Generation of zwitterionic trifluoromethyl N-allylic ylides and their

use in switchable divergent annulations

Ru-Jie Yan,^a Bao-Xin Liu,^a Yuan Hu,^a Wei Du,^{*a} and Ying-Chun Chen^{*a,b}

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

^b College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.

E-mail: duweiyb@scu.edu.cn; ycchen@scu.edu.cn

Supplementary Information

1. General methods	S2
2. Typical procedure for the preparation of substrate 1a	S2
3. More screening conditions for divergent annulations of MBH carbonate 1a with 1-aza	diene
2a	S4
4. General procedure for divergent annulations of MBH carbonates with 1-azadienes	S6
4.1 Asymmetric γ -[3+2] annulations of MBH carbonates 1 with 1-azadienes 2	S6
4.2 Asymmetric γ -[3+2] annulations of MBH carbonates 1 with 1-azadienes 6	S12
4.3 Catalyst-controlled α -[4+1] annulations of MBH carbonates 1 with 1-azadienes 2	S24
4.4 Substrate-controlled γ -[4+3] annulations of MBH carbonates 1 with 1-azadiene 2a	S30
5. Asymmetric γ -[3+2] annulation of MBH carbonate 1a with activated alkene 9	S33
6. Transformations of product 7a	S34
7. More substrate exploration	S35
8. Asymmetric reaction on a 1.0 mmol scale	S36
9. Crystal data and structural refinement	S37
10. NMR, HRMS spectra and HPLC chromatograms	S42

1. General methods

Unless otherwise noted, all reactions were carried out under ambient atmosphere; when the reactions required heating, the heat source was oil bath. ¹H NMR (400 MHz), ¹³C NMR (100 or 150 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker AscendTM 400 instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dd = double doublet, ddd = double double doublet, dt = double triplet; td = triple doublet, m = multiplet, br = broad, and coupling constants (J) are reported in Hertz (Hz). ESI-HRMS was recorded on a Waters SYNAPT G2, Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Gemini or Bruker D8 VENTURE and the data obtained were deposited at the Cambridge Crystallographic Data Centre. In each case, diastereomeric ratio was determined by ¹H NMR analysis and enantiomeric ratio was determined by HPLC (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column (250 × 4.6 mm), Chiralpak IA Column (250 × 4.6 mm), Chiralpak IB Column (250 × 4.6 mm), Chiralpak ID Column (250 × 4.6 mm), Chiralpak IE Column (250 × 4.6 mm) or Chiralpak IG Column (250 × 4.6 mm). UV detection was monitored at 254 nm. The specific optical rotation was obtained from Rudolph Research Analytical Autopol I automatic polarimeter in CHCl₃ solution at 25 °C. The melting point was obtained from WRX-4 Mel-Temp apparatus. Column chromatography was performed on silica gel (300-400 mesh) eluting with ethyl acetate (EtOAc) and petroleum ether. TLC was performed on glass-backed silica plates. UV light, I₂, and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether (60-90 °C) was redistilled. The tertiary amine catalysts C7-C12,¹ 1-azadienes² were prepared according to the literature procedures.

2. Typical procedure for the preparation of substrate 1a

Step 1: To a stirred solution of 2,2,2-trifluoro-1-phenylethanone (1.4 mL, 10 mmol, 1.0 equiv) in acrylonitrile (6.5 mL, 99 mmol, 10.0 equiv) was added DABCO (22.4 mg, 0.200 mmol, 20 mol%) and stirred at room temperature for 24 h. After completion (monitored by TLC), the acrylonitrile was

removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the compound **S1** as a colorless oil in 97% yield (2.21 g, 9.74 mmol).³

Step 2: To a stirred solution of allylic alcohol **S1** (1.14 g, 5.02 mmol, 1.0 equiv) in THF was added NaOH (400 mg, 10.0 mmol, 2.0 equiv) and stirred at room temperature for 20 min. Then a solution of Boc₂O (1.31 g, 6.01 mmol, 1.2 equiv) in THF was added slowly, and the mixture was stirred at room temperature for 3 h. After completion (monitored by TLC), the reaction was quenched with water and extracted with EtOAc. The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether) to give compound **1a** as a colorless oil in 25% yield (412 mg, 1.26 mmol).

BocO CF₃ (1a): as a colorless oil; 412 mg, yield 25%; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.59–7.50 (m, 2H), 7.50–7.36 (m, 3H), 6.50 (s, 1H), 6.38 (s, 1H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 149.3, 136.6 (q, J = 1.9 Hz), 131.3, 130.0, 128.6, 127.3 (q, J = 1.7 Hz), 122.8 (q, J = 285.2 Hz), 120.6, 115.7, 84.9, 82.5 (q, J = 29.8 Hz), 27.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆F₃NO₃Na⁺ 350.0974; Found 350.0972.

tert-Butyl (3-cyano-1,1,1-trifluoro-2-(4-methoxyphenyl)but-3-en-2-yl) carbonate (1d): as a colorless oil; 520 mg, yield 29%; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.56–7.41 (m, 2H), 7.02–6.89 (m, 2H), 6.50 (t, J = 0.8 Hz, 1H), 6.40–6.30 (m, 1H), 3.83 (s, 3H), 1.47 (s, 9H); ¹³C NMR (100 MHz,

CDCl₃): δ (ppm) 160.7, 149.4, 136.3 (q, J = 1.7 Hz), 128.9 (q, J = 1.7 Hz), 123.0, 122.9 (q, J = 285.2 Hz), 120.8, 115.8, 113.9, 84.7, 82.6 (q, J = 29.9 Hz), 55.3, 27.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₉F₃NO₄⁺ 358.1261; Found 358.1259.

tert-Butyl (3-cyano-1,1,1-trifluoro-2-(naphthalen-2-yl)but-3-en-2-yl) carbonate (1f): as a yellow semi-solid; 587 mg, yield 31%; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.11–8.03 (m, 1H), 7.97–7.80 (m, 3H), 7.6–7.45 (m, 3H), 6.57 (s, 1H), 6.44 (s, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ

(ppm) 149.4, 136.7, 133.5, 132.5, 128.8, 128.6, 128.5, 127.8, 127.63, 127.55, 126.9, 123.7 (q, J = 1.9 Hz), 122.9 (q, J = 285.6 Hz), 120.7, 115.7, 85.0, 82.8 (q, J = 29.7 Hz), 27.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₉F₃NO₃⁺ 378.1312; Found 378.1316.

BocO CF₃ (1g): as a yellow oil; 568 mg, yield 34%; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.58–7.51 (m, 1H), 7.48–7.42 (m, 2H), 6.52 (s, 1H), 6.39 (s, 1H), 1.47 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 149.4, 136.5, 131.3, 130.0, 128.6, 127.3, 122.8 (q, *J* = 285.3 Hz), 120.6, 115.7, 84.9, 82.6 (q, *J* = 29.6 Hz), 27.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₄H₁₄F₃NO₃Na⁺ 356.0539; Found 356.0541.

3. More screening conditions for divergent annulations of MBH carbonate 1a with 1-azadiene 2a

3.1 γ-[3+2] annulation of MBH carbonate 1a with 1-azadiene 2a^a

^{*a*}Unless noted otherwise, reactions were performed using **1a** (0.075 mmol, 1.5 equiv), **2a** (0.05 mmol, 1.0 equiv), **C1** (5 mol%) in toluene (0.5 mL) for 24 h. ^{*b*}Yield of the inseparable **3a** and **4a**. ^{*c*}Determined by ¹H NMR analysis, >19:1 dr by ¹H NMR analysis. ^{*d*}Unless noted, for product **3a**, determined by HPLC analysis using a chiral stationary phase. ^{*e*}**C1** (10 mol%) was used.

3.2 Catalyst-controlled α-[4+1] annulation of MBH carbonate 1a with 1-azadiene 2a^a

^{*a*}Unless noted otherwise, reactions were performed using **1a** (0.0375 mmol, 1.5 equiv), **2a** (0.025 mmol, 1.0 equiv) and **C** (10 mol%) in solvent (0.25 mL) at room temperature for 12 h. ^{*b*}Yield of isolated product. ^{*c*}Determined by HPLC analysis using a chiral stationary phase; >19:1 dr by ¹H NMR analysis. ^{*d*}For 10 min. ^{*e*}10.0 mg 4 Å MS was used. ^{*f*}At 5 °C. ^{*g*}At –10 °C.

toluene

toluene

toluene

toluene

83

63

75

91

63 79

60

96

 $10^{e,g}$

 $11^{e,g}$

 $12^{e,g}$

13^{e,g}

C9

C11

C12

C7

3.3 Catalyst-controlled enantiodivergent α -[4+1] annulation of MBH carbonate 1a with 1azadiene $2a^a$

2	20	toluene	53	95
3^d	20	dry toluene	[3a+4a]/5a = 1/2	/
4^e	20	toluene	Messy	/
5^{f}	20	toluene	45	91
6	20	PhCF ₃	60	96
7	20	CHCl ₃	46	92
8	20	THF	bad conv.	/
9	20	CH ₃ CN	messy	/
10 ^{<i>g</i>}	10	PhCF ₃	61	98
$11^{g,h}$	10	PhCF ₃	65	98

^{*a*}Unless noted otherwise, reactions were performed using **1a** (0.075 mmol, 1.5 equiv), **2a** (0.05 mmol, 1.0 equiv) and **C6** (x mol%) in solvent (0.5 mL) at 40 °C for 24 h. ^{*b*}Yield of isolated product *ent-5a*. ^{*c*}Unless noted, for product *ent-5a*, determined by HPLC analysis using a chiral stationary phase; >19:1 dr by ¹H NMR analysis. ^{*d*}20.0 mg 4Å MS was used. ^{*e*}t-BuOH/toluene = 1/10; ^{*f*}At 60 °C. ^{*g*}For 36 h. ^{*h*}**1a** (0.1 mmol, 2.0 equiv) was added in two portions.

3.4 Substrate-controlled γ -[4+3] annulation of MBH carbonate 1a or 1j with 1-azadiene 2a^a

4. General procedure for divergent annulations of MBH carbonates with 1-azadienes
4.1 General procedure for asymmetric γ-[3+2] annulations of MBH carbonates 1 with 1-azadienes 2

Synthesis of 3: A mixture of MBH carbonate **1** (0.15 mmol, 1.5 equiv), 1-azadiene **2** (0.10 mmol, 1.0 equiv), **C1** (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored by TLC. After completion, the product **3** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether).

Synthesis of *ent-3*: A mixture of MBH carbonate **1** (0.15 mmol, 1.5 equiv), 1-azadiene **2** (0.10 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored by TLC. After completion, the product *ent-3* was obtained by flash chromatography on silica gel (EtOAc/petroleum ether).

Synthesis of racemic 3: The racemates could not be obtained under the catalysis of DABCO. So the mixture of chiral catalyst **C1** and its *pseudo*-enantiomer **C2** was used for the preparation of the samples for determining the peaks of the enantiomers.

Synthesis of 3a: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenyl but-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-benzylidenebenzo[b]thiophen-3(2H)-ylidene)-4-methylbenzenesulfonamide
2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C1 (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was

monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give a mixture of products **3a** and **4a** (**3a**:**4a** = 10:1): 53.0 mg (0.0882 mmol), as a yellow solid, 88% yield; mp = 105–107 °C; $[\alpha]_D^{25}$ = +191.0 (*c* = 0.40 in CHCl₃); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 12.51 min (major), t_R = 26.70 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.69 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.34–7.28 (m, 2H), 7.27–7.02 (m, 10H), 6.93 (s, 1H), 4.61 (s, 1H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 180.7, 151.9, 151.6, 143.9, 138.7, 137.0, 135.4, 132.7, 132.0, 123.0, 129.7, 129.0, 128.8, 128.5, 127.8, 126.8 (q, *J* = 2.5 Hz), 126.7, 126.3, 125.9, 125.7 (q, *J* = 283.3 Hz), 123.5, 118.7,113.5, 75.2, 68.0, 66.7 (q, *J* = 25.6 Hz), 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₄F₃O₂S₂⁺ 601.1226; Found 601.1227.

Synthesis of *ent-3a*: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl) carbonate **1a** (49.1 mg, 0.150 mmol, 1.5 equiv), *N*-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-

ylidene)-4-methylbenzenesulfonamide **2a** (39.1 mg, 0.0997 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give a mixture of products *ent*-**3a** and *ent*-**4a** (*ent*-**3a**:*ent*-**4a** = 8:1): 37.0 mg (0.0616 mmol), as a yellow solid, 62% yield; $[\alpha]_D^{25} = -169.6$ (c = 0.50 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 12.51 min (minor), t_R = 26.51 min (major).

Synthesis of 3b: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(4-methoxyphenyl)but-3-en-2-yl)carbonate 1d (53.6 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-benzylidenebenzo[b]thiophen-3(2H)-ylidene)-4-methylbenzene sulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C1 (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10)

to give the product **3b**: 56.0 mg (0.0887 mmol), as a yellow solid, 89% yield; mp = 171–173 °C; $[\alpha]_D^{25} = +218.5$ (c = 0.40 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, l = 254 nm) t_R = 16.35 min (major), t_R = 19.64 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.69 (d, J = 8.0 Hz, 1H), 7.93–7.84 (m, 2H), 7.52–7.45 (m, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.4 Hz, 1H), 7.24–7.16 (m, 2H), 7.15–7.04 (m, 6H), 6.89 (s, 1H), 6.73–6.59 (m, 2H), 4.59 (s, 1H), 3.80 (s, 3H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 180.8, 159.3, 151.7 151.5, 143.9, 138.7, 137.0, 132.6, 132.0, 130.1, 129.7, 128.7, 128.1 (q, J = 2.5 Hz), 127.8, 127.1, 126.7, 126.2, 125.3 (q, J = 283.4 Hz), 125.8, 123.5, 119.0, 114.2, 113.6, 75.0, 68.1, 66.2 (q, J = 25.5 Hz), 55.1, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₅F₃N₂O₃S₂Na⁺ 653.1151; Found 653.1150.

Synthesis of 3c: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(naphthalen-2-yl)but-3-en-2-yl)carbonate 1f (57.0 mg, 0.151 mmol, 1.5 equiv), N-((Z)-2-benzylidenebenzo[b]thiophen-3(2H)-ylidene)-4-methylbenzenesulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C1 (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash

chromatography on silica gel (EtOAc/petroleum ether =1/20 to 1/10) to give the product **3c**: 60.0 mg

(0.0922 mmol), as a yellow solid, 92% yield; mp = 116–118 °C; $[\alpha]_D^{25}$ = +106.0 (*c* = 0.70 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 16.07 min (major), t_R = 28.63 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.72 (d, *J* = 8.0 Hz, 1H), 7.86–7.82 (m, 2H), 7.82–7.77 (m, 1H), 7.73 (d, *J* = 2.4 Hz, 1H), 7.66–7.62 (m, 1H), 7.57–7.47 (m, 4H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.28–7.14 (m, 5H), 7.13–7.02 (m, 4H), 6.98 (s, 1H), 4.76 (s, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 180.5, 152.0, 151.5, 143.8, 138.6, 137.0, 132.8, 132.7, 132.6, 132.3, 132.1, 130.0, 129.7 (2C), 128.9, 128.8, 128.7, 127.9, 127.3, 127.1, 126.7 (2C), 126.6, 126.2, 125.9, 125.8 (q, *J* = 283.5 Hz), 123.8 (d, *J* = 2.1 Hz), 123.5, 118.6, 75.3, 67.4, 66.9 (q, *J* = 25.6 Hz), 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –60.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₂₅F₃N₂O₂S₂Na⁺ 673.1202; Found 673.1203.

