Supporting Information for

Iridium-Catalyzed C3-Selective Asymmetric Allylation of 7-Azaindoles with Secondary Allylic Alcohols

Takahiro Sawano,^a Takeshi Matsui,^a Marina Koga,^a Eri Ishikawa,^b Ryo Takeuchi^{a,*}

^aDepartment of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258, Japan ^bDepartment of Applied Chemistry, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan

E-mail: takeuchi@chem.aoyama.ac.jp

Contents of the Supporting Information

1.	General Methods and Materials	S2
2.	General Procedure for the Asymmetric Allylation of 7-Azaindoles 2	with Allylic
	Alcohols 1 (Schemes 2 and 3)	S2-S3
3.	Characterization of 3	S3-S18
4.	Procedure for the Protonation of 7-Azaindoles 2b with Trifluoroacetic Aci	d
		S18
5.	Procedure for the Asymmetric Allylation of 7-Azaindole $2n$ with Allylic	c Alcohol 1a
	(Scheme 5)	S18-S19
6.	Procedure for the Deprotection of 7-Azaindoles 3ak (Scheme 6)	S19
7.	Procedure for the Metathesis Reaction of 7-Azaindole 3ab with Met	hyl Acrylate
	(Scheme 6)	S19-S20
8.	Procedure for the Hydroboration of 7-Azaindole 3ab Followed by Oxidat	tion (Scheme
	6)	S20-S21
9.	Procedure for the Hydrogenation of 7-Azaindole 3ab (Scheme 6)	S21-S22
10.	The data for X-ray crystal structure of compound $[CF_3COO][HC_8N_2H_9]$	[CF ₃ COOH]
		S23-S25
11.	The data for X-ray crystal structure of compound $C_{17}H_{15}BrN_2$	S25-S28
12.	References	S29
13.	¹ H, ¹³ C, ¹⁹ F NMR and HPLC Charts	S30-S86

1. General Methods and Materials

All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under predried argon. ¹H, ¹³C, and ¹⁹F NMR spectra were measured on JEOL ECX 500II spectrometers (500 MHz for ¹H, 126 MHz for ¹³C, 471 MHz for ¹⁹F). Chemical shifts are reported in δ (ppm) referenced to the tetramethylsilane (δ 0.00) for ¹H NMR and the residual peaks of CDCl₃ (δ 77.00) for ¹³C NMR. The following abbreviations are used; s: singlet, d: doublet, t: triplet, sext: sextet, m: multiplet, br: broad. High-resolution mass spectra were obtained with a JEOL JMS-700 Mstation. IR spectra were measured on a JASCO FT/IR-4100 spectrometer. Chiral High Performance Liquid Chromatography (HPLC) was performed on a Shimadzu system under the conditions given for each measurement. The products were purified by column chromatography on 63-210 mesh silica gel (Kanto Kagaku; Silica Gel 60N). Optical rotations were measured on a Single-crystal X-ray diffraction was collected on a Rigaku RAXIS-JASCO P-2200. RAPID imaging plate diffractometer with a graphite monochromatized Mo K α ($\lambda = 0.71069$ Å) radiation. All solvents were dried and distilled before use by the usual procedures. [Ir(cod)Cl]₂, (*R*)-L1 [CAS RN: 1265884-98-7], and (*R*)-L2 [CAS RN: 2093047-92-6] were prepared as described in the literature.¹⁻³ 7-Azaindoles 2a [CAS RN: 271-63-6], 2l [CAS RN: 866546-07-8], and 2m [CAS RN: 183208-35-7] were purchased and used as received. 7-Azaindoles 2b [CAS RN: 27257-15-4], 2c [CAS RN: 53277-42-2], 2d [CAS RN: 183208-23-3], 2e [CAS RN: 1260874-86-9], 2f [CAS RN: 183208-22-2], 2g [CAS RN: 74420-05-6], 2h [CAS RN: 934568-25-9], 2i [CAS RN: 1135437-92-1], 2j [CAS RN: 113975-38-5], 2k [CAS RN: 418795-13-8], and allylic alcohols 1a [CAS RN: 4393-06-0], 1b [CAS RN: 51410-44-7], 1c [CAS RN: 58824-48-9], 1d [CAS RN: 39627-62-8], 1e [CAS RN: 1555908-83-2], 1f [CAS RN: 58824-56-9], 1g [CAS RN: 149946-79-2], 1h [CAS RN: 196519-53-6], 1i [CAS RN: 123232-63-3], 1j [CAS RN: 76635-88-6], 1k [CAS RN: 116914-87-5], 11 [CAS RN: 393148-57-7] were prepared according to the reported procedures.4-6

2. General Procedure for the Asymmetric Allylation of 7-Azaindoles 2 with Allylic Alcohols 1 (Schemes 2 and 3)

Representative Procedure for the Reaction of Allylic Alcohol 1a with 7-Azaindole 2b

A mixture of $[Ir(cod)Cl]_2$ (8.9 mg, 0.132 mmol) and (*R*)-L1 (26.3 mg, 0.0518 mmol) in THF (2.0 mL) was stirred at room temperature for 15 min. To the mixture was added 2b (99.3 mg, 0.751 mmol), 1a (67.6 mg, 0.504 mmol), and TFA (114 mg, 1.00 mmol), and the mixture was stirred under reflux for 15 h. After the solvent was removed on a rotary evaporator, the residue was subjected to column chromatography (silica gel, toluene/EtOAc = 98/2) to give compounds **3ab** (102.1 mg, 0.4111 mmol, 82% yield, 99% ee).

3. Characterization of 3

(R)-3-(1-Phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3aa)

Compound **3aa** was prepared according to general procedure using **1a** (68.7 mg, 0.512 mmol) and **2a** (89.3 mg, 0.756 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (80/20) to afford **3aa** (28.1 mg, 0.1199 mmol, 23% yield, >99.5% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OJ-H column, 1.0 mL/min, hexane/2-propanol = 95/5, 230 nm, t_1 = 16.8 min (*minor*), t_2 = 23.7 min (*major*)); [α]²⁴_D -20 (*c* 0.50, CHCl₃) for >99.5% ee. ¹H NMR (500 MHz, CDCl₃) δ 11.17 (s, 1H), 8.28 (dd, *J* = 4.6, 1.1 Hz, 1H), 7.67 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.35–7.26 (m, 4H), 7.26–7.19 (m, 1H), 7.07 (s, 1H), 6.97 (dd, *J* = 8.0, 4.6 Hz, 1H), 6.34 (ddd, *J* = 17.2, 10.3, 7.0 Hz, 1H), 5.25–5.18 (m, 1H), 5.12–5.05 (m, 1H), 4.93 (d, *J* = 6.9 Hz, 1H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 149.4, 142.8, 142.3, 140.1, 128.4, 128.35, 128.33, 126.4, 123.3, 119.6, 116.5, 115.7, 115.2, 47.1; IR (neat, cm⁻¹) 3153, 3084, 3026, 2927, 2887, 2786, 1637,

1602, 1581, 1493, 1451, 1419, 1335, 1294, 1218, 1120, 995, 918, 807, 764, 702, 675, 651, 574, 528, 499; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₆H₁₅N₂ 235.1230; found 235.1233.

(R)-1-Methyl-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3ab)

Compound **3ab** was prepared according to general procedure using **1a** (67.6 mg, 0.504 mmol) and **2b** (99.3 mg, 0.751 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (99/1) to afford **3ab** (102.1 mg, 0.4111 mmol, 82% yield, 99% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OJ-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, $t_1 = 20.1$ min (*minor*), $t_2 = 25.4$ min (*major*)); $[\alpha]^{25}_{D}$ –6 (*c* 1.05, CHCl₃) for 99% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (dd, J = 5.2, 1.4 Hz, 1H), 7.62 (dd, J = 7.5, 1.5 Hz, 1H), 7.32–7.20 (m, 5H), 6.93 (dd, J = 8.0, 4.9 Hz, 1H), 6.85 (s, 1H), 6.31 (ddd, J = 17.2, 9.7, 7.2 Hz, 1H), 5.24–5.18 (m, 1H), 5.07 (dt, J = 16.6, 1.4 Hz, 1H), 4.91 (d, J = 7.5 Hz, 1H), 3.83 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 148.3, 142.8, 142.7, 140.1, 128.4, 128.3, 128.0, 127.1, 126.4, 119.5, 115.7, 115.3, 114.9, 47.0, 31.0; IR (neat, cm⁻¹) 3382, 3058, 3029, 2975, 2937, 2862, 1706, 1635, 1598, 1575, 1537, 1491, 1459, 1409, 1347, 1298, 1142, 997, 919, 796, 771, 702; HRMS (FAB) m/z [M+H]⁺ calcd for C₁₇H₁₇N₂ 249.1386; found 249.1382.

