Supporting Information

Voltage-Induced Fluorescence Lifetime Imaging of a BODIPY Derivative in Giant Unilamellar Vesicles (GUVs) as Potential Neuron Membrane Mimics

Dumitru Sirbu, Lingli Zeng, Paul G. Waddell, Nikolai V. Tkachenko, Stanley W. Botchway, Andrew C. Benniston

Table of Contents

Figure S1. ¹ H NMR spectrum recorded at R.T. of aJBD in CDCl ₃
Figure S2. COSY spectra recorded at R.T. of aJBD in CDCl ₃ 9
Figure S3. ¹³ C NMR spectrum recorded at R.T. of aJBD in CDCl ₃ 10
Figure S4 . HSQC spectra recorded at R.T. of aJBD in CDCl ₃ showing proton-to-carbon correlations and their assignments
Figure S5 . HMBC spectrum recorded at R.T. of aJBD in CDCl ₃ showing proton-to-carbon correlations and their assignments
Figure S6. ^{11}B (a) and ^{19}F (b) NMR spectra recorded at R.T. of aJBD in CDCl ₃ 12
Figure S7. Left: Observed (bottom) and theoretical mass spectra for $[M-F]^+$ (top) and $[M+H]^+$ (middle) cations for BD . Right: Full observed mass spectrum of BD
Figure S8. Left: Observed (bottom) and theoretical mass spectra for $[M-F]^+$ (top) and $[M+H]^+$ (middle) cations for aJBD . Note: the m/z 454 peak corresponds to the $[M+Na]^+$ adduct. Right : Full observed mass spectrum of aJBD
Figure S9. Isocratic HPLC trace for aJBD and the solvent blank. Solvent = MeCN/H ₂ O15
Table S1. Crystal data and structure refinement for aJBD
Figure S10. (a) Stick-style structure of the julolidine head group with respect to the BODIPY core showing the out-of-plane nature of the molecule; (b) Perpendicular relationship between the plane of the two fluorine atoms and the plane of the BODIPY core
Figure S11. Crystal packing diagram showing H—F distances between the methylene proton of the
ethyl unit and methylene proton of the CH ₂ Cl ₂ solvate with the BF ₂ group18
Table S2. Selected average bond lengths and bond angles for aJBD
Table S3 . A list of selected UV-Vis absorption and emission spectroscopic data for AJBD andquantum yield measurements in different solvents at R.T. Solvents are arranged in order ofdielectric constants from top to bottom in sequence

Figure S12. Room temperature fluorescence spectra of aJBD in hexane (black) and DMF (red)21
Figure S13. Relationship between fluorescence quantum yield and dielectric constant for aJBD in
various solvents
Figure S14. (a) Plot of fluorescence quantum yields to solvent viscosity for the linear mono-protic alkanol solvents. (b) Plot of fluorescence quantum yields to solvent dielectric constant for the linear mono-protic alkanol solvents
Figure S15. Fluorescence quantum yield and viscosity relationship and the fitting of the data to the Förster-Hoffmann Equation for linear mono-protic alkanols
Figure S16. Possible rotation between the julolidine and BODIPY units24
Figure S17. Time profile for aJBD recorded at 640 nm from pump-probe experiments in DMSO and hexane
Figure S18. Fluorescence image of GUVs electroformation on a platinum electrode with aJBD stained in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) sucrose solution26
Figure S19. Distribution ratio plot of τ_1 versus τ_2 from τ_1 as collected over 50 ON-OFF cycles27
Figure S20. A GUV stained with the VSD dye Di-4-ANEPPS and the FLIM image (A) and the lifetime map (B) and decay profile (C)