Synthesis of 3d: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(thiophen-2-yl)but-3-en-2-yl)carbonate 1g (50.0 mg, 0.150 mmol, 1.5 equiv), *N*-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-ylidene)-4-methylbenzenesulfonamide
2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C1 (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was

monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether =1/20 to 1/10) to give the product **3d**: 41.2 mg (0.0679 mmol), as a yellow solid, 68% yield; mp = 99–101 °C; $[\alpha]_D^{25}$ = +252.6 (*c* = 0.50 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, l = 254 nm) t_R = 13.51 min (major), t_R = 27.15 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.68 (d, *J* = 8.4 Hz, 1H), 7.93–7.88 (m, 2H), 7.53–7.47 (m, 1H), 7.38 (d, *J* = 8.2 Hz, 2H), 7.29 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.27–7.19 (m, 3H), 7.15 (d, *J* = 4.4 Hz, 4H), 6.98–6.94 (m, 1H), 6.94–6.90 (m, 1H), 6.89 (s, 1H), 4.71 (d, *J* = 1.2 Hz, 1H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.8, 151.7, 151.2, 143.9, 138.6, 137.4, 137.0, 132.7, 132.2 (q, *J* = 2.0 Hz), 129.7, 129.6, 129.0, 127.9, 127.3 (q, *J* = 2.4 Hz), 127.2, 126.9, 126.2, 126.1, 125.9, 125.1 (q, *J* = 283.5 Hz), 123.5, 118.3, 113.3, 74.8, 67.4, 64.4 (q, *J* = 27.1 Hz), 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –63.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₁F₃N₂O₂S₃Na⁺ 629.0609; Found 629.0611.

Synthesis of 3e: A mixture of 1-ethyl 4-methyl 2-((*tert*-butoxycarbonyl) oxy)-3-methylene-2-(trifluoromethyl)succinate 1i (53.4 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-benzylidenebenzo[b]thiophen-3(2H)-ylidene)-4-methylbenzenesulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C1 (4.3

mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 50 °C for 5 days, and the

reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10 to 1/5) to give the product **3e**: 47.5 mg (0.0754 mmol), as a yellow solid, 75% yield; mp = 85-87 °C; $[\alpha]_D^{25} = -358.0$ (c = 0.60 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 21.59 min (minor), t_R = 27.12 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.71 (d, J = 8.0 Hz, 1H), 8.02-7.93 (m, 2H), 7.47-7.41 (m, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.23-7.12 (m, 5H), 7.06-7.01 (m, 2H), 6.93 (s, 1H), 4.88 (s, 1H), 4.40-4.15 (m, 2H), 3.78 (s, 3H), 2.49 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 180.4, 166.3, 162.4, 151.6, 147.3, 143.8, 138.7, 136.5, 135.0, 132.6, 132.4, 130.6, 129.5, 128.6, 128.0, 126.8, 126.5, 125.5, 124.5 (q, J = 282.4 Hz), 123.5, 75.9, 67.6 (q, J = 26.6 Hz), 62.6, 59.3, 52.3, 21.6, 13.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) -66.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₇F₃NO₆S₂⁺ 630.1226; Found 630.1226.

Synthesis of *ent*-3e: A mixture of 1-ethyl 4-methyl 2-((*tert*-butoxycarbonyl)oxy)-3-methylene-2-(trifluoromethyl)succinate **1i** (53.4 mg, 0.150 mmol, 1.5 equiv), *N*-((*Z*)-2-benzylidenebenzo [*b*]thiophen-3(2*H*)-ylidene)-4-methylbenzenesulfonamide **2a** (39.1 mg, 0.0997 mmol, 1.0 equiv), **C2** (8.6 mg, 10 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 50 °C for 5 days, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10 to 1/5) to give the product *ent*-3e: 51.3 mg (0.0814 mmol), as a yellow solid, 81% yield; $[\alpha]_D^{25} = +349.4$ (c = 0.67 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 21.55 min (major), t_R = 26.67 min (minor).

Synthesis of 3f: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-(4-chlorobenzylidene)benzo[b]thiophen-3(2H)-ylidene)-4-methylbenzene sulfonamide 2b (42.6 mg, 0.100 mmol, 1.0 equiv), C1 (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored by TLC. After completion, the crude product was

purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give a mixture of products **3f** and **4f** (**3f**:**4f** = 8:1): 58.0 mg (0.0913 mmol), as a yellow solid, 91% yield; mp = $106-107 \, \mathbb{C}$; $[\alpha]_D^{25} = +222.2 \, (c = 0.65 \text{ in CHCl}_3)$; >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 12.65 min (major), t_R = 17.65 min (minor); ¹H NMR (400 MHz, CDCl_3): δ (ppm) 8.70 (d, *J* = 8.0 Hz, 1H), 7.89–7.83 (m, 2H), 7.53 (ddd, *J* = 8.0, 6.8, 1.2 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.34–7.29 (m, 2H), 7.27–7.22 (m, 1H), 7.21–7.14 (m, 4H), 7.12–7.07 (m, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.93 (s, 1H), 4.57

(s, 1H), 2.54 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 180.4, 151.7, 151.3, 144.0, 138.5, 137.2, 135.1, 135.0, 133.2, 132.7, 130.6, 129.7, 129.0, 128.7, 128.4, 128.1, 126.7 (2C), 126.1, 125.6 (q, *J* = 284.1 Hz), 123.5, 118.7, 113.4, 74.9, 67.5, 66.6 (q, *J* = 25.7 Hz), 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –60.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₃³⁵ClF₃N₂O₂S₂⁺ 635.0836; Found 635.0838; Calcd for C₃₃H₂₃³⁷ClF₃N₂O₂S₂⁺ 637.0807; Found 637.0787.

Synthesis of 3g: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-(4-bromobenzylidene)benzo[b]thiophen-3(2H)-ylidene)-4-methylbenzene sulfonamide 2c (47.0 mg, 0.100 mmol, 1.0 equiv), C1 (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored by TLC. After completion, the crude product was

purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give a mixture of products **3g** and **4g** (**3g**:**4g** = 10:1): 60.0 mg (0.0882 mmol), as a yellow solid, 88% yield; mp = 100–101 °C; $[\alpha]_D^{25}$ = +216.0 (*c* = 0.60 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 14.07 min (major), t_R = 20.43 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.70 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.46–7.37 (m, 2H), 7.37–7.22 (m, 5H), 7.22–7.11 (m, 4H), 6.98–6.87 (m, 3H), 4.55 (s, 1H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 180.4, 151.7, 151.3, 144.0, 138.5, 137.2, 135.1, 133.5, 132.7, 131.1, 129.7, 129.00, 128.96, 128.7, 127.7, 126.73, 126.70, 126.1, 125.6 (q, *J* = 283.5 Hz), 123.6, 123.4, 118.7, 113.4, 74.8, 67.5, 66.6 (q, *J* = 25.6 Hz), 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –60.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd For C₃₃H₂₃⁷⁹BrF₃N₂O₂S₂⁺ 679.0331; Found 679.0336; Calcd for C₃₃H₂₃⁸¹BrF₃N₂O₂S₂⁺ 681.0310; Found 681.0300.

Synthesis of 3h: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenyl but-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv), 4-methyl-N-((Z)-2-(4methylbenzylidene)benzo[b]thiophen-3(2H)-ylidene)benzenesulfonamide 2d (40.6 mg, 0.100 mmol, 1.0 equiv), C1 (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored

by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give a mixture of products **3h** and **4h** (**3h**:**4h** = 13:1): 59.0 mg (0.0959 mmol), as a yellow solid, 96% yield; mp = 107–109 °C; $[\alpha]_D^{25}$ = +221.8 (*c* = 0.65 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 11.09 min (major), t_R =

19.69 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.70 (d, J = 8.0 Hz, 1H), 7.90–7.83 (m, 2H), 7.57–7.46 (m, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.34–7.27 (m, 2H), 7.24–7.18 (m, 1H), 7.16 (d, J = 4.8 Hz, 4H), 6.98–6.89 (m, 5H), 4.58 (d, J = 1.6 Hz, 1H), 2.53 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 180.7, 152.0, 151.7, 143.9, 138.69, 138.66, 137.0, 135.5, 132.7, 131.9, 129.6, 128.8, 128.6, 128.4, 126.82, 126.78, 126.7, 126.2, 125.8, 125.7 (q, J = 283.7 Hz), 123.5, 118.7, 113.6, 75.2, 67.8, 66.6 (q, J = 25.3 Hz), 21.6, 21.0; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₅F₃N₂O₂S₂Na⁺ 637.1202; Found 637.1199.

Ts Synth N CN 3-en-S Ph sulfor

Synthesis of 3i: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv), 4-methyl-N-((Z)-2-(thiophen-2-ylmethylene)benzo[b]thiophen-3(2H)-ylidene)benzene sulfonamide 2e (39.8 mg, 0.100 mmol, 1.0 equiv), C1 (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored by TLC. After completion, the crude product was

purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give a mixture of products **3i** and **4i** (**3i**:**4i** = 10:1): 53.0 mg (0.0873 mmol), as a yellow solid, 87% yield; mp = 106–108 °C; $[\alpha]_D^{25}$ = +147.5 (*c* = 0.32 in CHCl₃); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 15.24 min (major), t_R = 29.16 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.76 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.61–7.54 (m, 1H), 7.39 (d, *J* = 8.0 Hz, 3H), 7.36–7.31 (m, 1H), 7.31–7.23 (m, 1H), 7.23–7.09 (m, 5H), 6.90 (s, 1H), 6.84 (dd, *J* = 5.2, 3.6 Hz, 1H), 6.79 (d, *J* = 3.6 Hz, 1H), 4.98 (s, 1H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 180.6, 152.0, 151.2, 143.9, 138.6, 137.2, 134.9, 132.8, 130.9, 130.8, 129.9, 129.7, 129.0, 128.6, 127.0 (q, *J* = 2.5 Hz), 126.8, 126.7, 126.5, 126.1, 125.4 (q, *J* = 283.3 Hz), 123.7, 118.7, 113.3, 74.9, 66.8 (q, *J* = 25.1 Hz), 63.5, 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₂F₃N₂O₂S₃⁺ 607.0790; Found 607.0791.

4.2 General procedure for asymmetric γ -[3+2] annulations of MBH carbonates 1 with 1azadienes 6

Synthesis of 7: To a mixture of 1-azadiene 6 (0.10 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added MBH carbonate 1 (0.15 mmol, 1.5 equiv) in two potions

(generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36–60 h, and the reaction was monitored by TLC. After completion, the product **7** was obtained after the purification by flash chromatography on silica gel (EtOAc/petroleum ether).

Synthesis of *ent-7*: To a mixture of 1-azadiene **6** (0.10 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added MBH carbonate **1** (0.15 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36–60 h, and the reaction was monitored by TLC. After completion, the product *ent-7* was obtained after the purification by flash chromatography on silica gel (EtOAc/petroleum ether).

Synthesis of racemic 7: The racemates could not be obtained under the catalysis of DABCO. So the mixture of chiral catalyst **C1** and its *pseudo*-enantiomer **C2** was used for the preparation of the samples for determining the peaks of the enantiomers.

Synthesis of 7a: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide 6a (37.5 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively).

The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20to 1/10) to give the product **7a**: 56.0 mg (0.0957 mmol), as a white solid, 96% yield; mp = 135-136 °C; $\left[\alpha\right]_{D}^{25} = +193.3$ (c = 0.80 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 8.12 min (major), $t_R = 12.93 \text{ min (minor)}$; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.46 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.66–7.58 (m, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.31–7.22 (m, 5H), 7.20–7.13 (m, 2H), 7.13–7.07 (m, 3H), 7.07–7.01 (m, 2H), 6.92 (s, 1H), 4.18 (s, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.0, 170.1, 148.0, 144.0, 140.1, 138.1, 135.0, 131.2, 131.0, 129.5, 129.1, 129.0, 128.80, 128.77, 128.2, 127.0, 126.8 (q, J = 2.4 Hz), 124.9 (q, J = 283.5 Hz), 124.5, 123.4, 116.7, 113.1, 112.8, 98.6, 67.9 (q, J = 25.7 Hz), 67.2, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) -61.7; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{33}H_{23}F_3N_2O_3SNa^+$ 607.1274; Found 607.1274. Synthesis of *ent*-7a: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)-ylidene)-4-methyl benzenesulfonamide **6a** (37.5 mg, 0.100 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl) carbonate **1a** (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20

to 1/10) to give the product *ent*-7a: 52.4 mg (0.0896 mmol), as a white solid, 90% yield; $[\alpha]_D^{25} = -186.4$ (c = 0.50 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 8.14 min (minor), t_R = 12.88 min (major).

Synthesis of 7b: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide **6a** (37.5 mg, 0.100 mmol, 1.0 equiv), **C1** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (2-(3-chlorophenyl)-3-cyano-1,1,1-trifluorobut-3-en-2-yl)carbonate **1b** (72.4 mg, 0.200 mmol, 2.0 equiv) in three potions (generally at 0 h, 18 h, 36 h, respectively). The mixture was stirred at 40 °C for 48 h, and the reaction was

monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **7b**: 55.0 mg (0.0889 mmol), as a white solid, 89% yield; mp = 79–81 °C; $[\alpha]_D^{25}$ = +100.0 (*c* = 0.50 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.60 min (major), t_R = 12.29 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.48 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.70–7.57 (m, 1H), 7.42–7.33 (m, 3H), 7.28–7.00 (m, 10H), 6.95 (s, 1H), 4.10 (s, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.6, 170.0, 148.5, 144.1, 140.1, 137.8, 136.9, 135.2, 131.2, 130.3, 129.7 (2C), 129.2, 129.0, 128.5, 128.3, 127.1 (q, *J* = 2.5 Hz), 126.8, 125.1 (q, *J* = 2.8 Hz), 124.7 (q, *J* = 238.6 Hz), 123.9, 123.4, 116.6, 112.82, 112.78, 98.4, 67.5 (q, *J* = 26.1 Hz), 67.0, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₂³⁵ClF₃N₂O₃SNa⁺ 641.0884; Found 641.0886; Calcd for C₃₃H₂₂³⁷ClF₃N₂O₃SNa⁺ 643.0854; Found 643.0869.

Synthesis of 7c: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide **6a** (37.5 mg, 0.100 mmol, 1.0 equiv), **C1** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(p-tolyl)but-3-en-2-yl) carbonate **1c** (51.2 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by

TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **7c**: 58.0 mg (0.0968 mmol), as a white solid, 97% yield; mp = 77–78 °C; $[\alpha]_D^{25}$ = +180.5 (*c* = 0.40 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.97 min (major), t_R = 14.69 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.46 (d, *J* = 8.4 Hz,

1H), 7.88 (d, J = 8.0 Hz, 2H), 7.67–7.57 (m, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.19–6.97 (m, 11H), 6.89 (s, 1H), 4.16 (s, 1H), 2.52 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.1, 170.1, 147.7, 143.9, 140.1, 138.6, 138.0, 131.9, 131.2, 131.0, 129.8, 129.5, 129.1, 128.7, 128.2, 126.9, 126.6 (q, J = 2.3 Hz), 125.0 (q, J = 283.6 Hz), 124.7, 123.3, 116.7, 113.1, 112.8, 98.6, 67.6 (q, J = 25.7 Hz), 67.2, 21.6, 21.0; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₅F₃N₂O₃SNa⁺ 621.1430; Found 621.1430.

TS N CN O Ph Ph

Synthesis of 7d: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)ylidene)-4-methylbenzenesulfonamide **6a** (37.5 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(4-methoxyphenyl)but-3-en-2-yl) carbonate **1d** (53.6 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was

purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **7d**: 57.0 mg (0.0927 mmol), as a white solid, 93% yield; mp = 167–168 °C; $[\alpha]_D^{25}$ = +167.0 (*c* = 0.40 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 10.44 min (major), t_R = 19.07 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.46 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.67–7.57 (m, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.22–6.97 (m, 9H), 6.88 (s, 1H), 6.77 (d, *J* = 8.4 Hz, 2H), 4.15 (s, 1H), 3.82 (s, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.1, 170.1, 159.5, 147.6, 143.9, 140.1, 138.0, 131.2, 131.0, 129.5, 129.1, 128.7, 128.2, 128.1 (q, *J* = 25.0 Hz), 126.9, 126.7, 125.0 (q, *J* = 283.5 Hz), 124.7, 123.3, 116.7, 114.4, 113.1, 112.8, 98.6, 68.28 (q, *J* = 25.8 Hz), 67.27, 55.2, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –62.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₅F₃N₂O₄SNa⁺ 637.1379; Found 637.1377.

