Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

C3-Arylation of Indoles with Aryl Ketones

via C-C/C-H Activations

Zi-Qiong Guo, Hui Xu, Xing Wang, Zhen-Yu Wang, Han-Yuan Li, Biao Ma, Hui-Xiong Dai*

Contents

1.	General information	S2
2.	Optimization of the Reaction Conditions	S2
3.	Experimental Procedures	S6
	3.1 Typical procedure for preparation of ketoxime esters	S6
	3.2 Typical procedure for preparation of 3	S6
	3.3 Scalable synthesis	S6
4.	Mechanism Experiments	S7
5.	Analytical Data	S7
6.	References	S25
7. ¹]	H, ¹³ C and ¹⁹ F NMR spectra	S27

1. General information

Unless otherwise noted, all reactions were carried out under an N₂ atmosphere in sealed tube with magnetic stirring. All reagents were purchased from commercial suppliers with the highest purity grade, and used directly without further purification. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker 400 and 500 MHz spectrometer in CDCl₃. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double of doublets, td = triple doublet, dt = double triplet, tt = triple of triplets and br = broad. HRMS were recorded at the Center for Mass Spectrometry, Shanghai Institute of Material Medica. Solvents were purified prior to use according to conventional procedures. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Column chromatography was performed on silica gel (200–300 mesh) using a mixture of petroleum etherethyl acetate as the eluent. The aryl ketones were commercially available or readily prepared according to the known method.¹

2. Optimization of the Reaction Conditions

$ \begin{array}{c} $	Catalyst (10 mol%) K ₂ CO ₃ (2.0 eq) NaBAr _F (20 mol%) Ligand 18 (30 mol%) DCE, 120 °C, 12 h 3a	$F_{3}C$
Entry	Catalysts	Yield (%)
1	/	nd
2	Pd(MeCN) ₂ Cl ₂	65
3	Pd(dppf)Cl ₂	trace
4	PdCl ₂	74
5	$Pd(cod)Cl_2$	14
6	$Pd(OAc)_2$	48
7	$Pd(TFA)_2$	49
8	$Pd(acac)_2$	trace
9	Pd(MeCN) ₄ (BF ₄) ₂	30
10	Pd ₂ dba ₃	26
11	Pd(PPh ₃) ₄	nd

5

!

Table S1. Screening of the catalysts^a

^aReaction conditions: **1a** (0.11mmol), **2a** (0.1 mmol), Catalyst (10 mol%), ligand **18** (30 mol%), NaBAr_F (20 mol%), K₂CO₃ (0.2 mmol), DCE (2.0 mL), N₂, 120 °C, 12 h. Yields were determined by ¹H NMR spectroscopy using CH₂Br₂ as internal standard. NaBAr_F = Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl] borate.

Table S2. Screening of the bases^a

$1_{a, Ar_F} = C_6 F_5 \qquad 2_{a}$	PdCl ₂ (10 mol%) Base (2.0 eq) NaBAr _F (20 mol%) Ligand 18 (30 mol%) DCE, 120 °C, 12 h 3a	F ₃ C N N Ligand 18
Entry	Bases	Yield (%)
1	/	nd
2	Na ₂ CO ₃	64
3	NaHCO ₃	24
4	K ₂ CO ₃	74
5	KHCO3	72
6	Cs ₂ CO ₃	nd
7	Na ₃ PO ₄	60
8	K ₃ PO ₄	29
9	NaOAc	13
10	KOAc	13
11	CF3COONa	nd
12	CF ₃ COOK	nd

^aReaction conditions: **1a** (0.11mmol), **2a** (0.1 mmol), PdCl₂ (10 mol%), ligand **18** (30 mol%), NaBAr_F (20 mol%), Base (0.2 mmol), DCE (2.0 mL), N₂, 120 °C, 12 h. Yields were determined by ¹H NMR spectroscopy using CH₂Br₂ as internal standard.

Table S3. Screening of the base loading^a

$\mathbf{1a}, Ar_{F} = C_{6}F_{5}$	PdCl ₂ (10 mol%) K ₂ CO ₃ (n eq) NaBAr _F (20 mol%) Ligand 18 (30 mol%) DCE, 120 °C, 12 h	F ₃ C N N Ligand 18
Entry	K ₂ CO ₃ (n equiv.)	Yield (%)
1	1.0	77
2	1.5	74
3	2.0	74
4	2.5	65
5	3.0	47

^aReaction conditions: **1a** (0.11mmol), **2a** (0.1 mmol), PdCl₂ (10 mol%), ligand **18** (30 mol%), NaBAr_F (20 mol%), K₂CO₃ (n eq), DCE (2.0 mL), N₂, 120 °C, 12 h. Yields were determined by ¹H NMR spectroscopy using CH₂Br₂ as internal standard.

Table S4. Screening of the solvents^{*a*}

$\mathbf{1a}, Ar_F = C_6 F_5$	PdCl ₂ (10 mol%) K ₂ CO ₃ (1.0 eq) NaBAr _F (20 mol%) Ligand 18 (30 mol%) Solvent, 120 °C, 12 h	F ₃ C N N Ligand 18
Entry	Solvents	Yield (%)
1	DCE	77
2	DCM	35
3	Toluene	43
4	PhCF ₃	42
5	CH ₃ CN	nd
6	1, 4-dioxane`	nd
7	THF	nd
8	MeOH	nd
9	DMF	nd
10	DMSO	nd

^aReaction conditions: **1a** (0.11mmol), **2a** (0.1 mmol), PdCl₂ (10 mol%), ligand **18** (30 mol%), NaBAr_F (20 mol%), K₂CO₃ (0.1 mmol), Solvent (2.0 mL), N₂, 120 °C, 12 h. Yields were determined by ¹H NMR spectroscopy using CH₂Br₂ as internal standard.

Table S5. Screening of the additives^a

$\mathbf{1a}, \mathbf{Ar}_{F} = \mathbf{C}_{6}\mathbf{F}_{5}$	PdCl ₂ (10 mol%) K ₂ CO ₃ (1.0 eq) Additive (20 mol%) Ligand 18 (30 mol%) DCE, 120 °C, 12 h	F_3C
Entry	Additives	Yield (%)
1	/	nd
2	NaBAr _F	77
3	AgNTf ₂	20
4	AgOTf	nd
5	AgOAc	nd
6	AgOTs	nd
7	$AgSbF_6$	nd
8	Ag ₂ SO ₄	nd
9	AgNO ₃	nd
10	AgBF ₄	nd

^aReaction conditions: **1a** (0.11mmol), **2a** (0.1 mmol), PdCl₂ (10 mol%), ligand **18** (30 mol%), Additive (20 mol%), K₂CO₃ (0.1 mmol), DCE (2.0 mL), N₂, 120 °C, 12 h. Yields were determined by ¹H NMR spectroscopy using CH₂Br₂ as internal standard.

Table S6. Screening of the ligands^a

^aReaction conditions: **1a** (0.11mmol), **2a** (0.1 mmol), PdCl₂ (10 mol%), ligand (30 mol%), NaBAr_F (20 mol%), K₂CO₃ (0.1 mmol), DCE (2.0 mL), N₂, 120 °C, 12 h. Yields were determined by ¹H NMR spectroscopy using CH₂Br₂ as internal standard.