Experimental Details

Materials and Instrumentation

All NMR data processing were carried out with MestReNova software (version 11.0.0, Mestrelab Research S.L., A Coruña, Spain). Chemical shifts for ¹H-NMR, ¹³C-NMR were reported relative to residual protiated solvent acetonitrile- d_3 (Cambridge Isotope Laboratories, Inc., CD₃CN, 99.8%) at $\delta = 1.940$ ppm, quintet. The chemical shifts for ¹¹B-NMR are referenced relative to BF₃·Et₂O at $\delta = 0$ and ¹⁹F-NMR chemical shifts are referenced to CFCl₃ at $\delta = 0$ as external reference. Coupling constants (*J*) are given in Hz. Multiplicities of signals are indicated by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), m (multiplet) and b (broad). High resolution mass spectra were measured using an Agilent 6550 i-Funnel system. Chromatography experiments were performed on Agilent 1260 Infinity HPLC system equipped with Raptor C18 column (100 × 3 mm; 2.7 μ m particle size) using water/acetonitrile 1/9 mixture as eluent (0.3 mL min⁻¹) and compared to the solvent blank run. Diode Array Detector (1260 DAD VL+) was fixed in the spectral region of interest at 630 nm. UV-visible absorption spectra were performed on a Shimadzu Spectrophotometer UV-1800 (Shimadzu Corporation, Japan) reference cell and the other as a sample cell in the dual-beam UV-Vis system. 2D and 3D fluorescence excitation/emission spectra were obtained from a Shimadzu RF-6000 Fluorescence Spectrometer (Shimadzu Corporation, Japan), which was equipped with a 150 Watt Xenon lamp and controlled by LabSolutions RF software (Shimadzu Corporation, Japan). Peak deconvolution to Gaussian bands was performed using PeakFit[™] program (version. 4.12, Systat Software, Inc., U.S.).

X-Ray Crystallography

All crystallography measurements were performed using in-house facilities at Newcastle University. Crystal structure data which were collected in-house used an Xcalibur, Atlas, Gemini ultra-diffractometer equipped with a sealed X-ray tube (λ CuK α = 1.54184Å) and a CryostreamPlus open-flow N₂ cooling system (Oxford Cryosystems Ltd, UK). Software CrysAlisPro (Version 1.171.37.35, Agilent Technologies, U.S.) was used for cell refinement, data collection, data reduction and intensities correction for absorption.

Synthesis

Preparation of BD

BD was synthesised by a modified reported literature method.¹ Pyrrole-2-carboxaldehyde (770.3 mg, 8.1 mmol, 1 e.q.) was dissolved in dry DCM (39 mL) and cooled down to -3 °C under a nitrogen atmosphere. 3-ethyl-2,4-dimethyl-1H-pyrrole (1.1 mL, 8.1 mmol, 1 e.q.) was added to the reaction mixture which was stirred for 10 mins, followed by slow addition of POCl₃ (0.76 mL, 8.1 mmol, 1 e.q.). The reaction mixture was stirred for 3h during which time the temperature was left to rise from -3 °C to R.T. The reaction mixture turned from pale orange to dark orange. Once the starting materials were consumed as followed by TLC, Et₃N (6.7 mL, 48.6 mmol, 6 e.q.) and after 5 mins BF₃.OEt₂ (6 mL, 48.6 mmol, 6 e.q.) were added sequentially to an ice-cold reaction mixture. The resulting solution was stirred for 1.5 h as the solution was left to equilibrate from 0 °C to R.T. The reaction mixture became dark brown. The reaction was washed three times with sat. NaHCO₃ and H₂O (50 mL) sequentially. The separated organic layer was concentrated and passed through a silica plug using pure DCM to remove most of the impurities. The crude product was further purified by silica gel column chromatography (eluent: DCM: petroleum ether, 20-60%, v/v) to afford the final product BD as a pale yellow solid with a strong green fluorescence. (1.1 g, 4.4 mmol, 55% yield); ¹H NMR $(300 \text{ MHz}, \text{Chloroform-}d) \delta (\text{ppm}) = 7.60 (d, 1\text{H}), 7.15 (s, 1\text{H}), 6.89 (d, J = 2.8 \text{ Hz}, 1\text{H}), 6.42$ $(dd, J_1 = 3.9 Hz, J_2 = 2.1 Hz, 1H), 2.60 (s, 3H), 2.43 (q, J = 7.6 Hz, 2H), 2.21 (s, 3H), 1.11 (t, J_1 = 3.9 Hz, J_2 = 3.9 H$ J = 7.6 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ (ppm) = 163.44, 141.18, 137.98, 136.32, 134.91, 132.40, 125.36, 123.62, 115.70, 17.39, 14.34, 13.43, 9.59. ¹¹B NMR (96 MHz, Chloroform-*d*) δ (ppm) = 0.60 (t, J = 30.9 Hz). ¹⁹F NMR (282 MHz, Chloroform-*d*) δ (ppm) = -146.06 (q, J = 31.2 Hz). HRMS (m/z): found [M - F]⁺: 229.1340, calcd for C₁₃H₁₅BFN₂: 229.1315

