₂BN₆: C 78.10, H 9.00, N 7.29%. Found: C 78.27, H 8.95, N 6.89%.

2.17 In situ ¹H NMR spectrum (400 MHz, THF-d₈) of the reaction between 3^{AI} and

Figure S 57: In situ ¹H NMR spectrum (400 MHz, THF-d₈) of the reaction between 3^{AI} and IMe₄ to give 4^{AI} and TMEDA stacked above the NMR spectrum of pure TMEDA in the same solvent.

2.18 NMR and IR spectra of [(IMe₄)₂AI(H)(H)AI{BDI}][B(C₆H₃-3,5-Me₂)₄] 4^{AI}

Figure S 58: ¹H NMR spectrum of 3^{AI} (THF-d₈, 400 MHz).* Residual toluene of crystallisation. # unidentified impurity.

Figure S 59: ¹H-¹H COSY NMR spectrum (THF-d₈).

Figure S 60: ¹H-¹H NOESY NMR spectrum (THF-d₈).

Figure S 61: Expanded ¹H-¹H NOESY NMR spectrum (THF-d₈), showing ligand-hydride through-space couplings.

Figure S 62: ¹³C{¹H} NMR (101 MHz, THF-*d*₈).

Figure S 63: ¹³C-¹H HSQC NMR spectrum (THF-d₈).

-6.90

Figure S 64: ¹³C-¹H HMCC NMR spectrum (THF-d₈).

LM397.41.fid B11-CPD THF C:\\ LMorris 49

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 f1 (ppm)

Figure S 65: ¹¹B{¹H} NMR (128 MHz, THF-*d*₈)

Figure S 66: IR spectrum (KBr pellet) of 4^{AI}.

2.19 Reaction of 3Ga with IMe4: in situ NMR analysis of

 $[(IMe_4)_2AI(H)(H)Ga\{BDI\}][B(C_6H_3-3,5-Me_2)_4]$ **4**^{Ga} and crystallisation of **2**.

A J. Young's NMR tube was charged with 20 mg 3^{Ga} (0.0188 mmol) and 5 mg IMe₄ (0.0402 mmol) and 0.6 ml C₆D₆ was added. On mixing, all solid dissolved, and a pale-yellow solution formed. The reaction was monitored by ¹H NMR spectroscopy, showing a 2:3 mixture of I^{Ga} and 4^{Ga} with quantitative release of TMEDA after 15 minutes at room temperature, a 2:1 mixture after 24 hours at room temperature, and quantitative conversion to I^{Ga} after a further 60 minutes at 60°C. On cooling the solution back to room temperature, colourless plate-like single crystals of 2 suitable for X-ray diffraction analysis were deposited from the reaction mixture, and could be isolated in 30% crystalline yield (4 mg) following decantation and vacuum drying.

¹H NMR characterisation of 4^{Ga} from *in situ* analysis of reaction mixture. Resonances corresponding to decomposition products **2** and I^{Ga} are labelled as such. Integration for resonances corresponding to the borate anion refer to the total borate in solution, as the mixture includes the cations of both 4^{Ga} and **2**.¹H NMR (400 MHz, C₆D₆) δ 7.64 (s, 18H, *ortho*-BC₆H₃), 7.17 (s, 4H, NC₆H₃, overlaps with C₆D₅H), 7.04-6.86 (m, 7H, NC₆H₃), 6.63 (*para*-BC₆H₃), 5.96 (d, ³J = 5.7 Hz, 1H, GaH), 5.20 (s, 1H, I^{Ga}), 4.86 (s, 1H, *H*C{C(CH₃)Ndipp}₂), 4.29 (br, 1H, AIH), 3.99 (br, 1H, AIH, **2**), 3.53 (hept, *J* = 6.8 Hz, 2H, *H*C(CH₃)₂), 3.24 (hept, *J* = 6.8 Hz, 2H, *H*C(CH₃)₂), 3.15 (hept, *J* = 6.8 Hz, 3H, I^{Ga}), 2.82 (s, 8H, **2**), 2.80 (s, 3H, free-NHC), 2.72 (s, 12H, NCH₃^{NHC}), 2.35 (s, 9H, TMEDA), 2.20 (s, 55H, BAr-CH₃), 2.12 (s, 28H,

TMEDA), 1.72 (s, 4H, I^{Ga}), 1.53 (s, 6H, HC{C(CH₃)Ndipp}₂), 1.35-1.25 (overlapped CCH₃^{NHC}, I^{Ga} , **2**), 1.23 (d, J = 6.8 Hz, 6H, HC(CH₃)₂), 1.17-1.10 (overlapped doublets, I^{Ga} , HC(CH₃)₂), 0.84 (d, J = 6.7 Hz, 6H, HC(CH₃)₂).

¹³C NMR characterisation of $\mathbf{4}^{Ga}$ from *in situ* analysis of reaction mixture. ¹³C NMR (101 MHz, C₆D₆) δ 168.22 (HC{C(CH₃)Ndipp}₂), 165.62 (q, ³J_(C-B) = 49.3 Hz, *ipso*-BC₆H₃), 163.64 (I^{Ga}), 162.77 (Al<u>C</u>^{NHC}), 159.97 (**2**), 145.43 (*ortho*-Ndipp), 144.56 (*ipso*-Ndipp), 143.76 (I^{Ga}), 143.22 (*ortho*-Ndipp), 143.04 (I^{Ga}), 135.37 (*ortho*-BC₆H₃), 133.42 (q, unresolved, ²J_(B-C) = 3.1 Hz, *ortho*-BC₆H₃) 127.45 (*C*=*C*^{NHC}), 126.54 (Ndipp), 126.30 (Ndipp), 124.39 (Ndipp), 124.01 (I^{Ga}), 123.75 (*para*-BC₆H₃), 99.57 (I^{Ga}), 96.15 (HC{C(CH₃)Ndipp}₂), 58.37 (TMEDA), 46.05 (TMEDA), 33.95 (NCH₃^{NHC}), 33.55 (**2**), 29.40 (HC(CH₃)₂), 28.65 (I^{Ga}), 27.78 (HC(CH₃)₂), 25.58 (HC(CH₃)₂), 24.78 (HC(CH₃)₂), 23.93 (I^{Ga}), 23.87 (I^{Ga}), 23.72 (HC(CH₃)₂), 23.37 (HC{C(CH₃)Ndipp}₂), 22.30 (BAr-CH₃), 7.95 (NCH₃^{NHC} **4**^{Ga} or **2**), 7.80 (NCH₃^{NHC} **4**^{Ga} or **2**).

¹¹B{¹H} NMR (128 MHz, C_6D_6) δ -6.17.

thereof.

Figure S 67: Stacked ¹H NMR spectra (400 MHz, C_6D_6) of the reaction between **3**^{Ga} and **IMe**₄ after 15 minutes and 24 hours at room temperature and after a further 60 minutes at 60°C, with spectra of pure TMEDA and **I**^{Ga} in the same solvent for comparison.