3. Experimental Procedures

3.1 Typical procedure for preparation of ketoxime esters²

To a mixture of hydroxylamine hydrochloride (278 mg, 4 mmol), NaOAc (640 mg, 8 mmol), EtOH (10 mL) was added aryl ketone A (2 mmol), and the mixture was stirred at 90 °C for 2 h or at room temperature for overnight. The reaction mixture was cooled down to room temperature, and then EtOH was removed under reduced pressure. The resulting mixture was extracted with EtOAc. The organic layer was then washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum to give oxime **B** (> 99% yield), not further purified.

To a mixture of oxime **B** (2 mmol) and CH_2Cl_2 (10 mL) was slowly added pentafluorobenzoyl chloride (552 mg, 2.4 mmol), pyridine (221.2 mg, 2.8 mmol) at 0 °C. After a special time, aq. HCl (1.0 M) was added to the above solution, and the aqueous phase was discarded. The organic portion was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was isolated by column chromatography (petroleum ether/ethyl acetate 20:1-5:1) or recrystallization to give starting material **1**.

3.2 Typical procedure for preparation of 3

Under N₂ atmosphere, a mixture consisting of **1** (36.2 mg, 0.11 mmol), **2** (12.5 μ l, 0.1 mmol), PdCl₂ (1.8 mg, 10 mol%), ligand **18** (6.9 mg, 30 mol%), NaBAr_F (17.7 mg, 20 mol%), and K₂CO₃ (13.8 mg, 0.1 mmol) in DCE (2.0 mL) was stirred at 120 °C for 12 h. After cooling to room temperature, solvent and other volatile components were removed on a rotary evaporator under reduced pressure, and the residue was subjected to column chromatography for isolation (gradient eluent: petroleum ether/ethyl acetate 100:1:1- 50:1) to give product **3**.

3.3 Scalable synthesis

Under N₂ atmosphere, a mixture consisting of **1a** (2.17 g, 6.6 mmol), **2a** (750 μ l, 6.0 mmol), PdCl₂ (106 mg, 10 mol%), ligand **18** (414 mg, 30 mol%), NaBAr_F (1.06 g, 20 mol%), and K₂CO₃ (828 mg, 6.0 mmol) in DCE (100 mL) was stirred at 120 °C for 12 h. After cooling to room temperature, solvent and other volatile components were removed on a rotary evaporator under reduced pressure, and the residue was subjected to column chromatography for isolation (gradient

eluent: petroleum ether/ethyl acetate 100:1:1- 50:1) to give product 3a 0.81g (65%).

4. Mechanism Experiments

Under N₂ atmosphere, a mixture consisting of benzophenone imine **A** (18.4 μ l, 0.11 mmol), **2a** (12.5 μ l, 0.1 mmol), PdCl₂ (1.8 mg, 10 mol%), ligand **18** (6.9 mg, 30 mol%), NaBAr_F (17.7 mg, 20 mol%), and K₂CO₃ (13.8 mg, 0.1 mmol) in DCE (2.0 mL) was stirred at 120 °C for 12 h. Yields of products **3a** (5%) were determined by GC-MS using n-hexadecane as internal standard.

Under N₂ atmosphere, a mixture consisting of **1k** (45.4 mg, 0.11 mmol), benzophenone imine (1.7 μ l, 0.01 mmol), **2a** (12.5 μ l, 0.1 mmol), PdCl₂ (1.8 mg, 10 mol%), ligand **18** (6.9 mg, 30 mol%), NaBAr_F (17.7 mg, 20 mol%), and K₂CO₃ (13.8 mg, 0.1 mmol) in DCE (2.0 mL) was stirred at 120 °C for 12 h. Yields of products **3k** (14%) and **3a** (7%) were determined by GC-MS using *n*-hexadecane as internal standard.

5. Analytical Data

Substrates 1a, 1f, 1u-1v, 1ai and 1am were known products and synthesized according to the literatures^{1d,3}. Substrates 2a, 2m, and 2o were commercially available. Substrates 2b-2l and 2n were known products and synthesized according to the literatures^{4, 5}.

(*E*)-1-(4-fluorophenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1b) as a white solid (0.489 g, 70% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ

7.84 – 7.78 (m, 2H), 7.16 – 7.10 (m, 2H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.67 (d, *J* = 252 Hz), 164.05, 156.44, 146.70 (m), 144.66 (m), 142.62 (m), 138.92 (m), 136.90 (m), 130.18 (d, *J* = 3.5 Hz), 129.41 (d, *J* = 8.6 Hz), 115.91 (d, *J* = 21.9 Hz), 107.03, 14.88; ¹⁹F NMR (470 MHz, CDCl₃) δ - 108.62 – -108.68 (m), -136.99 – -137.08 (m), -147.46 (tt, *J* = 20.9, 5.5 Hz), -159.70 – -159.89 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₇F₆NO₂: 347.0375, found: 347.0380.

(*E*)-1-(4-chlorophenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1c) as a white solid (0.620 g, 85% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.7 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.00, 156.34, 146.70 (m), 144.67 (m), 142.61 (m), 138.91 (m), 137.47, 136.87 (m), 132.47, 129.04, 128.56, 106.94 (m), 14.74; ¹⁹F NMR (470 MHz, CDCl₃) δ -136.91 – -137.01 (m), -147.32 (tt, *J* = 20.8, 5.2 Hz), -157.96 – -161.65 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₇F₅ClNO₂: 363.0080, found: 363.0061.

(*E*)-1-(4-bromophenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1d) as a white solid (0.593 g, 73% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 8.6 Hz, 2H), 7.58 (d, *J* = 8.7 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.08, 156.31, 146.69 (m), 144.64 (m), 142.61 (m), 138.90 (m), 136.87 (m), 132.92, 132.01, 128.74, 125.87, 106.91 (m), 14.70; ¹⁹F NMR (470 MHz, CDCl₃) δ -136.95 (d, *J* = 21.2 Hz), -147.29 (t, *J* = 22.0 Hz), -159.67 - -160.08 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₇F₅BrNO₂: 406.9575, found: 406.9584.

(*E*)-1-(4-trifluoromethyl-1-one *O*-perfluorobenzoyl oxime (1e) as a white solid (0.548 g, 69% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 2H), 7.70 (d, *J* = 7.5 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.13, 156.58,

146.88 (m), 144.90 (m), 142.82 (m), 139.00 (m), 137.54, 136.98 (m), 132.97 (q, J = 32.7 Hz), 127.74, 125.78 (q, J = 5.0 Hz), 123.82 (q, J = 272.3 Hz), 106.66 (m), 15.03; ¹⁹F NMR (470 MHz, CDCl₃) δ - 63.09, -136.90 - -136.99 (m), -147.17 (tt, J = 21.0, 5.3 Hz), -159.66 - -159.84 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₆H₇F₈NO₂: 397.0344, found: 397.0377.