(R)-3-(1-(4-Methoxyphenyl)allyl)-1-methyl-1H-pyrrolo[2,3-b]pyridine (3bb)

Compound **3bb** was prepared according to general procedure using **1b** (83.2 mg, 0.507 mmol) and **2b** (92.5 mg, 0.700 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (9/1) to afford **3bb** (120.5 mg, 0.4329 mmol, 85% yield, 96% ee) as a yellow oil. The ee was measured by HPLC (Chiralcel OJ-H

column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, $t_1 = 11.3$ min (*major*), $t_2 = 16.1$ min (*minor*)); [α]²⁵_D –4 (*c* 1.01, CHCl₃) for 96% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, *J* = 4.6 Hz, 1H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.17 (d, *J* = 8.6 Hz, 2H), 6.93 (dd, *J* = 8.0, 5.0 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 2H), 6.84 (s, 1H), 6.29 (ddd, *J* = 17.2, 10.3, 7.2 Hz, 1H), 5.18 (d, *J* = 10.3 Hz, 1H), 5.05 (d, *J* = 17.2 Hz, 1H), 4.86 (d, *J* = 6.9 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.2, 148.3, 142.8, 140.4, 134.9, 129.2, 128.0, 127.0, 119.5, 115.6, 115.4, 114.9, 113.8, 55.2, 46.2, 31.0; IR (neat, cm⁻¹) 3057, 3034, 3004, 2951, 2934, 2910, 2835, 1635, 1608, 1599, 1537, 1459, 1409, 1347, 1299, 1247, 1177, 1144, 1036, 919, 826, 807, 772, 643, 545; HRMS (FAB) *m*/*z* [M+H]⁺ calcd for C₁₈H₁₉N₂O 279.1492; found 279.1489.

(R)-1-Methyl-3-(1-(p-tolyl)allyl)-1H-pyrrolo[2,3-b]pyridine (3cb)

Compound **3cb** was prepared according to general procedure using **1c** (74.0 mg, 0.499 mmol) and **2b** (99.5 mg, 0.753 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3cb** (111.2 mg, 0.4239 mmol, 85% yield, 98% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OD-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 8.5 min (*major*), t_2 = 10.0 min (*minor*)); $[\alpha]^{28}_{D}$ +5 (*c* 1.09, CHCl₃) for 98% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (dd, *J* = 4.6, 1.2 Hz, 1H), 7.63 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.19–7.08 (m, 4H), 6.93 (dd, *J* = 8.0, 4.9 Hz, 1H), 6.84 (s, 1H), 6.30 (ddd, *J* = 17.2, 10.3, 7.2 Hz, 1H), 5.21–5.15 (m, 1H), 5.10–5.03 (m, 1H), 4.87 (d, *J* = 6.9 Hz, 1H), 3.82 (s, 3H), 2.32 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.3, 142.8, 140.3, 139.8, 136.0, 129.1, 128.1, 128.0, 127.0, 119.6, 115.51, 115.46, 114.9, 46.7, 31.0, 21.0; IR (neat, cm⁻¹) 3051, 3007, 2971, 2922, 2854, 1635, 1597, 1571, 1537, 1511, 1490, 1459, 1409, 1347, 1298, 1143, 996, 918, 811, 771, 732, 640, 546, 523; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₈H₁₉N₂ 263.1543; found 263.1544.

(R)-1-Methyl-3-(1-(o-tolyl)allyl)-1H-pyrrolo[2,3-b]pyridine (3db)

Compound **3db** was prepared according to general procedure using **1d** (76.4 mg, 0.516 mmol) and **2b** (98.7 mg, 0.747 mmol). The crude reaction mixture was purified by column chromatography using hexane/EtOAc (99/1) to afford **3db** (129.8 mg, 0.4947 mmol, 96% yield, >99.5% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OD-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 7.0 min (*major*), t_2 = 8.9 min (*minor*)); [α]²⁷_D +23 (*c* 0.54, CHCl₃) for >99.5% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (dd, J = 5.2, 1.4 Hz, 1H), 7.61 (dd, J = 8.0, 1.4 Hz, 1H), 7.22–7.09 (m, 4H), 6.94 (dd, J = 8.0, 4.6 Hz, 1H), 6.75 (s, 1H), 6.27 (ddd, J = 17.2, 10.3, 6.7 Hz, 1H), 5.21 (dt, J = 9.8, 1.4 Hz, 1H), 5.09 (d, J = 5.8 Hz, 1H), 4.97 (dt, J = 17.2, 1.7 Hz, 1H), 3.82 (s, 3H), 2.33 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 148.3, 142.8, 140.7, 139.5, 136.0, 130.4, 128.0, 127.8, 127.5, 126.4, 126.0, 119.8, 115.8, 114.9, 114.8, 42.8, 31.0, 19.5; IR (neat, cm⁻¹) 3059, 3014, 2979, 2943, 1635, 1598, 1571, 1537, 1488, 1459, 1409, 1347, 1298, 1141, 998, 919, 797, 771, 749, 733, 545; HRMS (FAB) m/z [M+H]⁺ calcd for C₁₈H₁₉N₂ 263.1543; found 263.1542.

(R)-3-(1-(2,6-Dimethylphenyl)allyl)-1-methyl-1H-pyrrolo[2,3-b]pyridine (3eb)

Compound **3eb** was prepared according to general procedure using **1e** (79.9 mg, 0.493 mmol) and **2b** (106.6 mg, 0.8066 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3eb** (66.6 mg, 0.2410 mmol, 49% yield, >99.5% ee) as a white solid (mp 125.1-126.1 °C). The ee was measured by HPLC (Chiralcel OJ-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 5.7 min (*major*), t_2 = 6.5 min (*minor*)); $[\alpha]^{25}_{D}$ -76 (*c* 1.01, CHCl₃) for >99.5% ee. ¹H NMR (500 MHz, CDCl₃) & 8.26 (dd, J = 4.6, 1.7 Hz, 1H), 7.30–7.24 (m, 1H), 7.09 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 7.4 Hz, 2H), 6.87–6.82 (m, 2H), 6.48 (ddd, J = 16.9, 9.9, 6.7 Hz, 1H), 5.35

(d, J = 6.9 Hz, 1H), 5.24 (d, J = 10.3 Hz, 1H), 5.18–5.10 (m, 1H), 3.84 (s, 3H), 2.23 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 148.2, 142.7, 138.6, 137.9, 137.0, 129.2, 127.9, 126.5, 126.2, 119.7, 116.1, 114.83, 114.76, 42.6, 31.1, 21.3; IR (KBr, cm⁻¹) 3441, 3055, 3014, 2935, 1536, 1489, 1460, 1407, 1343, 1295, 1215, 1142, 1017, 925, 810, 794, 776; HRMS (FAB) m/z [M+H]⁺ calcd for C₁₉H₂₁N₂ 277.1699; found 277.1703.

(R)-3-(1-(4-Bromophenyl)allyl)-1-methyl-1H-pyrrolo[2,3-b]pyridine (3fb)

Compound **3fb** was prepared according to general procedure using **1f** (107.3 mg, 0.504 mmol) and **2b** (98.7 mg, 0.747 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3fb** (103.1 mg, 0.3151 mmol, 63% yield, 99% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OD-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 9.6 min (*major*), t_2 = 10.9 min (*minor*)); $[\alpha]^{28}_{D}$ –10 (*c* 0.50, CHCl₃) for 99% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (dd, J = 5.2, 1.4 Hz, 1H), 7.58 (dd, J = 8.0, 1.7 Hz, 1H), 7.44–7.39 (m, 2H), 7.15–7.10 (m, 2H), 6.94 (dd, J = 8.0, 4.6 Hz, 1H), 6.85 (s, 1H), 6.26 (ddd, J = 17.2, 10.3, 7.0 Hz, 1H), 5.22 (d, J = 10.3 Hz, 1H), 5.06 (dt, J = 16.6, 1.4 Hz, 1H), 4.86 (d, J = 6.9 Hz, 1H), 3.84 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 148.3, 143.0, 141.8, 139.5, 131.5, 130.1, 127.8, 127.1, 120.3, 119.3, 116.2, 115.0, 114.7, 46.4, 31.1; IR (neat, cm⁻¹) 3080, 3057, 3007, 2979, 2935, 2858, 1636, 1597, 1572, 1537, 1487, 1459, 1408, 1347, 1298, 1143, 1072, 1011, 921, 802, 771, 546; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₇H₁₆BrN₂ 327.0491; found 327.0495.