Synthesis of 7e: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)ylidene)-4-methylbenzenesulfonamide **6a** (37.5 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added 2-([1,1'-biphenyl]-4-yl)-3-cyano-1,1,1-trifluorobut-3-en-2-yl *tert*-butyl carbonate **1e** (80.6 mg, 0.200 mmol, 2.0 equiv) in three potions (generally at 0 h, 18 h, 36 h, respectively). The mixture was stirred at 40 °C for 48 h, and

the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **7e**: 64.0 mg (0.0968 mmol), as a white solid, 97% yield; mp = 119–121 °C; $[\alpha]_D^{25} = +91.5$ (c = 0.40 in CHCl₃); >19:1

dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 9.31 min (major), t_R = 19.23 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.47 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.67–7.60 (m, 1H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.52–7.43 (m, 4H), 7.42–7.29 m, 5H), 7.25–6.99 (m, 7H), 6.92 (s, 1H), 4.22 (s, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.1, 170.1, 148.1, 143.9, 141.4, 140.1, 139.7, 138.0, 134.0, 131.3, 131.0, 129.6, 129.0, 128.9, 128.8, 128.2, 127.9, 127.6, 127.2 (q, *J* = 2.5 Hz), 126.94, 126.92, 124.9 (q, *J* = 283.6 Hz), 124.4, 123.4, 116.6, 113.1, 112.9, 98.6, 67.7 (q, *J* = 25.9 Hz), 67.3, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.7; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₉H₂₈F₃N₂O₃S⁺ 661.1767; Found 661.1767.

Synthesis of 7f: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)ylidene)-4-methylbenzenesulfonamide 6a (37.5 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(naphthalen-2-yl)but-3-en-2-yl) carbonate 1f (57.0 mg, 0.151 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by

flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product **7f**: 61.0 mg (0.0961 mmol), as a white solid, 96% yield; mp = 101–103 °C; $[\alpha]_D^{25}$ = +65.2 (*c* = 0.50 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 5.69 min (major), t_R = 6.94 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.48 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.78 (s, 1H), 7.71–7.60 (m 3H), 7.59–7.47 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.31 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.22–7.13 (m, 2H), 7.13–7.01 (m, 5H), 6.98 (s, 1H), 4.33 (s, 1H), 2.52 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 179.1, 170.1, 148.0, 143.9, 140.2, 138.0, 132.9, 132.7, 132.0, 131.2, 131.0, 129.6, 129.1, 129.0, 128.8, 128.7, 128.3, 127.4, 127.2, 126.9, 126.8, 126.7, 125.0 (q, *J* = 283.5 Hz), 124.6, 123.7, 123.4, 116.7, 113.0, 112.9, 98.7, 68.1 (q, *J* = 26.1 Hz), 67.1, 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₂₅F₃N₂O₃SNa⁺ 657.1430; Found 657.1428.

Synthesis of *ent*-7f: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)-ylidene)-4-methyl benzenesulfonamide **6a** (37.5 mg, 0.100 mmol, 1.0 equiv), **C1** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(naphthalen-2-yl)but- 3-en-2-yl) carbonate **1f** (57.0 mg, 0.151 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel

(EtOAc/petroleum ether = 1/20 to 1/10) to give the product *ent-***7f**: 60.0 mg (0.0945 mmol), as a white solid, 94% yield; $[\alpha]_D^{25} = -74.5$ (c = 0.55 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 5.88 min (minor), t_R = 7.07 min (major).

Synthesis of 7g: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)ylidene)-4-methylbenzenesulfonamide **6a** (37.5 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(thiophen-2-yl)but-3-en-2-yl)carbonate 1g (50.0 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h,

respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product **7g**: 54.0 mg (0.0914 mmol), as a white solid, 91% yield; mp = 85–86 °C; $[\alpha]_D^{25}$ = +231.2 (*c* = 0.50 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 10.88 min (major), t_R = 23.12 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.47 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.67–7.59 (m, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 5.2 Hz, 1H), 7.23–7.03 (m, 8H), 7.03–6.97 (m, 1H), 6.90 (s, 1H), 4.23 (s, 1H), 2.50 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 178.3, 170.0, 147.8, 144.0, 140.0, 137.9, 136.7, 131.5, 131.1, 129.5, 129.0, 128.5, 128.2, 127.5, 127.4, 127.0, 126.4, 124.5(q, *J* = 283.5 Hz), 124.0, 123.4, 116.7, 112.9, 112.8, 98.0, 66.7, 65.5 (q, *J* = 27.0 Hz), 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –64.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₁F₃N₂O₃S₂Na⁺ 613.0838; Found 613.0839.

Synthesis of 7h: To a mixture of N-((Z)-2-benzylidenebenzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide **6a** (37.5 mg, 0.100 mmol, 1.0 equiv), **C1** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(1-tosyl-*1H*-indol-3-yl)but-3-en-2-yl) carbonate **1h** (78.2 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the

reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10 to 1/5) to give the product **7h**: 60.0 mg (0.0771 mmol), as a white solid, 77% yield; mp = 137–139 °C; $[\alpha]_D^{25} = -61.2$ (c = 0.50 in CHCl₃); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 15.03 min (major), t_R = 19.38 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.52 (dd, J = 8.4, 1.2 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.83–7.77 (m,

2H), 7.68 (m, 1H), 7.64–7.59 (m, 2H), 7.57–7.52 (m, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.24–7.09 (m, 6H), 7.05 (t, J = 7.6 Hz, 2H), 7.02 (s, 1H), 6.95 (d, J = 7.2 Hz, 2H), 6.26 (ddd, J = 8.0, 7.2, 0.8 Hz, 1H), 4.52 (s, 1H), 2.50 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.5, 170.1, 147.9, 145.4, 144.1, 140.2, 137.8, 135.0, 134.5, 131.2, 130.8, 130.0, 129.7, 128.9, 128.8, 128.3, 127.1, 126.8, 126.68, 126.65, 124.9, 124.6 (q, J = 284.2 Hz), 124.1, 123.6, 123.4, 119.8, 116.9, 113.9, 112.9, 112.4, 112.2, 97.9, 64.5 (q, J = 26.8 Hz), 61.2, 21.61, 21.60; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –64.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₄₂H₃₀F₃N₃O₅S₂Na⁺ 778.1652; Found 778.1651.

Synthesis of 7i: To a mixture of N-((Z)-2-(3-chlorobenzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide **6b** (41.0 mg, 0.100 mmol, 1.0 equiv), **C1** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate **1a** (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was

monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **7i**: 60.0 mg (0.0969 mmol), as a white solid, 97% yield; mp = 259–260 °C; $[\alpha]_D^{25} = +208.0$ (c = 0.50 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.36 min (major), t_R = 13.35 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.46 (s, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.56 (dd, J = 9.2, 2.4 Hz, 1H), 7.38 (d, J = 8.0 Hz, 3H), 7.32–7.23 (m, 4H), 7.23–7.16 (m, 1H), 7.15–7.07 (m, 3H), 7.01 (d, J = 7.6 Hz, 2H), 6.91 (s, 1H), 4.14 (s, 1H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 177.7, 168.4, 147.5, 144.3, 140.0, 137.6, 134.9, 131.2, 130.0, 129.6 (2C), 129.2, 129.0, 128.9, 128.73, 128.71, 128.3, 127.1, 126.9, 126.7 (q, J = 2.4 Hz), 124.91, 124.90 (q, J = 283.4 Hz), 117.7, 114.0, 112.9, 99.4, 67.8(q, J = 25.5 Hz), 67.6, 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₂³⁵ClF₃N₂O₃SNa⁺ 641.0884; Found 641.0877; Calcd for C₃₃H₂₂³⁷ClF₃N₂O₃SNa⁺ 643.0854; Found 643.0861.

Synthesis of *ent*-7i: To a mixture of *N*-((*Z*)-2-(3-chlorobenzylidene)benzofuran-3(2*H*)-ylidene)-4methylbenzenesulfonamide **6b** (41.0 mg, 0.100 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl) carbonate **1a** (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product *ent*-7i: 60.3 mg (0.0974 mmol), as a white solid, 97% yield; $[\alpha]_D^{25} = -196.0$ (*c* = 0.75 in CHCl₃); >19:1 dr; 99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, l = 254 nm) $t_R = 7.37$ min (minor), $t_R = 13.12$ min (major).

Synthesis of 7j: To a mixture of N-((Z)-2-(4-chlorobenzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide 6c (41.0 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was

monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **7j**: 57.0 mg (0.0921 mmol), as a white solid, 92% yield; mp = 100–101 °C; $[\alpha]_D^{25} = +178.0$ (c = 0.50 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 6.32 min (major), t_R = 10.07 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.48 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.75–7.57 (m, 1H), 7.37 (d, J = 8.0 Hz, 3H), 7.32–7.21 (m, 4H), 7.14 (t, J = 8.8 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 6.91 (s, 1H), 4.15 (s, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.6, 169.9, 147.9, 144.1, 140.3, 137.9, 135.1, 134.8, 132.5, 131.1, 129.6, 129.2, 128.9, 128.5, 127.5, 126.9, 126.7 (q, J = 2.5 Hz), 124.9 (q, J = 283.9 Hz), 124.5, 123.6, 116.6, 112.9, 112.8, 98.3, 67.8 (q, J = 25.6 Hz), 66.5, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₃³⁵ClF₃N₂O₃S⁺ 619.1065; Found 619.1066; Calcd for C₃₃H₂₃³⁷ClF₃N₂O₃S⁺ 621.1035; Found 621.1051.

Synthesis of 7k: To a mixture of N-((Z)-2-(4-bromobenzylidene)benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide 6d (45.4 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash

chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **7k**: 60.0 mg (0.0904 mmol), as a white solid, 90% yield; mp = 108–110 °C; $[\alpha]_D^{25} = +218.0$ (c = 0.50 in CHCl₃); >19:1 dr; 99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, l = 254 nm) t_R = 6.32 min (major), t_R = 10.07 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.49 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 7.6 Hz, 2H), 7.73–7.60 (m, 1H), 7.38 (d, J = 8.0 Hz,

3H), 7.33–7.20 (m, 6H), 7.20–7.08 (m, 2H), 6.98–6.83 (m, 3H), 4.13 (s, 1H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.6, 169.9, 147.9, 144.1, 140.3, 137.9, 134.8, 132.8, 131.5, 131.1, 129.6, 129.2, 128.9, 128.1, 126.9, 126.7 (q, *J* = 2.4 Hz), 124.9 (q, *J* = 283.4 Hz), 124.5, 123.6, 123.5, 116.6, 112.9, 112.8, 98.3, 67.8 (q, *J* = 25.8 Hz), 66.6, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₃⁷⁹BrF₃N₂O₃S⁺ 663.0599; Found 663.0599; Calcd for C₃₃H₂₃⁸¹BrF₃N₂O₃S⁺ 665.0539; Found 665.0545.

Synthesis of 7l: To a mixture of 4-methyl-N-((Z)-2-(4-methylbenzylidene) benzofuran-3(2H)-ylidene)benzenesulfonamide **6e** (39.0 mg, 0.100 mmol, 1.0 equiv), **C1** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate **1a** (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was

monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **71**: 57.0 mg (0.0952 mmol), as a white solid, 95% yield; mp = 79–82 °C; $[\alpha]_D^{25}$ = +243.6 (*c* = 0.50 in CHCl₃); >19:1 dr; 99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 6.54 min (major), t_R = 13.01 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.46 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.62 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.40–7.33 (m, 3H), 7.32–7.21 (m, 4H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.96–6.84 (m, 5H), 4.15 (s, 1H), 2.51 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.1, 170.1, 148.0, 143.9, 140.0, 138.6, 138.1, 135.1, 131.1, 131.0, 129.5, 129.1, 129.0, 128.7, 126.9, 126.8 (q, *J* = 2.4 Hz), 125.8, 125.0 (q, *J* = 283.7 Hz), 124.6, 123.3, 116.8, 113.1, 112.8, 98.7, 67.8 (q, *J* = 25.8 Hz), 67.1, 21.6, 21.0; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₅F₃N₂O₃SNa⁺ 621.1430; Found 621.1427.

Synthesis of 7m: To a mixture of N-((Z)-2-(4-methoxybenzylidene) benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide 6f (40.6 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl) carbonate 1a (49.1 mg, 0.15 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by

flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **7m**: 57.0 mg (0.0927 mmol), as a white solid, 93% yield; mp = 86–88 °C; $[\alpha]_D^{25} = +189.1$ (c = 0.50 in

CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 8.50 min (major), t_R = 17.32 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.46 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 2H), 7.62 (ddd, *J* = 8.8, 7.2, 1.6 Hz, 1H), 7.41–7.34 (m, 3H), 7.31–7.23 (m, 4H), 7.14 (d, *J* = 8.8 Hz, 1H), 7.11–7.06 (m, 1H), 6.96 (d, *J* = 8.4 Hz, 2H), 6.91 (s, 1H), 6.65–6.59 (m, 2H), 4.13 (s, 1H), 3.66 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.2, 170.1, 159.8, 148.0, 143.9, 140.1, 138.1, 135.2, 132.5, 131.0, 129.5, 129.1, 128.7, 126.9, 126.8 (q, *J* = 2.4 Hz), 125.0 (q, *J* = 282.5 Hz), 124.6, 123.3, 120.7, 116.8, 113.6, 113.1, 112.8, 98.6, 67.6 (q, *J* = 25.6 Hz), 66.9, 55.0, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₅F₃N₂O₄SNa⁺ 637.1379; Found 637.1381.

Synthesis of 7n: To a mixture of 4-methyl-N-((Z)-2-(naphthalen-2-yl methylene)benzofuran-3(2H)-ylidene)benzenesulfonamide 6g (42.6 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl) carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was

purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **7n**: 56.0 mg (0.0882 mmol), as a white solid, 88% yield; mp = 117–119 °C; $[\alpha]_D^{25}$ = +320.0 (*c* = 0.50 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, l = 254 nm) t_R = 9.55 min (major), t_R = 19.78 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.42 (d, *J* = 7.6 Hz, 1H), 7.89 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.62–7.53 (m, 3H), 7.43–7.34 (m, 6H), 7.33–7.25 (m, 4H), 7.23 (d, *J* = 1.2 Hz, 1H), 7.17 (d, *J* = 8.8 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.96 (s, 1H), 4.35 (s, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.0, 170.1, 148.1, 144.0, 140.1, 138.1, 135.1, 133.1, 132.8, 131.2, 131.1, 129.6, 129.1, 128.8, 128.24, 128.22, 128.1, 127.7, 127.3, 126.9, 126.8 (q, *J* = 2.4 Hz), 126.6, 126.0, 125.0 (q, *J* = 283.5 Hz), 124.6, 123.4, 116.7, 113.1, 112.7, 98.8, 67.8 (q, *J* = 25.8 Hz), 67.4, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₇H₂₅F₃N₂O₃SNa⁺ 657.1430; Found 657.1427.

Synthesis of *ent*-7n: To a mixture of 4-methyl-N-((Z)-2-(naphthalen-2-ylmethylene)benzofuran-3(2H)-ylidene)benzenesulfonamide **6g** (42.6 mg, 0.1 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate **1a** (49.1 mg, 0.15 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product *ent*-7n: 52.7 mg (0.0830 mmol), as a white solid, 83% yield; $[\alpha]_D^{25} = -320.3$ (c = 0.70 in CHCl₃); >19:1 dr; 99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 9.13 min (minor), t_R = 18.80 min (major).

Synthesis of 70: To a mixture of 4-methyl-N-((Z)-2-(thiophen-2-ylmethylene) benzofuran-3(2H)-ylidene)benzenesulfonamide **6h** (38.2 mg, 0.100 mmol, 1.0 equiv), **C1** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate **1a** (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was

monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give the product **70**: 52.0 mg (0.0880 mmol), as a white solid, 88% yield; mp = 99–101 °C; $[\alpha]_D^{25} = +143.2$ (c = 0.50 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.78 min (major), t_R = 13.13 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.51 (d, J = 8.0 Hz, 1H), 7.87 (dd, J = 8.4, 2.0 Hz, 2H), 7.69 (t, J = 7.6 Hz, 1H), 7.43–7.35 (m, 3H), 7.36–7.24 (m, 4H), 7.22 (d, J = 8.4 Hz, 1H), 7.18–7.11 (m, 2H), 6.90 (d, J = 2.0 Hz, 1H), 6.83–6.77 (m, 1H), 6.72–6.68 (m, 1H), 4.59 (s, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 178.8, 170.3, 147.4, 144.0, 140.2, 138.0, 134.6, 131.1, 129.8, 129.5, 129.2, 128.93, 128.90, 127.5, 126.89, 126.86, 126.5, 124.8 (q, J = 283.4 Hz, 124.5, 123.5, 116.7, 113.3, 112.8, 97.9, 67.7 (q, J = 25.3 Hz), 62.2, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –62.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₁F₃N₂O₃S₂Na⁺ 613.0838; Found 613.0838.