Figure S 68: Expanded stacked *in situ* ¹H NMR spectra (400 MHz, C₆D₆) of the reaction between 3^{Ga} and **IMe**₄ after 15 minutes and 24 hours at room temperature and after a further 60 minutes at 60°C (top to bottom respectively).

Figure S 69: *in situ* ¹H NMR spectrum (400 MHz, C_6D_6) of the reaction between **3**^{Ga} and **IMe**₄ to give compound **4**^{Ga}, **I**^{Ga} (*), TMEDA (labelled), and **2** (§).

Figure S 70: *in situ* ¹H-¹H COSY NMR spectrum (C₆D₆) of the reaction between 3^{Ga} and IMe_4 to give compound 4^{Ga} .

Figure S 71: Figure S 72: *in situ* ¹H NMR spectrum (400 MHz, C₆D₆) of the reaction between 3^{Ga} and **IMe**₄ to give compound 4^{Ga} , I^{Ga} (*), TMEDA (labelled), and **2** (§).

Figure S 73: *in situ* ¹³C-¹H HSQC NMR spectrum (C₆D₆) of the reaction between 3^{Ga} and IMe₄ to give compound 4^{Ga} .

Figure S 74: in situ ¹³C-¹H HSQC NMR spectrum (C₆D₆) of the reaction between **3**^{Ga} and **IMe**₄ to give compound 4Ga.

LM422.15.fid B11-CPD C6D6 C:\\ LMorris 2

Figure S 75: in situ ¹¹B NMR spectrum (128 MHz, C₆D₆) of the reaction between **3**^{Ga} and **IMe**₄ to give compound 4^{Ga}.

Figure S 76: ¹H NMR spectrum (400 MHz, THF-d₈, 6.5 mg/ml) from crystals of compound **2** isolated from the reaction between 3^{Ga} and **IMe**₄.

3 X-ray crystallography

X-ray diffraction data were collected on an Eulerian 4-circle diffractometer STOE STADIVARI in ω -scan mode with Cu-K α radiation at 100 K, with the exception of compound 4^{AI}, which was collected at 150 K due to a phase transition below this temperature. The structures were solved by direct methods using SHELXT.⁹ All refinements were carried out against F 2 with ShelXL¹⁰ as implemented in the program system Olex2.¹¹ In all cases, metal-bound hydrides were located from the Fourier difference map and refined freely. The hydrogen atoms bound to C3 in compounds 3^{AI}, 3^{Ga}, and 4^{AI} were also located in the Fourier difference map and freely refined. Each crystal structure contained one cationic metal-complex and one borate anion per asymmetric unit. In addition, the crystal structure of 1·thf₂ also contained one THF molecule, for which the C49A/C49B carbon atom was modelled account for a 0.278:0.722 disorder. The crystal structure of 4^{AI} additionally contained half a molecule of toluene per asymmetric unit, which was disordered with 0.5:0.5 occupancy across a symmetry element and modelled using the Fragment DB plugin available in Olex2.

Identification code	1 ⋅ thf₂	2	3 ^{AI}	3 ^{Ga}	4 ^{AI}
Empirical formula	C ₅₀ H ₇₈ AIBN ₂ O ₃	C ₄₆ H ₆₂ AIBN ₄	C ₆₇ H ₉₅ Al ₂ BN ₄	C ₆₇ H ₉₅ AlBGaN ₄	C ₁₅₇ H ₂₁₄ Al ₄ B ₂ N ₁₂
Formula weight	792.93	708.78	1021.23	1063.97	2398.93
Temperature/K	100(2)	100(2)	100 (2)	100(2)	150(2)
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
Space group	P2 ₁	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c	P-1
a/Å	12.966(3)	16.068(3)	16.022(3)	15.996(3)	12.130(2)
b/Å	15.946(3)	12.667(3)	20.090(4)	20.151(4)	16.522(3)
c/Å	12.986(3)	22.560(5)	19.443(4)	19.375(4)	20.716(4)
α/°	90	90	90	90	96.05(3)
β/°	117.09(3)	109.03(3)	98.52(3)	98.43(3)	102.03(3)
γ/°	90	90	90	90	108.20(3)
Volume/ų	2390.6(10)	4340.8(17)	6189(2)	6178(2)	3791.8(15)
Z	2	4	4	4	1
$ ho_{calc}g/cm^3$	1.102	1.085	1.096	1.144	1.051
µ/mm ⁻¹	0.675	0.657	0.728	1.051	0.667
F(000)	868.0	1536.0	2224.0	2296.0	1302.0
Crystal size/mm ³	0.54 × 0.1 × 0.05	0.2 × 0.15 × 0.06	0.38 × 0.38 × 0.29	0.41 × 0.35 × 0.34	0.47 × 0.297 × 0.2
Radiation	CuKα (λ = 1.54178)	Cu Kα (λ = 1.54178)	CuKα (λ = 1.54178)	CuKα (λ = 1.54178)	Cu Kα (λ = 1.54178)
2O range for data collection/°	7.646 to 144.242	8.118 to 143.998	5.578 to 144.184	6.364 to 144.998	4.436 to 144.268
Index ranges	-15 ≤ h ≤ 15, -18 ≤ k ≤ 13, -15 ≤ l ≤ 15	-18 ≤ h ≤ 19, -7 ≤ k ≤ 15, -27 ≤ l ≤ 26	-11 ≤ h ≤ 19, -24 ≤ k ≤ 20, -22 ≤ l ≤ 23	-16 ≤ h ≤ 19, -24 ≤ k ≤ 22, -23 ≤ l ≤ 13	-14 ≤ h ≤ 14, -19 ≤ k ≤ 13, -24 ≤ l ≤ 25
Reflections collected	58430	60757	78881	75886	94792
Independent reflections	6155 [R _{int} = 0.0580, R _{sigma} = 0.0436]	8449 [R _{int} = 0.0490, R _{sigma} = 0.0360]	12065 [R _{int} = 0.0248, R _{sigma} = 0.0157]	12068 [R _{int} = 0.0235, R _{sigma} = 0.0158]	14496 [R _{int} = 0.0420, R _{sigma} = 0.0322]
Data/restraints/parameters	6155/367/545	8449/0/493	12065/0/698	12068/0/698	14496/136/860
Goodness-of-fit on F ²	1.004	0.972	1.013	1.039	0.979
Final R indexes [I>=2σ (I)]	R ₁ = 0.0454, wR ₂ = 0.1080	R ₁ = 0.0380, wR ₂ = 0.0959	R ₁ = 0.0364, wR ₂ = 0.0936	R ₁ = 0.0372, wR ₂ = 0.0965	R ₁ = 0.0481, wR ₂ = 0.1304
Final R indexes [all data]	R ₁ = 0.0522, wR ₂ = 0.1103	R ₁ = 0.0605, wR ₂ = 0.1033	R ₁ = 0.0433, wR ₂ = 0.0976	R ₁ = 0.0419, wR ₂ = 0.0994	R ₁ = 0.0668, wR ₂ = 0.1402
Largest diff. peak/hole / e Å ⁻³	0.36/-0.17	0.21/-0.31	0.25/-0.23	0.48/-0.59	0.27/-0.30
Flack parameter	-0.01(4)				

Table S 1: Crystal data and structure refinement.