1g

(*E*)-1-([1,1'-biphenyl]-4-yl)ethan-1-one *O*-perfluorobenzoyl oxime (1g) as a white solid (0.605 g, 75% yield). Purification condition (crystallization from DCM/PE). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.42 – 7.36 (m, 1H), 2.49 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.77, 156.62, 146.74 (m), 144.68 (m), 144.11, 142.62 (m), 140.11, 138.99 (m), 136.95 (m), 132.87, 129.07, 128.16, 127.81, 127.50, 127.28, 107.28 (m), 14.96; ¹⁹F NMR (470 MHz, CDCl₃) δ -134.02 – -144.07 (m), -147.60 (tt, *J* = 20.6, 5.1 Hz), -156.94 – -162.62 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₂₁H₁₂F₅NO₂: 405.0783, found: 405.0784.

(*E*)-1-(p-tolyl)ethan-1-one *O*-perfluorobenzoyl oxime (1h) as a white solid (0.617 g, 90% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 7.8 Hz, 2H), 2.44 (s, 3H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.01, 156.61, 146.63 (m), 144.58 (m), 142.51 (m), 141.71, 138.91 (m), 136.88 (m), 131.15, 129.52, 127.21, 107.28 (m), 21.49, 14.86; ¹⁹F NMR (470 MHz, CDCl₃) δ -137.07 – -137.16 (m), -147.80 (tt, *J* = 21.2, 5.3 Hz), -159.82 – -160.00 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₆H₁₀F₅NO₂: 343.0626, found: 343.0632.

(*E*)-1-(4-ethylphenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1i) as a white solid (0.604 g, 85% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.71

(d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 2.69 (q, J = 7.6 Hz, 2H), 2.44 (s, 3H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.03, 156.60, 147.94, 146.60 (m), 144.55 (m), 142.47 (m), 138.87 (m), 136.84 (m), 131.33, 128.30, 127.27, 107.26 (m), 28.82, 15.35, 14.83; ¹⁹F NMR (470 MHz, CDCl₃) δ -132.67 – -142.83 (m), -144.96 – -150.66 (m), -155.94 – -163.43 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₇H₁₂F₅NO₂: 357.0783, found: 357.0787.

(*E*)-1-(4-ethylphenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1j) as a white solid (0.617 g, 86% yield). Purification condition (hexane: ethyl acetate = 10: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 3.86 (s, 3H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.51, 162.14, 156.67, 146.63 (m), 144.57 (m), 142.50 (m), 138.92 (m), 136.88 (m), 128.92, 126.23, 114.18, 107.35 (m), 55.51, 14.76; ¹⁹F NMR (470 MHz, CDCl₃) δ -137.14 – -137.23 (m), -147.90 (tt, *J* = 20.8, 5.2 Hz), -159.86 – -160.05 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₆H₁₀F₅NO₃: 359.0575, found: 359.0569.

(*E*)-1-(4-(trifluoromethoxy)phenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1k) as a white solid (0.735 g, 89% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.9 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.84, 156.36, 151.36, 146.75 (m), 144.70 (m), 142.67 (m), 138.95 (m), 136.93 (m), 132.63, 129.01, 120.92, 120.45 (q, *J* = 258.2 Hz), 106.94 (m), 14.78; ¹⁹F NMR (470 MHz, CDCl₃) δ -57.78, -136.87 – -137.04 (m), -147.25 (t, J = 20.7 Hz), -159.62 – -159.85 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₆H₇F₈NO₃: 413.0293, found: 413.0305.

(E)-1-(3-fluorophenyl)ethan-1-one O-perfluorobenzoyl oxime (11) as a white solid (0.628 g,

91% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.57 (dt, *J* = 7.9, 1.1 Hz, 1H), 7.53 – 7.50 (m, 1H), 7.42 (td, *J* = 8.0, 5.7 Hz, 1H), 7.22 – 7.17 (m, 1H), 2.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.04 (d, *J* = 2.6 Hz), 162.91 (d, *J* = 247.2 Hz), 156.42, 146.61 (m), 144.73 (m), 142.88 (m), 138.79 (m), 137.13 (m), 136.24 (d, *J* = 7.7 Hz), 130.51 (d, *J* = 8.1 Hz), 123.09 (d, *J* = 3.1 Hz), 118.29 (d, *J* = 21.1 Hz), 114.40 (d, *J* = 23.4 Hz), 106.99 (m), 15.04; ¹⁹F NMR (470 MHz, CDCl₃) δ -111.88 (q, *J* = 8.3 Hz), -136.90 – -136.99 (m), -147.30 (tt, *J* = 20.8, 5.4 Hz), -159.65 – -159.84 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₇F₆NO₂: 347.0375, found: 347.0389.

(*E*)-1-(3-chlorophenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1m) as a white solid (0.590 g, 81% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (t, *J* = 1.9 Hz, 1H), 7.67 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.48 – 7.46 (m, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.96, 156.30, 146.73 (m), 144.72 (m), 142.65 (m), 138.92 (m), 136.88 (m), 135.80, 134.91, 131.21, 130.09, 127.31, 125.42, 106.87 (m), 14.90; ¹⁹F NMR (470 MHz, CDCl₃) δ -136.86 – -136.95 (m), -145.90 – -148.62 (m), -158.22 – -161.86 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₇ClF₅NO₂: 363.0080, found: 363.0072.

1n

(*E*)-1-(3-bromophenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1n) as a white solid (0.585 g, 72% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (t, *J* = 1.8 Hz, 1H), 7.72 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.62 – 7.60 (m, 1H), 7.32 (t, *J* = 7.9 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.91, 156.34, 146.59 (m), 144.70 (m), 142.86 (m), 138.78 (m), 137.09 (m), 136.07, 134.19, 130.35, 130.24, 125.90, 122.99, 106.92 (m), 14.97; ¹⁹F NMR (470 MHz, CDCl₃) δ -136.86 – -136.95 (m), -147.27 (tt, *J* = 20.9, 5.2 Hz), -159.64 – -159.82 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₇BrF₅NO₂: 406.9575, found: 406.9582.

(*E*)-1-(*m*-tolyl)ethan-1-one *O*-perfluorobenzoyl oxime (10) as a white solid (0.638 g, 93% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H), 7.55 (dt, *J* = 7.5, 1.8 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.30 (dt, *J* = 6.4, 1.4 Hz, 1H), 2.45 (s, 3H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.45, 156.63, 146.52 (m), 144.57 (m), 142.75 (m), 138.78 (m), 138.67, 137.09 (m), 134.04, 132.07, 128.74, 127.84, 124.51, 107.24 (m), 21.50, 15.16; ¹⁹F NMR (470 MHz, CDCl₃) δ -137.02 – -137.10 (m), -147.70 (t, *J* = 21.3 Hz), -159.82 – -159.96 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₆H₁₀F₅NO₂: 343.0626, found: 343.0626.

(*E*)-1-(3-methoxyphenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1p) as a white solid (0.538 g, 75% yield). Purification condition (hexane: ethyl acetate = 10: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.30 (m, 3H), 7.03 (dt, *J* = 7.2, 2.4 Hz, 1H), 3.86 (s, 3H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.14, 159.88, 156.59, 146.52 (m), 144.62 (m), 142.77 (m), 138.79 (m), 137.10 (m), 135.46, 129.89, 119.85, 117.23, 112.44, 107.24 (m), 55.57, 15.21; ¹⁹F NMR (470 MHz, CDCl₃) δ -137.00 – -137.10 (m), -147.58 – -147.69 (m), -159.80 – -159.92 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₆H₁₀F₅NO₃: 359.0575, found: 359.0584.