(R)-1-Methyl-3-(1-(4-(trifluoromethyl)phenyl)allyl)-1H-pyrrolo[2,3-b]pyridine (3gb)

Compound **3gb** was prepared according to general procedure using **1g** (109.2 mg, 0.540 mmol) and **2b** (100.8 mg, 0.7627 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3gb** (68.2 mg, 0.2156 mmol, 40% yield, 99% ee) as a yellow oil. The ee was measured by HPLC (Chiralcel OJ-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 9.4 min (*minor*), t_2 = 10.5 min (*major*)); [α]²⁵_D –15 (*c* 0.97, CHCl₃) for 99% ee. ⁻¹H NMR (500 MHz, CDCl₃) δ 8.31 (dd, *J* = 4.6, 1.7 Hz, 1H), 7.59 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.56 (d, *J* = 8.1 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 2H), 6.95 (dd, *J* = 8.0, 4.6 Hz, 1H), 6.88 (s, 1H), 6.29 (ddd, *J* = 17.2, 9.8, 7.2 Hz, 1H), 5.28–5.23 (m, 1H), 5.13–5.05 (m, 1H), 4.97 (d, *J* = 7.5 Hz, 1H), 3.85 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 148.3, 146.9, 143.1, 139.2, 128.8 (q, *J*_{C-F} = 32.2 Hz), 128.7, 127.8, 127.2, 125.4 (q, *J*_{C-F} = 3.6 Hz), 124.2 (q, *J*_{C-F} = 270.7 Hz), 119.3, 116.5, 115.1, 114.4, 46.8, 31.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.2; IR (neat, cm⁻¹) 3059, 3010, 2979, 2937, 2862, 1721, 1636, 1617, 1598, 1537, 1491, 1460, 1411, 1326, 1299, 1164, 1123, 1067, 1017, 924, 832, 805, 772, 602; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₈H₁₆F₃N₂ 317.1260; found 317.1261.

Methyl (R)-4-(1-(1-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)allyl)benzoate (3hb)

Compound **3hb** was prepared according to general procedure using **1h** (95.9 mg, 0.499 mmol) and **2b** (104.0 mg, 0.7869 mmol). The crude reaction mixture was purified by column chromatography using heaxne/EtOAc (3/1) to afford **3hb** (82.6 mg, 0.2696 mmol, 54% yield, 99% ee) as a yellow oil. The ee was measured by HPLC (Chiralcel OJ-3 column, 1.0 mL/min, hexane/2-propanol = 96/4, 230 nm, t_1 = 24.9 min (*minor*), t_2 = 28.2 min (*major*)); [α]²⁵_D –16 (*c* 0.99, CHCl₃) for 99% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (dd, *J* = 4.6, 1.7 Hz, 1H), 8.01–7.96 (m, 2H), 7.57 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.36–7.32 (m, 2H), 6.94 (dd, *J* = 8.1, 4.9 Hz, 1H), 6.87 (s, 1H), 6.30 (ddd, *J* = 17.2, 9.7, 7.2 Hz, 1H), 5.27–5.22 (m, 1H), 5.08 (dt, *J* = 17.2, 1.3 Hz, 1H), 4.96 (d, *J* = 6.9 Hz, 1H), 3.90 (s, 3H), 3.85 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 167.0, 148.3, 148.1, 143.0, 139.2, 129.8, 128.5, 128.4, 127.8, 127.2, 119.3, 116.4, 115.1, 114.5, 52.0, 47.0, 31.1; IR (neat, cm⁻¹) 3423, 3057,

3006, 2951, 2857, 1721, 1608, 1572, 1536, 1491, 1460, 1436, 1410, 1347, 1280, 1179, 1112, 1019, 922, 805, 767, 727, 710, 602, 579, 545; HRMS (FAB) m/z [M+H]⁺ calcd for C₁₉H₁₉N₂O₂ 307.1441; found 307.1443.

(R)-1-Methyl-3-(1-(4-nitrophenyl)allyl)-1H-pyrrolo[2,3-b]pyridine (3ib)

Compound **3ib** was prepared according to general procedure using **1i** (90.1 mg, 0.503 mmol) and **2b** (99.4 mg, 0.752 mmol). The crude reaction mixture was purified by column chromatography using hexane/EtOAc (3/1) to afford **3ib** (38.6 mg, 0.132 mmol, 26% yield, >99.5% ee) as a yellow oil. The ee was measured by HPLC (Chiralpak AD-3 column, 1.0 mL/min, hexane/2-propanol = 95/5, 230 nm, t_1 = 20.4 min (*major*), t_2 = 21.5 min (*minor*)); [α]²⁴_D –24 (*c* 0.17, CHCl₃) for >99.5% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.32 (dd, *J* = 4.6, 1.7 Hz, 1H), 8.19–8.13 (m, 2H), 7.58–7.53 (m, 1H), 7.42 (d, *J* = 8.6 Hz, 2H), 6.96 (dd, *J* = 8.1, 4.6 Hz, 1H), 6.92 (s, 1H), 6.30 (ddd, *J* = 17.2, 10.3, 6.9 Hz, 1H), 5.29 (d, *J* = 9.8 Hz, 1H), 5.10 (d, *J* = 17.2 Hz, 1H), 5.03 (d, *J* = 6.9 Hz, 1H), 3.87 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 150.4, 148.3, 146.7, 143.3, 138.6, 129.2, 127.6, 127.2, 119.1, 117.1, 115.3, 113.7, 46.8, 31.1; IR (neat, cm⁻¹) 3105, 3077, 3058, 2926, 2855, 1720, 1657, 1637, 1598, 1519, 1491, 1460, 1409, 1345, 1299, 1142, 1123, 1109, 925, 853, 841, 805, 772, 753, 723, 705, 545; HRMS (FAB) *m*/*z* [M+H]⁺ calcd for C₁₇H₁₆N₃O₂ 294.1237; found 294.1237.

(R)-1-Methyl-3-(1-(naphthalen-2-yl)allyl)-1H-pyrrolo[2,3-b]pyridine (3jb)

Compound 3jb was prepared according to general procedure using 1j (93.7 mg,

0.509 mmol) and **2b** (98.0 mg, 0.741 mmol). The crude reaction mixture was purified by column chromatography using hexane/EtOAc (99/1) to afford **3jb** (143.1 mg, 0.4796 mmol, 94% yield, 99% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OD-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 11.2 min (*major*), t_2 = 14.6 min (*minor*)); [α]²⁷_D +3 (*c* 0.59, CHCl₃) for 99% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (dd, *J* = 4.6, 1.7 Hz, 1H), 7.84-7.75 (m, 3H), 7.71 (s, 1H), 7.63 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.48-7.41 (m, 2H), 7.39 (dd, *J* = 8.0, 1.7 Hz, 1H), 6.91 (dd, *J* = 7.5, 4.9 Hz, 1H), 6.88 (s, 1H), 6.40 (ddd, *J* = 17.2, 9.8, 7.2 Hz, 1H), 5.29-5.23 (m, 1H), 5.16-5.05 (m, 2H), 3.84 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.3, 142.9, 140.3, 139.9, 133.5, 132.3, 128.0, 127.8, 127.6, 127.3, 127.1, 126.5, 126.0, 125.5, 119.6, 116.1, 115.2, 115.0, 47.1, 31.1,; IR (neat, cm⁻¹) 3055, 3007, 2971, 2938, 1632, 1598, 1571, 1537, 1490, 1459, 1409, 1347, 1298, 1143, 996, 919, 858, 755, 478; HRMS (FAB) *m*/*z* [M+H]⁺ calcd for C₂₁H₁₉N₂ 299.1543; found 299.1546.