Preparation of aJBD

JUL-CHO (92.6 mg, 0.46 mmol, 1.1 e.q.), piperidine (0.415 mL, 4.2 mmol, 10 e.q.) and glacial acetic acid (0.24 mL, 4.2 mmol, 10 e.q.) were added to a solution of **BD** (104 mg, 0.42 mmol, 1 e.q.) in anhydrous CH₃CN (17 mL) containing 4Å dry molecular sieves (1 g). The resulting mixture was refluxed under nitrogen for 2.5 hours and monitored by TLC until the complete consumption of the starting material. The colour changed from dark brown to dark blue. The molecular sieves were removed by a sinter funnel and washed with DCM till

colourless. All the collected DCM and original CH₃CN solutions were removed by a rotary evaporator. The crude product was redissolved in Et₂O: hexane (1:1) and purified by preparative alumina TLC (eluent: Et₂O: hexane, 1:1) to give the pure product **aJBD** as a black solid with a metallic green colour. (58 mg, 0.13 mmol, 32% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ (ppm) = 7.56 (m, 1H), 7.43 (apparent tr, J = 17 Hz 2H, *trans* CH=CH), 7.10 (s, 2H, -CH-phenylJUL), 6.98 (s, 1H), 6.77 (d, J = 2.8 Hz, 1H), 6.38 (dd, $J_1 = 3.8$ Hz, $J_2 = 2.1$ Hz, 1H), 3.26 (t, J = 5.8 Hz, 4H, -CH₂-JUL), 2.76 (t, J = 5.8 Hz, 4H, -CH₂-JUL), 2.68 (q, J = 7.5 Hz, 2H), 2.18 (s, 3H), 1.97 (m, 4H, -CH₂-JUL), 1.22 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm) = 158.78, 145.08, 142.09, 140.85, 137.93, 135.74, 135.08, 132.81, 127.69, 123.73, 122.60, 121.33, 119.35, 115.05, 113.18, 50.15, 27.80, 21.73, 19.10, 13.79, 9.27. ¹¹B NMR (96 MHz, Chloroform-*d*) δ (ppm) = -143.00 (q, J = 32.1 Hz). The measured molar extinction coefficient at 648 nm for **aJBD** in DMSO is 58,000 M⁻¹ cm⁻¹. HRMS (m/z): found [M + H]⁺: 432.2446, calcd for C₂₆H₂₉BF₂N₃: 432.2427; HPLC (min): 8.877.

Quantum Yield and Solution Fluorescence Lifetime Measurements

For fluorescence quantum yields (Φ_{FLU}) measurements in different solutions, were measured using the relative quantum yield method with respect to the reference dye Cy643. All the samples and the reference were prepared freshly in appropriate solvents on the day of use. The optical density (OD) of the UV absorbance was less than 0.05 at the excitation wavelength. Fluorescence areas were calculated by the instrument software (LabSolutions RF software) using the corresponding fluorescence spectra. Quantum yields were corrected for changes in refractive index of the solvents. Solution fluorescence lifetime measurements for **aJBD** were recorded by an upright confocal microscope which comprised of a SPC-150 TCSPC module (Becker & Hickl, Berlin, Germany).

Time Resolved Transient Absorption Spectroscopy

Excited state dynamic processes of **aJBD** in femtosecond to nanosecond time scales were performed by transient absorption spectroscopy. A 590 nm pump pulse (100 fs fwhm) was applied to excite the **aJBD** complex. The sample solution was prepared in two different solvents (hexane and DMSO) with an optical density between 0.2-0.8 in a 2 mm cuvette. The data were globally fitted to get the relaxation time constants and the associated decay component spectra. Also, steady-state absorption spectra were measured before and after the

pump-probe measurement to make sure that the sample did not change during the measurement.