(*E*)-1-(2-chlorophenyl) ethan-1-one *O*-perfluorobenzoyl oxime (1q) as a white solid (0.568 g, 78% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.43 (m, 2H), 7.40 (td, *J* = 7.7, 1.8 Hz, 1H), 7.33 (td, *J* = 7.5, 1.3 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.89, 156.46, 146.58 (m), 144.67 (m), 142.85 (m), 138.78 (m), 137.10 (m), 134.51, 132.59, 131.32, 130.38, 130.29, 127.18, 106.99 (m), 18.51; ¹⁹F NMR (470 MHz, CDCl₃) δ - 136.75 – -136.84 (m), -147.38 (t, *J* = 20.9 Hz), -159.77 – -159.88 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₇ClF₅NO₂: 363.0080, found: 363.0130.

(*E*)-1-(3,4-dichlorophenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1r) as a white solid (0.659 g, 83% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 2.1 Hz, 1H), 7.65 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.00, 156.16, 146.77 (m), 144.79 (m), 142.72 (m), 138.94 (m), 136.90 (m), 135.59, 133.93, 133.26, 130.79, 129.07, 126.39, 106.73 (m), 14.67; ¹⁹F NMR (470 MHz, CDCl₃) δ -136.79 – -136.88 (m), -147.02 (tt, *J* = 20.7, 5.2 Hz), -159.54 – -159.73 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₆Cl₂F₅NO₂: 396.9690, found: 396.9700.

(*E*)-1-(3,5-dimethylphenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1s) as a white solid (0.558 g, 78% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.39 (s, 2H), 7.12 (s, 1H), 2.44 (s, 3H), 2.36 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 165.52, 156.49, 146.63 (m), 144.55 (m), 142.48 (m), 138.87 (m), 138.42, 136.84 (m), 133.90, 132.85, 124.98, 107.20 (m), 21.25, 15.04; ¹⁹F NMR (470 MHz, CDCl₃) δ -136.98 – -137.16 (m), -147.77 (t, *J* = 20.9 Hz), -159.86 – -159.98 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₇H₁₂F₅NO₂: 357.0783, found: 357.0790.

(*E*)-1-(3,5-dimethoxyphenyl)ethan-1-one *O*-perfluorobenzoyl oxime (1t) as a white solid (0.663 g, 85% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 6.90 (d, *J* = 2.2 Hz, 2H), 6.57 (t, *J* = 2.3 Hz, 1H), 3.84 (s, 6H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.05, 160.91, 156.39, 146.64 (m), 144.58 (m), 142.50 (m), 138.86 (m), 136.83 (m), 135.92, 107.06 (m), 105.29, 103.08, 55.50, 15.02; ¹⁹F NMR (470 MHz, CDCl₃) δ -136.99 – -137.08 (m), -147.61 (tt, *J* = 20.9, 5.2 Hz), -159.76 – -159.95 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₇H₁₂F₅NO₄: 389.0681, found: 389.0678.

1w

(E)-1-(6-methoxypyridin-3-yl)ethan-1-one O-perfluorobenzoyl oxime (1w) as a white solid

(0.469 mg, 65% yield). Purification condition (crystallization from DCM/PE). ¹H NMR (500 MHz, CDCl₃) δ 8.52 (d, *J* = 2.5 Hz, 1H), 8.11 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.80 (d, *J* = 8.8 Hz, 1H), 3.99 (s, 3H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.91, 162.55, 156.25, 146.62 (m), 146.45, 144.56 (m), 142.49 (m), 138.82, 136.92, 136.81 (m), 123.15, 111.12, 106.91, 53.75, 14.12; ¹⁹F NMR (470 MHz, CDCl₃) δ -136.99 – -137.08 (m), -147.43 (tt, *J* = 22.0, 5.8 Hz), -159.69 – -159.82 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₅H₉F₅N₂O₃: 360.0528, found: 360.0527.

(*E*)-1-(benzofuran-5-yl)ethan-1-one *O*-perfluorobenzoyl oxime (1x) as a white solid (0.458 g, 62% yield). Purification condition (crystallization from DCM/PE). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 2.0 Hz, 1H), 7.78 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.68 (d, *J* = 2.2 Hz, 1H), 7.55 (d, *J* = 8.7 Hz, 1H), 6.85 – 6.80 (m, 1H), 2.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.36, 156.65, 156.60, 146.68 (m), 146.33, 144.66 (m), 142.59 (m), 138.98 (m), 136.95 (m), 129.08, 127.95, 123.72, 120.92, 111.89, 107.34 (m), 107.09, 15.43; ¹⁹F NMR (470 MHz, CDCl₃) δ -136.97 – -137.15 (m), -147.68 (t, *J* = 21.1 Hz), -159.78 – -159.91 (m); HRMS (EI) *m/z*: [M]⁺ calcd for C₁₇H₈F₅NO₃: 369.0419, found: 369.0424.

1a-1

(*E*)-1,4-diphenylbutan-1-one *O*-perfluorobenzoyl oxime (1a-1) as a white solid (0.607 g, 70% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 7.7 Hz, 2H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 2H), 7.16 (d, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 2H), 2.94 – 2.86 (m, 2H), 2.69 (t, *J* = 7.4 Hz, 2H), 1.95 – 1.89 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 168.76, 156.64, 146.65 (m), 144.61 (m), 142.59 (m), 140.98, 138.95 (m), 136.92 (m), 133.17, 131.24, 128.96, 128.50, 128.48, 127.55, 126.23, 107.17 (m), 35.71, 28.34, 28.30; ¹⁹F NMR (470 MHz, Chloroform-d) δ -137.04 – -137.13 (m), -147.59 – -147.74 (m), -159.63 – 159.82 (m).

1-methyl-3-phenyl-1H-indole (3a)⁵ as a yellow oil (14.5 mg, 70% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (dt, *J* = 8.2, 1.0 Hz, 1H), 7.67 – 7.63 (m, 2H), 7.45 – 7.40 (m, 2H), 7.37 – 7.33 (m, 1H), 7.29 – 7.24 (m, 2H), 7.22 (s, 1H), 7.20 – 7.17 (m, 1H), 3.82 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.55, 135.75, 128.82, 127.40, 126.62,

3-(4-fluorophenyl)-1-methyl-1H-indole (3b)⁶ as a yellow solid (14.6 mg, 65% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.36 (d, J = 8.2 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.21 – 7.16 (m, 2H), 7.15 – 7.08 (m, 2H), 3.82 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.40 (d, J = 244.3 Hz), 137.45, 131.73 (d, J = 3.2 Hz), 128.79 (d, J = 7.8 Hz), 126.43, 126.17, 122.14, 120.03, 119.70, 115.87, 115.64 (d, J = 21.3 Hz), 109.65, 32.95; ¹⁹F NMR (470 MHz, CDCl₃) δ -117.33 – 117.39 (m).

3-(4-chlorophenyl)-1-methyl-1H-indole (3c)⁷ as a yellow solid (17.4 mg, 72% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.41 – 7.34 (m, 3H), 7.30 – 7.27 (m, 1H), 7.22 – 7.17 (m, 2H), 3.82 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.55, 134.24, 131.34, 128.94, 128.47, 126.71, 126.00, 122.23, 120.19, 119.74, 115.61, 109.72, 32.99.