Synthesis of 7p: To a mixture of N-((Z)-2-benzylidene-5-chloro benzofuran-3(2H)-ylidene)-4-methylbenzenesulfonamide 6i (41.0 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenyl but-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv) in two

potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product **7b**: 58.0 mg (0.0937 mmol), as a white solid, 94% yield; mp = 263–264 °C; $[\alpha]_D^{25} = +227.2$ (c = 0.72 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 6.82 min (major), t_R = 8.31 min (minor); ¹H NMR

(400 MHz, CDCl₃): δ (ppm) 8.49 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.66 (ddd, *J* = 8.8, 7.2, 1.6 Hz, 1H), 7.42–7.34 (m, 3H), 7.33–7.23 (m, 4H), 7.21–7.07 (m, 4H), 7.03 (t, *J* = 8.0 Hz, 1H), 6.91 (s, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 4.12 (s, 1H), 2.51 (s, 3H); ¹³C N MR (150 MHz, CDCl₃): δ (ppm) 178.5, 169.9, 147.8, 144.1, 140.3, 137.8, 134.6, 134.0, 131.04, 131.00, 129.6, 129.42, 129.39, 129.2, 129.1, 129.0, 126.9, 126.7, 124.8 (q, *J* = 283.7 Hz), 124.5, 123.6, 116.6, 112.8, 98.3, 67.9 (q, *J* = 25.8 Hz), 66.5, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₂³⁵ClF₃N₂O₃SNa⁺ 641.0884; Found 641.0880; Calcd for C₃₃H₂₂³⁷ClF₃N₂O₃SNa⁺ 643.0854; Found 643.0862.

Synthesis of 7q: To a mixture of *N*-((*Z*)-2-benzylidene-5-methyl benzofuran-3(2*H*)-ylidene)-4-methylbenzenesulfonamide **6j** (38.9 mg, 0.100 mmol, 1.0 equiv), **C1** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenyl but-3-en-2-yl)carbonate **1a** (65.5 mg, 0.200 mmol, 2.0 equiv) in two potions

(generally at 0 h, 18 h, 36 h, respectively). The mixture was stirred at 40 °C for 60 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10 to 1/5) to give the product **7q**: 55.0 mg (0.0918 mmol), as a yellow solid, 92% yield; mp = 258-260 °C; $[\alpha]_D^{25} = +195.2$ (c = 0.50 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.17 min (major), t_R = 12.46 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.45 (dd, J = 8.4, 2.0 Hz, 1H), 7.41–7.34 (m, 3H), 7.31–7.23 (m, 4H), 7.21–7.14 (m, 1H), 7.14–7.01 (m, 5H), 6.90 (s, 1H), 4.18 (s, 1H), 2.52 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 179.2, 168.7, 148.2, 143.9, 141.7, 138.2, 135.1, 133.3, 131.2, 130.0, 129.5, 129.09, 129.06, 128.8, 128.7, 128.2, 126.83, 126.77 (q, J = 2.8 Hz), 125.0 (q, J = 283.5 Hz), 124.4, 116.6, 113.1, 112.5, 98.8, 67.9 (q, J = 25.7 Hz), 67.2, 21.6, 20.8; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₄H₂₅F₃N₂O₃SNa⁺ 621.1430; Found 621.1432.

Synthesis of *ent*-7**q**: To a mixture of *N*-((*Z*)-2-benzylidene-5-methylbenzo furan-3(2*H*)-ylidene)-4methylbenzenesulfonamide **6j** (38.9 mg, 0.100 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl) carbonate **1a** (65.5 mg, 0.200 mmol, 2.0 equiv) in two potions (generally at 0 h, 18 h, 36 h, respectively). The mixture was stirred at 40 °C for 60 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10 to 1/5) to give the product *ent*-7**q**: 48.5 mg (0.0810 mmol), as a yellow solid, 81% yield; $[\alpha]_D^{25} = -192.0$ (c = 0.75 in CHCl₃); >19:1 dr; 99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, l = 254 nm) t_R = 7.84 min (minor), t_R = 13.24 min (major).

4.3 General procedure for catalyst-controlled α -[4+1] annulations of MBH carbonates 1 with 1-azadienes 2

Synthesis of 5: A mixture of MBH carbonate 1 (0.15 mmol, 1.5 equiv), 1-azadiene 2 (0.1 mmol, 1.0 equiv), C7 (1.5 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at -10 °C or rt for 5 h, and the reaction was monitored by TLC. After completion, the product 5 was obtained after the purification by flash chromatography on silica gel (EtOAc/petroleum ether).

Synthesis of *ent-5*: To a mixture of 1-azadiene 2 (0.1 mmol, 1.0 equiv) and C6 (8.6 mg, 10 mol%) in PhCF₃ (1.0 mL) was added MBH carbonate 1 (0.20 mmol, 2.0 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36–48 h, and the reaction was monitored by TLC. After completion, the product *ent-5* was obtained after the purification by flash chromatography on silica gel (EtOAc/petroleum ether).

Synthesis of racemic products 5: The racemic products **5** were obtained under the catalysis of DABCO.

Synthesis of 5a: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv), *N*-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-ylidene)-4-methylbenzene sulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C7 (1.5 mg, 5 mol%)

and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at -10 °C for 5 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the product **5a**: 51.4 mg (0.0855 mmol), as a white solid, 86% yield; mp = 195–197 °C; $[\alpha]_D^{25} = +119.4$ (c = 0.69 in CHCl₃); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.54 min (minor), t_R = 8.69 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.70 (d, J = 8.4 Hz, 1H), 7.72–7.66 (m, 1H), 7.65–7.62 (br, 2H), 7.48 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.45–7.33 (m, 2H), 7.27–7.20 (m, 1H), 7.06–6.98 (m, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.82 (br, 1H), 6.69–6.61 (m, 2H), 6.31 (br, 1H), 6.24–6.13 (m, 2H), 4.63 (d, J = 5.2 Hz, 1H), 4.47 (d, J = 5.6 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 144.6 (q, J = 31.6 Hz), 144.5, 144.2,

138.8, 138.0, 131.1, 130.6, 129.82, 129.80, 129.7, 129.0, 128.8, 128.4, 128.14 (2C), 128.11, 127.8, 125.4, 125.1, 124.2, 123.7, 121.3 (q, J = 274.9 Hz), 119.5 (q, J = 3.0 Hz), 112.9, 75.1, 51.7, 21.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₃F₃N₂O₂S₂Na⁺ 623.1045; Found 623.1041.

Synthesis of *ent*-5a: To a mixture of *N*-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-ylidene)-4methylbenzenesulfonamide **2a** (39.1 mg, 0.0997 mmol, 1.0 equiv) and **C6** (8.6 mg, 10 mol%) in PhCF₃ (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate **1a** (65.4 mg, 0.200 mmol, 2.0 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the product *ent*-**5a**: 36.0 mg (0.0599 mmol), as a white solid, 60% yield; $[\alpha]_D^{25} = -127.7$ (*c* = 0.70 in CHCl₃); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.51 min (major), t_R = 8.66 min (minor).

Synthesis of 5b: A solution of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(*p*-tolyl)but-3-en-2-yl)carbonate 1c (51.2 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-benzylidenebenzo[b]thiophen-3(2H)-ylidene)-4-methylbenzene sulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C7 (1.5 mg, 5 mol%)

and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at -10 °C for 5 h, and

the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the product **5b**: 49.6 mg (0.0807 mmol), as a white solid, 81% yield; mp = 155–156 °C; $[\alpha]_D^{25} = +77.1$ (*c* = 0.68 in CHCl₃); >19:1 dr; 94% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 6.10 min (minor), t_R = 16.59 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.69 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.31–7.20 (m, 1H), 7.11 (br, 4H); 7.03 (t, *J* = 7.6 Hz, 2H), 6.89 (d, *J* = 7.6 Hz, 2H), 6.65 (d, *J* = 8.0 Hz, 2H), 6.20 (d, *J* = 7.6 Hz, 2H), 4.67 (d, *J* = 5.6 Hz, 1H), 4.47 (d, *J* = 5.6 Hz, 1H), 2.38 (s, 3H); 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 144.9 (q, *J* = 31.5 Hz), 144.5, 144.2, 140.2, 138.8, 138.0, 131.1, 130.6, 129.7, 129.6, 128.7, 128.6, 128.5, 128.2, 128.1, 127.8, 126.2, 125.3, 125.1, 124.2, 123.7, 121.4 (q, *J* = 275.5 Hz), 119.1 (q, *J* = 2.6 Hz), 113.0, 75.1, 51.7, 21.5, 21.3; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₂₆F₃N₂O₂S₂⁺ 637.1202; Found 637.1205.

Synthesis of *ent*-5b: To a mixture of N-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-ylidene)-4methylbenzenesulfonamide **2a** (39.1 mg, 0.0997 mmol, 1.0 equiv) and **C6** (8.6 mg, 10 mol%) in PhCF₃ (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(*p*-tolyl)but-3-en-2-yl)carbonate **1c** (68.2 mg, 0.200 mmol, 2.0 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 48 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the product *ent*-**5b**: 31.5 mg (0.0512 mmol), as a white solid, 51% yield; $[\alpha]_D^{25} = -71.0$ (c = 0.20 in CHCl₃); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 6.05 min (major), t_R = 16.10 min (minor).

Synthesis of 5c: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(4-methoxyphenyl)but-3-en-2-yl)carbonate 1d (53.6 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-benzylidenebenzo[b]thiophen-3(2H)-ylidene)-4-methyl benzenesulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C7 (1.5 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at rt for 5 h, and the reaction was monitored by TLC. After completion, the crude

product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product **5c**: 53.5 mg (0.0845 mmol), as a yellow solid, 85% yield; mp = 101–102 °C; $[\alpha]_D^{25} = +46.2 (c = 0.55 \text{ in CHCl}_3); >19:1 dr; 88% ee, determined by HPLC analysis (Daicel Chiralpak ID,$ *n*-hexane/*i* $-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 9.52 min (minor), t_R = 10.36 min (major); ¹H NMR (400 MHz, CDCl_3): <math>\delta$ (ppm) 8.70 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.30–7.20 (m, 1H), 7.03 (t, *J* = 7.6 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.87–6.74 (br, 2H), 6.70 (d, *J* = 8.0 Hz, 2H), 6.66–6.37 (br, 2H), 6.21 (d, *J* = 7.6 Hz, 2H), 4.69 (d, *J* = 5.6 Hz, 1H), 4.47 (d, *J* = 5.6 Hz, 1H), 3.81 (s, 3H), 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCl_3): δ (ppm) 160.9, 144.7 (q, *J* = 31.6 Hz), 144.6, 144.2, 138.9, 137.9, 131.2, 131.1, 130.6, 129.8, 128.8, 128.4, 128.2, 128.1, 127.8, 125.3, 125.1, 124.2, 123.7, 121.4 (q, *J* = 275.1 Hz), 121.1, 119.0, 113.4, 113.1, 75.2, 55.5, 51.7, 21.5; ¹⁹F NMR (376 MHz, CDCl_3): δ (ppm) –62.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₂₆F₃N₂O₃S₂⁺ 631.1331; Found 631.1333.

Synthesis of 5d: A mixture of 2-([1,1'-biphenyl]-4-yl)-3-cyano-1,1,1trifluorobut-3-en-2-yl *tert*-butyl carbonate **1e** (60.5 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-benzylidenebenzo[b]thiophen-3(2H)-ylidene)-4-methyl benzenesulfonamide **2a** (39.1 mg, 0.0997 mmol, 1.0 equiv), **C7** (1.5 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at -10 °C for 5 h, and the reaction was monitored by TLC. After completion, the crude

product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product **5d**: 54.6 mg (0.0806 mmol), as a yellow solid, 81% yield; mp = 188–189 °C; $[\alpha]_D^{25} = +24.8 \ (c = 0.58 \text{ in CHCl}_3); >19:1 \text{ dr}; 93\%$ ee, determined by HPLC analysis (Daicel Chiralpak

IA, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, l = 254 nm) t_R = 9.01 min (minor), t_R = 25.08 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.71 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.64 (br, 1H), 7.62–7.41 (m, 9H), 7.41–7.33 (m, 1H), 7.31–7.23 (m, 1H), 7.09–7.00 (m, 2H), 6.82 (d, *J* = 8.0 Hz, 2H), 6.69 (d, *J* = 8.0 Hz, 2H), 6.29–6.17 (m, 2H), 4.67 (d, *J* = 5.6 Hz, 1H), 4.50 (d, *J* = 5.6 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 144.55, 144.53 (q, *J* = 31.7 Hz), 144.3, 143.0, 139.7, 138.9, 138.0, 131.1, 130.6, 130.3, 129.8, 129.1, 128.8, 128.5, 128.23, 128.20 (2C), 127.9, 127.0, 126.60, 126.55, 125.4, 125.2, 124.2, 123.7, 121.3 (d, *J* = 274.8 Hz), 119.59 (d, *J* = 3.1 Hz), 112.9, 75.2, 51.8, 21.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₉H₂₈F₃N₂O₂S₂⁺ 677.1539; Found 677.1540.

Synthesis of 5e: A mixture of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(thiophen-2-yl)but-3-en-2-yl)carbonate 1g (50.0 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-benzylidenebenzo[b]thiophen-3(2H)-ylidene)-4-methyl benzenesulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C7 (1.5 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at rt for 5 h,

and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the product **5e**: 41.0 mg (0.0675 mmol), as a yellow solid, 68% yield; mp = 235–237 °C; $[\alpha]_D^{25} = +104.3$ (c = 1.12 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.52 min (minor), t_R = 8.69 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.70 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.66–7.52 (br, 2H), 7.49 (t, J = 7.8 Hz, 1H), 7.44–7.33 (m, 2H), 7.29–7.20 (m, 1H), 7.06–7.98 (m, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.65 (d, J = 8.0 Hz, 2H), 6.19 (d, J = 7.6 Hz, 2H), 4.63 (d, J = 5.2 Hz, 1H), 4.47 (d, J = 5.6 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 144.6 (q, J = 31.7 Hz), 144.5, 144.2, 138.8, 138.0, 131.1, 130.5, 129.82 129.80, 129.7, 129.0, 128.8, 128.4, 128.2, 128.14, 128.12, 127.8, 125.4, 125.1, 124.2, 123.7, 121.3 (q, J = 275.0 Hz), 119.49 (q, J = 3.0 Hz), 112.9, 75.1, 51.7, 21.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₂F₃N₂O₂S₃⁺ 607.0790; Found 607.0785.

Synthesis of *ent*-5e: To a mixture of *N*-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-ylidene)-4methylbenzenesulfonamide **2a** (39.1 mg, 0.0997 mmol, 1.0 equiv) and **C6** (8.6 mg, 10 mol%) in PhCF₃ (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-(thiophen-2-yl)but-3-en-2-yl) carbonate **1g** (66.6 mg, 0.200 mmol, 2.0 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the product *ent*-5e: 32.0 mg (0.0527 mmol), as a yellow solid, 53% yield; $[\alpha]_D^{25} =$ -92.4 (c = 0.37 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.50 min (major), t_R = 8.71 min (minor).

Synthesis of 5f: A mixture of *tert*-butyl(3-cyano-1,1,1-trifluoro-2-phenyl but-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv), N-((Z)-2-(4-chlorobenzylidene)benzo[b]thiophen-3(2H)-ylidene)-4-methylbenzene sulfonamide 2b (42.6 mg, 0.100 mmol, 1.0 equiv), C7 (1.5 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at −10 °C for 5 h, and the reaction was monitored by TLC. After completion, the crude product was

purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the product **5f**: 50.2 mg (0.0791 mmol), as a yellow solid, 79% yield; mp = 173–174 °C; $[\alpha]_D^{25}$ = +100.6 (*c* = 0.65 in CHCl₃); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 6.74 min (minor), t_R =7.72 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.69 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.67–7.52 (br, 2H), 7.52–7.45 (m, 2H), 7.42–7.34 (m, 1H), 6.99 (br, 1H), 6.97–6.93 (m, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.70 (d, *J* = 8.0 Hz, 2H), 6.45 (br, 1H), 6.21–6.03 (m, 2H), 4.65 (d, *J* = 5.2 Hz, 1H), 4.42 (d, *J* = 4.8 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 144.8, 144.7 (q, *J* = 31.9 Hz), 144.3, 138.3, 137.4, 134.0, 130.9, 130.3, 130.1, 129.8, 129.6, 129.0, 128.9, 128.8, 128.4, 128.2, 128.0, 125.5, 125.4, 124.3, 123.7, 121.2 (q, *J* = 275.0 Hz), 119.6 (q, *J* = 3.1 Hz), 112.7, 75.0, 51.0, 21.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –62.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₃³⁵ClF₃N₂O₂S₂⁺ 635.0836; Found 635.0837; Calcd for C₃₃H₂₃³⁷ClF₃N₂O₂S₂⁺ 637.0807; Found 637.0837.