4 Computational analysis

4.1 Computational details

Calculations were carried out with Gaussian09 at DFT level,¹² using the hybrid functional B3PW91.¹³ Aluminium and gallium atoms were treated with small-core Stuttgart Dresden relativistic effective pseudopotentials (SDDALL) with additional polarization orbitals.¹⁴ Carbon, hydrogen and nitrogen were treated using the extended all electron Gaussian-Type 6-31G** Pople basis set.¹⁵ Geometry optimizations were computed without symmetry constraints. Bonding were studied using the Natural Bonding Orbital (NBO) analysis.¹⁶

4.2 NBO information for compound **3**^{AI}

Wiberg Bond Indexes (WBI) show that AI-AI interaction as well as the two aluminium-hydride are single bonds, with a value of 0.92 for AI-AI and around 0.7 for the two AI-H. Bond analyses revealed a strong polarisation of the AI-H bond toward the hydride (72 %), shown by the HOMO-7 and -8. A covalent interaction between the two metals (almost 50 % contribution on each aluminium) is observed. The associated σ molecular orbital is the HOMO-1 while the LUMO+1 represent the π interaction between the two metals.

	Netural		NBO					
Complexes	Na Ch	luiai	Bond	Occupan	Center	Hybridation	WE	31
	Cha	arges	Bolia	су	(contribution) (contribution%)		
3AI			Al ₁ -H ₂	1.96	Al ₁ (28%) ; H	2 Al ₁ (s39 p60 d1);	A 1	
					(72%)	H ₂ (s100)	Al ₁ -	0.92
			Al ₃ -H ₄	1.97	Al ₃ (25%); H	4 Al ₃ (s43 p56 d1) ;	Al3	0.73
	AI ₁	1.11			(74%)	H4 (s100)	Al1-H2	0.67
	Al₃	1.09	Al ₁ -Al ₃	1.92	Al ₁ (47%); Al	3 Al ₁ (s37 p63); Al ₃	Al ₃ -H ₄	
	H_2	-0.44			(53%)	(s49 p51)	A 1	2.47
	H ₄ -0.49		Second Order			Al1	2.25	
			Daman	A		Total Energy	Al3	0.81
			Donor	ACC	eptor	(kcal.mol ⁻¹)	П2 Ц	0.76
			Х		Х	Х	114	

Table S 2: NBO information for compound 3	AI
--	----

Figure S 77: Atomic labels for **3**^{AI}

LUMO (152)

HOMO (151)

Figure S 78: Selected orbitals for $\mathbf{3}^{AI}$

4.3 NBO information for compound **3**^{Ga}

Wiberg Bond Indexes (WBI) show that AI-Ga interaction as well as the two aluminium-hydride are single bonds, with a value of 0.9 for AI-AI and 0.80 and 0.68 respectively for the Ga-H and AI-H. Bond analyses revealed that the metal-hydride bonding is polarised toward the hydride. In the case of aluminium, the polarisation is higher (74 % against 67 % with the Ga). The associated molecular orbitals for these two bonds are the HOMO 7 and -11. A covalent interaction between the two metals (almost 50 % contribution on each center) is observed. The associated σ molecular orbital is the HOMO-2 while the LUMO+1 represent the π bonding between the two metals.

	Notural		NBO					
Complexes	Cha	arnes	Bond	Occupan	Center	Hybridation	WE	31
	Charges		Bolia	су	(contribution)	(contribution%)		
3Ga			Ga₁-H₂	1.96	Ga₁ (33%) ;	Ga₁ (s40 p60) ; H₂	Ga₁-	
					H ₂ (67%)	(s100)	Al ₃	0.91
			Al ₃ -H ₄	1.97	Al ₃ (26%) ; H ₄	Al₃ (s44 p55 d1) ;	Ga₁-	0.80
	Ga₁	0.79			(74%)	H4 (s100)	H ₂	0.68
	Al ₃	1.21	Ga₁- Al₃	1.93	Ga₁ (53%) ;	Ga₁ (s40 p59 d1) ;	Al ₃ -H ₄	
	H_2	-0.34			Al₃ (47%)	Al₃ (s47 p53)		2.66
	H_4	-0.48			Second Order		Ga₁	2.26
			Donor	٨٥٥	ontor	Total Energy	Al ₃	0.89
			Donor	ACC	eptor	(kcal.mol ⁻¹)	H ₂	0.77
			Х		X	X	H ₄	

Table S 3: NBO information for compound 3Ga

Figure S 79: Atomic labels for 3^{Ga}

Figure S 80: Selected orbitals for **3**^{Ga}

4.4 NBO information for compound 4^{AI}

Wiberg Bond Indexes (WBI) shows a value of 0.91 for the interaction between the two aluminium atoms suggesting a single bond, that is corroborate by a bond analysis. The Al-Al bonding is covalent with a participation of approximately 50% of each center. The HOMO and HOMO-1 allow to show this σ bonding. Both aluminium-hydride interactions are single bonds strongly polarised on the hydride, that is consistent with lower WBI (0.72 and 0.75). These participations of the hydride can be observed with the HOMO-7 to -10.

	Natural Charges		NBO					
Complexes			Bond	Occupan cy	Center (contribution	Hybridation) (contribution%)	WE	31
4AI			Al ₁ -H ₂	1.97	Al ₁ (27%) ; H ₂ (73%)	Al ₁ (s38 p61 d1) ; H ₂ (s100)	Al ₁ -	0.91
	Alı	1.17	Al ₃ -H ₄	1.96	Al ₃ (29%) ; H ₄ (71%)	Al ₃ (s35 p64 d1) ; H ₄ (s100)	Al ₃ Al ₁ -H ₂	0.72
	Al ₃ H ₂	0.69 -0.45	Al ₁ - Al ₃	1.93	Al ₁ (45%) ; Al (55%)	Al ₁ (s41 p59); Al ₃ (s44 p56)	Al ₃ -H ₄	2.44
	H_4	-0.41		Second Order				2.88
			Donor	Acc	eptor	Total Energy (kcal.mol ⁻¹)		0.80 0.84
			Х		х	Х	114	

Figure S 81: Atomic labels for 4^{AI}

HOMO (186)

HOMO-7 (179)

HOMO-9 (177)

Figure S 82: Selected orbitals for **4**^{AI}

4.5 NBO information for compound **4**^{Ga}

Wiberg Bond Indexes (WBI) suggest a single bond between the two metal centers with a value of 0.92. Bond analysis revealed a covalent bond with a participation of 50% of each center. The HOMO and HOMO-1 show this σ bonding. Aluminium-hydride and gallium-hydride interactions are single bonds strongly polarised on the hydride. In the case of Ga-H bond the polarisation on the hydride is less important than in the case of the Al-H (68% compared to 71%). This is consistent with the WBI (0.76 and 0.80). These participations of the hydride can be observed with the HOMO-7, -9 and -10.