3-(4-bromophenyl)-1-methyl-1H-indole (3d)⁵ as a yellow solid (14 mg, 49% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dt, *J* = 8.1, 1.0 Hz, 1H), 7.56 – 7.49 (m, 4H), 7.36 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.22 (s, 1H), 7.21 – 7.18 (m, 1H), 3.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.56, 134.70, 131.88, 128.83, 126.71, 125.95, 122.25, 120.22, 119.74, 119.34, 115.61, 109.74, 33.02.

1-methyl-3-(4-(trifluoromethyl) phenyl)-1H-indole (3e)⁵ as a yellow solid (15.5 mg, 56% yield). L22 was used instead of L18. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H),

7.36 (d, J = 8.3 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.24 (s, 1H), 7.23 – 7.19 (m, 1H), 3.79 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.55, 137.70, 127.48 (q, J = 32.4 Hz), 127.46, 127.12, 125.94, 125.81 (q, J = 3.8 Hz), 124.68 (q, J = 271.7 Hz), 122.47, 120.56, 119.77, 115.39, 109.94, 33.07; ¹⁹F NMR (470 MHz, CDCl₃) δ -62.14.

methyl 4-(1-methyl-1H-indol-3-yl) benzoate (3f) as a yellow solid (20.0 mg, 75% yield). L23 was used instead of L18. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 2H), 7.97 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 8.2 Hz, 1H), 7.33 (s, 1H), 7.32 – 7.27 (m, 1H), 7.23 (t, J = 7.4 Hz, 1H), 3.93 (s, 3H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.29, 140.67, 137.70, 130.25, 127.63, 127.00, 126.63, 125.91, 122.39, 120.52, 119.95, 115.70, 109.85, 52.07, 33.11; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₇H₁₆NO₂: 266.1176, found: 266.1174.

3-([1,1'-biphenyl]-4-yl)-1-methyl-1H-indole (3g)⁸ as a yellow solid (16.1 mg, 57% yield). **L23** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 1H), 7.76 – 7.72 (m, 2H), 7.69 – 7.64 (m, 4H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.36 – 7.32 (m, 1H), 7.32 – 7.26 (m, 2H), 7.23 – 7.20 (m, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.12, 138.49, 137.60, 134.84, 128.85, 127.62, 127.53, 127.11, 127.00, 126.72, 126.21, 122.11, 120.06, 116.29, 109.67, 33.01.

1-methyl-3-(p-tolyl)-1H-indole (3h)⁶ as a yellow solid (14.6 mg, 66% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.35 (dt, *J* = 8.2, 1.0 Hz, 1H), 7.29 – 7.23 (m, 3H), 7.20 – 7.15 (m, 2H), 3.81 (s, 3H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.50, 135.38, 132.77, 129.53, 127.33, 126.34, 126.30, 121.96, 120.04, 119.82, 116.74, 109.55, 32.91, 21.23.

3-(4-ethylphenyl)-1-methyl-1H-indole (3i) as a yellow oil (14.1 mg, 60% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (dt, *J* = 8.1, 1.0 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.35 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.29 – 7.24 (m, 3H), 7.20 – 7.15 (m, 2H), 3.82 (s, 3H), 2.69 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.79, 137.50, 133.04, 128.32, 127.39, 126.37, 126.31, 121.94, 120.07, 119.80, 116.78, 109.53, 32.92, 28.66, 15.74; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₇H₁₈N: 236.1434, found: 236.1435.

3-(4-methoxyphenyl)-1-methyl-1H-indole (3j)⁵ as a yellow solid (10.0 mg, 42% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.35 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.20 – 7.14 (m, 2H), 7.01 – 6.96 (m, 2H), 3.85 (s, 3H), 3.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 158.00, 137.43, 128.54, 128.31, 126.35, 126.02, 121.94, 119.92, 119.75, 116.49, 114.32, 109.52, 55.44, 32.90.

1-methyl-3-(4-(trifluoromethoxy) phenyl)-1H-indole (3k) as a yellow oil (13.1 mg, 45% yield). **L22** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.36 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.32 – 7.25 (m, 3H), 7.22 – 7.18 (m, 2H), 3.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 147.25, 137.50, 134.62, 128.37, 126.81, 125.99, 122.25, 121.49, 120.68 (q, *J* = 255.0 Hz), 120.22, 119.66, 115.42, 109.75, 32.98; ¹⁹F NMR (470 MHz, CDCl₃) δ -57.81; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₆H₁₃F₃NO: 292.0944, found: 292.0930.

3-(3-fluorophenyl)-1-methyl-1H-indole (3l) as a yellow oil (11.0 mg, 49% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.43 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.31 – 7.27 (m, 1H), 7.24 (d, *J* = 0.7 Hz,

1H), 7.22 – 7.19 (m, 1H), 6.96 – 6.92 (m, 1H), 3.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.37 (d, *J* = 245.0 Hz), 138.02 (d, *J* = 8.2 Hz), 137.58, 130.20 (d, *J* = 9.0 Hz), 127.01, 125.97, 122.84, 122.28, 120.29, 119.81, 115.69, 113.87 (d, *J* = 21.8 Hz), 112.41 (d, *J* = 21.1 Hz), 109.75, 33.01; ¹⁹F NMR (470 MHz, CDCl₃) δ -113.41 (q, *J* = 8.6 Hz); HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₅H₁₃FN: 226.1027, found:226.1021.

3-(3-chlorophenyl)-1-methyl-1H-indole (3m)⁹ as a yellow oil (14.5 mg, 60% yield). **L23** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.63 (t, *J* = 1.9 Hz, 1H), 7.53 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.30 – 7.27 (m, 1H), 7.23 – 7.18 (m, 3H), 3.82 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.65, 134.60, 130.02, 127.13, 127.01, 125.93, 125.66, 125.32, 122.29, 120.30, 119.75, 115.44, 109.75, 33.01.

3-(3-bromophenyl)-1-methyl-1H-indole (3n) as a yellow oil (10.8 mg, 38% yield). **L23** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.79 (t, *J* = 1.9 Hz, 1H), 7.58 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.31 – 7.26 (m, 2H), 7.24 (s, 1H), 7.23 – 7.19 (m, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.92, 137.53, 130.31, 130.04, 128.56, 127.02, 125.90, 125.77, 122.92, 122.30, 120.31, 119.72, 115.31, 109.76, 33.05; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₅H₁₃BrN: 286.0226, found: 286.0025.

1-methyl-3-(m-tolyl)-1H-indole (30)⁹ as a yellow oil (15.0 mg, 68% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.5 Hz, 2H), 7.37 – 7.29 (m, 2H), 7.29 – 7.25 (m, 1H), 7.21 (s, 1H), 7.20 – 7.17 (m, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 3.81 (s, 3H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.35, 137.54, 135.65, 128.73, 128.16, 126.60, 126.28, 124.52, 121.99, 120.08, 119.88, 116.85, 109.57, 32.92, 21.68.