Synthesis of *ent*-5f To a mixture of *N*-((*Z*)-2-(4-chlorobenzylidene)benzo[*b*]thiophen-3(2*H*)ylidene)-4-methylbenzenesulfonamide 2b (42.6 mg, 0.1 mmol, 1.0 equiv) and C6 (8.6 mg, 10 mol%) in PhCF₃ (1.0 mL) was added *tert*-butyl(3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (65.4 mg, 0.200 mmol, 2.0 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the product *ent*-5f: 35.0 mg (0.0551 mmol), as a yellow solid, 55% yield; $[\alpha]_D^{25} = -101.0$ (*c* = 0.40 in CHCl₃); >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 6.75 min (major), t_R = 7.75 min (minor).

Synthesis of 5g: A solution of *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv), 4-methyl-*N*-((Z)-2-(4-methylbenzylidene)benzo[*b*]thiophen-3(2*H*)-ylidene) benzenesulfonamide 2d (40.6 mg, 0.100 mmol, 1.0 equiv), C7 (1.5 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at −10 °C for 5 h, and the reaction was monitored by TLC. After completion, the crude

product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) to give the product **5g**: 49.0 mg (0.0797 mmol), as a yellow solid, 80% yield; mp = 209–210 °C; $[\alpha]_D^{25}$ = +104.0 (*c* = 0.40 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 5.71 min (minor), t_R = 18.87 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.69 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.66–7.51 (br, 2H), 7.51–7.39 (m, 2H), 7.39–7.32 (m, 1H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.85 (br, 1H), 6.83 (d, *J* = 8.0 Hz, 2H), 6.68–6.60 (m, 2H), 6.28 (br, 1H), 6.12–6.04 (m, 2H), 4.62 (d, *J* = 6.0 Hz, 1H), 4.44 (d, *J* = 5.6 Hz, 1H), 2.35 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 144.6 (q, *J* = 31.6 Hz), 144.5, 144.2, 138.0, 137.7, 135.7, 131.4, 130.5, 129.8, 129.7, 129.4, 129.0, 128.5, 128.12, 128.11, 128.0, 127.7, 125.3, 125.1, 124.1, 123.7, 121.3 (q, *J* = 274.9 Hz), 119.54 (q, *J* = 3.0 Hz), 112.93 (q, *J* = 1.5 Hz), 75.1, 51.4, 21.5, 21.1; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₂₆F₃N₂O₂S₂⁺ 615.1382; Found 615.1378.

Synthesis of *ent*-5g: To a mixture of 4-methyl-*N*-((*Z*)-2-(4-methylbenzylidene)benzo[*b*]thiophen-3(*2H*)-ylidene)benzenesulfonamide 2d (40.6 mg, 0.100 mmol, 1.0 equiv) and C6 (8.6 mg, 10 mol%) in PhCF₃ (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (65.4 mg, 0.200 mmol, 2.0 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 48 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) to give the product *ent*-5g: 35.0 mg (0.0569 mmol), as a yellow solid, 57% yield; $[\alpha]_D^{25} = -102.5$ (*c* = 0.24 in CHCl₃); >19:1 dr; >99% ee, determined by HPLC analysis (Daicel Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 5.75 min (major), t_R = 18.39 min (minor).

Synthesis of 5h: A mixture of *tert*-butyl(3-cyano-1,1,1-trifluoro-2-phenyl but-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 mmol, 1.5 equiv), 4-methyl-*N*-((*Z*)-2-(naphthalen-2-ylmethylene)benzo[*b*]thiophen-3(2*H*)-ylidene)

benzenesulfonamide **2f** (44.2 mg, 0.100 mol, 1.0 equiv), **C7** (1.5 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at -10 °C for 5 h, and the reaction was monitored by TLC. After completion, the crude product was

purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the

product **5h**: 44.5 mg (0.0684 mmol), as a yellow solid, 68% yield; mp = 192–193 °C; $[α]_D^{25}$ = +83.5 (*c* = 0.51 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis (Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 8.52 min (major), t_R = 10.92 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.73 (d, *J* = 8.4 Hz, 1H), 7.82–7.75 (m, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.67–7.58 (br, 1H), 7.57–7.47 (m, 5H), 7.43–7.35 (m, 2H), 7.32–7.26 (m, 1H), 7.02 (d, *J* = 2.0 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 2H), 6.75–6.68 (m, 2H), 6.34 (br, 2H), 6.01 (dd, *J* = 8.4, 2.0 Hz, 1H), 4.82 (d, *J* = 5.6 Hz, 1H), 4.65 (d, *J* = 5.2 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 144.7 (q, *J* = 31.8 Hz), 144.6, 144.3, 138.1, 135.8, 132.9, 132.7, 130.9, 129.8 (2C), 129.6, 129.04, 128.98, 128.8, 128.6, 128.1 (2C), 127.8, 127.6, 127.1, 126.7, 126.6, 125.4, 125.2, 124.7, 124.3, 123.7, 121.3 (q, *J* = 275.1 Hz), 119.8 (q, *J* = 3.0 Hz), 112.9, 74.9, 51.9, 21.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₂₆F₃N₂O₂S₂⁺ 651.1382; Found 651.1382.

Synthesis of *ent*-5h: To a mixture of 4-methyl-*N*-((*Z*)-2-(naphthalen-2-ylmethylene)benzo[*b*] thiophen-3(*2H*)-ylidene)benzenesulfonamide **2f** (44.2 mg, 0.100 mmol, 1.0 equiv) and **C6** (8.6 mg, 10 mol%) in PhCF₃ (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl) carbonate **1a** (65.4 mg, 0.200 mmol, 2.0 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/50 to 1/20) to give the product *ent*-5h: 30.0 mg (0.0461 mmol), as a yellow solid, 46% yield; $[\alpha]_D^{25} = -74.0$ (*c* = 0.30 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis (Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 8.61 min (minor), t_R = 10.60 min (major).

4.4 General procedure for substrate-controlled γ-[4+3] annulations of MBH carbonates 1 with 1-azadiene 2a

In the further exploration of the substrate scope, it was found that the γ -regioselective [4+3] version proceeded well by using MBH carbonate **1j** with a benzoxazole motif, and the product **8a** was isolated in 71% yield with 93% ee under the catalysis of **C1**. Interestingly, different diastereoselectivity was observed in comparison with the [3+2] product **3**, probably because of the steric and electronic effects of the heteroaryl group in both addition and cyclization step. Furthermore, the MBH carbonate **1k** having a benzothiazole motif gave the [4+3] product **8b** similarly. In addition, the corresponding enantiomers of **8a** and **8b** were obtained in good results with amine **C2**.⁴

Synthesis of 8: A mixture of MBH carbonate **1** (0.15 mmol, 1.5 equiv), 1-azadiene **2a** (0.10 mmol, 1.0 equiv), **C1** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at rt for 24 or 36 h, and the reaction was monitored by TLC. After completion, the product **8** was obtained after the purification by flash chromatography on silica gel (EtOAc/petroleum ether).

Synthesis of *ent*-8: A mixture of MBH carbonate 1 (0.15 mmol, 1.5 equiv), 1-azadiene 2a (0.10 mmol, 1.0 equiv), C2 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at rt for 24 or 36 h, and the reaction was monitored by TLC. After completion, the product *ent*-8 was obtained after the purification by flash chromatography on silica gel (EtOAc/petroleum ether).

Synthesis of racemic products 8: The racemic products 8 were obtained under the catalysis of DABCO.

Synthesis of 8a: A mixture of 2-(benzo[*d*]oxazol-2-yl)-3-cyano-1,1,1trifluorobut-3-en-2-yl *tert*-butyl carbonate 1j (55.2 mg, 0.150 mmol, 1.5 equiv), N-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-ylidene)-4methylbenzenesulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred

at rt for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product **8a**: 43.2 mg (0.0673 mmol), as a white solid, 67% yield; mp = 238–240 °C; $[\alpha]_D^{25} = -466.7$ (c = 0.30 in CHCl₃); >19:1 dr; 92% ee, determined by HPLC analysis (Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 10.02 min (minor), t_R = 10.74 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (s, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.74–7.64 (m, 1H), 7.56–7.45 (m, 4H), 7.41–7.28 (m, 4H), 7.27–7.17 (m, 3H), 7.15–6.72 (m, 1H), 6.12 (br, 1H), 4.16 (s, 1H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.7, 150.4, 146.2, 145.5, 140.0, 138.8, 137.1, 135.2, 134.9, 134.8, 130.6 (2C), 129.0, 128.7, 128.6, 127.7, 126.4, 125.5, 125.2, 125.1, 123.9, 122.9 (q, J = 287.6 Hz), 122.0, 121.1, 116.7, 110.8, 99.7, 56.2 (q, J = 24.1 Hz), 47.3, 21.8; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –63.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₂₃F₃N₃O₃S₂⁺ 642.1127; Found 642.1127.

Synthesis of *ent-8***a**: A mixture of 2-(benzo[*d*]oxazol-2-yl)-3-cyano-1,1,1-trifluorobut-3-en-2-yl *tert*-butyl carbonate **1j** (55.2 mg, 0.150 mmol, 1.5 equiv), *N*-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-

ylidene)-4-methylbenzenesulfonamide **2a** (39.1 mg, 0.0997 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at rt for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product *ent*-**8a**: 45.5 mg (0.0709 mmol), as a white solid, 71% yield; $[\alpha]_D^{25} = +465.3$ (*c* = 0.60 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis (Daicel Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 9.95 min (major), t_R = 10.83 min (minor).

Synthesis of 8b: A mixture of 2-(benzo[*d*]thiazol-2-yl)-3-cyano-1,1,1trifluorobut-3-en-2-yl *tert*-butyl carbonate 1k (57.6 mg, 0.150 mmol, 1.5 equiv), N-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)-ylidene)-4methylbenzenesulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred

at rt for 24 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product **8b**: 42.0 mg (0.0638 mmol), as a yellow solid, 64% yield; mp = 239–240 °C; $[\alpha]_D^{25} = -462.6$ (c = 0.70 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 16.80 min (minor), t_R = 18.03 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.18 (s, 1H), 8.17 (d, J = 6.8 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.81–7.74 (m, 2H), 7.71 (d, J = 8.0 Hz, 1H), 7.59–7.43 (m, 5H), 7.43–7.33 (m, 2H), 7.30 (t, J = 7.6 Hz, 1H), 7.24–7.15 (m, 2H), 6.99 (br, 1H), 6.07 (br, 1H), 4.15 (s, 1H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 161.3, 152.3, 146.2, 145.1, 139.4, 137.2, 135.72, 135.69, 134.9, 134.8, 130.7 (2C), 128.8, 128.5, 128.4, 127.7, 126.6, 126.2, 125.6, 125.1, 124.3, 123.9, 123.5 (q, J = 285.3 Hz), 122.1, 121.4, 116.9, 102.0, 59.4 (q, J = 22.7 Hz), 47.6, 21.8; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –62.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₂₃F₃N₃O₂S₃⁺ 658.0899; Found 658.0898.

Synthesis of *ent*-8b: A mixture of 2-(benzo[*d*]thiazol-2-yl)-3-cyano-1,1,1-trifluorobut-3-en-2-yl *tert*butyl carbonate **1k** (57.6 mg, 0.150 mmol, 1.5 equiv), *N*-((*Z*)-2-benzylidenebenzo[*b*]thiophen-3(2*H*)ylidene)-4-methylbenzenesulfonamide **2a** (39.1 mg, 0.0997 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at rt for 24 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product *ent*-8b: 49.5 mg (0.0752 mmol), as a yellow solid, 75% yield; $[\alpha]_D^{25} = +468.4$ (*c* = 0.50 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 16.72 min (major), t_R = 19.16 min (minor). **Separation of [4+3] product 4a:**

A mixture of tert-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate 1a (49.1 mg, 0.150 N-((Z)-2-benzylidenebenzo[b]thiophen-3(2H)-ylidene)-4-methylbenzene mmol, 1.5 equiv). sulfonamide 2a (39.1 mg, 0.0997 mmol, 1.0 equiv), C1 (1.7 mg, 2 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was stirred at 40 °C for 24 h, and the reaction was monitored by TLC. After completion, the solvent was removed under reduced pressure, and the residue was dissolved in anhydrous MeOH (1.0 mL), and NaBH₃CN (19.0 mg, 0.302 mmol, 3.0 equiv) was added to reduce [3+2] product **3a**. The solution was stirred at rt for 3 h. After completion, the reaction was quenched with water and extracted with DCM. The combined organic phase was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the [4+3] product **4a**: 5.0 mg (0.0083 mmol), as a white solid, 8% yield; mp = 212–213 °C; $[\alpha]_D^{25} = -81.0$ (c = 0.20 in CHCl₃); >19:1 dr; 91% ee, determined by HPLC analysis (Daicel Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 9.45 min (minor), t_R = 15.54 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.15 (s, 1H), 8.08 (dd, J = 8.8, 1.2 Hz, 1H), 7.79–7.70 (m, 3H), 7.50 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.48–7.37 (m, 3H), 7.31–7.15 (br, 2H), 7.11–7.01 (m, 2H), 6.96 (t, J = 7.6 Hz, 2H), 6.85 (d, J = 8.0 Hz, 2H), 6.53 (br, 2H), 3.70 (d, J = 1.6 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 146.1, 142.8, 138.3, 136.8, 135.2, 135.0, 134.8, 134.6, 130.6, 130.32, 130.31, 128.3, 128.1, 127.9, 127.70, 127.66, 127.5, 125.5, 125.1 (q, J = 284.3 Hz), 124.9, 123.8, 122.1, 117.8, 103.8, 59.2 (q, J = 23.8 Hz), 53.3, 21.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –58.8; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{33}H_{24}F_3N_2O_2S_2^+$ 601.1226; Found 601.1227.

5. Asymmetric y-[3+2] annulation of MBH carbonate 1a with activated alkene 9

The activated alkene 9 also could be combined with MBH 1a, and the γ -regioselective cyclopentene product 10 was obtained in a moderate yield with excellent stereoselectivity under the catalysis of amine C1. In addition, *ent*-10 was delivered in similar good results by using amine C2.

Synthesis of 10: To a mixture of (*E*)-ethyl 2-cyano-3-(4-nitrophenyl)acrylate 9 (24.6 mg, 0.100 mmol, 1.0 equiv), C1 (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-

cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate **1a** (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10 to 1/5) to give the product **10**: 30.5 mg (0.0670 mmol), as a colorless oil, 67% yield; $[\alpha]_D^{25} = -29.2$ (c = 0.50 in CHCl₃); >19:1 dr; 99% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.05 min (minor), t_R = 9.51 min (major); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.24–8.18 (m, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.50–7.44 (m, 3H), 7.37–7.31 (m, 2H), 7.21 (s, 1H), 4.53 (s, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 164.2, 148.6, 146.1, 137.2, 133.9, 131.7, 129.8, 129.7, 126.8 (q, J = 2.2 Hz), 124.8 (q, J = 238.8 Hz), 123.6, 122.2 (q, J = 1.7 Hz), 113.6, 112.2, 67.6 (q, J = 26.3 Hz), 65.2, 61.9, 57.2, 13.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₆F₃N₃O₄Na⁺ 478.0985; Found 478.0987.

Synthesis of *ent*-10: To a mixture of (*E*)-ethyl 2-cyano-3-(4-nitrophenyl)acrylate **9** (24.6 mg, 0.100 mmol, 1.0 equiv), **C2** (4.3 mg, 5 mol%) and 4 Å MS (40.0 mg) in toluene (1.0 mL) was added *tert*-butyl (3-cyano-1,1,1-trifluoro-2-phenylbut-3-en-2-yl)carbonate **1a** (49.1 mg, 0.150 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 36 h, and the reaction was monitored by TLC. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10 to 1/5) to give the product *ent*-10: 33.0 mg (0.0725 mmol), as a colorless oil, 73% yield; $[\alpha]_D^{25} = +30.7$ (c = 0.60 in CHCl₃); >19:1 dr; 99% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 7.02 min (major), t_R = 9.50 min (minor).