	Natural Charges			NBO				
Complexes			Bond	Occupan cy	Center (contribution)	Hybridation (contribution%)	WE	31
4Ga			AI-H ₅₃	1.96	AI (29%);H₅₃ (71%)	Al ₁ (s36 p63 d1) ; H ₅₃ (s100)	Al- Ga	0.92
	AI	0.80	Ga-H ₅₂	1.97	Ga (32%) ; H ₅₂ (68%)	Ga (s39 p61) ; H ₅₂ (s100)	Ga-	0.76 0.80
	Ga H ₅₂	0.86 -0.36	Al- Ga	1.93	AI (49%) ; AI ₃ (51%)	Al (s41 p59) ; Ga (s45 p55)	П 52	2.89
	H_{53}	-0.40		Second Order			AI	2.62
			Donor	Acc	eptor	Total Energy (kcal.mol ⁻¹)	Ga H ₅₂	0.88 0.84
			Х		Х	Х	H ₅₃	

Figure S 83: Atomic labels for 4^{Ga}

HOMO-7 (179)

HOMO-9 (177)

HOMO -10 (176)

Figure S 84: Selected orbitals for **4**^{Ga}

4.6 Calculated energies

Table S 4: Calculated energies for compounds 3^{M} , 4^{M} , and the products of disproportionation of 4^{M} : 2 and 1^{M} . (M = AI, Ga)

	H (Hartree)	H (kcal.mol-1)	G (Hartree)	G (kcal.mol-1)
3AI	-1590.79	-998223.47	-1590.92	-998303.99
3Ga	-1590.83	-998246.11	-1590.96	-998328.17
4AI	-2009.68	-1261076.73	-2009.84	-1261175.61
4Ga	-2009.72	-1261101.48	-2009.88	-1261201.06
Product- 4Al	-2009.66	15.30	-2009.82	11.26
Product- 4Ga	-2009.73	-2.08	-2009.90	-8.86

4.7 Coordinates of calculated structures

3AI

10	00		
AI	0.567125	13.947900	15.033460
Н	1.151036	14.175833	13.546915
Al	2.643785	13.488341	16.592994
Н	2.917164	13.255122	18.154449
Ν	-0.823483	12.617967	15.005208
Ν	-0.557087	15.433928	15.518542
Ν	3.928293	11.989261	15.899978
Ν	4.249769	14.815843	16.216229
С	-3.152564	11.879719	14.606715
Н	-3.438529	11.933860	13.550223
Н	-4.056245	12.057046	15.194469
Н	-2.787359	10.872121	14.803646
С	-2.119750	12.940102	14.891702
С	-2.596392	14.253535	15.003364
Н	-3.665113	14.378698	14.872249
С	-1.884182	15.414795	15.338913
С	-2.697104	16.678102	15.467673
Н	-2.169074	17.466036	16.004507
Н	-3.646047	16.472998	15.968635
Н	-2.936079	17.054586	14.466754
С	-0.389470	11.246844	14.979427
С	-0.040200	10.641202	13.749369
С	0.473871	9.338423	13.778319

Н	0.740530	8.854007	12.842757
С	0.623760	8.643855	14.972675
Н	1.010709	7.628629	14.968610
С	0.246322	9.242942	16.170792
Н	0.328597	8.680362	17.096747
С	-0.261461	10.546696	16.204801
С	-0.260888	11.317903	12.402089
Н	-0.661963	12.318826	12.589948
С	-1.290584	10.542880	11.562999
Н	-1.516721	11.088547	10.641190
Н	-2.227684	10.389152	12.105263
Н	-0.911263	9.556196	11.276726
С	1.041494	11.494209	11.610328
Н	1.527502	10.533210	11.408763
Н	1.745504	12.137045	12.145554
Н	0.834077	11.965800	10.644402
С	-0.737189	11.133721	17.527804
Н	-0.905559	12.204962	17.373253
С	-2.076368	10.504933	17.949279
Н	-1.963307	9.430758	18.132018
Н	-2.847645	10.631063	17.185266
Н	-2.440251	10.964640	18.874058
С	0.285046	10.985662	18.661145
Н	-0.091594	11.466627	19.569544
Н	1.242005	11.456492	18.415572
н	0.474447	9.936101	18.909864

С	0.127340	16.634886	15.916820
С	0.457229	16.803716	17.285973
С	1.201127	17.931330	17.650693
Η	1.451232	18.090586	18.695133
С	1.607518	18.867787	16.703855
Η	2.177803	19.740152	17.010768
С	1.263461	18.692955	15.369657
Н	1.568487	19.436242	14.638049
С	0.518939	17.584716	14.945193
С	-0.046221	15.839141	18.353276
Н	-0.186336	14.862847	17.872170
С	-1.414693	16.287187	18.894912
Н	-1.771013	15.585846	19.656628
Н	-2.172063	16.339568	18.109944
Н	-1.342121	17.277418	19.357476
С	0.925037	15.646180	19.522714
Н	1.024363	16.552085	20.129715
Н	1.922483	15.345708	19.188376
Н	0.553697	14.859209	20.186235
С	0.137019	17.478360	13.474052
Н	-0.476221	16.580812	13.346682
С	-0.695193	18.690847	13.025353
Н	-0.101517	19.610946	13.036765
Η	-1.563714	18.853431	13.669690
Н	-1.053048	18.545803	12.000973
С	1.364560	17.316004	12.566363

Н	1.054687	17.266316	11.517351
Н	1.904506	16.392815	12.793846
Н	2.055145	18.160786	12.666186
С	3.812041	10.759233	16.722257
Н	3.959682	11.009248	17.774333
Н	4.559746	10.020661	16.408789
Н	2.816031	10.330675	16.592239
С	3.667635	11.639112	14.481952
Н	2.674427	11.193193	14.402157
Н	4.414915	10.921448	14.121584
Н	3.688071	12.529835	13.852347
С	5.283667	12.576516	16.069875
Н	6.035012	11.965873	15.551674
Η	5.518760	12.553365	17.138285
С	5.306666	14.003548	15.550281
Н	5.117317	14.021289	14.473506
Η	6.293658	14.455152	15.710130
С	4.752006	15.360522	17.503250
Η	3.947674	15.908055	17.997632
Н	5.591896	16.042636	17.322285
Η	5.068443	14.551683	18.162310
С	3.858739	15.951181	15.343218
Η	3.435650	15.570899	14.411799
Η	4.729660	16.579087	15.118998
Н	3.103731	16.557530	15.847168