Preparation of Giant Unilamellar Vesicles (GUVs)

GUVs were prepared by the electroformation method. The whole apparatus for preparing GUVs was precleaned with EtOH in a bath sonicator for 30 min, and dried under nitrogen carefully to remove all the house dust which would impact on the GUVs growing. The test chamber was assembled with one piece of coverslip at the bottom with two platinum wires suspended on it. The lipid solution of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was prepared in a CHCl₃: MeOH (2: 1, v/v) mixture. An appropriate mixture of POPC lipid (4 μ L on each wire) was deposited onto two parallel platinum wires respectively, and the solvent was evaporated for 30 mins till completely dry. Sucrose solution (300 mM, 2 mL) was added into the assembled chamber. The chamber was subjected to an alternating current (AC) frequency of 10 Hz with an output voltage of 3.3 Vpp at 50 °C for 1.5 hours. GUVs were stained with **aJBD** (2 μ L, 50 μ M) in the testing chamber prior to the microscopy measurements.

GUVs Fluorescence Lifetime Imaging

The presence of GUVs in solutions were firstly checked by confocal microscopy, and FLIM measurements were performed on a modified Nikon Eclipse Ti-U inverted microscope (Nikon Instruments Inc., Melville, NY, USA) at the Rutherford Appleton Laboratory. Laser light was focused through a 60 x water immersion plan-apochromat objective with a numerical aperture of 1.2. The GUVs were imaged while samples were excited at 633 nm with an acousto-optic tuneable filters (AOTF) coupled with a fianium supercontinuum light source (Fianium, NKT Photonics, Southampton, UK), which was tuneable (400-2000 nm) and produced 40 ps laser pulses at 40 MHz (25 ns between laser pulses). In the one-photon laser scanning, 256 × 256 pixels/decay curves were used. Fluorescence lifetime images were obtained using the SPCImage analysis software (version 9.80, Becker & Hickl GmbH, Germany) using the SPC-150 mode. The decay trace for each pixel with a pixel bin of 10 was best fit to a single or double exponential model to allow analysis in the nanosecond decay domain. The quality of a goodness-of-fit was judged by the chi-squared value (χ^2).

For the ramping voltage experiment, the applied voltage was gradually increased from 0 mV to 100 mV, 200 mV, 300 mV then back to 0 mV followed by lifetime measurements at the same time. Each fluorescence lifetime image was collected for 20 sec. For the ON-OFF cycles GUVs were depolarized for 5 seconds with 250 mVpp voltage. A GUV was subjected to "on-off" direct current (DC) pulse for 50 "on-off" cycles after depolarization. Each cycle included 20 seconds with voltage applied (600 mVpp) which was called "on" and 20 seconds for the resting state (0 mVpp) which was called "off". A fluorescence lifetime image was collected for 20 seconds during each "on" or "off" process.

Figure S2. ¹H NMR spectrum recorded at R.T. of aJBD in CDCl₃.

Figure S3. COSY spectra recorded at R.T. of aJBD in CDCl₃.

Figure S4. ¹³C NMR spectrum recorded at R.T. of aJBD in CDCl₃.

Figure S5. HSQC spectra recorded at R.T. of **aJBD** in CDCl₃ showing proton-to-carbon correlations and their assignments.

Figure S6. HMBC spectrum recorded at R.T. of **aJBD** in CDCl₃ showing proton-to-carbon correlations and their assignments.

Figure S7. ¹¹B (a) and ¹⁹F (b) NMR spectra recorded at R.T. of aJBD in CDCl₃.

Figure S7. Left: Observed (bottom) and theoretical mass spectra for $[M-F]^+$ (top) and $[M+H]^+$ (middle) cations for **BD**. Right: Full observed mass spectrum of **BD**.

Figure S8. Left: Observed (bottom) and theoretical mass spectra for $[M-F]^+$ (top) and $[M+H]^+$ (middle) cations for **aJBD**. Note: the m/z 454 peak corresponds to the $[M+Na]^+$ adduct. Right : Full observed mass spectrum of **aJBD**.

Figure S9. Isocratic HPLC trace for aJBD and the solvent blank. Solvent = $MeCN/H_2O$.