(S)-3-(1-(Furan-2-yl)allyl)-1-methyl-1H-pyrrolo[2,3-b]pyridine (3kb)

Compound **3kb** was prepared according to general procedure using **1k** (65.0 mg, 0.524 mmol) and **2b** (104.0 mg, 0.7869 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3kb** (83.0 mg, 0.348 mmol, 66% yield, 83% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OD-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, $t_1 = 8.9$ min (*minor*), $t_2 = 9.8$ min (*major*)); $[\alpha]^{21}_{D}$ +4 (*c* 1.00, CHCl₃) for 83% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (dd, J = 4.6, 1.1 Hz, 1H), 7.74 (dd, J = 8.0, 1.7 Hz, 1H), 7.37 (s, 1H), 7.03–6.96 (m, 2H), 6.32 (dd, J = 3.5, 2.0 Hz, 1H), 6.26 (ddd, J = 17.2, 9.7, 7.0 Hz, 1H), 6.09 (d, J = 2.9 Hz, 1H), 5.21 (d, J = 9.7 Hz, 1H), 5.17–5.10 (m, 1H), 4.97 (d, J = 6.9 Hz, 1H), 3.85 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 155.8, 148.1, 142.9, 141.6, 137.4, 127.8, 126.9, 119.3, 116.1, 115.1, 112.5, 110.2, 106.2, 40.8, 31.1; IR (neat, cm⁻¹) 3116, 3058, 3009, 2975, 2941, 2862, 1723, 1639, 1598, 1538, 1460, 1409, 1348, 1299, 1146, 1010, 921, 799, 770, 599, 546; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₅H₁₅N₂O 239.1179; found 239.1180.

(S)-1-Methyl-3-(1-(thiophen-2-yl)allyl)-1H-pyrrolo[2,3-b]pyridine (3lb)

Compound **3lb** was prepared according to general procedure using **1l** (71.3 mg, 0.509 mmol) and **2b** (101.2 mg, 0.7657 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3lb** (107.5 mg, 0.4226 mmol, 83% yield, 90% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OJ-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 26.6 min (*major*), t_2 = 33.1 min (*minor*)); [α]²⁸_D –17 (*c* 0.53, CHCl₃) for 90% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (dd, J = 4.6, 1.1 Hz, 1H), 7.72 (dd, J = 8.0, 1.4 Hz, 1H), 7.18 (dd, J = 5.2, 1.1 Hz, 1H), 7.01–6.93 (m, 3H), 6.87 (d, J = 3.5 Hz, 1H), 6.33 (ddd, J = 16.6, 10.0, 7.2 Hz, 1H), 5.24–5.13 (m, 3H), 3.85 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.2, 146.9, 143.0, 139.6, 127.9, 126.9, 124.7, 126.6, 124.7, 124.0, 119.2, 115.7, 115.1, 115.0, 42.2, 31.1; IR (neat, cm⁻¹) 3059, 3007, 2975, 2933, 2858, 1636, 1598, 1571, 1537, 1490, 1459, 1436, 1408, 1347, 1299, 1227, 1141, 1037, 992, 922, 797, 771, 699, 545; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₅H₁₅N₂S 255.0951; found 255.0951.

(R)-5-Methoxy-1-methyl-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3ad)

3ad

Compound **3ad** was prepared according to general procedure using **1a** (67.3 mg, 0.502 mmol) and **2d** (123.5 mg, 0.7614 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3ad** (113.4 mg, 0.4074 mmol, 81% yield, 83% ee) as a brown oil. The ee was measured by HPLC (Chiralpak AD-3 column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 15.7 min (*minor*), t_2 = 16.5 min (*major*)); [α]²⁶_D+11 (*c* 0.53, CHCl₃) for 83% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 2.9 Hz, 1H), 7.34-7.20 (m, 5H), 7.09 (d, *J* = 2.5 Hz, 1H), 6.82 (s, 1H), 6.30 (ddd, *J* = 17.2, 9.7, 7.2 Hz), 5.21 (d, *J* = 10.3 Hz, 1H), 5.08 (d, *J* = 17.2 Hz, 1H), 4.86 (d, *J* = 7.5

Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ 150.6, 144.0, 142.7, 140.0, 133.2, 128.4, 128.3, 128.0, 126.5, 119.2, 115.7, 114.5, 111.0, 56.4, 47.1, 31.2; IR (neat, cm⁻¹) 3080, 3060, 3026, 3002, 2937, 2834, 1636, 1601, 1535, 1492, 1452, 1407, 1359, 1291, 1261, 1216, 1174, 1140, 1036, 917, 702; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₈H₁₉N₂O 279.1492; found 279.1494.

(R)-5-chloro-1-methyl-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3ae)

Compound **3ae** was prepared according to general procedure using **1a** (67.1 mg, 0.500 mmol) and **2e** (125.4 mg, 0.7527 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3ae** (123.7 mg, 0.4375 mmol, 87% yield, 94% ee) as a yellow oil. The ee was measured by HPLC (Chiralcel OZ-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 254 nm, t_1 = 4.9 min (*major*), t_2 = 5.6 min (*minor*)); $[\alpha]^{23}_{D}$ –3 (*c* 0.97, CHCl₃) for 94% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, *J* = 2.3 Hz, 1H), 7.59 (d, *J* = 2.3 Hz, 1H), 7.35–7.29 (m, 2H), 7.27–7.22 (m, 3H), 6.87 (s, 1H), 6.28 (ddd, *J* = 17.5, 10.2, 7.2 Hz, 1H), 5.22 (d, *J* = 9.8 Hz, 1H), 5.07 (dt, *J* = 17.2, 1.4 Hz, 1H), 4.85 (d, *J* = 6.9 Hz, 1H), 3.80 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 146.6, 142.3, 141.4, 139.7, 128.8, 128.5, 128.2, 127.1, 126.7, 123.0, 120.1, 116.1, 115.0, 46.9, 31.2; IR (neat, cm⁻¹) 3081, 3060, 3027, 2976, 2936, 2872, 1636, 1599, 1559, 1532, 1481, 1407, 1348, 1279, 1254, 1222, 1143, 1092, 921, 885, 763, 750, 723, 701, 607, 578; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₇H₁₆ClN₂ 283.0997; found 283.0997.

(R)-5-Bromo-1-methyl-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3af)

Compound **3af** was prepared according to general procedure using **1a** (68.1 mg, 0.508 mmol) and **2f** (158.4 mg, 0.7505 mmol). The crude reaction mixture was purified

by column chromatography using toluene/EtOAc (99/1) to afford **3af** (125.6 mg, 0.3838 mmol, 76% yield, 97% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OZ-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 5.3 min (*major*), t_2 = 6.0 min (*minor*)); [α]²⁵_D+18 (*c* 0.50, CHCl₃) for 97% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, *J* = 1.7 Hz, 1H), 7.74 (d, *J* = 2.0 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.27–7.22 (m, 3H), 6.84 (s, 1H), 6.28 (ddd, *J* = 17.2, 10.3, 7.0 Hz, 1H), 5.22 (d, *J* = 9.8 Hz, 1H), 5.06 (d, *J* = 17.2 Hz, 1H), 4.85 (d, *J* = 6.9 Hz, 1H), 3.80 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 146.6, 143.3, 142.3, 139.7, 130.0, 128.6, 128.5, 128.2, 126.7, 121.0, 116.1, 115.0, 111.0, 46.8, 31.2; IR (neat, cm⁻¹) 3076, 3060, 3027, 3004, 2979, 2938, 2872, 1636, 1598, 1557, 1531, 1481, 1451, 1408, 1349, 1278, 1255, 1222, 1142, 1079, 995, 920, 882, 815, 762, 701; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₇H₁₆BrN₂ 327.0491; found 327.0488.

(R)-4-Chloro-1-methyl-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3ag)

Compound **3ag** was prepared according to general procedure using **1a** (68.5 mg, 0.511 mmol) and **2g** (121.2 mg, 0.7275 mmol). The crude reaction mixture was purified by column chromatography using hexane/EtOAc (9/1) to afford **3ag** (71.4 mg, 0.253 mmol, 49% yield, 97% ee) as a white solid (mp 69.0-69.3 °C). The ee was measured by HPLC (Chiralpak AD-3 column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 7.7 min (*minor*), t_2 = 9.1 min (*major*)); $[\alpha]^{25}_{D}$ –6 (*c* 0.99, CHCl₃) for 97% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 5.2 Hz, 1H), 7.33–7.27 (m, 2H), 7.26–7.19 (m, 3H), 6.98 (d, J = 5.2 Hz, 1H), 6.87 (s, 1H), 6.33 (ddd, J = 17.2, 10.3, 6.4 Hz, 1H), 5.46 (d, J = 6.3 Hz, 1H), 5.21 (d, J = 10.3 Hz, 1H), 4.88 (d, J = 17.2 Hz, 1H), 3.83 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 149.1, 143.0, 140.9, 136.2, 128.7, 128.2, 126.3, 117.1, 116.4, 115.9, 115.6, 46.0, 31.5; IR (KBr, cm⁻¹) 3444, 3085, 3029, 3005, 2941, 2896, 1637, 1590, 1551, 1523, 1487, 1453, 1408, 1348, 1312, 1295, 1150, 1005, 991, 914, 878, 819, 765, 704, 662, 631, 604, 594, 551; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₇H₁₆ClN₂ 283.0997; found 283.1001.