3Ga

100

Ga	0.678623	6.175278	14.955195
Н	1.130004	5.936735	13.430539
AI	2.682903	6.625646	16.532956
Н	2.888097	6.857702	18.098478
Ν	-0.536146	4.641013	15.476116
Ν	-0.803261	7.553135	14.959588
Ν	3.955044	8.117598	15.837062
Ν	4.269380	5.292315	16.177122
С	-2.700585	3.456627	15.409400
Н	-2.971087	3.106995	14.406820
Н	-3.632660	3.674965	15.936060
Н	-2.181523	2.645000	15.919288
С	-1.855546	4.702793	15.288088
С	-2.549038	5.877899	14.953755
Н	-3.618176	5.756180	14.819717
С	-2.085937	7.199249	14.852068
С	-3.143167	8.244340	14.585324
Н	-2.780141	9.259853	14.742530
Н	-4.017935	8.074159	15.217697
Н	-3.476047	8.160513	13.544767
С	0.128425	3.434238	15.867891
С	0.518499	2.487339	14.892086
С	1.260894	1.374920	15.308594
Н	1.562418	0.634533	14.572347

С	1.607878	1.191973	16.641169
Н	2.176645	0.316641	16.942443
С	1.204826	2.124702	17.593200
Н	1.456314	1.959527	18.636558
С	0.462544	3.255607	17.235184
С	-0.712285	1.409000	12.967494
Н	-0.133365	0.479509	12.980936
Н	-1.064181	1.560713	11.941946
Н	-1.585712	1.260966	13.608611
С	0.136426	2.607383	13.422327
Н	-0.466207	3.513031	13.302571
С	1.364986	2.759978	12.514259
Н	1.922201	3.671003	12.751141
Н	1.055607	2.827141	11.466071
Н	2.042861	1.903808	12.603432
С	-1.400090	3.765719	18.855086
Н	-2.158570	3.706302	18.071723
Н	-1.758014	4.468169	19.615116
Н	-1.320939	2.777458	19.320873
С	-0.035840	4.217966	18.306383
Н	-0.182610	5.193521	17.826222
С	0.941739	4.411556	19.470489
Н	1.047680	3.504931	20.075263
Η	0.573545	5.196819	20.137888
Н	1.937193	4.713616	19.130684
С	-0.379024	8.920906	14.936025

С	-0.236820	9.618558	16.161690
С	0.281098	10.918515	16.128541
Н	0.372886	11.477871	17.055687
С	0.655624	11.518857	14.930050
Н	1.049803	12.531312	14.926415
С	0.491542	10.828786	13.734644
Η	0.754449	11.314275	12.798416
С	-0.031609	9.529867	13.706281
С	-2.049010	9.658543	17.907463
Н	-2.414849	9.196202	18.830216
Н	-2.818743	9.535796	17.141448
Н	-1.934584	10.732059	18.093560
С	-0.710511	9.029649	17.484283
Н	-0.879999	7.959152	17.326330
С	0.312079	9.174999	18.617633
Н	0.500949	10.223839	18.869928
Н	1.269764	8.706314	18.370147
Н	-0.063095	8.690514	19.524802
С	-1.305263	9.629341	11.533777
Н	-2.238215	9.773522	12.085620
Н	-1.536813	9.088160	10.610582
Н	-0.933610	10.619987	11.250965
С	-0.265393	8.854866	12.360451
Н	-0.665398	7.854459	12.552775
С	1.028432	8.680014	11.554373
Н	1.511526	9.641274	11.347332

Η	0.812152	8.207600	10.590765
Н	1.741225	8.039267	12.081380
С	3.846383	9.347811	16.662655
Н	2.849915	9.777886	16.539819
Н	4.593061	10.084704	16.343838
Н	4.001455	9.097313	17.713563
С	3.683064	8.472169	14.421064
Н	3.699203	7.583193	13.788713
Н	4.428973	9.189668	14.058479
Н	2.690409	8.921108	14.350041
С	5.311775	7.526038	15.992767
Н	5.564443	7.560214	17.056893
Н	6.056704	8.128560	15.456842
С	5.321565	6.092882	15.487579
Н	5.117191	6.063733	14.413734
Н	6.308223	5.638255	15.639645
С	4.780120	4.774170	17.473101
Н	5.096971	5.596009	18.115893
Н	5.622034	4.092998	17.300115
Н	3.980539	4.232540	17.981173
С	3.872451	4.136987	15.331145
Н	3.113163	3.546907	15.848335
Н	4.740936	3.500372	15.124455
н	3.454655	4.495913	14.389014

4AI

118

AI	3.071885	5.514548	5.857724
Н	1.596113	5.075362	6.373140
Al	4.255465	3.498543	4.615372
Н	5.844302	3.509007	4.340552
Ν	4.090775	6.184717	7.368151
Ν	2.815715	7.250108	5.005991
Ν	2.816516	1.154114	6.023239
Ν	4.919878	1.025172	6.399265
Ν	2.412510	3.007332	2.119191
Ν	4.255050	1.932585	1.948802
С	4.406810	7.838032	9.179192
Н	3.636355	7.553396	9.904969
Н	4.552625	8.916689	9.254022
Н	5.325970	7.329899	9.473018
С	3.944722	7.448496	7.797218
С	3.352693	8.457166	7.028382
Н	3.312172	9.437942	7.486814
С	2.902345	8.390843	5.699379
С	2.491537	9.704223	5.080319
Н	2.551995	9.691628	3.991900
Н	3.112716	10.515206	5.466014
Н	1.454684	9.930599	5.351703
С	4.908652	5.281933	8.134522
С	4.332372	4.486754	9.149475
С	5.166371	3.625559	9.872318
---	----------	----------	-----------
Н	4.739510	3.015427	10.663911
С	6.531254	3.561484	9.620635
Н	7.167233	2.911083	10.215691
С	7.084512	4.351030	8.616788
Н	8.154046	4.305222	8.433046
С	6.295268	5.213632	7.849358
С	2.853063	4.554200	9.503440
Н	2.401543	5.356619	8.910923
С	2.626927	4.875754	10.988514
Н	2.964417	4.059312	11.635915
Н	1.560612	5.028221	11.184819
Н	3.160549	5.779156	11.297891
С	2.129162	3.255216	9.125208
Н	2.219969	3.059331	8.053542
Н	1.063535	3.327576	9.368118
Н	2.541849	2.397948	9.669210
С	6.945749	6.087551	6.782883
Н	6.150272	6.412233	6.102982
С	7.580796	7.346863	7.396424
Н	6.846767	7.978065	7.902378
Н	8.055325	7.951426	6.616282
Н	8.352432	7.077128	8.126042
С	7.992179	5.340918	5.947060
Н	8.870769	5.061597	6.538585
н	8.348070	5.987361	5.137994

Н	7.574382	4.438908	5.492749
С	2.319192	7.274496	3.657113
С	3.244877	7.187779	2.589419
С	2.752819	7.206043	1.280698
Н	3.450070	7.161915	0.449445
С	1.388724	7.303038	1.022307
Н	1.028103	7.336477	-0.002345
С	0.491527	7.371638	2.081619
Н	-0.572600	7.449809	1.875565
С	0.927609	7.356772	3.412497
С	4.745728	7.148886	2.839890
Н	4.896395	6.758955	3.853281
С	5.346558	8.562997	2.794637
Н	5.201308	9.017633	1.808388
Н	6.422910	8.528836	2.993798
Н	4.890405	9.222478	3.537591
С	5.497868	6.222518	1.878275
Н	5.064396	5.217656	1.863436
Н	6.542600	6.131676	2.190915
Н	5.501713	6.606474	0.852412
С	-0.112531	7.438353	4.523923
Н	0.415541	7.530699	5.477809
С	-1.032257	8.659606	4.365757
Н	-1.684857	8.563176	3.491540
Н	-0.468713	9.589836	4.250174
н	-1.678976	8.760645	5.243267