6. Transformations of product 7a

Synthesis of 11: A solution of compound 7a (58.5 mg, 0.100 mmol, 1.0 equiv) and NaOH (0.8 mg, 20 mol%) in MeOH/H₂O (1.0 mL, 10/1) was stirred at rt for 20 min, and the reaction was monitored by TLC. After completion, the solvent

was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) to give the product **11**: 42.7 mg (0.0991 mmol), as a white solid, 99% yield; mp = 138–140 °C; $[\alpha]_D^{25} = +2.7$ (c = 0.60 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 5.25 min (major), t_R = 5.76 min (minor); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.63 (ddd, *J* = 8.8, 7.2, 1.6 Hz, 1H), 7.55 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.45 (s, 5H), 7.23–7.09 (m, 6H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.92 (s, 1H), 4.13 (d, *J* = 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.9, 171.5, 147.9, 139.3, 134.6, 131.4 (q, *J* = 1.7 Hz), 129.3 (2C), 129.0, 128.7, 128.1, 126.9 (q, *J* = 2.4 Hz), 125.1 (q, *J* = 283.6 Hz), 125.01, 124.98, 123.0, 119.7, 113.5, 113.3, 96.0, 67.7 (q, *J* = 25.6 Hz), 63.0; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –61.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₇F₃NO₂⁺ 432.1206; Found 432.1201.

Synthesis of 12: A solution of compound 7a (58.5 mg, 0.100 mmol, 1.0 equiv) and NaBH₃CN (19.0 mg, 0.302 mmol, 3.0 equiv) in MeOH (1.0 mL) was stirred at rt for 3 h,⁵ and the reaction was monitored by TLC. After completion, the reaction was quenched with water and extracted with DCM. The

combined organic phase was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give the product **12**: 53.0 mg (0.0903 mmol), as a white solid, 90% yield; mp = $101-102 \,^{\circ}$ C; [α]_D²⁵ = $-132.0 \, (c = 0.40 \text{ in CHCl}_3)$; >19:1 dr; 97% ee, determined by HPLC analysis (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, 1 = 254 nm) t_R = 4.73 min (minor), t_R = 9.91 min (major); ¹H NMR (400 MHz, CDCl_3): δ (ppm) 7.74–7.68 (m, 2H), 7.49–7.35 (m, 6H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.27–7.13 (m, 5H), 7.01 (s, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.73 (t, *J* = 7.6 Hz, 1H), 6.33 (d, *J* = 7.2 Hz, 1H), 5.02 (d, *J* = 9.6 Hz, 1H), 4.33 (d, *J* = 9.6 Hz, 1H), 4.29 (s, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl_3): δ (ppm) 157.5, 150.9, 144.2, 137.5, 135.0, 132.1, 131.6, 131.3, 130.1, 129.2, 128.7, 128.2, 128.1, 126.9 (q, *J* = 2.4 Hz), 126.9, 125.1 (q, *J* = 283.9 Hz), 124.8, 123.9, 122.1, 121.4 (d, *J* = 2.0 Hz), 113.7, 110.9, 97.1, 67.9 (q, *J* = 25.3 Hz), 62.0, 60.1, 21.6; ¹⁹F NMR (376 MHz, CDCl_3): δ (ppm) –61.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₅F₃N₂O₃SNa⁺ 609.1430; Found 609.1433.

7. More substrate exploration

As outlined in the following scheme, the CF_3 -containing MBH carbonates with an alkyl, alkenyl or alkynyl group failed to give the desired annulation products in the reactions with 1-azadienes, and a mixture was generally produced. In addition, other types of electrophiles were also explored in the reactions with MBH carbonate **1a**, but the expected annulation products were not formed.

a) More substrate exploration

The MBH carbonate derived from 2,2,2-trifluoroacetaldehyde and the 1-azadiene with a terminal double bond are unknown compounds, and we also failed to prepare them.

b) The synthesis of more substrates

8. Asymmetric reaction on a 1.0 mmol scale

To a mixture of 1-azadiene **6a** (375.0 mg, 1.000 mmol, 1.0 equiv), **C1** (43.0 mg, 5 mol%) and 4 Å MS (400.0 mg) in toluene (10.0 mL) was added MBH carbonate **1a** (491.0 mg, 1.515 mmol, 1.5 equiv) in two potions (generally at 0 h, 18 h, respectively). The mixture was stirred at 40 °C for 48 h, and the reaction was monitored by TLC. After completion, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20 to 1/10) to give the product **7a**: 527.0 mg (0.9009 mmol), as a white solid, 90% yield; >19:1 dr; 97% ee.

9. Crystal data and structural refinement

9.1 Crystal data and structural refinement for enantiopure 7a

Preparation of the single crystals of enantiopure **7a**: 30.0 mg of compound **7a** (97% ee) was dissolved in Et₂O (1.5 mL) in a 10 mL tube and *n*-hexane (2.0 mL) was added. The tube was sealed by a piece of weighing paper with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 24 h, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of **7a**. The data were collected by an Agilent Gemini equipped with a Cu radiation source (K α = 1.54184 Å) at 223(100) K. CCDC 2088342 (**7a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%) Identification code Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å $a/^{\circ}$ $\beta/^{\circ}$ $\gamma/^{\circ}$

 $\begin{array}{c} \textbf{7a} \\ C_{33}H_{23}F_{3}N_{2}O_{3}S \\ 584.59 \\ 223(100) \\ tetragonal \\ P4_{1} \\ 14.8873(3) \\ 14.8873(3) \\ 13.6624(4) \\ 90 \\ 90 \\ 90 \\ 90 \end{array}$

Volume/Å ³	3028.01(17)
Z	4
$\rho_{calc}g/cm^3$	1.282
μ/mm^{-1}	1.414
F(000)	1208.0
Crystal size/mm ³	0.7 imes 0.5 imes 0.4
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.784 to 144.996
Index ranges	$-18 \le h \le 18, -11 \le k \le 17, -16 \le l \le 16$
Reflections collected	10549
Independent reflections	5627 [$R_{int} = 0.0378$, $R_{sigma} = 0.0430$]
Data/restraints/parameters	5627/1/380
Goodness-of-fit on F ²	1.055
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0789, wR_2 = 0.1983$
Final R indexes [all data]	$R_1 = 0.0798, wR_2 = 0.2009$
Largest diff. peak/hole / e Å ⁻³	0.51/-0.89
Flack parameter	-0.020(13)

9.2 Crystal data and structural refinement for enantiopure ent-5a

Preparation of the single crystals of enantiopure *ent*-**5a**: 30.0 mg of compound *ent*-**5a** (98% ee) was dissolved in *i*-PrOH (1.5 mL) in a 10 mL tube and *n*-hexane (2.0 mL) was added. The tube was sealed by a piece of weighing paper with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 36 h, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of *ent*-**5a**. The data were collected by an Agilent Gemini equipped with a Cu radiation source (K α = 1.54184 Å) at 204(6) K. CCDC 2088343 (*ent*-**5a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%) Identification code Empirical formula Formula weight

*ent-*5a C₃₃H₂₃F₃N₂O₂S₂ 600.65

Temperature/K	204(6)
Crystal system	orthorhombic
Space group	P212121
a/Å	11.71838(15)
b/Å	13.40753(16)
c/Å	18.3196(2)
α /°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2878.27(6)
Ζ	4
$\rho_{calc}g/cm^3$	1.386
μ/mm^{-1}	2.136
F(000)	1240.0
Crystal size/mm ³	$0.45 \times 0.3 \times 0.3$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.172 to 145.452
Index ranges	$-14 \le h \le 14, -16 \le k \le 15, -17 \le l \le 22$
Reflections collected	16816
Independent reflections	5640 [$R_{int} = 0.0324$, $R_{sigma} = 0.0290$]
Data/restraints/parameters	5640/0/380
Goodness-of-fit on F ²	1.057
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0497, wR_2 = 0.1267$
Final R indexes [all data]	$R_1 = 0.0512, wR_2 = 0.1289$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.69
Flack parameter	-0.009(6)

9.3 Crystal data and structural refinement for enantiopure 8b

Preparation of the single crystals of enantiopure **8b**: 30.0 mg of compound **8b** (96% ee) was dissolved in EtOAc (1.5 mL) and CH₂Cl₂ (0.5 mL) in a 10 mL tube and *n*-hexane (3.0 mL) was added. The tube was sealed by a piece of weighing paper with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 36 h, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of **8b**. The data were collected by Bruker D8 VENTURE equipped with a Mo radiation source (K α = 0.71073 Å) at 273.15 K. CCDC 2088344 (**8b**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%) Identification code **8b** Empirical formula $C_{34}H_{22}F_3N_3O_2S_3$ Formula weight 657.72 Temperature/K 273.15 Crystal system orthorhombic Space group $P2_{1}2_{1}2_{1}$ a/Å 8.6266(7) b/Å 18.4175(16) c/Å 19.2928(17) $\alpha/^{\circ}$ 90 β/° 90 $\gamma/^{\circ}$ 90 Volume/Å³ 3065.2(5) Ζ 4 $\rho_{calc}g/cm^3$ 1.425 μ/mm^{-1} 0.297 F(000) 1352.0 Crystal size/mm³ $0.41 \times 0.37 \times 0.1$ Radiation MoK α ($\lambda = 0.71073$) 20 range for data collection/° 4.222 to 55.05 Index ranges $-11 \le h \le 10, -23 \le k \le 23, -24 \le 1 \le 25$ Reflections collected 25772 Independent reflections 7055 [$R_{int} = 0.1019, R_{sigma} = 0.0992$] Data/restraints/parameters 7055/0/407 Goodness-of-fit on F² 1.006 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0571$, $wR_2 = 0.1181$ $R_1 = 0.1304, wR_2 = 0.1485$ Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ 0.25/-0.34 Flack parameter -0.03(6)

References

(1) (a) Y. Iwabuchi, M. Nakatani, N. Yokoyama and S. Hatakeyama, J. Am. Chem. Soc., 1999, 121,

10219; (*b*) H. Waldmann, V. Khedkar, H. Dückert, M. Schürmann, I. M. Oppel and K. Kumar, *Angew. Chem., Int. Ed.,* 2008, **47**, 6869; (*c*) Y. Nakamoto, F. Urabe, K. Takahashi, J. Ishihara and S. Hatakeyama, *Chem. Eur. J.*, 2013, **19**, 12653.

(2) (a) Z.-Q. Rong, M. Wang, C. H. E. Chow and Y. Zhao, *Chem. Eur. J.*, 2016, 22, 9483; (b) Z. Gu, J. Zhou, G.-F. Jiang and Y.-G. Zhou, *Org. Chem. Front.*, 2018, 5, 1148; (c) R.-J. Yan, B.-X. Liu, B.-X. Xiao, W. Du and Y.-C. Chen, *Org. Lett.*, 2020, 22, 4240.

(3) (*a*) P. V. Ramachandran, M. V. Ram Reddy and M. T. Rudd, *Chem. Commun.*, 2001, 757; (*b*) M.
V. Ram Reddy, M. T. Rudd and P. V. Ramachandran, *J. Org. Chem.*, 2002, **67**, 5382.

(4) For selected examples of substrate-controlled switchable asymmetric annulations, see: (*a*) Q.-H.
Li, L. Wei and C.-J. Wang, *J. Am. Chem. Soc.*, 2014, **136**, 8685; (*b*) J.-Y. Liao, P.-L. Shao and Y. Zhao, *J. Am. Chem. Soc.*, 2015, **137**, 628; (*c*) D. Wang, G.-P. Wang, Y.-L. Sun, S.-F. Zhu, Y. Wei, Q.-L.
Zhou and M. Shi, *Chem. Sci.*, 2015, **6**, 7319; (*d*) K.-K. Wang, P. Wang, Q. Ouyang, W. Du and Y.-C.
Chen, *Chem. Commun.*, 2016, **52**, 11104; (*e*) Y. Xu, Q. Sun, T.-D. Tan, M.-Y. Yang, P. Yuan, S.-Q.
Wu, X. Lu, X. Hong and L.-W. Ye, *Angew. Chem., Int. Ed.*, 2019, **58**, 16252; (*f*) B. M. Trost and Z.
Zuo, *Angew. Chem., Int. Ed.*, 2021, **60**, 5806.

(5) T. Chen, Y. Zhang, Z. Fu and W. Huang, Asian J. Org. Chem., 2019, 8, 2175.

10. NMR, HRMS spectra and HPLC chromatograms

---0.000

---60.960

Counts vs. Mass-to-Charge (m/z)

S49

---61.330

10	0	-10 -	-20	-30	-40	-50	-60	-70	-80	f1 (90 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vol. Data File	(ul) e	cyc-190705-7 Rack P ul) 10 Plate P WorklistData-0007- Methoo r006.d		cyc-190705-7 Rack Pos. 10 Plate Pos. WorklistData-0007- Method (Acq) TOF.m r006.d							Instrur IRM St Comm	ment atus ent		Instrum Success	ent 1	Ор Асс	erator q. Time (l	.ocal)	7/9/201 (UTC+0	9 1:51:1 8:00)	6 PM
×10 ⁶ _	+ESI Scan	(rt: 1.225 n	nin) Frag	g=175.0V	Worklist	Data-0007-ı	r006.d														
1-											653.11	150									
0.95-																Ts					
0.9-																1	N /	CN	1		
0.85-																		et on	•		
0.8-															l	\square			-,		
0.75-															\sim		, , ,		5		
0.7-																	PN	<i>(</i> `	Ŵ		
0.65-																			/		
0.6-																		N I	ò		
0.55-																	3b	/			
0.5-														ŀ	IRMS	(ESI	-TOF)	m/z:	[M + N	la]⁺	
0.45-														Calc	d for ($C_{34}H_{2}$	${}_{5}F_{3}N_{2}$	O_3S_2	Na⁺ 6	53.11	51
0.4-																					
0.35-																					
0.3-																					
0.25-																					
0.2-																					
0.15																					
0.05-																					
0.03																					
0	1	652.8	652.	.85	652.9	652.95		653	653.05	6	553.1	653.	15	653.2	653.25	65	3.3	653.35	653.4	653	8.45
									Coun	its vs. M	lass-to-(Charge (r	m/z)								

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	16.350	3.347	4343503	174296716	96.6773
2	19.637	2.787	134167	5990328	3.3227

88.72 88.72

---60.853

[min]	геак Туре	[min]	[mAU]	[mAU*s]	[%]
16.306	BB	0.72	280.7423	13499.8076	40.4833
28.835	BB S	1.13	273.8016	19846.8223	59.5167

¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

--63.729

10	0 -1	0 -20 -30	-40 -50 -60	-70 -80	-90 -100 - fl (ppm)	110 -120 -130	-140 -150 -160	-170 -180 -190
Name Inj. Vol. (Data File	(ul)	cyc-190705-6 10 WorklistData-0006- r005.d	Rack Pos. Plate Pos. Method (Acq)	TOF.m	Instrument IRM Status Comment	Instrument 1 Success	Operator Acq. Time (Local)	7/9/2019 1:48:27 PM (UTC+08:00)
x10 ⁶ +	ESI Scan (rt	:: 1.025 min) Frag=175.0V	WorklistData-0006-r005.c	I				
0.05-							Ts	
0.95				629.06	11)N	
0.85						<u> </u>		N
0.8-						Į		~~
0.75-							S'	-F ₃
0.7-							Ph /=	7
0.65-								
0.6-							3d	A . NI-1+
0.55-						HRMS (ESI-TOF) m/z: [I	
0.5-							1121131202031	a 029.0009
0.45-								
0.4-								
0.35-								
0.3-								
0.25-								
0.2-								
0.15								
0.1-								
0.05-								
0–∟	628.65	628.7 628.75 628.8	628.85 628.9 628.9	5 629 629.05	629.1 629.15 629.2	629.25 629.3 629.35	629.4 629.45 629.5 62	9.55 629.6 629.65
				Cou	unts vs. Mass-to-Charge (m/	z)		

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
13.718	BB	0.42	251.2882	6821.3608	51.1078
27.086	BB	0.83	122.7864	6525.6533	48.8922

8 3.16 8 3.16 8 5.16

---66.456

633.0 621.0 622.0 623.0 624.0 625.0 626.0 627.0 628.0 629.0 632.0 631.0 630.0

0.5-0.04 632.1228(1)

-0.000 -

-100

-110

-120

-130

-140

-150

-160

-170

-180

-190

--60.915

10

ò

-10

-20

-30

-40

-50

-60

-70

-80

-90 f1 (ppm)