(R)-6-Chloro-1-methyl-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3ah)

Compound **3ah** was prepared according to general procedure using **1a** (67.0 mg, 0.499 mmol) and **2h** (126.1 mg, 0.7569 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3ah** (116.3 mg, 0.4113 mmol, 82% yield, 80% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OD-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 12.3 min (*major*), t_2 = 13.0 min (*minor*)); [α]²⁶_D –3 (*c* 1.06, CHCl₃) for 80% ee. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 8.0 Hz, 1H), 7.34–7.28 (m, 2H), 7.27–7.21 (m, 3H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.82 (s, 1H), 6.28 (ddd, *J* = 17.2, 9.8, 7.2 Hz, 1H), 5.21 (dt, *J* = 10.3, 1.3 Hz, 1H), 5.06 (dt, *J* = 16.6, 1.4 Hz, 1H), 4.86 (d, *J* = 6.9 Hz, 1H), 3.80 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 147.3, 144.5, 142.4, 139.8, 130.3, 128.5, 128.2, 127.3, 126.6, 118.0, 115.94, 115.87, 115.0, 47.0, 31.2; IR (neat, cm⁻¹) 3081, 3059, 3026, 2978, 2939, 2872, 1636, 1599, 1563, 1533, 1490, 1438, 1410, 1347, 1306, 1119, 998, 918, 876, 812, 759, 732, 701, 640, 589; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₇H₁₆ClN₂ 283.0997; found 283.0997.

(R)-1-Methyl-5-nitro-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3ai)

Compound **3ai** was prepared according to general procedure using **1a** (70.7 mg, 0.527 mmol) and **2i** (132.8 mg, 0.7496 mmol). The crude reaction mixture was purified by column chromatography using hexane/EtOAc (95/5) to afford **3ai** (19.7 mg, 0.0672 mmol, 13% yield, 80% ee) as a yellow oil. The ee was measured by HPLC (Chiralpak AS-3 column, 1.0 mL/min, hexane/2-propanol = 95/5, 230 nm, t_1 = 8.9 min (*major*), t_2 = 10.0 min (*minor*)); [α]²⁵_D+31 (*c* 0.60, CHCl₃) for 80% ee. ¹H NMR (500 MHz, CDCl₃) δ 9.18 (d, *J* = 2.3 Hz, 1H), 8.47 (d, *J* = 2.3 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 3H), 7.00 (s, 1H), 6.31 (ddd, *J* = 16.6, 10.0, 7.0 Hz, 1H), 5.27 (d, *J* = 10.9 Hz, 1H), 5.10 (d, *J* = 16.6 Hz, 1H), 4.94 (d, *J* = 6.9 Hz, 1H), 3.89 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃)

δ 149.9, 141.7, 139.6, 139.2, 138.5, 130.6, 128.7, 128.2, 127.0, 124.3, 118.5, 118.4, 116.6, 46.7, 31.6; IR (neat, cm⁻¹) 3079, 3023, 2978, 2938, 2855, 1855, 1712, 1637, 1560, 1575, 1538, 1511, 1492, 1447, 1414, 1332, 1298, 1214, 1151, 1105, 992, 920, 822, 778, 749, 703, 609; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₇H₁₆N₃O₂ 294.1237; found 294.1237.

(R)-1,2-Dimethyl-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3aj)

Compound **3aj** was prepared according to general procedure using **1a** (61.0 mg, 0.455 mmol) and **2j** (107.2 mg, 0.7333 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (8/2) to afford **3aj** (90.7 mg, 0.346 mmol, 76% yield, 96% ee) as a yellow oil. The ee was measured by HPLC (Chiralcel OD-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 9.0 min (*major*), t_2 = 11.0 min (*minor*)); [α]²⁵_D –3 (*c* 0.91, CHCl₃) for 96% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (dd, J = 4.6, 1.7 Hz, 1H), 7.54 (dd, J = 7.5, 1.4 Hz, 1H), 7.27 (d, J = 4.6 Hz, 4H), 7.19 (sextet, J = 4.2 Hz, 1H), 6.87 (dd, J = 7.5, 4.6 Hz, 1H), 6.42 (ddd, J = 17.2, 10.3, 6.9 Hz, 1H), 5.21 (dt, J = 10.3, 1.6 Hz, 1H), 5.04 (dt, J = 17.2, 1.7 Hz, 1H), 4.98 (d, J = 6.9 Hz, 1H), 3.79 (s, 3H), 2.38 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.0, 142.9, 141.3, 139.8, 134.1, 128.2, 128.1, 127.0, 126.1, 119.6, 115.7, 115.0, 110.3, 45.8, 28.0, 10.7; IR (neat, cm⁻¹) 3079, 3058, 3026, 2974, 2935, 2859, 1718, 1659, 1635, 1597, 1573, 1548, 1490, 1459, 1416, 1337, 1307, 1173, 1127, 995, 917, 794, 771, 722, 701, 569; HRMS (FAB) *m*/*z* [M+H]⁺ calcd for C₁₈H₁₉N₂ 263.1543; found 263.1543.

(R)-1-(4-Methoxybenzyl)-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3ak)

Compound 3ak was prepared according to general procedure using 1a (67.8 mg,

0.505 mmol) and **2k** (178.8 mg, 0.7503 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (98/2) to afford **3ak** (129.2 mg, 0.3645 mmol, 72% yield, 98% ee) as a brown oil. The ee was measured by HPLC (Chiralcel OZ-H column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, t_1 = 20.3 min (*major*), t_2 = 22.5 min (*minor*)); [α]²⁶D – 14 (*c* 0.55, CHCl₃) for 97% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (dd, *J* = 4.6, 1.7 Hz, 1H), 7.59 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.31-7.26 (m, 2H), 7.25-7.12 (m, 5H), 6.94 (dd, *J* = 7.5, 4.9 Hz, 1H), 6.90 (s, 1H), 6.83 (d, *J* = 9.2 Hz, 2H), 6.33-6.23 (m, 1H), 5.41 (d, *J* = 14.9 Hz, 1H), 5.35 (d, *J* = 15.5 Hz, 1H), 5.20-5.15 (m, 1H), 5.08-5.00 (m, 1H), 4.89 (d, *J* = 6.9 Hz, 1H), 3.77 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 159.0, 148.2, 143.0, 142.7, 140.1, 130.0, 128.7, 128.4, 128.3, 128.1, 126.4, 125.8, 119.5, 115.9, 115.7, 115.2, 114.0, 55.2, 47.2, 47.1; IR (neat, cm⁻¹) 3059, 3027, 3000, 2956, 2932, 2836, 1725, 1636, 1612, 1597, 1513, 1487, 1451, 1358, 1303, 1249, 1175, 1035, 919, 819, 756, 702; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₂₄H₂₃N₂O 355.1805; found 355.1805.

(R)-3-(1-(o-Tolyl)allyl)-1H-pyrrolo[2,3-b]pyridine (3da)

Compound **3da** was prepared according to general procedure using **1d** (72.4 mg, 0.489 mmol) and **2a** (87.7 mg, 0.742 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (2/1) to afford **3da** (58.0 mg, 0.234 mmol, 48% yield, >99.5% ee) as a pale yellow solid (mp 127.1-127.7 °C). The ee was measured by HPLC (Chiralcel OJ-H column, 1.0 mL/min, hexane/2-propanol = 95/5, 230 nm, t_1 = 14.3 min (*minor*), t_2 = 15.9 min (*major*)); $[\alpha]^{25}_{D}$ +21 (*c* 1.05, CHCl₃) for >99.5% ee. ¹H NMR (500 MHz, CDCl₃) δ 10.74 (s, 1H), 8.27 (dd, *J* = 4.6, 1.5 Hz, 1H), 7.69-7.62 (m, 1H), 7.22-7.10 (m, 4H), 7.01-6.94 (m, 2H), 6.30 (ddd, *J* = 16.6, 10.0, 6.6 Hz, 1H), 5.23 (d, *J* = 10.3 Hz, 1H), 5.11 (d, *J* = 6.3 Hz, 1H), 4.98 (d, *J* = 17.2 Hz, 1H), 2.34 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 149.3, 142.5, 140.6, 139.4, 136.1, 130.4, 128.13, 128.10, 126.4, 126.0, 123.5, 119.7, 116.1, 116.0, 115.3, 42.9, 19.5; IR (KBr, cm⁻¹) 3083, 2891, 1636, 1606, 1581, 1488, 1458, 1418, 1335, 1294, 1256, 1120, 997, 918, 897, 795, 767, 753, 726, 647, 505; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₇H₁₇N₂ 249.1386; found 249.1387.