Identification code	acb160009_sa
Empirical formula	C ₂₇ H ₃₀ BCl ₂ F ₂ N ₃
Formula weight	516.25
Temperature/K	150.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.0740(7)
b/Å	11.1150(6)
c/Å	12.1059(9)
α/°	85.621(5)
β/°	75.257(6)
$\gamma/^{\circ}$	61.941(6)
Volume/Å ³	1270.01(16)
Ζ	2
$\rho_{calc}g/cm^3$	1.350
μ/mm^{-1}	2.596
F(000)	540.0
Crystal size/mm ³	0.48 imes 0.18 imes 0.05
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.562 to 133.872
Index ranges	$-13 \leqslant h \leqslant 12, -13 \leqslant k \leqslant 12, -14 \leqslant l \leqslant 14$
Reflections collected	18190
Independent reflections	4498 [$R_{int} = 0.0547, R_{sigma} = 0.0499$]
Data/restraints/parameters	4498/0/318
Goodness-of-fit on F ²	1.038
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0497, wR_2 = 0.1095$
Final R indexes [all data]	$R_1 = 0.0712, wR_2 = 0.1251$
Largest diff. peak/hole/e Å ⁻³	0.79/-0.63

Table S1. Crystal data and structure refinement for aJBD

Figure S10. (a) Stick-style structure of the julolidine head group with respect to the BODIPY core showing the out-of-plane nature of the molecule; **(b)** Perpendicular relationship between the plane of the two fluorine atoms and the plane of the BODIPY core.

Figure S11. Crystal packing diagram showing H—F distances between the methylene proton of the ethyl unit and methylene proton of the CH₂Cl₂ solvate with the BF₂ group.

Atoms	Bone	Bond Length/Å		
C14-C15	1.347 (4)	Trans C=C		
F1-B4	1.378 (4)			
F2-B4	1.393 (4)			
N1-B4	1.533 (4)			
N2-B4	1.553 (3)			
N3-C19	1.379 (3)			
N3-C24	1.459 (4)			
N3-C27	1.457 (4)			
C16-C21	1.394 (4)			
C16-C17	1.407 (4)			
C21-C20	1.375 (3)			
C17-C18	1.388 (4)	T-1-1111		
C25-C20	1.517 (4)	Juioliaine		
C20-C19	1.414 (4)			
C19-C18	1.420 (4)			
C18-C22	1.498 (4)			
C25-C26	1.515 (4)			
C22-C23	1.521 (4)			
C26-C27	1.511 (4)			
C23-C24	1.515 (4)			
F1-B4-F2	109.2 (2)			
N1-B4-N2	107.7 (2)			
C2-C12-C13	114.1 (2)			
Atoms	Dihe	dral Angle ^{/0}		
C14-C15-C16-C17	2.91	JUL-BODIPY		
C18-C22-C23-C24-N3	132.22	JUL-JUL		
C20-C25-C26-C27-N3	135.22	JUL-JUL		

Table S2. Selected average bond lengths and bond angles for aJBD.