С	-0.954939	6.156232	4.602080
Н	-1.706195	6.243616	5.394160
Н	-0.330869	5.289003	4.834581
Н	-1.485010	5.970166	3.660888
С	3.994216	1.769623	5.747779
С	1.528333	1.611435	5.531252
Н	1.561772	2.696126	5.409520
Н	0.752534	1.379012	6.261624
Н	1.278669	1.132935	4.579699
С	2.995986	0.036688	6.827014
С	1.874929	-0.829940	7.282144
Н	1.175822	-0.288510	7.929448
Н	2.262275	-1.673949	7.855504
Η	1.305185	-1.238485	6.440479
С	4.338431	-0.040135	7.072654
С	5.127938	-1.003604	7.886400
Н	5.857743	-1.551698	7.279996
Н	4.468404	-1.738716	8.350855
Н	5.676441	-0.497431	8.688172
С	6.343059	1.321067	6.452234
Н	6.919860	0.431590	6.187153
Н	6.620855	1.656097	7.454368
Н	6.553692	2.120524	5.742590
С	3.571930	2.764793	2.778243
С	1.351379	3.878835	2.592399
н	0.418536	3.319540	2.702328

Н	1.201106	4.709156	1.899598
Н	1.644471	4.290517	3.557244
С	2.362649	2.346773	0.900698
С	1.206780	2.457372	-0.029698
Н	0.274544	2.115155	0.433183
Н	1.376148	1.847653	-0.918795
Н	1.052342	3.490079	-0.361051
С	3.538161	1.657228	0.793468
С	4.054419	0.773874	-0.286878
Н	4.309492	-0.222733	0.089229
Н	4.950590	1.189585	-0.761238
Н	3.300407	0.648299	-1.065816
С	5.564598	1.364446	2.225704
Н	6.212632	1.483687	1.354765
Н	5.478530	0.300477	2.464877
Н	6.000032	1.903113	3.067468

Producst-4AI

118

- C -1.266155 -3.404269 -4.261375
- N -0.109470 -3.991105 -3.773320
- C 0.760025 -3.061793 -3.305703
- N 0.138933 -1.877548 -3.514498
- C -1.106583 -2.054667 -4.096173
- C 0.683168 -0.569403 -3.169557
- C 0.134111 -5.423840 -3.768460

Al	2.628386	-3.425616	-2.527586
С	2.315306	-4.287226	-0.684456
Ν	1.704262	-3.710530	0.376372
С	1.674665	-4.560263	1.470634
С	2.303069	-5.711020	1.077474
Ν	2.682655	-5.514857	-0.242360
С	1.154453	-2.360894	0.380568
С	3.423510	-6.499814	-1.016825
С	1.046196	-4.185701	2.765294
С	2.588168	-6.968395	1.820096
С	-1.997965	-0.918239	-4.451417
С	-2.388880	-4.188238	-4.843402
AI	-0.327185	1.497212	0.553774
Ν	-1.056554	3.252660	-0.003426
С	-1.400200	3.290767	-1.401912
С	-0.428521	3.693520	-2.346406
С	-0.758012	3.635063	-3.704580
С	-2.009849	3.202922	-4.127370
С	-2.958861	2.821190	-3.185934
С	-2.679407	2.855415	-1.815350
С	0.954525	4.180213	-1.935222
С	2.032549	3.141992	-2.279411
С	-3.756470	2.429945	-0.826670
С	-4.046872	0.925717	-0.932346
Ν	-0.089905	2.170976	2.402588
С	0.473036	1.184915	3.288104

С	-0.386073	0.307722	3.988484
С	0.187550	-0.688466	4.785268
С	1.567530	-0.823170	4.892915
С	2.399676	0.046291	4.196613
С	1.877719	1.063540	3.390000
С	-1.902867	0.407444	3.897290
С	-2.482502	-0.755664	3.078399
С	2.834040	1.995212	2.657348
С	3.568881	1.255418	1.529927
С	-0.384944	3.385185	2.891374
С	-0.936376	4.404403	2.105525
С	-1.252800	4.349886	0.742378
С	-1.830454	5.590854	0.113178
С	-0.125564	3.693058	4.343408
С	-2.570400	0.483134	5.277543
С	3.835912	2.666071	3.607753
С	1.301559	5.543406	-2.550773
С	-5.049012	3.242623	-0.990535
Н	3.356539	-2.026285	-2.293172
Н	3.300237	-4.541235	-3.457550
Н	-0.393173	4.723346	4.581087
Н	0.928025	3.537345	4.593549
Н	-0.700558	3.024525	4.991408
Н	-1.137348	5.342461	2.607708
Н	-1.176210	5.962809	-0.681208
Н	-1.964151	6.381753	0.852283

Н	-2.796221	5.378777	-0.354591
Н	-0.459492	-1.362355	5.340651
Н	1.993612	-1.591415	5.533000
Н	3.477540	-0.055591	4.291152
Н	-2.144769	1.332499	3.364289
Н	-2.443716	-0.446124	5.842840
Н	-3.646437	0.653113	5.168417
Н	-2.160939	1.296458	5.884566
Н	-2.059792	-0.774137	2.067456
Н	-3.570602	-0.663662	2.991940
Н	-2.266200	-1.718343	3.555806
Н	2.238221	2.788719	2.194666
Н	3.334001	3.190426	4.426828
Н	4.442977	3.396506	3.062998
Н	4.523205	1.939251	4.053305
Н	4.172201	0.430722	1.925923
Н	4.242013	1.934386	0.995950
Н	2.860045	0.839180	0.805864
Н	-0.023504	3.946168	-4.442658
Н	-2.250602	3.179910	-5.186833
Н	-3.942905	2.501371	-3.518794
Н	0.955087	4.301515	-0.847200
Н	1.406880	5.484360	-3.639127
Н	2.253953	5.907344	-2.151699
Н	0.536584	6.295694	-2.334662
н	1.830022	2.185132	-1.785627