3-(3-methoxyphenyl)-1-methyl-1H-indole (3p)¹⁰ as a yellow oil (17.1 mg, 72% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.29 – 7.26 (m, 1H), 7.24 (dt, *J* = 7.5, 1.3 Hz, 1H), 7.22 (s, 1H), 7.21 (dd, *J* = 2.6, 1.6 Hz, 1H), 7.20 – 7.16 (m, 1H), 6.83 – 6.81 (m, 1H), 3.86 (s, 3H), 3.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.03, 137.54, 137.13, 129.78, 126.76, 126.19, 122.07, 120.03, 120.00, 119.96, 116.64, 112.98, 111.24, 109.62, 55.32, 32.94.

3-(2-chlorophenyl)-1-methyl-1H-indole (3q)⁹ as a yellow oil (16.4 mg, 68% yield). **L24** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.57 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.51 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.37 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.29 – 7.26 (m, 1H), 7.24 – 7.20 (m, 1H), 7.18 – 7.14 (m, 1H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.74, 133.96, 133.12, 131.89, 130.22, 128.92, 127.39, 127.09, 126.72, 121.99, 120.25, 119.87, 113.19, 109.56, 33.06.

3-(3,4-dichlorophenyl)-1-methyl-1H-indole (3r) as a yellow solid (11.6 mg, 42% yield). **L23** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dt, *J* = 8.1, 1.0 Hz, 1H), 7.72 (t, *J* = 1.2 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.32 – 7.29 (m, 1H), 7.24 – 7.19 (m, 2H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.52, 135.91, 132.68, 130.66, 129.19, 128.67, 127.08, 126.38, 125.71, 122.42, 120.46, 119.54, 114.41, 109.86, 33.09; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₅H₁₂Cl₂N: 276.0341, found: 276.0340.

3-(3,5-dimethylphenyl)-1-methyl-1H-indole (3s) as a yellow solid (15.0 mg, 64% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (dt, *J* = 8.2, 1.0 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.30 – 7.25 (m, 3H), 7.21 (s, 1H), 7.20 – 7.17 (m, 1H), 6.92 (s, 1H), 3.82 (s, 3H), 2.38 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 138.28, 137.47, 135.54, 127.54, 126.60, 126.26, 125.26, 121.92, 120.13, 119.78, 116.84, 109.53, 32.94, 21.57; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₇H₁₈N: 236.1434, found: 236.1435.

3-(3,5-dimethoxyphenyl)-1-methyl-1H-indole (3t) as a yellow oil (15.5 mg, 58% yield). **L23** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (dt, *J* = 8.1, 1.0 Hz, 1H), 7.36 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.25 (s, 1H), 7.21 – 7.17 (m, 1H), 6.82 (d, *J* = 2.3 Hz, 2H), 6.41 (t, *J* = 2.3 Hz, 1H), 3.86 (s, 6H), 3.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.11, 137.62, 137.49, 126.84, 126.12, 122.09, 120.04, 120.02, 116.70, 109.65, 105.47, 98.01, 55.45, 32.98; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₇H₁₈NO₂: 268.1332, found: 268.1325.

1-methyl-3-(5,6,7,8-tetrahydronaphthalen-2-yl)-1H-indole (3u) as a yellow oil (17.0 mg, 65% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 1H), 7.39 (dd, *J* = 7.8, 1.9 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.29 – 7.24 (m, 1H), 7.20 – 7.15 (m, 2H), 7.13 (d, *J* = 7.8 Hz, 1H), 3.81 (s, 3H), 2.86 – 2.79 (m, 4H), 1.86 – 1.82 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 137.48, 134.81, 132.83, 129.58, 128.02, 126.33, 124.78, 121.89, 120.11, 119.73, 116.87, 109.50, 32.90, 29.68, 29.24, 23.45, 23.41; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₉H₂₀N: 262.1590, found:262.1564.

1-methyl-3-(naphthalen-2-yl)-1H-indole (3v)^5 as a yellow solid (20.0 mg, 78% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.90 – 7.82 (m, 3H), 7.79 (dd, J = 8.5, 1.8 Hz, 1H), 7.49 – 7.46 (m, 1H), 7.45 – 7.41 (m, 1H), 7.38 (dt, J = 8.1, 0.9 Hz, 1H), 7.34 (s, 1H), 7.32 – 7.29 (m, 1H), 7.25 – 7.23 (m, 1H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.66, 134.11, 133.24, 131.98, 128.30, 127.80, 127.76, 127.08, 126.51, 126.33, 126.18, 125.18, 124.97, 122.18, 120.13, 120.10, 116.67, 109.70, 32.99.

3-(6-methoxypyridin-3-yl)-1-methyl-1H-indole (3w) as a yellow oil (5.7 mg, 27% yield). **L24** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 10: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.44 (dd, J = 2.5, 0.8 Hz, 1H), 7.86 – 7.82 (m, 2H), 7.38 (dt, J = 8.2, 0.9 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.21 – 7.18 (m, 1H), 7.18 (s, 1H), 6.84 (dd, J = 8.5, 0.8 Hz, 1H), 3.99 (s, 3H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.57, 144.88, 138.01, 137.39, 126.17, 124.81, 122.21, 120.06, 119.54, 113.09, 110.87, 109.68, 53.53, 33.00; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₅H₁₅N₂O: 239.1179, found: 239.1177.

3-(benzofuran-5-yl)-1-methyl-1H-indole (3x) as a yellow solid (9.5 mg, 36% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.84 (t, *J* = 1.2 Hz, 1H), 7.64 (d, *J* = 2.2 Hz, 1H), 7.58 – 7.55 (m, 2H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.22 – 7.17 (m, 2H), 6.80 (d, *J* = 2.1 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.75, 145.32, 137.41, 130.48, 128.00, 126.44, 126.42, 124.48, 122.00, 119.87, 119.84, 119.68, 117.03, 111.58, 109.57, 106.76, 32.92; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₇H₁₄NO: 248.1070, found: 248.1063.

5-chloro-1-methyl-3-phenyl-1H-indole (3y)^8 as a yellow oil (13.0 mg, 54% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 2.0 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.30 – 7.25 (m, 2H), 7.24 – 7.19 (m, 2H), 3.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.94, 135.03, 129.00, 127.83, 127.39, 127.19, 126.17, 125.94, 122.37, 119.47, 116.55, 110.71, 33.23.

1-methyl-3,5-diphenyl-1H-indole (3z) as a yellow solid (17.8 mg, 63% yield). **L23** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 1.7 Hz, 1H), 7.67 (td, *J* = 8.4, 1.3 Hz, 4H), 7.52 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.47 – 7.39 (m, 5H), 7.33 – 7.26 (m, 2H), 7.24 (s, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.75, 137.10, 135.64, 133.69, 128.95, 128.78, 127.63, 127.56, 127.32, 126.73, 126.51, 125.95, 122.01, 118.64, 117.27, 109.93, 33.13; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₁H₁₈N: 284.1434, found: 284.1426.

1,5-dimethyl-3-phenyl-1H-indole (3aa)⁵ as a yellow solid (12.2 mg, 55% yield). **L22** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (s, 1H), 7.65 – 7.63 (m, 2H), 7.44 – 7.41 (m, 2H), 7.27 – 7.23 (m, 2H), 7.18 (s, 1H), 7.10 (dd, *J* = 8.4, 1.6 Hz, 1H), 3.80 (s, 3H), 2.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 135.97, 135.91, 129.24, 128.78, 127.38, 126.71, 126.40, 125.64, 123.63, 119.59, 116.20, 109.29, 32.98, 21.67.