(R)-5-Chloro-3-(1-phenylallyl)-1H-pyrrolo[2,3-b]pyridine (3al)

Compound **3al** was prepared according to general procedure using **1a** (67.4 mg, 0.502 mmol) and **2l** (114.0 mg, 0.7471 mmol). The crude reaction mixture was purified by column chromatography using toluene/EtOAc (9/1) followed by hexane/acetone (7/3) to afford **3al** (43.9 mg, 0.163 mmol, 33% yield, 99% ee) as a yellow oil. The ee was measured by HPLC (Chiralcel OJ-3 column, 1.0 mL/min, hexane/2-propanol = 95/5, 230 nm, t_1 = 10.9 min (*minor*), t_2 = 13.4 min (*major*)); [α]²⁶_D +23 (*c* 0.41, CHCl₃) for 99% ee. ¹H NMR (500 MHz, CDCl₃) δ 10.65 (s, 1H), 8.22 (d, *J* = 2.3 Hz, 1H), 7.64 (d, *J* = 2.3 Hz, 1H), 7.35-7.29 (m, 2H), 7.29-7.22 (m, 3H), 7.07 (d, *J* = 1.2 Hz, 1H), 6.31 (ddd, *J* = 17.2, 10.3, 7.0 Hz, 1H), 5.27-5.21 (m, 1H), 5.12-5.04 (m, 1H), 4.88 (d, *J* = 7.5 Hz, 1H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 147.5, 142.2, 141.2, 139.6, 128.6, 128.3, 127.6, 126.7, 124.9, 123.3, 120.3, 116.6, 116.2, 46.9; IR (neat, cm⁻¹) 3154, 3029, 2915, 2874, 1719, 1636, 1601, 1573, 1477, 1452, 1406, 1289, 1251, 1107, 995, 914, 884, 767, 753, 702, 670, 661, 631; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₆H₁₄ClN₂ 269.0840; found 269.0841.

(R)-5-Bromo-3-(1-(o-tolyl)allyl)-1H-pyrrolo[2,3-b]pyridine (3dm)

Compound **3dm** was prepared according to general procedure using **1d** (74.3 mg, 0.501 mmol) and **2m** (147.8 mg, 0.7501 mmol). The crude reaction mixture was purified by column chromatography using hexane/EtOAc (7/3) followed by toluene/EtOAc (9/1) to afford **3dm** (76.9 mg, 0.235 mmol, 47% yield, 99% ee) as a pale yellow solid (m.p. 131.9 °C-132.3 °C). The ee was measured by HPLC (Chiralcel OZ-H column, 1.0 mL/min, hexane/2-propanol = 98/2, 230 nm, t_1 = 6.0 min (*major*), t_2 = 7.6 min (*minor*)); [α]²⁴_D +53 (*c* 1.03, CHCl₃) for 99% ee. ¹H NMR (500 MHz, CDCl₃) δ 10.64 (s, 1H), 8.31 (d, *J* = 1.7 Hz, 1H), 7.79 (d, *J* = 1.7 Hz, 1H), 7.24-7.10 (m, 4H), 6.94 (s, 1H), 6.27 (ddd, *J* = 16.6, 10.6, 6.4 Hz, 1H), 5.25 (d, *J* = 9.8 Hz, 1H), 5.05 (d, *J* = 6.3 Hz, 1H), 4.96 (d, *J* = 17.2 Hz,

1H), 2.32 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 147.6, 143.1, 140.1, 139.0, 136.1, 130.6, 130.3, 127.9, 126.7, 126.1, 125.2, 121.4, 116.3, 115.9, 111.1, 42.6, 19.5; IR (KBr, cm⁻¹) 3147, 2847, 1636, 1603, 1568, 1481, 1461, 1404, 1287, 1251, 1209, 1107, 1083, 997, 921, 906, 879, 749, 724, 694, 634, 612, 549, 452; HRMS (FAB) *m*/*z* [M+H]⁺ calcd for C₁₇H₁₆BrN₂ 327.0491; found 327.0495.

4. Procedure for the Protonation of 7-Azaindoles 2b with Trifluoroacetic Acid

To a solution of **2b** (194.9 mg, 1.475 mmol) in THF (3 mL) was added trifluoroacetic acid (227.4 mg, 1.995 mmol) at r.t. After the mixture was stirred at the same temperature for 23 h, it was concentrated on a rotary evaporator to give **2n** (329.4 mg, 1.338 mmol, 91% yield) as an orange-pink solid (m.p. 55.1 °C-55.3 °C).

Compound **2n**: ¹H NMR (500 MHz, CDCl₃) δ 8.56 (dd, J = 5.8, 1.2 Hz, 1H), 8.34 (dd, J = 8.1, 1.1 Hz, 1H), 7.38 (dd, J = 8.0, 5.8 Hz, 1H), 7.33 (d, J = 3.4 Hz, 1H), 6.72 (d, J = 3.5 Hz, 1H), 4.09 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 161.6 (q, $J_{C-F} = 37.4$ Hz), 140.7, 135.8, 135.6, 132.3, 125.2, 116.0 (q, $J_{C-F} = 287.7$ Hz), 115.3, 102.2, 33.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -75.6; IR (KBr, cm⁻¹) 3104, 2954, 2822, 2378, 1789, 1685, 1646, 1624, 1527, 1418, 1341, 1271, 1207, 1195, 1134, 884, 834, 804, 734, 723, 709, 526. After recrystalization of **2n** from hexane/CHCl₃, a crystal structure was obtained (Figure S1, Tables S1-S3).

5. Procedure for the Asymmetric Allylation of 7-Azaindole 2n with Allylic Alcohol 1a (Scheme 6)

A mixture of $[Ir(cod)Cl]_2$ (8.9 mg, 0.132 mmol) and (*R*)-L1 (26.3 mg, 0.0518 mmol) in THF (2.0 mL) was stirred at room temperature for 15 min. To the mixture was added 2n (185.0 mg, 0.7515 mmol), 1a (68.9 mg, 0.513 mmol), and TFA (29.2 mg, 0.256 mmol), and the mixture was stirred under reflux for 15 h. After the solvent was removed on a rotary evaporator, the residue was subjected to column chromatography (silica gel, toluene/EtOAc = 98/2) to give compounds **3ab** (102.6 mg, 0.4132 mmol, 81% yield, 99% ee).

6. Procedure for the Deprotection of 7-Azaindoles 3ak (Scheme 6)

To a solution of **3ak** (129.7 mg, 0.3659 mmol, 98% ee) in DCM (2.0 mL) was added BCl₃ (1.0 M solution in THF, 2.2 mL, 2.2 mmol) at -78 °C. After the mixture was stirred at the same temperature for 30 min, it was warmed to -20 °C, and then stirred for 1 h before warming to room temperature. After the mixture was stirred for 20 h, MeOH was added. The solution was concentrated on a rotary evaporator. The residue was subjected to column chromatography (silica gel, CHCl₃/MeOH = 9/1 followed by hexane/acetone = 2/1) to give compound **3aa** (70.0 mg, 0.299 mmol, 82% yield, 99% ee) as a brown oil.

7. Procedure for the Metathesis Reaction of 7-Azaindoles 3ab with Methyl Acrylate

(Scheme 6)

To a solution of Hoveyda-Grubbs 2nd-generation catalyst (19.1 mg, 0.0307 mmol) in toluene (1.0 mL) was added the solution of **3ab** (73.1 mg, 0.294 mmol, 99% ee) and methyl acrylate (76.3mg, 0.886 mmol) in toluene (3.0 mL) at room temperature. After the mixture was stirred at 80 °C for 20 h, it was concentrated on a rotary evaporator. The residue was subjected to column chromatography (silica gel, hexane/EtOAc = 7/3) to give compound **4** (64.1 mg, 0.209 mmol, 71% yield, 99% ee) as a brown oil.