49.5378

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
12.654	BB	0.48	686.8723	22067.1250	99.9999
17.653	BB	0.05	0.0038	0.0148	0.0001
			Totals:	22067.1398	100.0000

17.684

BB

0.56

180.2429

6523.9380

---60.912

-	-												· ·							· · · ·
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 f1 (ppm	-100 a)	-110	-120	-130	-140	-150	-160	-170	-180	-190

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
14.437	BB	0.76	180.2025	9231.7256	62.3710
20.623	BB	0.76	114.4708	5569.5894	37.6290

--60.999

10	0	-10	-20	-30	-40	-50	-60	-70	-so	-90 fl (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vol. Data File	(ul)		cyc-19070 10 WorklistD r002.d)5-3 ata-0003-	Rack Plate Meth	Pos. Pos. od (Acq)		TOF.m		Instr IRM Com	ument Status ment		Instrume Success	nt 1	Ope Acq.	rator . Time (Lo	ocal)	7/9/2019 (UTC+08	9 1:40:00 3:00)	PM
x100 1.55- 1.45- 1.45- 1.45- 1.45- 1.25- 1.25- 1.25- 1.1- 1.05- 1- 0.95- 0.95- 0.85- 0.85- 0.75- 0.65- 0.65- 0.55- 0.45- 0.45- 0.45- 0.45- 0.45- 0.35- 0.45- 0.35- 0.35- 0.35- 0.35- 0.25- 0.25- 0.45- 0.45- 0.55- 0.45- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.45- 0.55- 0.45- 0.5-	⊧ESI Sca	n (rt: 1	.858 min) Fi	rag=175.0V	Worklist	Data-0003-	r002.d			637.11	99		H Calco	RMS for C	Ts (ESI- 34H25	3h TOF)	Cl Ph m/z: [D ₂ S ₂ N	N F ₃ M + N Ia⁺ 63	a]⁺ 7.120	22
0.05	636.8		636.85	636.9	63	6.95	637	637.	.05 Count	637.1 ts vs. Mass-t	637.15 o-Charge ((m/z)	537.2	637.25	637	.3	637.35	637.4	63	37.45

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
11.309	BB	0.44	265.2004	7819.3813	55.1875
19.954	BB	0.64	153.4943	6349.3857	44.8125

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
11.092	BB	0.40	947.5350	25425.9707	99.1525
19.687	BB	0.57	5.9174	217.3207	0.8475

---61.853

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 f1 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. V Data	e /ol. (ul) File		cyc-12- 10 cyc-12-	16 16.d	Ra Pla Me	ck Pos. Ite Pos. Ithod (Acq)		TOF.m		Inst IRM Con	rument I Status nment		Instrum Success	ent 1	Op Ac	oerator q. Time (Local)	7/22/2 (UTC+)19 6:01)8:00)	:30 PM
x10	5 +ESI S	Scan (rt: 1	1.040 min)	Frag=175	5.0V cyc-12	2-16.d														
4.4	4-																			
4.2	2-															Ts				
	4-															N		ON		
3.8	8-										507.0791			ı		\prec	\sim	,CN		
3.0	6-															X				
3.4	4-														\checkmark	∕S		"CF3		
3	2																- г ^\	11		
2.1	8-																S			
2.0	6-															2	;			
2.4	4-													нри			" =) m/z	·· [N/] +	ы 1+	
2.2	2-												Ca	aled fo	or Cad	HaaFa	$N_{\rm s}O_{\rm s}$	[IVI ' S_+ 60	7 079	an
:	2-												00		0 31	22' 3	112020	3 00	1.010	
1.8	8-																			
1.0	6-																			
1.4	4-																			
1.3	2-																			
	1-																			
0.8	8-																			
0.0	6-																			
0																				
0	<u>_</u>																			
,	-	606.6	606.65	606.7	606.75	606.8 606	.85 60	6.9 606.9	95 6	07 607.0	607.1	607.15	5 607.2	607.25	607.3	607.35	607.4	607.45	607.5	
									Coun	ts vs. Mass-	to-Charge ((m/z)								

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.200	BBA	0.45	326.4763	9453.3213	50.0033
29.200	BB	0.87	168.8473	9452.0586	49.9967

1.3460

258.0514

4.7092

0.80

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

---61.672

606.6 606.65 606.7 606.75 606.8 606.85 606.9 606.95 607 607.05 607.1 607.15 607.2 607.2 607.3 607.3 607.4 607.45 607.5 607.5 607.65 Counts vs. Mass-to-Charge (m/z)

0.5 0.4 0.3 0.2 0.1

	_		_																				
10	ō	-10		-20	-30)	-40	-50	-60	-70) -8	BO	-90 f1 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vol. Data File	(ul)		cyc-1 10 Work r012	19070 klistDa	5-23 ata-002	23-	Rack Plate Metho	Pos. Pos. od (Acq)		TOF.m	ı		Instru IRM S Comr	ument Status nent		Instrum Success	ent 1	Ор	erator q. Time (l	Local)	7/9/20 (UTC+	19 2:36:1 08:00)	.9 PM
×10 ⁶	ESI Sca	n (rt: 1	.416 m	nin) Fr	ag=175	5.0V W	orklist	ata-0023	3-r012.d														
-																		_					
1.35																		١s					
1.3																		1	Ņ	~			
1.25																	\sim	\sim			1		
1.15-																			\mathbf{N}^{-1}				
1.1-																	Ľ,	∕∕~c		- <u>\</u> ""CF	- 3		
1.05-																	•				\ \		
1-																			PI		$\langle \rangle$		
0.95-																				\sum	/		
0.9																			0				
0.85													641 0886						7b	1			
0.0													011.0000					-01 -				1+	
0.7-																нь		-51-10	0F) m	יאר : אין n/z:	I + Na]	
0.65-															Ca	alcd fo	r C ₃₃ ⊦	1_{22}^{35} C		203SN	l a⁺ 64	1.088	34
0.6-															Ca	aled fo	r Cool	1 ³⁷ C		-0-50	Ja ⁺ 64	13 085	54
0.55-															00		0331	122	311	20301	u u-	10.000	, T
0.5-																							
0.45-																							
0.4-																							
0.35														643.0	0869								
0.25-													642	.0915									
0.2																							
0.15																							
0.1-															644.088	5							
0.05-																							
0-L	626	620	620	621	622	622	624	(25	c2c c2	7 620	620	640	C41 C		2 646	CAE . CA	647	C40 C44		(F1 (F)	2 (52	654 65	
	628	629	630	631	632	633	634	635	030 63	038	639	640	041 04	+2 64 -Charce	5 644 (m/z)	045 64	0 64/	048 64	9 050	051 65	2 653	054 65	C
											Co	unts	vs. mdss-tu	-charge	(11/2)								

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 fl (ppm	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vol Data Fi	. (ul) le		cyc-190 10 Worklist r010.d	705-21 Data-0021	Rac Plat L- Met	:k Pos. te Pos. thod (Acq)		TOF.m		In: IR Co	strument M Status mment		Instrum Success	ent 1	Op	perator :q. Time (Local)	7/9/20 (UTC+)19 2:30: -08:00)	41 PM
x10 ⁵	+ESI Sc	an (rt: 1	.412 min)	Frag=175.	0V Worklis	tData-002	1-r010.d											(0.0)		
- 6,4 6,2 6,5 8,8 5,6 5,4 5,2 5,4 5,4 5,4 5,4 4,6 4,4 4,4 4,4 4,2 3,4 4,2 3,4 3,2 3,2 3,2 2,8 2,2 2,2 2,2 1,8 8 4,2 5,2 5,4 4,2 5,2 5,4 5,4 5,4 5,4 5,4 5,4 7,5 6,5 7,4 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5										621.	1430		H Calc	HRMS	Ts C G (ESI C ₃₄ H	N Ph 7c -TOF] ₂₅F ₃ N	CN (m/Cl) m/z: 2O ₃ SI	I F ₃ \ [M + Na⁺ 6:	Na]⁺ 21.14	30
1.4																				
1-																				
0.8 0.6 0.4 0.2																				
0-	(521.06	621.07	621.08	621.09	621.1	621.11	621.12	621.13 Coun	621.14 ts vs. Mass	621.15 s-to-Charge	621.16 (m/z)	621.17	621.18	621.1	9 621.	2 621.2	21 621.	22 621	.23

---62.062

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 f1 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
$\begin{array}{c} \begin{array}{c} 0.002.0 \\ + \text{ESI Scen (t: 1.137 min) Frag=175.0V WorkistData=0020+009.d} \\ \end{array} \\ \begin{array}{c} 1.15 \\ 1.1$	Name Inj. V Data	e ol. (ul) File		cyc-190 10 Worklis	0705-20 tData-0020	Rac Plat - Met	k Pos. te Pos. thod (Acq)		TOF.m		Instru IRM S Comm	ment tatus ient		Instrum Success	ent 1	Op	perator :q. Time (Local)	7/9/20	19 2:27:	52 PM
$\begin{array}{c} 133 \\ 133 \\ 124 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 115 \\ 111 \\ 105 \\ 0.55 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.75 \\ 0.55 \\ $	v10 ⁶	5 +ESI S	can (rt:	r009.d 1.137 min) Frag=175.0)V Worklis	tData-0020	-r009.d											(UTC+	08:00)	
$\begin{array}{c} 135\\ 1.25\\ 1.2\\ 1.2\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0$	X10	-																			
$\begin{array}{c} 1.3 \\ 1.2 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.6 \\ 1.6 \\ 1$	1.35	5-																			
$\begin{array}{c} 1.25\\ 1.2\\ 1.15\\ 1.15\\ 1.17\\ 1.05\\ 0.9\\ 0.95\\ 0.9\\ 0.95\\ 0.9\\ 0.95\\ 0.9\\ 0.95\\ 0.9\\ 0.95\\ 0.9\\ 0.95\\ 0.9\\ 0.95\\ 0.9\\ 0.95\\ 0.9\\ 0.95\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9$	1.3	3-																			
1.15 637.1377 1.15 (i) 0.35 (i) 0.45 (i) <td>1.25</td> <td>5-</td> <td></td> <td>Τs、</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1.25	5-														Τs、					
1.13 1.13 1.13 1.13 1.13 1.13 1.15 1.13 1.15	1.2	2									627 1277					۱) ۱	N I				
1.05 1.05 0.85 0.85 0.86 0.87 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.7 0.85 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 <tr< td=""><td>1.15</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>037.1377</td><td></td><td></td><td></td><td>\wedge</td><td></td><td>\sim</td><td>_CN</td><td></td><td></td><td></td></tr<>	1.15	2									037.1377				\wedge		\sim	_CN			
1 0.95 0.9 0.85 0.75 0.75 0.75 0.66 0.55 0.66 0.55 0.66 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.64 0.55 0.57 0.55 0.57	1.0														ÍÍ Ì	γ		Í			
0.95 0.97 0.85 0.75 0.77 0.65 0.75 0.65 0.75	1.0.	í-l													Ľ	\checkmark	,i" \	√''''CF	2		
0.9- 0.85- 0.7- 0.65- 0.6- 0.65- 0.65- 0.5- 0.5- 0.4- 0.45- 0.4- 0.35- 0.4- 0.45- 0.4- 0.45- 0.4- 0.45- 0.4- 0.45- 0.4- 0.45- 0.4- 0.45- 0.4- 0.45- 0.4- 0.45- 0.4- 0.4- 0.4- 0.5- 0.4- 0.4- 0.5- 0.4- 0.4- 0.5- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4	0.95	5-													\sim	0	111		3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9	,														I	Ph		\		
0.8- 0.75- 0.75- 0.65- 0.66- 0.55- 0.5- 0.5- 0.5- 0.45- 0.4- 0.45- 0.4- 0.45- 0.4- 0.35- 0.3- 0.3- 0.3- 0.3- 0.3- 0.3- 0.25- 0.2- 0.15- 0.15- 0.15- 0.45-0.45-0.45-0.45-0.45-0.45-0.45-0.45-	0.85	5-															```		\rangle		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8	3-																\leq			
0.7 0.65 0.6- 0.55- 0.5- 0.4- 0.45- 0.4- 0.35- 0.4- 0.35- 0.4- 0.35- 0.3- 0.3- 0.3- 0.3- 0.3- 0.3- 0.3- 0.3	0.75	5																ò)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7]																/			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.02	<u>_</u>															/d				
Calcd for C ₃₄ H ₂₅ F ₃ N ₂ O ₄ SNa ⁺ 637.1379 Calcd for C ₃₄ H ₂₅ F ₃ N ₂ O ₄ SNa ⁺ 637.5637.5637.5637.5637.5637.5637.5637.5	0.55	5-												н	RMS	(ESI-	TOF)	m/z: [l	M + N	la]⁺	
0.45- 0.4- 0.35- 0.3- 0.25- 0.2- 0.15- 0.1- 0.05- 0- 636.75 636.8 636.85 636.9 636.95 637 637.05 637.1 637.15 637.2 637.25 637.3 637.35 637.4 637.45 637.55 637.55 637.5	0.5	5-												Calco	l for C	$_{34}H_{25}$	5F3N2	O₄SN	a⁺ 63	7.137	9
0.4- 0.35- 0.3- 0.25- 0.2- 0.15- 0.1- 0.05- 0- 636.75 636.8 636.85 636.9 636.95 637 637.05 637.1 637.15 637.2 637.25 637.3 637.35 637.4 637.45 637.55 637.55 637.5	0.45	5-																			
0.35 0.3- 0.25- 0.2- 0.1- 0.05- 0 - 636.75 636.8 636.85 636.9 636.95 637 637.05 637.1 637.15 637.2 637.25 637.3 637.35 637.4 637.45 637.55 637.55 637.5	0.4	1-																			
0.3- 0.25- 0.2- 0.1- 0.05- 0- 636.75 636.8 636.85 636.9 636.95 637 637.05 637.1 637.15 637.2 637.25 637.3 637.35 637.4 637.45 637.55 637.55 637.5	0.35	5																			
0.25 0.2- 0.15- 0.05- 0 - 636.75 636.8 636.85 636.9 636.95 637 637.05 637.1 637.15 637.2 637.25 637.3 637.35 637.4 637.45 637.55 637.55 637.5	0.3	31																			
0.2 0.1- 0.05- 0- 636.75 636.8 636.85 636.9 636.95 637 637.05 637.1 637.15 637.2 637.25 637.3 637.35 637.4 637.45 637.55 637.55 637.6	0.25	2																			
0.1 0.05 0.05 0 	0.15	5-1																			
0.05- 0- 636.75 636.8 636.85 636.9 636.95 637 637.05 637.1 637.15 637.2 637.25 637.3 637.35 637.4 637.45 637.55 637.55 637.6	0.1																				
0-L	0.05	5-																			
636.75 636.8 636.85 636.9 636.95 637 637.05 637.1 637.15 637.2 637.25 637.3 637.35 637.4 637.45 637.5 637.55 637.6	(1	1	1	1	1		1								1	1	1	1	
		63	6.75	636.8	636.85	636.9	636.95	637	637.05	637.1	637.15	637.2	637.2	5 637.	.3 637	.35 63	37.4 63	37.45 (537.5	637.55	637.6

10	0	-10	-20	-30	-40	-50	-60	-70	-60	-90 f1 (ppm)	-100	-110	-120 -1	130 -140	-150	-160	-170	-180	-190
Name Inj. Vol Data Fi	l. (ul) le	C 1 V rt	yc-19070 0 VorklistDa 007.d	5-18 ita-0018-	Rack Pe Plate Pe Method	os. os. I (Acq)	TO	F.m		Instr IRM Com	ument Status ment	Ir Si	nstrument 1 uccess	C	perator cq. Time (L	.ocal)	7/9/201 (UTC+0	9 2:22:14 8:00)	PM
x10 ⁶	+ESI Scan	(rt: 1.49	90 min) Fr	ag=175.0V	WorklistDa	ta-0018-r00)7.d												
1.15-																			
1.1-								6	57.1428					То					
1.05														15	NI				
1-														~ //	/	.CN			
0.95-													Í			/			
0.9-													Į		W	CE.			
0.85-														~ (3		
0.8-															Ph 🦯	$/\!/$			
0.75-															\	\/			
0.7																			
0.65																\			
0.55-															7f				
0.5													HRMS	S (ESL	TOF) n	n/z·[N/	1 + Na	1+	
0.45-												C	alcd for	Ca-Ha	-E-N-C	∿2. [IV)₀SNa	+ 657	」 1430	
0.4												00		037112	51 31 20	30144	007	1400	
0.35-																			
0.3																			
0.25-																			
0.2																			
0.15																			
0.1																			
0.05-																			
0–	6	57.02	657.04	657.06	657.08	657.1	657.1	2 6	57.14	657.16	657.18	657.2	657.22	657.24	657.26	657.28	657.3	657.32	 2
									Counts	vs. Mass-t	o-Charge (n	1/z)							