λ_{ABS}	λ _{ABS} ^a /cm⁻	λεм ^a /nm	∧ a/ -1	Stokes'	Φ h /0/
^a /nm	1		лем "/ст -1	Shift/cm ⁻¹	Ψf ^ν /%
623.5	16038	644	15528	511	100
630	15873	648	15432	441	100
636	15723	694.5	14399	1324	72
634	15773	675	14815	958	61
634	15773	680.5	14695	1078	47
622	16077	693.5	14420	1658	35
641	15601	718.5	13918	1683	17
630	15873	727.5	13746	2127	2.6
635.5	15736	701.5	14255	1480	13
630.5	15860	705	14184	1676	10
632.5	15810	701.5	14255	1555	6.7
634	15773	710	14085	1688	4.6
629.5	15886	712	14045	1841	3.3
630	15873	716	13966	1907	1.9
633.5	15785	684	14620	1165	30
627.5	15936	719.5	13899	2038	1.2
627.5	15936	721.5	13860	2076	0.5
626	15974	664	15060	914	0.2
637.5	15686	648	15432	254	0.8
649	15408	na	na	na	< 0.1
	λABS a/nm 623.5 630 634 634 634 634 635.5 630.5 632.5 634 622 641 630 635.5 630.5 632.5 634 629.5 630 633.5 627.5 626 637.5 649	λ_{ABS} λ_{ABS} */cma/nm1623.51603863015873636157236341577363415773622160776411560163015873635.515736630.515860632.51581063415773629.51588663015873627.515936627.51593662615974637.51568664915408	λABS λABS */cm ⁻ */nm 1 623.5 16038 644 630 15873 648 630 15873 648 636 15723 694.5 634 15773 675 634 15773 680.5 634 15773 680.5 622 16077 693.5 641 15601 718.5 630 15873 727.5 635.5 15736 701.5 630.5 15860 705 632.5 15810 701.5 634 15773 710 629.5 15886 712 630 15873 716 633.5 15785 684 627.5 15936 721.5 626 15974 664 637.5 15686 648 649 15408 na	λABS λABS ^a /cm ⁻ λEM ^a /nm λEM ^a /cm ⁻¹ ^a /nm 1 λEM ^a /nm λEM ^a /cm ⁻¹ 623.5 16038 644 15528 630 15873 648 15432 636 15723 694.5 14399 634 15773 675 14815 634 15773 680.5 14695 622 16077 693.5 14420 641 15601 718.5 13918 630 15873 727.5 13746 635.5 15736 701.5 14255 630.5 15860 705 14184 632.5 15810 701.5 14255 634 15773 710 14085 629.5 15886 712 14045 630 15873 716 13966 633.5 15785 684 14620 627.5 15936 719.5 13899 627.5 15	λ_{ABS} λ_{ABS} λ_{ABS} λ_{ABS} λ_{ABS} $M^*/nm^*/cm^{-1}$ Stokes' Shift/cm^{-1}623.51603864415528511630158736481543244163615723694.5143991324634157736751481595863415773680.514695107862216077693.514420165864115601718.513918168363015873727.5137462127635.515736701.5142551480630.515860705141841676632.515810701.514255158563415773710140851688629.51588671214045184163015873716139661907633.515785684146201165627.515936719.5138992038627.515936721.51386020766261597466415060914637.5156866481543225464915408 na na na

Table S3. List of selected UV-Vis absorption and emission spectroscopic data for **aJBD** and quantum yield measurements in different solvents at R.T. Solvents are arranged in order of dielectric constants from top to bottom in sequence.

^a Absorption and emission ($\lambda_{ex} = 590 \text{ nm}$) maxima data obtained from experimental measurements from the instruments. ^b Data are the quantum yields measured relative to **Cy643** in MeOH. ($\Phi_{Cy643} = 43\%$). To convert wavelength to wavenumber, the following formula was used: $\tilde{v} = 1/\lambda$; \tilde{v} is wavenumber (cm⁻¹) and λ is wavelength (nm). The Stokes' shift (SS) was calculated by $\lambda_{abs} - \lambda_{em}$ in wavenumbers (cm⁻¹).

Figure S12. Room temperature fluorescence spectra of aJBD in hexane (black) and DMF (red).

Figure S13. Relationship between fluorescence quantum yield and dielectric constant for **aJBD** in various solvents.

Figure S14. (a) Plot of fluorescence quantum yields to solvent viscosity for the linear monoprotic alkanol solvents. **(b)** Plot of fluorescence quantum yields to solvent dielectric constant for the linear mono-protic alkanol solvents.

Figure S15. Fluorescence quantum yield and viscosity relationship and the fitting of the data to the Förster-Hoffmann Equation for linear mono-protic alkanols.

Figure S16. Possible rotation between the julolidine and BODIPY units.

Figure S17. Time profile for aJBD recorded at 640 nm from pump-probe experiments in DMSO and hexane.

Fluorescence image of GUVs formation

Platinum electrode edge

Figure S18. Fluorescence image of GUVs electroformation on a platinum electrode with **aJBD** stained in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) sucrose solution.

Figure S19. Distribution ratio plot of τ_1 versus τ_2 from τ_1 as collected over 50 ON-OFF cycles.

Figure S20. A GUV stained with the VSD dye Di-4-ANEPPS and the FLIM image (**A**) and the lifetime map (**B**) and decay profile (**C**).

References

1. X. Zhou, C. Yu, Z. Feng, Y. Yu, J. Wang, E. Hao, Y. Wei, X. Mu and L. Jiao, *Org. Lett.*, 2015, **17**, 4632-4635.