6-fluoro-1-methyl-3-phenyl-1H-indole (3ab)⁷ as a yellow solid (11.3 mg, 50% yield). **L22** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 8.7, 5.3 Hz, 1H), 7.61 (dd, J = 8.1, 1.3 Hz, 2H), 7.43 (t, J = 7.8 Hz, 2H), 7.30 – 7.25 (m, 1H), 7.18 (s, 1H), 7.01 (dd, J = 9.7, 2.3 Hz, 1H), 6.97 – 6.91 (m, 1H), 3.76 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.99 (d, J = 238.3 Hz), 137.56 (d, J = 11.8 Hz), 135.25, 128.88, 127.32, 126.75, 126.01, 122.72, 120.85 (d, J = 10.1 Hz), 116.97, 108.59 (d, J = 24.3 Hz), 95.95 (d, J = 26.0 Hz), 33.07; ¹⁹F NMR (470 MHz, CDCl₃) δ -120.51 – 120.57 (m).

6-chloro-1-methyl-3-phenyl-1H-indole $(3ac)^7$ as a yellow solid (7.7 mg, 32% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.5 Hz, 1H), 7.60 (d, J = 6.9 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 1.9 Hz, 1H), 7.28 (t, J = 7.4 Hz, 1H), 7.19 (s, 1H), 7.14 (dd, J = 8.5, 1.9 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.88, 135.07, 128.90, 128.01, 127.32, 127.13, 126.08, 124.72, 120.90, 120.55, 116.96, 109.63, 33.04.

1-methyl-3,6-diphenyl-1H-indole (3ad) as a yellow solid (20.1 mg, 71% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.3 Hz, 1H), 7.70 – 7.66 (m, 4H), 7.54 (d, *J* = 1.5 Hz, 1H), 7.45 (td, *J* = 8.4, 7.9, 6.8 Hz, 5H), 7.36 – 7.31 (m, 1H), 7.29 – 7.26 (m, 1H), 7.23 (d, *J* = 10.5 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.35, 138.06, 135.63, 135.61, 128.86, 128.81, 127.53, 127.33, 127.26, 126.79, 125.84, 125.50, 120.25, 119.88, 116.69, 108.15, 33.00; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₂₁H₁₈N: 284.1434, found: 284.1429.

methyl 1-methyl-3-phenyl-1H-indole-6-carboxylate (3ae)⁵ as a yellow solid (9.6 mg, 36% yield). L24 was used instead of L18. Purification condition (hexane: ethyl acetate = 10: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 1.5 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.86 (dd, J = 8.4, 1.5 Hz, 1H), 7.63 (dd, J = 8.1, 1.4 Hz, 2H), 7.45 (t, J = 7.7 Hz, 2H), 7.37 (s, 1H), 7.32 – 7.27 (m, 1H), 3.96 (s, 3H), 3.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.16, 136.88, 134.93, 129.78, 129.57, 128.93, 127.40, 126.18, 123.57, 120.92, 119.53, 117.17, 112.12, 52.11, 33.19.

1,6-dimethyl-3-phenyl-1H-indole (3af)⁵ as a yellow oil (15.2 mg, 69% yield). **L22** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 10: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.2 Hz, 1H), 7.65 (dd, *J* = 7.9, 1.4 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.26 – 7.23 (m, 1H), 7.16 (s, 1H), 7.15 (s, 1H), 7.02 (dd, *J* = 8.1, 1.5 Hz, 1H), 3.79 (s, 3H), 2.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.03, 135.97, 131.96, 128.84, 127.31, 126.09, 125.70, 124.12, 121.79, 119.75, 116.63, 109.64, 32.93, 21.97.

6-methoxy-1-methyl-3-phenyl-1H-indole (3ag)⁷ as a yellow solid (14.2 mg, 60% yield). **L23** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 10: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.7 Hz, 1H), 7.66 – 7.61 (m, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.28 – 7.24 (m, 1H), 7.12 (s, 1H), 6.86 (dd, *J* = 8.7, 2.3 Hz, 1H), 6.80 (d, *J* = 2.2 Hz, 1H), 3.90 (s, 3H), 3.77 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.50, 138.25, 135.74, 128.80, 127.19, 125.70, 125.41, 120.72, 120.50, 116.68, 109.77, 92.96, 55.77, 32.98.

1,4-dimethyl-3-phenyl-1H-indole (3ah)⁵ as a yellow oil (12.6 mg, 57% yield). **L22** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.40 – 7.34 (m, 2H), 7.34 – 7.29 (m, 1H), 7.21 (d, *J* = 8.1 Hz, 1H), 7.17 (dd, *J* = 8.3, 6.9 Hz, 1H), 6.97 (s, 1H), 6.88 (d, *J* = 6.9 Hz, 1H), 3.80 (s, 3H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.03, 131.43, 130.74, 127.75, 127.61, 126.27, 125.62, 121.93, 121.22, 118.18, 107.22, 32.93, 20.89.

1,7-dimethyl-3-phenyl-1H-indole (3ai)⁵ as a white solid (8.4 mg, 38% yield). **L22** was used instead of **L18**. Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.25 (m, 1H), 7.09 (s, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 7.0 Hz, 1H), 4.10 (s, 3H), 2.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.11, 135.66, 128.76, 128.41, 127.64, 127.28, 125.77, 124.68, 121.60, 120.16, 118.00, 116.52, 37.03, 19.94.

3-phenylbenzo[b]thiophene (3aj)⁵ as a yellow oil (9.2 mg, 44% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 7.95 – 7.88 (m, 2H), 7.61 – 7.56 (m, 2H), 7.51 – 7.45 (m, 2H), 7.42 – 7.35 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 140.75, 138.16, 137.95, 136.07, 128.81, 128.79, 127.63, 124.49, 124.41, 123.49, 123.00.

1-benzyl-3-phenyl-1H-indole $(3ak)^5$ as a white solid (15.0 mg, 53% yield). Purification condition (hexane: ethyl acetate = 20: 1). ¹H NMR (500 MHz, CDCl₃) δ 8.00 – 7.95 (m, 1H), 7.70 – 7.64 (m, 2H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.35 – 7.23 (m, 7H), 7.21 – 7.15 (m, 3H), 5.35 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 137.24, 137.11, 135.56, 128.89, 128.83, 127.78, 127.41, 126.94, 126.43, 126.01, 125.89, 122.21, 120.18, 120.10, 117.36, 110.09, 50.17.