-190

windering and the second state of the second s ini di wantanga kana ana bili ya kwalu kana kana pilan akaliwa kili na di kana da kilana mahiku kili kana kuka

---64.547

10

ò

10	ò	-10	-20	-30	-40	-50	-60	-70	-60	-9 f1 (0 -1 opm)	00 -1	10 -	120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vol Data Fi	. (ul) e	cy 10 W	c-190705 orklistDat	-19 a-0019-	Rack Plate Metho	Pos. Pos. od (Acq)		TOF.m			instrume IRM Stat Commen	ent us t	In: Su	strumer	it 1	Oj Ad	perator cq. Time	(Local)	7/9/2 (UTC-	019 2:25 +08:00)	:03 PM
x10 ⁶	+ESI Scan	(rt: 0.985	5 min) Frag	g=175.0V	WorklistD	ata-0019	-r008.d												10.0		
1.35-																					
1.3-																Ts					
1.25-																<u>N</u>	1				
1.2-															\land		\sim	_CN			
1.15								613.0839	9					Í	ĺ	Ţ		Í			
1.05-														ί	_/	പ്ര്		∖ ''''CF	3		
1-															~		<u> </u>		Ũ		
0.95-																ł	n s	;			
0.9-																	7~				
0.85-																о т	/g	/ 54		1 +	
0.8-														HRN	/IS (E	SI-1	OF)n	ייב: [N	/I + Na	Ч. Т	
0.75													Cal	cd fo	r C ₃₁	$H_{21}F$	₃ N ₂ O	${}_3S_2N$	a⊺ 613	8.0838	3
0.65																					
0.6-																					
0.55-																					
0.5-																					
0.45-																					
0.4-																					
0.35																					
0.25																					
0.2-																					
0.15-																					
0.1-																					
0.05-																					
0-1	612.75	612.8	612.85	612.9	612.9	5 613	613	.05 613	.1 6 Coun	13.15 nts vs. Ma	613.2 ass-to-Ch	613.25 arge (m/z	613.3)	613	.35 6	13.4	613.45	613.5	613.55	613.6	613.65

S92

8.533 8.531 8.531 8.533 8.531 8.531 8.531 8.531 8.531 7.732

¹H NMR (400 MHz, CDCl₃)

---64.635

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	15.030	2.363	9808597	346540884	98.5682
2	19.377	2.763	102399	5033864	1.4318

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 f1 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vol	. (ul)	1	cyc-19070	05-11	Raci Plate	k Pos. e Pos.		TOF		Inst IRM	rument Status		Instrur Succes	nent 1 s	c)perator	(1	2/0/2	010 2.02	-22 DM
Data Fi	ie	r	010.d	ata-0011-	Meti	noa (Acq)		IOF.m		Com	iment				A	kcq. Time	(Local)	(UTC-	+08:00)	32 PM
x10 ⁵	+ESI Scar	n (rt: 1.3	14 min) Fi	rag=175.0\	/ Worklist	tData-0011	r010.d								Ts					
3.8																N	~			
3.6																×_>	⇒r ^{Cr}	N		
3.4-														ĮĽ,	\nearrow	2 ¹¹¹¹	/"""C	F ₃		
3.2																, III.	Ph	U		
3-															/	\equiv				
2.8															4					
2.0																7:	CI			
2.4																	, 		+	
2.2													HRI	NS (E	SI-10	JF) m/	/z: [M	+ Na]		.
1.8-									641.087	7		Cal	cd for	C ₃₃ H	22 ³³ C	IF_3N_2	O ₃ SN	a' 64	1.088	4
1.6												Cal	cd for	C ₃₃ H	₂₂ °'C	IF_3N_2	O ₃ SN	a⊺ 64:	3.085	4
1.4																				
1.2																				
1-																				
0.8																				
0.6										642.0902	43.0861									
0.4																				
0.2											64	14.0875								
0	L					638.0801	639.0794						1		3 .7		1	1.11	<u></u>	1.1
	633	634	635	636	637	638	639	640	641 Cour	642 hts vs. Mass-t	643 co-Charge	644 (m/z)	645	646	647	648	649	550 6	51 6	52

S100

10	0	-10 -20 -30	-40 -50	-60 -70	-80	-90 f1 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vo Data F	l. (ul) ile	cyc-190705-10 10 WorklistData-0010- r009 d	Rack Pos. Plate Pos. Method (Acq)	TOF.m		Instr IRM Com	rument Status ment		Instrum Success	ient 1	Oç Ac	perator q. Time (l	Local)	7/9/2	019 1:59: ⊦08·00)	43 PM
x10 ⁶	+ESI Sca	an (rt: 1.549 min) Frag=175.0	/ WorklistData-0010-r0	09.d										(010	00.00)	
1.1-	-						619.10	66								
1.05	-															
1-	-	Т	S													
0.95	-			N												
0.9																
0.85		U L	- C ¹¹¹	:Fa												
0.8		\sim	Ph	• 3												
0.75	1		\square													
0.7																
0.05			\sum													
0.55	-		CI 7j													
0.5	-	HRMS (ES	sl-TOF) m/z:	[M + H] ⁺												
0.45	-	Calcd for C ₃₃ H ₂	23 ³⁵ CIF ₃ N ₂ O ₃	₃ S⁺ 619.10	65			62	21.1051							
0.4	-	Calcd for C ₃₃ H ₂	3 ³⁷ CIF ₃ N ₂ O	S ⁺ 621.10	35			620.1095								
0.35	-	00 1														
0.3																
0.25	1															
0.2																
0.15	1								622	2.1066						
0.1-	1															
0.05										623.1	051					
0	606	607 608 609 610	611 612 613	614 615	616 Coun	617 618 ts vs. Mass-t	619 o-Charge	620 e (m/z)	621 6	22 623	624	625	626 63	27 628	629	630

- contractive of the second of t

---61.579

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 f1 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Inter	n.(x1,000,000)																			
1.25											6	65.0 5 45(1)							
1.00										663.0559(1)									
0.75											,									
0.50-											h	6	66.0568([,]	1)						
0.00						659,289	96								568.0633(1)				
	004.0	655.0	000.0	637.0	600.0	0.09.0	000.0	001.0	662.0	005.0	004.0	665.0	000.0	007.0	000.0	009.0	670.0	071.0	072.0	1102
					CN Tring CF ₃ Ph	3														

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{33}H_{23}^{79}BrF_3N_2O_3S^+$ 663.0599 Calcd for $C_{33}H_{23}^{81}BrF_3N_2O_3S^+$ 665.0539

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	6.320	0.920	19905448	206909255	99.3638
2	10.073	0.773	62124	1324836	0.6362

. Preserve and a second of the second of the

---61.696

10

10	0	-10	-20	-30	-40	-50	-60	-70	-60	-90 f1 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vo Data F	ol. (ul) File		cyc-19070 10 WorklistD r002.d	05-13 ata-0013-	Rack Plate Meth	Pos. Pos. Iod (Acq)		TOF.m		Instr IRM Com	ument Status ment		Instrum Success	ent 1	Oj Ac	perator cq. Time ((Local)	7/9/20 (UTC+	19 2:08: 08:00)	10 PM
x10 ⁶	+ESI So	can (rt: 1.:	243 min) F	rag=175.0V	/ Worklistl	Data-0013	-r002.d													
1.75 ⁻ 1.65 ⁻ 1.65 ⁻ 1.55 ⁻ 1.45 ⁻ 1.45 ⁻ 1.45 ⁻ 1.35 ⁻ 1.25 ⁻ 1.25 ⁻ 1.15 ⁻ 1.15 ⁻ 1.15 ⁻ 1.15 ⁻										621.1	427				Ts		C Ph	N CF ₃		
1													н	RMS	(ESI-	TOF)	m/z: l	[M + N	lal⁺	
0.95	-												Calco	d for (CarHa	FoN/	No-SN	la⁺ 62	1 143	30
0.85													earet		- 342	5. 3. 2	2030.			
0.75	-																			
0.7	1																			
0.65	1																			
0.55	-																			
0.5																				
0.45	-																			
0.35																				
0.3	1																			
0.25	-																			
0.15																				
0.1	1																			
0	-I	620.8	620 8	5 620	9 6	20 95	621	621.05	67	21.1 62	1 15	621.2	621.25	621	3 6	21 35	621.4	621.45	621	5
		020.0	020.0	5 020.		20.95	021	021.05	Coun	ts vs. Mass-t	o-Charae	(m/z)	021.23	021	.5 0		521.1	021.43	521	

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	6.537	1.620	13386437	141472227	99.3977
2	13.010	1.583	19998	857194	0.6023

-190

Herrofen by de filste kennen in herrofen en herrofen in de gester de senter bekennen in herrofen om herrofen om

----61.700

10

10	ò	-10	-20	-30	-40	-50	-60	-70	-80	-90 f1 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vo Data F	l. (ul) ile	c 1 V r	cyc-1907 L0 Vorklist[001.d	05-12 Data-0012-	Rack Plate Metho	Pos. Pos. od (Acq)		TOF.m		Instru IRM S Comr	ument Status ment		Instrum Success	ent 1	Ор Ас	perator q. Time (Local)	7/9/20 (UTC+	19 2:05:: 08:00)	21 PM
×10 ⁵	+ESI Sca	an (rt: 0.8	99 min) F	rag=175.0	V WorklistD	ata-0012-r	001.d											(010)	001007	
7.75' 7.55' 7.25' 7' 6.75' 6.25' 6.25' 6.25' 5.5' 5.5' 5.5' 5.5' 5.5' 5.5' 5.5'									557.1381				H Calc	IRMS d for C	(ESI- C ₃₄ H ₂	55. N 0 7m TOF) ₅F ₃ N ₂	P 	CN CF₃ h [M + 1 Ja ⁺ 63	Na]⁺ 37.137	79
0.25 ⁻ 0-	Ļ																			
		636.9) (36.95	637	637.0	5	637.1	637.1	L5 637	.2	637.25	637.	3 6	37.35	637.4	637	.45	637.5	
									Couri	63 v3. 11035*t0	, charge	(11/2)								

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	8.497	2.453	8646894	144720037	99.9999
2	17.320	0.113	51	159	0.0001

656.96 656.98 657 657.02 657.04 657.06 657.08 657.1 657.12 657.14 657.16 657.18 657.2 657.22 657.24 657.26 657.28 657.3 657.32 657.34 657.36 657.38 Counts vs. Mass-to-Charge (m/z)

. Di kurana manana kanana k

---62.754

10	0 -10 -20 -30 -40						-60	-70	-80	-90 f1 (p	-100 pm)	-110	-120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vol. Data File	(ul)		cyc-19070 L0 VorklistDa	5-15 ata-0015-	Rack Plate Meth	Pos. Pos. od (Acq)		TOF.m		I I C	nstrument RM Status Comment		Instrume Success	ent 1	Op	oerator q. Time (Local)	7/9/201	9 2:13:4	8 PM
×10 ⁶	⊦ESI Sca	r (rt: 1.0	004.a 28 min) Fr	ag=175.0V	Worklist	Data-0015-	r004.d											(010+0	8:00)	
1.25-																				
1.2-				Ts,																
1.15				1	1															
1.05-			\wedge			CN			642.00	20										
1-			ĺ		Х [–]	Ĩ			613.08	338										
0.95-				∕∽ŏ		∖ ''''CF	3													
0.9				-	\ ''''	Ph														
0.85-				S																
0.8-				Ŀ	=/															
0.75					7o															
0.65-		HR	MS (E	SI-TC)F) m	/z: [M	+ Na]+												
0.6-	Ca	alcd f	or C_{31}	$H_{21}F_3$	N_2O_2	S ₂ Na	+ 613	.0838	3											
0.55-				2. 0		_														
0.5-																				
0.45																				
0.35-																				
0.3-																				
0.25-																				
0.2-																				
0.15-																				
0.1-																				
0.05																				
0 -	612.75	612.8	612	.85 6	12.9	612.95	613	613.	.05	613.1	613.15	613.2	613.25	613	.3 6	13.35	613.4	613.45	613.5	5
									Count	ts vs. Ma	ss-to-Charge	e (m/z)								

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	7.783	1.220	14397166	193782578	99.9590
2	13.127	0.523	5458	79446	0.0410

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 -100 fl (ppm)	-110) -120	-130	-140	-150	-160	-170	-180	-190
Name Inj. Vo Data Fi	l. (ul) ile		cyc-1907(10 WorklistD r005.d	05-16 ata-0016-	Rack Plate Meth	e Pos. 9 Pos. 100 (Acq)		TOF.m		Instrume IRM State Comment	nt s	Instrun Succes	nent 1 s		Operator Acq. Time	(Local)	7/9/2 (UTC	2019 2:16	:37 PM
x10 ⁶	+ESI So	can (rt: 1.	163 min) F	rag=175.0V	/ Worklist	Data-0016	5-r005.d										10.0		
1-	-																		
0.95-	-														Ts				
0.9-	-														ÌN				
0.85-	-												\searrow	\wedge	_	\sim	CN		
0.8-										621.1432					X		~-		
0.75-															<u> </u>		VCF3		
0.7	1														Ph		n		
0.65-														(= 0)	7q	, .		+	
0.6-												H	RMS	(ESI-		m/z: [M + N	la]' ₁ ₁ ₄ ₂	0
0.55-												Calco	a for C	- ₃₄ Π ₂	₂₅ F ₃ N ₂	0351	a 62	1.143	0
0.5-	1																		
0.45-	1																		
0.4-	1																		
0.35-	1																		
0.3-	1																		
0.25-]																		
0.2																			
0.15																			
0.05-																			
0.05																			
		620.8	620.85	620.9	620	.95	621	621.05	621.1 Cours	621.15	621.2	621.25	621.3	621.3	85 621	.4 6	21.45	621.5	1

-170 -180 -190

-100

-110

-120

-130

-140

-150

-160

---61.923

10

ò

-10

-20

-30

-40

-50

-60

-70

-80

622.75 622.8 622.85 622.9 622.95 623 623.05 623.1 623.15 623.2 623.25 623.3 623.35 623.4 623.45 623.5 Counts vs. Mass-to-Charge (m/z)

¹H NMR (400 MHz, CDCl₃)

---62.028

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.523	0.817	949280	14567522	6.2427
2	10.357	2.010	11488194	218787242	93.7573

$\begin{smallmatrix} & 8,718\\ & 8,718\\ & 6,507\\ & 6,507\\ & 6,508\\ & 5,508\\$

_																			· · · · ·	· · · ·
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 f1 (ppm	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.010	BBA	0.26	35.8341	611.5853	3.7369
25.078	BB	0.64	378.5762	15754.4648	96.2631

0.65

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 8\,8.09\\ 8\,6.09\\ 8\,6.09\\ 8\,6.09\\ 8\,6.09\\ 6\,6.00\\$

---62.041

_		· · ·	·																	
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 fl (pp	-100 m)	-110	-120	-130	-140	-150	-160	-170	-180	-190

 $\begin{smallmatrix} 8 & 191 \\ 8 & 174 \\ 8 & 174 \\ 8 & 174 \\ 8 & 174 \\ 17.13 \\$

¹H NMR (400 MHz, CDCl₃)

---63.317

-0.000

---62.450

---0.000

¹H NMR (400 MHz, CDCl₃)

---58.788

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.450	0.493	105223	1313808	4.6425
2	15.540	2.393	898095	26985489	95.3575

10 ¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCI₃)

$\begin{array}{c} 7.721\\ 7.717\\ 7.717\\ 7.717\\ 7.717\\ 7.717\\ 7.717\\ 7.717\\ 7.717\\ 7.717\\ 7.717\\ 7.7231\\ 7.7231\\ 7.7233\\ 7.$

-0.000

¹H NMR (400 MHz, CDCl₃)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
4.732	BB	0.14	249.4912	2289.0042	47.5280
7.907	BB	0.28	141.1504	2527.1145	52.4720

7.911

BB

0.28

139.5174

2487.4663

98.7048

S166	
------	--