Compound **4**: The ee was measured by HPLC (Chiralcel OD-H column, 1.0 mL/min, hexane/2-propanol = 95/5, 230 nm, $t_1 = 11.9$ min (*minor*), $t_2 = 16.5$ min (*major*)); [α]²⁶_D –4 (*c* 0.99, CHCl₃) for 99% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (dd, J = 4.6, 1.7 Hz, 1H), 7.58 (dd, J = 8.0, 1.7 Hz, 1H), 7.43 (dd, J = 15.5, 7.2 Hz, 1H), 7.33 (t, J = 7.5 Hz, 2H), 7.30–7.22 (m, 3H), 6.96 (dd, J = 7.5, 4.9 Hz, 1H), 6.87 (s, 1H), 5.81 (dd, J = 15.5, 1.7 Hz, 1H), 5.06 (d, J = 7.5 Hz, 1H), 3.84 (s, 3H), 3.73 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 167.0, 149.6, 148.2, 143.1, 140.8, 128.7, 128.4, 127.7, 127.3, 127.1, 121.9, 119.2, 115.3, 113.5, 51.6, 45.5, 31.1; IR (neat, cm⁻¹) 3059, 3027, 2949, 1721, 1653, 1599, 1538, 1492, 1459, 1436, 1409, 1349, 1298, 1272, 1230, 1194, 1169, 1143, 1038, 985, 801, 756, 731, 702; HRMS (FAB) *m*/z [M+H]⁺ calcd for C₁₉H₁₉N₂O₂ 307.1441; found 307.1442.

8. Procedure for the Hydroboration of 7-Azaindoles 3ab Followed by Oxidation (Scheme 6)

To a solution of **3ab** (74.8 mg, 0.301 mmol, 99% ee) in THF (1.0 mL) was added 9-BBN (1.25 mL, 0.5 M solution in THF, 0.625 mmol) at -78 °C. After the mixture was warmed to room temperature, it was stirred for 20 h. EtOH (0.49 mL), 3 M NaOH aq. (0.25 mL), and H₂O₂ (30% in water, 0.25 mL, 2.2 mmol) were added to the mixture at 0 °C. The mixture was extracted with 1M NaOH and Et₂O, and then sat.NH₄Cl and Et₂O. The combined organic extracts were dried over MgSO₄, and concentrated on a rotary evaporator. The residue was subjected to column chromatography (silica gel, hexane/EtOAc = 1/2) to give compound **5** (70.3 mg, 0.264 mmol, 88% yield, 99% ee) as a brown oil.

Compound **5**: The ee was measured by HPLC (Chiralpak AD-3 column, 1.0 mL/min, hexane/2-propanol = 90/10, 230 nm, t_1 = 35.7 min (*major*), t_2 = 38.8 min (*minor*)); [α]²⁴_D –21 (*c* 0.49, CHCl₃) for 99% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.25 (dd, *J* = 4.6, 1.4 Hz, 1H), 7.67 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.33–7.23 (m, 4H), 7.21–7.15 (m, 1H), 7.01 (s, 1H), 6.93–6.88 (m, 1H), 4.36 (t, *J* = 7.7 Hz, 1H), 3.83 (s, 3H), 3.72–3.58 (m, 2H), 2.50–2.38 (m, 1H), 2.31–2.20 (m, 1H), 1.92 (br, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.1, 144.3, 142.8, 128.5, 127.8, 127.7, 126.3, 125.8, 119.7, 116.7, 114.9, 60.9, 39.1, 38.4, 31.1; IR (neat, cm⁻¹) 3338, 3060, 3026, 2932, 2880, 1600, 1575, 1538, 1492, 1461, 1410, 1348, 1295, 1143, 1038, 1011, 798, 759, 705, 664, 646, 585, 548; HRMS (FAB) *m/z* [M+H]⁺ calcd for C₁₇H₁₉N₂O 267.1492; found 267.1491.

9. Procedure for the Hydrogenation of 7-Azaindole 3ab (Scheme 6)

To Pd/C (15.0 mg, 10%, 0.014 mmol) was added the solution of **3ab** (86.9 g, 0.35

mmol, 99% ee) in MeOH (2.0 mL) at rt. After the mixture was stirred under a hydrogen atmosphere at rt for 16 h, Pd/C was filtered off by celite, and the filtrate was concentrated on a rotary evaporator. The residue was subjected to column chromatography (silica gel, toluene/EtOAc = 98/2) to give compound **6** (77.8 mg, 0.311 mmol, 89% yield, 96% ee) as a colorless oil.

Compound **6**: The ee was measured by HPLC (OJ-3 column, 1.0 mL/min, hexane/2-propanol = 99/1, 230 nm, $t_1 = 13.3$ min (*minor*), $t_2 = 20.2$ min (*major*)); $[\alpha]^{24}_D - 36$ (*c* 0.55, CHCl₃) for 96% ee. ¹H NMR (500 MHz, CDCl₃) δ 8.26 (dd, J = 4.6, 1.7 Hz, 1H), 7.65 (dd, J = 8.1, 1.7 Hz, 1H), 7.30–7.23 (m, 4H), 7.21–7.14 (m, 1H), 7.00 (s, 1H), 6.91 (dd, J = 8.1, 4.6 Hz, 1H), 4.00 (t, J = 7.4 Hz, 1H), 3.84 (s, 3H), 2.26–2.14 (m, 1H), 2.08–1.96 (m, 1H), 0.94 (t, J = 7.2, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.1, 144.9, 142.7, 128.3, 127.9, 127.6, 126.1, 125.7, 119.8, 117.3, 114.8, 44.8, 31.0, 28.8, 12.7; IR (neat, cm⁻¹) 3058, 3026, 2962, 2929, 2871, 1599, 1571, 1537, 1491, 1459, 1409, 1348, 1297, 1146, 798, 771, 704, 581, 545; HRMS (FAB) *m*/*z* [M+H]⁺ calcd for C₁₇H₁₉N₂ 251.1543; found 251.1545.

10. The data for X-ray crystal structure of compound [CF₃COO][HC₈N₂H₉][CF₃COOH]

Colorless crystals of $[CF_3COO][HC_8N_2H_9][CF_3COOH]$ suitable for X-ray crystallographic analysis were obtained by recrystallization from hexane/CHCl₃. The ORTEP drawing of $[CF_3COO][HC_8N_2H_9][CF_3COOH]$ is shown in Figure S1. The crystal structure has been deposited at the Cambridge Crystallographic Centre (deposition number: CCDC 2080098). The data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Figure S1. ORTEP illustration of [CF₃COO][HC₈N₂H₉][CF₃COOH] with thermal ellipsoids drawn at the 50% probability level.

Table S1. Crystal data of [CF₃COO][HC₈N₂H₉][CF₃COOH].

Empirical Formula	$C_{12}H_{10}F_6N_2O_4$
Formula Weight	360.21
Crystal Color, Habit	colorless, prism
Crystal Dimensions	$0.5\times0.5\times0.5~mm$
Crystal System	tricrinic
Lattice Type	Primitive
Lattice Parameters	a = 7.449(5) Å
	b = 10.164(8) Å
	c = 11.085(6) Å
	$\alpha = 115.47(2)^{\circ}$

	$\beta = 98.08(2)^{\circ}$
	$\gamma = 92.02(3)$ °
	$V = 745.9(8) Å^3$
Space Group	P-1 (#2)
Z value	2
D _{calc}	1.604 g/cm^3
F000	364.00
μ(ΜοΚα)	1.667 cm^{-1}

 Table S2. Intensity Measurements.

Diffractometer	R-AXIS RAPID
Radiation	MoKa ($\lambda = 0.71075$ Å)
	graphite monochromated
Voltage, Current	50 kV, 90 mA
Temperature	23.0 °C
Detector Aperture	460.0 x 256.0 mm
Data Images	44 exposures
$ω$ oscillation Range ($\chi = 45.0, \phi = 0.0$)	130.0-190.0 °
Exposure Rate	30.0 sec./°
$ω$ oscillation Range ($\chi = 45.0, \phi = 180.0$)	0.0 - 160.0 °
Exposure Rate	30.0 sec. /°
Detector Position	127.40 mm
Pixel Size	0.100 mm
$2\theta_{max}$	54.9 °
No. of Reflections Measured	Total: 7411
	Unique: 3387 ($R_{int} = 0.0308$)
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.936 – 0.967)

Table S3. Structure Solution and Refinement.