Н	3.020508	3.487738	-1.957111
Н	2.078320	2.964499	-3.359867
Н	-3.375396	2.618456	0.182218
Н	-5.523132	3.059715	-1.960687
Н	-4.866944	4.318742	-0.911575
Н	-5.771732	2.966639	-0.215657
Н	-4.792186	0.623192	-0.188794
Н	-3.138257	0.337159	-0.763789
Н	-4.442741	0.667956	-1.921387
Н	0.062323	-2.379058	0.359122
Н	1.523494	-1.822109	-0.491015
Н	1.479909	-1.824070	1.272839
Н	1.501500	-3.288725	3.198424
Н	1.155272	-4.997174	3.486942
Н	-0.024394	-3.984154	2.649962
Н	2.131288	-7.840244	1.338962
Н	2.189779	-6.906460	2.834115
Н	3.664125	-7.159083	1.900167
Н	2.857905	-7.432827	-1.083604
Н	4.388286	-6.701554	-0.544459
Н	3.593752	-6.103267	-2.017390
Н	0.175809	-0.157177	-2.289838
Н	0.556337	0.113983	-4.010892
Н	1.745551	-0.679148	-2.954015
Н	-2.167314	-0.250912	-3.600849
н	-2.968358	-1.289746	-4.785836

- H -1.577914 -0.314325 -5.263669
- H -2.764189 -4.944244 -4.145174
- H -2.094284 -4.702157 -5.765498
- H -3.221043 -3.526986 -5.090579
- H -0.106449 -5.846202 -4.746348
- H -0.473812 -5.918580 -3.005558
- H 1.191828 -5.598026 -3.569224

4Ga

118

С	3.526287	1.687688	0.762873
Ν	4.234101	1.930179	1.930572
С	3.551861	2.754191	2.768333
Ν	2.402734	3.025432	2.103794
С	2.358148	2.390288	0.872168
С	1.346671	3.900868	2.583059
С	5.534798	1.342720	2.210212
AI	4.243730	3.444140	4.606670
С	3.988927	1.736281	5.756911
Ν	2.818416	1.106818	6.030824
С	3.008174	0.008436	6.857426
С	4.349504	-0.040886	7.118314
Ν	4.920260	1.020377	6.430919
С	1.526982	1.532675	5.519469
С	6.337155	1.345409	6.498914
С	1.897009	-0.868566	7.316754

С	5.145675	-0.974851	7.959432
С	1.214246	2.535687	-0.068061
С	4.042785	0.820980	-0.330721
Ga	3.035619	5.397916	5.832382
Ν	2.791448	7.246901	4.955815
С	2.295480	7.284419	3.614811
С	3.217557	7.183944	2.544097
С	2.724605	7.197576	1.235777
С	1.360557	7.301870	0.977831
С	0.465597	7.383604	2.038433
С	0.903998	7.373662	3.368517
С	4.717402	7.133587	2.798426
С	5.472281	6.227915	1.819375
С	-0.131609	7.463594	4.483105
С	-0.976476	6.183645	4.572056
Ν	4.120280	6.157420	7.396995
С	4.939437	5.272062	8.169585
С	4.364716	4.472309	9.183012
С	5.198008	3.613035	9.908326
С	6.564210	3.551889	9.660322
С	7.117250	4.343422	8.657680
С	6.327268	5.203851	7.888388
С	2.884632	4.541008	9.531962
С	2.163277	3.235513	9.171488
С	6.975995	6.080283	6.823745
С	8.014017	5.333598	5.977542

С	3.951781	7.424871	7.787489
С	3.342920	8.416437	7.005437
С	2.888229	8.364580	5.675614
С	2.481440	9.694187	5.080975
С	4.407102	7.858399	9.162397
С	2.655953	4.887636	11.010768
С	7.618540	7.332013	7.444396
С	5.323763	8.546077	2.787989
С	-1.047922	8.686827	4.323338
Н	1.557538	5.083474	6.420959
Н	5.827341	3.509348	4.344271
Н	3.587906	7.697249	9.873127
Н	4.650762	8.922210	9.177519
Н	5.264650	7.288917	9.521195
Н	3.296375	9.397564	7.463658
Н	2.520587	9.695106	3.991351
Н	3.121503	10.492270	5.462868
Н	1.453542	9.931098	5.376617
Н	4.770494	3.003230	10.700109
Н	7.200638	2.904030	10.257733
Н	8.187630	4.301390	8.476884
Н	2.435337	5.335036	8.927015
Н	3.004224	4.087988	11.673411
Н	1.588324	5.032584	11.206306
Н	3.180303	5.803347	11.298692
Н	2.259905	3.020685	8.103389

Н	1.096250	3.309928	9.407809
Н	2.573399	2.386917	9.730825
Н	6.177945	6.413296	6.151168
Н	6.889408	7.952825	7.969933
Η	8.081022	7.948620	6.666387
Н	8.400271	7.053949	8.160102
Η	8.891967	5.040612	6.563433
Н	8.372781	5.983965	5.172857
Н	7.588413	4.438275	5.516544
Н	3.420630	7.143760	0.403940
Н	0.998805	7.331992	-0.046567
Н	-0.598425	7.467653	1.833446
Н	4.861279	6.722384	3.804430
Н	5.184189	9.023339	1.811601
Н	6.399148	8.503739	2.991219
Н	4.866290	9.189223	3.544022
Н	5.032902	5.226364	1.772601
Н	6.513880	6.122557	2.138213
Н	5.487981	6.638670	0.803998
Н	0.401598	7.560456	5.433539
Н	-1.700597	8.591743	3.448962
Н	-0.479582	9.613977	4.207026
Н	-1.694411	8.791959	5.200627
Н	-1.724138	6.275451	5.367096
Н	-0.353825	5.315037	4.805061
Н	-1.510975	5.992909	3.634282

Η	1.546943	2.612932	5.364908
Н	0.750826	1.312856	6.253321
Н	1.287507	1.023542	4.581357
Н	1.182509	-0.327540	7.947291
Н	2.292458	-1.695462	7.909088
Н	1.343117	-1.301724	6.476864
Н	5.891028	-1.522332	7.371765
Н	4.493057	-1.711561	8.430914
Н	5.676206	-0.443384	8.756786
Н	6.934286	0.460292	6.267080
Н	6.590489	1.712893	7.496177
Н	6.546336	2.129800	5.772532
Н	0.409174	3.347576	2.682950
Н	1.206559	4.740170	1.898970
Н	1.638824	4.301147	3.552679
Н	0.273181	2.193939	0.376794
Н	1.386475	1.944752	-0.969156
Н	1.076136	3.577701	-0.376350
Н	4.275780	-0.188541	0.024737
Н	4.951967	1.232790	-0.783180
Н	3.297549	0.726920	-1.122339
Н	6.189899	1.463626	1.345006
Н	5.434441	0.277473	2.437411
н	5.973945	1.866092	3.059599

Product-4Ga

118

С	-1.345784	-3.433398	-4.245511
Ν	-0.236619	-4.084706	-3.728984
С	0.708638	-3.205766	-3.315037
Ν	0.182662	-1.988062	-3.585465
С	-1.076714	-2.094268	-4.155388
С	0.834018	-0.711242	-3.321340
С	-0.110115	-5.530181	-3.647504
AI	2.564157	-3.678917	-2.564124
С	2.260052	-4.492235	-0.697569
Ν	1.717516	-3.867165	0.373608
С	1.699156	-4.690071	1.488719
С	2.262646	-5.874521	1.097367
Ν	2.593899	-5.724018	-0.241392
С	1.220230	-2.498551	0.367017
С	3.260306	-6.757040	-1.021336
С	1.142072	-4.261291	2.799214
С	2.526697	-7.125745	1.857794
С	-1.873255	-0.909270	-4.572002
С	-2.532906	-4.154767	-4.778678
Ga	-0.204691	1.355851	0.398476
Ν	-0.999216	3.245986	-0.123040
С	-1.358401	3.310766	-1.507899
С	-0.400336	3.731905	-2.459924
С	-0.739522	3.680613	-3.815720