3al

(8*R*,9*S*,13*S*,14*S*,17*S*)-13-methyl-2-(1-methyl-1*H*-indol-3-yl)-7,8,9,11,12,13,14,15,16,17decahydro-6*H*-cyclopenta[a]phenanthren-17-yl acetate (3al) as a white solid (27.0 mg, 63% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 7.9 Hz, 1H), 7.61 (s, 1H), 7.43 (dd, J = 7.8, 1.8 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.29 (dd, J = 8.2, 6.9 Hz, 1H), 7.21 (s, 1H), 7.21 – 7.16 (m, 2H), 4.73 (t, J = 8.4 Hz, 1H), 3.84 (s, 3H), 2.97 – 2.90 (m, 2H), 2.43 (dt, J = 12.8, 3.6 Hz, 1H), 2.36 (td, J = 10.8, 3.9 Hz, 1H), 2.29 – 2.21 (m, 1H), 2.08 (s, 3H), 1.97 – 1.92 (m, 2H), 1.82 – 1.76 (m, 1H), 1.61 – 1.31 (m, 7H), 0.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.38, 140.59, 137.52, 134.32, 133.04, 129.56, 126.38, 124.96, 124.59, 121.97, 120.09, 119.85, 117.16, 109.59, 82.88, 50.08, 44.55, 43.02, 38.53, 37.08, 32.97, 29.41, 27.72, 27.42, 26.20, 23.43, 21.35, 12.21; HRMS (EI) m/z: [M]⁺ calcd for C₂₉H₃₃NO₂: 427.2506, found: 427.2511.

14-methyl-10-(1-methyl-1*H***-indol-3-yl)-13-tosyl-8,13,13b,14-tetrahydroindolo[2',3':3,4] pyrido[2,1-***b***]quinazolin-5(7***H***)-one (3am) as a white solid (35.7 mg, 61% yield). ¹H NMR (500 MHz, CDCl₃) \delta 8.35 (d, J = 8.6 Hz, 1H), 8.12 (dd, J = 7.8, 1.6 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.89 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 1.6 Hz, 1H), 7.74 (dd, J = 8.6, 1.8 Hz, 1H), 7.49 (td, J = 7.6, 1.6 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.32 – 7.25 (m, 4H), 7.21 (t, J = 7.5 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 6.35 (s, 1H), 4.88 (dd, J = 12.7, 4.3 Hz, 1H), 3.84 (s, 3H), 3.12 (td, J = 12.2, 3.6 Hz, 1H), 3.00 – 2.94 (m, 1H), 2.83 – 2.76 (m, 1H), 2.39 (s, 3H), 2.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) \delta 164.57, 150.80, 145.13, 137.54, 135.91, 135.83, 133.21, 131.89, 129.60, 129.25, 129.09, 128.75, 127.16, 126.75, 126.19, 126.02, 124.06, 123.12, 122.99, 122.21, 120.58, 120.11, 119.68, 117.38, 116.25, 115.59, 109.77, 67.90, 38.42, 35.41, 33.01, 21.74, 20.98; HRMS (EI) m/z: [M]⁺ calcd for C₃₅H₃₀N₄O₃S: 586.2033, found: 586.2029.**

4-phenylbutanenitrile (4) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 2H), 2.78 (t, *J* = 7.5 Hz, 2H), 2.32 (t, *J* = 7.1 Hz, 2H), 2.02 – 1.96 (m, 2H).

6. References

- (a) T. Nambara, S. Honma and S. Akiyama, *Chem. Pharm. Bull*, 1970, **18**, 474; (b) S. Nahm and S. M. Weinreb, *Tetrahedron Lett*, 1981, **22**, 3815; (c) O. Labeeuw, P. Phansavath and J. P. Genêt. *Tetrahedron Lett*, 2004, **45**, 7107; (d) H. Y. Li, B. Ma, Q. S. Liu, M. L. Wang, Z. Y. Wang, H. Xu, L. J. Li, X. Wang and H. X. Dai, *Angew. Chem. Int.* Ed, 2020, **59**, 14388.
- 2. T. Nishimura, Y. Nishiguchi, Y. Maeda and S. Uemura, J. Org. Chem. 2004, 69, 5342.
- 3. M. L. Wang, H. Xu, H. Y. Li, B. Ma, Z. Yu. Wang, X. Wang and H. X. Dai, *Organic Letters*, 2021, 23, 2147.
- (a) A. Kong, X. Han and X. Lu, Org. Lett, 2006, 8, 1339; (b) G. Chelucci, G. A. Pinna and G. Pinna, Eur. J. Org. Chem, 2014, 18, 3802.
- 5. J. Rodriguez, A. Zeineddine, E. D. S. Carrizo, K. Miqueu, N. Saffon-Merceron, A. Amgoune, and D. Bourissou, *Chem. Sci*, 2019, **10**, 7183.

- 6. R. J. Phipps, N. P. Grimster and M. J. Gaunt, J. Am. Chem. Soc, 2008, 130, 8172.
- 7. R. Gattu, S. Bhattacharjee, K. Mahato and A. T. Khan, Org. Biomol. Chem, 2018, 16, 3760.
- 8. G. Yao, Z. X. Zhang, C. B. Zhang, H. H. Xu and R. Y. Tang, *Molecules*, 2018, 23, 3317.
- I. Medina Mercado, E. O. Asomoza Solís, E. Martínez González, V. M. Ugalde Saldívar, L. G. Ledesma - Olvera, J. E. Barquera - Lozada, V. Gómez - Vidales, J. Barroso - Flores, B. A. Frontana - Uribe and S. Porcel, *Chem. Eur. J*, 2020, 26,634.
- 10. M. Kihara, Y. Iwai and Y. Nagao, Heterocycles, 1995, 41, 2279.

7. ¹H, ¹³C and ¹⁹F NMR spectra

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

18.6.51 18.6.95 19.6.95 19.6.95 19.6.95 19.6.95 19.6.95 19.6.95 19.6.95 19.6.95 19.6.95 19.6.95 19.7.28 19.

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

S32

1g

- 0.00

S33

137.07 137.18 137.18 137.11 137.13 137.14

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -21 f1 (ppm)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

- 0.00

136.86 136.87 136.87 136.89 136.92 136.92 136.92 136.92 136.92 136.92 147.21 147.22 147.22 147.23 14

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

^{2,45}
^{2,45}
^{2,46}

- 0.00

 137.00

 137.02

 137.02

 137.02

 137.04

 137.04

 147.58

 147.53

 147.64

 147.64

 147.64

 147.64

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65

 147.65
</tr

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

1q

0.00

136.30 136.30 136.81 136.82 136.88 147.00

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

S51

136.99 137.00 137.00 137.01 137.02 137.02 137.02 137.03 13

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

S54

136.99 137.00 137.01 137.02 137.02 137.02 137.03 137.03 137.04 137.05

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

7-137.03 7-137.04 7-137.04 7-137.08 7-137.08 7-137.08 7-137.38 7-147.68 7-147.68 7-147.68 7-147.68 7-147.68 7-147.68 7-147.68 7-147.68 7-147.68 7-147.68 7-147.68 7-147.68 7-147.68 7-159.88 1-1

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

-137.04 -137.05 -137.05 -137.05 -137.10 -137.10 -137.12 -137.12 -137.12 -137.12 -137.12 -137.12 -147.67 -147.6

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

80 70 fl (ppm)

S67

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

S71

-113.39 -113.41 -113.42 -113.44

8 88.11 8 8005 8 8005 8 8005 1 7 78 1 7 7 7 1 7 88 1 7 7 1 7 88 1 7 7 1 7 88 1 7 7 1 7 88 1 7 88 1 7 88 1 7 88 1 7 88 1 7 88 1 7 88 1 7 88 1 7 88 1 7 88 1 7 7 1 7 88 1 7

S83

S87

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

S89

S92

f1 (ppm)

71.35 70,140.75 71,188.81 71,188.81 71,188.81 71,135 71,135 70,135 70,135

S97