Structure Solution	Direct Methe	ods (SHELXT	Vers	ion	2018/2)
Refinement	Full-matrix	least-squares	on	\mathbf{F}^2	(SHELXL
Version 2018/3)					

Function Minimized	$\Sigma \mathrm{w} (\mathrm{F_0}^2 - \mathrm{F_c}^2)^2$
Least Squares Weights	$w = 1/[\sigma^2(F_0{}^2) + (0.1017 \cdot P)^2 + 0.0000 \cdot P]$
	where $P = (Max(F_0^2, 0) + 2Fc^2)/3$
2θmax cutoff	54.9 °
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3387
No. Variables	261
Reflection/Parameter Ratio	12.98
Residuals: R1 (I>2.00o(I))	0.0632
Residuals: R (All reflections)	0.1315
Residuals: wR2 (All reflections)	0.2014
Goodness of Fit Indicator	1.037
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.24 \text{ e}^{-}/\text{Å}^{3}$
Minimum peak in Final Diff. Map	$-0.20 \text{ e}^{-}/\text{Å}^{3}$

11. The data for X-ray crystal structure of compound C₁₇H₁₅BrN₂

Yellow crystals of C₁₇H₁₅BrN₂ suitable for X-ray crystallographic analysis were obtained by recrystallization from hexane/EtOAc. The ORTEP drawing of C₁₇H₁₅BrN₂ is shown in Figure S2. The unit cell of $C_{17}H_{15}BrN_2$ consists of two type crystallographically distinct molecules which form dimer by hydrogen bonding of the hydrogen of N-H and the nitrogen of 7-azaindol. Nineteen hydrogen atoms, H2A, H3A, H4A, H5A, H6A, H8A, H8B, H8C, H10A, H10B, H18, H21, H22, H25A, H25B, H25C, H26, H27A, and H27B, were placed at calculated positions and refined using a riding model. The crystal structure has been deposited at the Cambridge Crystallographic Centre (deposition number: CCDC 2080099). The data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Figure S2. ORTEP illustration of $C_{17}H_{15}BrN_2$ (two crystallographically independent molecules) with thermal ellipsoids drawn at the 50% probability level.

Table S4. Crystal data of $C_{17}H_{15}BrN_2$.

Empirical Formula	$C_{17}H_{15}BrN_2$
Formula Weight	327.22
Crystal Color, Habit	yellow, block
Crystal Dimensions	$0.8\times0.8\times0.5~mm$
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 8.928(5) Å
	b = 17.983(10) Å
	c = 9.771(6) Å
	$\beta = 93.34(2)^{\circ}$
	$V = 1566.1(16) Å^3$
Space Group	P21 (#4)
Z value	4
D _{calc}	1.388 g/cm^3
F ₀₀₀	664.00
μ(ΜοΚα)	26.241 cm ⁻¹

Table S5. Intensity Measurements.

Diffractometer	R-AXIS RAPID
Radiation	MoKa ($\lambda = 0.71075$ Å)

	graphite monochromated
Voltage, Current	50kV, 90mA
Temperature	23.0 °C
Detector Aperture	460.0 x 256.0 mm
Data Images	44 exposures
$ω$ oscillation Range ($\chi = 45.0, \phi = 0.0$)	130.0 – 190.0 °
Exposure Rate	30.0 sec./°
$ω$ oscillation Range ($\chi = 45.0, \phi = 180.0$)	0.0 - 160.0 °
Exposure Rate	30.0 sec. /°
Detector Position	127.40 mm
Pixel Size	0.100 mm
$2\theta_{max}$	54.9 °
No. of Reflections Measured	Total: 15326
	Unique: 7100 ($R_{int} = 0.0722$)
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.188 - 0.269)
	Secondary Extinction
	(coefficient: 1.19700 e-002)

Table S6. Structure Solution and Refinement.

Structure Solution	Direct Methods (SHELXT Version 2018/2)
Refinement	Full-matrix least-squares on F ² (SHELXL
Version 2018/3)	
Function Minimized	$\Sigma \ { m w} \ ({ m F_0}^2 - { m F_c}^2)^2$
Least Squares Weights	$w = 1/[\sigma^2(F_0^2) + (0.00611 \cdot P)^2 + 0.0000 \cdot P]$
where $P = (Max(F_0^2, 0) + 2Fc^2)/3$	
2θmax cutoff	54.9°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	7098
No. Variables	406
Reflection/Parameter Ratio	17.48
Residuals: R1 (I>2.00o(I))	0.0513
Residuals: R (All reflections)	0.0920
Residuals: wR2 (All reflections)	0.1400

Goodness of Fit Indicator	0.931
Flack parameter	-0.004(11) (Parsons' quotients = 1347)
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	$0.41 \text{ e}^{-}/\text{Å}^{3}$
Minimum peak in Final Diff. Map	$-0.37 \text{ e}^{-}/\text{Å}^{3}$

12. References

- [1] R. H. Crabtree, J. M. Quirk, H. Felkin, T. Fillebeen-Khan, Synth. React. Inorg. Met.-Org. Chem. 1982, 12, 407–413.
- [2] C. Defieber, M. A. Ariger, P. Moriel, E. M. Carreira, Angew. Chem., Int. Ed. 2007, 46, 3139-3143.
- [3] L. C. Burrows, L. T. Jesikiewicz, G. Lu, S. J. Geib, P. Liu, K. M. Brummond, J. Am. Chem. Soc. 2017, 139, 15022–15032.
- [4] J. Y. Hamilton, D. Sarlah, E. M. Carreira, Org. Synth. 2015, 92, 1-12.
- [5] P. Kannaboina, K. Anilkumar, S. Aravind, R. A. Vishwakarma, P. Das, Org. Lett. 2013, 15, 5718–5721.
- [6] S. Potavathri, A. S. Dumas, T. A. Dwight, G. R. Naumiec, J. M. Hammann, B. DeBoef, *Tetrahedron Lett.* 2008, 49, 4050–4053.

13. ¹H, ¹³C, and ¹⁹F NMR Spectra, and Chiral HPLC Charts

mV

Peak#	Ret. Time	Area%
1	20.12	0.689
2	25.43	99.311
Total		100.000

mV

mV

rean#	Ret. IIIIe	Alea /0
1	11.31	49.810
2	15.79	50.190
Total		100.000

S35

Peak#	Ret. Time	Area%
1	8.36	50.216
2	9.72	49.784
Total		100.000

200

100

0

7.0

Peak#	Ret. Time	Area%
1	7.10	49.915
2	9.00	50.085
Total		100.000

S43

10.88

50.112 100.000

2 Total

Peak#	Ret. Time	Area%
1	9.39	0.486
2	10.51	99.514
Total		100.000

Peak#	Ret. Time	Area%
1	11.18	99.288
2	14.56	0.712
Total		100.000

Peak#	Ret. Time	Area%
1	11.24	49.385
2	14.51	50.615
Total		100.000

Реак#	Ret. IIme	Area%
1	8.79	49.085
2	9.67	50.915
Total		100.000

Peak#	Ret. Time	Area%
1	26.55	95.143
2	33.13	4.857
Total		100.000
2 Total	33.13	100

Peak#	Ret. Time	Area%
1	15.65	8.449
2	16.49	91.551
Total		100.000

Peak#	Ret. Time	Area%
1	16.09	49.895
2	16.85	50.105
Total		100.000

S61

Peak#	Ret. Time	Area%
1	7.70	1.449
2	9.14	98.551
Total		100.000

Peak#	Ret. Time	Area%
1	8.92	89.919
2	9.96	10.081
Total		100.000

S74

10.83	49.922
13.42	50.078
	100.000
	10.83 13.42

S79

Peak#	Ret. Time	Area%
1	11.82	49.961
2	16.52	50.039
Total		100.000

Реак#	Ret. 11me	Area%
1	35.66	50.103
2	38.78	49.897
Total		100.000

Peak#	Ret. Time	Area%
1	13.26	2.159
2	20.21	97.841
Total		100.000

Peak#	Ret. Time	Area%
1	13.20	50.019
2	20.30	49.981
Total		100.000

S86