С	-1.988945	3.235951	-4.233246
С	-2.925194	2.834320	-3.286988
С	-2.634866	2.861321	-1.918532
С	0.980185	4.227583	-2.051794
С	2.063159	3.192572	-2.390427
С	-3.695620	2.414309	-0.922109
С	-3.963760	0.906055	-1.030710
Ν	0.031605	2.106956	2.363521
С	0.601673	1.136225	3.247571
С	-0.245954	0.255613	3.960160
С	0.337485	-0.739247	4.750999
С	1.719038	-0.874520	4.841421
С	2.541220	-0.007188	4.130461
С	2.008291	1.008599	3.329230
С	-1.763236	0.352281	3.878761
С	-2.343427	-0.805514	3.052518
С	2.952776	1.938247	2.579491
С	3.696188	1.190763	1.462585
С	-0.286142	3.321472	2.822515
С	-0.850884	4.332085	2.029868
С	-1.182684	4.307885	0.666417
С	-1.772780	5.569946	0.084173
С	-0.040183	3.652733	4.275277
С	-2.426224	0.412979	5.261631
С	3.948561	2.634479	3.518105
С	1.322189	5.588812	-2.673872

С	-5.002838	3.206011	-1.070488
Н	3.379215	-2.322216	-2.364720
Н	3.138480	-4.846104	-3.494961
Н	-0.293304	4.691148	4.492591
Н	1.006341	3.482717	4.544629
Н	-0.637972	3.006843	4.926194
Н	-1.057038	5.263939	2.541803
Н	-1.127486	5.970008	-0.704100
Н	-1.901704	6.336905	0.848931
Н	-2.743138	5.370120	-0.379901
Н	-0.302563	-1.411876	5.316236
Н	2.153520	-1.640319	5.478826
Н	3.620534	-0.108841	4.210005
Н	-2.009015	1.280918	3.354339
Н	-2.296240	-0.521313	5.818084
Н	-3.502951	0.582795	5.158621
Н	-2.014795	1.221138	5.873990
Н	-1.920484	-0.822138	2.041560
Н	-3.431326	-0.713135	2.963972
Н	-2.128102	-1.771195	3.524540
Н	2.345955	2.717208	2.107017
Н	3.439720	3.170048	4.325362
Н	4.551522	3.359581	2.961621
Н	4.639444	1.920708	3.979255
Η	4.314139	0.382466	1.869697
Н	4.356946	1.870683	0.914536

Н	2.995765	0.748443	0.745612
Н	-0.014389	4.006173	-4.556978
Н	-2.237468	3.218173	-5.290998
Н	-3.908106	2.505030	-3.614522
Н	0.979320	4.354062	-0.964557
Н	1.430974	5.525434	-3.761722
Н	2.271283	5.960531	-2.273952
Н	0.551595	6.336692	-2.462953
Н	1.868614	2.236394	-1.891555
Н	3.050299	3.544425	-2.072137
Н	2.107198	3.007355	-3.469722
Н	-3.307160	2.606176	0.083119
Н	-5.484650	3.017949	-2.035966
Н	-4.835004	4.284324	-0.991319
Н	-5.713133	2.918160	-0.288338
Н	-4.696963	0.587922	-0.281613
Н	-3.046189	0.327512	-0.875018
Н	-4.364069	0.645661	-2.017347
Н	0.127963	-2.478864	0.391549
Н	1.571489	-1.997078	-0.533994
Н	1.603525	-1.954611	1.231964
Н	1.648830	-3.372955	3.190903
Н	1.252265	-5.059447	3.535335
Н	0.075644	-4.021776	2.725372
Н	2.002463	-7.985510	1.426143
н	2.187901	-7.018912	2.889577

- Н 3.594944 -7.367258 1.885379 Н 2.658686 -7.669512 -1.032546 Н 4.239415 -6.981169 -0.590394 Н 3.395067 -6.395164 -2.040292 Н 0.318351 -0.177945 -2.516760 Н 0.823522 -0.097741 -4.224347 Н 1.866702 -0.899242 -3.029338 Н -2.007215 -0.195569 -3.753141 Н -2.863395 -1.219784 -4.910443Н -1.395297 -0.373090 -5.399637 Н -2.967520 -4.831026 -4.034560 H -2.286030 -4.748535 -5.666126 Н -3.307343 -3.442442 -5.067780
- H -0.386690 -5.982771 -4.602025
- H -0.754032 -5.932685 -2.860355
- H 0.930224 -5.779555 -3.437522

5 References

- 1. R. A. Kovar and J. O. Callaway, in *Inorganic Syntheses*, ed. A. G. MacDiarmid, McGraw-Hill Book Company, New York, 1977, vol. 17, ch. 1, pp. 36-42.
- 2. D. Schuhknecht, C. Lhotzky, T. P. Spaniol, L. Maron and J. Okuda, *Angewandte Chemie-International Edition*, 2017, **56**, 12367-12371.
- 3. O. Kysliak, H. Gorls and R. Kretschmer, *Dalton Transactions*, 2020, **49**, 6377-6383.
- 4. N. Kuhn and T. Kratz, *Synthesis-Stuttgart*, 1993, 561-562.
- 5. G. J. Palenik, Acta Crystallographica, 1964, 17, 1573-1574.
- 6. T. D. Humphries, K. T. Munroe, A. Decken and G. S. McGrady, *Dalton Transactions*, 2013, **42**, 6953-6964.
- 7. T. Chu, Y. Boyko, I. Korobkov and G. I. Nikonov, *Organometallics*, 2015, **34**, 5363-5365.
- 8. S. Y. Knjazhansky, I. Y. Nomerotsky, B. M. Bulychev, V. K. Belsky and G. L. Soloveichik, *Organometallics*, 1994, **13**, 2075-2078.

- 9. G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- 10. G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3-8
- 11. O. V. Dolomanov, J. L. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.

12. Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V.; Voth,G.G.A.; Salvador, P.; Dannenberg, J. J.; Dapprich,S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

13. J. P. Perdewand, Y. Wang, *Phys. Rev. B: Condens. Matter*, 1992, **45**, 13244.

14. Ehlers, A., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., Köhler, K., Stegmann, R., Veldkamp, A., & Frenking, G. *Chemical Physics Letters*, 1993, **208**(1-2), 111-114.

- 15. R. Ditchfield, W. J. Hehre, J. A. J. Pople, *Chem. Phys.*, 1971, **54**, 724.
- 16. NBO Version 3.1, Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.