Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Synthesis of bent-shaped π-extended thienoacenes from 2,5-distannylated 3,4dialkynethiophene

Abhijeet R. Agrawal, Neha Rani Kumar, Aditya Choudhury and Sanjio S. Zade* Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India.

[*] email: sanjiozade@iiserkol.ac.in

Table of Contents

Serial	Title		Page No.
No.			
1	General Instrumentation		
2	Materials		S5
		Synthesis of 3,4-dialkyne substituted thiophene (Scheme S1)	S5
		Di-stannylation of 3,4-dialkyne thiophene compound (Scheme S2)	S6
		Monostannylation of 3,4-dialkyne thiophene compound (Scheme S3)	S7
		Optimization of reaction condition for Stille coupling reaction using	S8
		bromobenzene as the model substrate (Table S1)	
3	Experimental	Synthesis of aromatic halides used for Stille coupling reaction	S9
	Section	(Figure S1)	
		General procedure for Stille coupling of aromatic halides with	S10
		distannyl of thiophene (Scheme S4)	
		General procedure for NMP and DBU mediated alkyne annulations	S11
		(Scheme S5)	
		Gram scale synthesis as a representative example for the broad	S11-S12
		application of the devised strategy (Scheme S6 and S7)	
4	Purification procedure, NMR data and HRMS data		S12-S30
5	Crystallographic data and structure refinement parameters (Table S2 & Figure S2)		S30-S31
6	UV-Visible spectra (Figure S3 & S4)		S32
		Charge transport pathways of compound 6j (Figure S5)	
		Calculated spatial overlap (S), site energy (t), effective transfer integral (V_{c}) and the maximum simulated enjoytenergy hele and	
7	Computational	electron mobility of compound (Table S3)	S33-S37
	details	Energies of different states of molecule and reorganization energy	
		Anisotropic hole and electron mobility (cm ² V ^{-1} s ^{-1}) of compound 6 j	
8	¹ H NMP of corr	(Figure S6)	\$38
0	H NMR of compound1 (Figure S7)		\$38
10	¹ H NMPspectrum of a mixture of 2 and 1 formed on using 2.1 againstone DuL:		\$30
10	(Figure S9)		
11	¹ H NMRspectrum of a mixture of 2 and 1 formed on carrying the reaction at elevated		
	temperature (Figure S10)		
12	¹ H NMR of compound 2 (Figure S11)		
13	¹³ C NMR of compound 2 (Figure S12)		
14	¹ H NMR of compound 3 (Figure S13)		

15	¹³ C NMR of compound 3 (Figure S14)	S41
16	¹ H NMR of compound 3a (Figure S15)	S42
17	¹³ C NMR of compound 3a (Figure S16)	S42
18	¹ H NMR of compound 5a (Figure S17)	S43
19	¹³ C NMR of compound 5a (Figure S18)	S43
20	¹ H NMR of compound 5b (Figure S19)	S44
21	¹³ C NMR of compound 5b (Figure S20)	S44
22	¹ H NMR of compound 5c (Figure S21)	S45
23	¹³ C NMR of compound 5c (Figure S22)	S45
24	¹ H NMR of compound 5d (Figure S23)	S46
25	¹³ C NMR of compound 5d (Figure S24)	S46
26	¹ H NMR of compound 5e (Figure S25)	S47
27	¹³ C NMR of compound 5e (Figure S26)	S47
28	¹ H NMR of compound 5f (Figure S27)	S48
29	¹³ C NMR of compound 5f (Figure S28)	S48
30	¹ H NMR of compound 5g (Figure S29)	S49
31	¹³ C NMR of compound 5g (Figure S30)	S49
32	¹ H NMR of compound 5h (Figure S31)	S50
33	¹³ C NMR of compound 5h (Figure S32)	S50
34	¹ H NMR of compound 5i (Figure S33)	S51
35	¹³ C NMR of compound 5i (Figure S34)	S51
36	¹ H NMR of compound 5j (Figure S35)	S52
37	¹ H NMR of compound 5j (Figure S36)	S52
38	¹ H NMR of compound 5k (Figure S37)	S53
39	¹³ C NMR of compound 5k (Figure S38)	S53
40	¹ H NMR of compound 51 (Figure S39)	S54
41	¹³ C NMR of compound 51 (Figure S40)	S54
42	¹ H NMR of compound 5m (Figure S41)	S55
43	¹³ C NMR of compound 5m (Figure S42)	S55
44	¹ H NMR of compound 5n (Figure S43)	S56
45	¹ H NMR of compound 50 (Figure S44)	S56
46	¹³ C NMR of compound 50 (Figure S45)	S57
47	¹ H NMR of compound 5p (Figure S46)	S57
48	¹³ C NMR of compound 5p (Figure S47)	S58
49	¹ H NMR of compound 5q (Figure S48)	S58
50	¹³ C NMR of compound 5q (Figure S49)	S59

51	¹ H NMR of compound 5r (Figure S50)	S59
52	¹³ C NMR of compound 5r (Figure S51)	S60
53	¹ H NMR of compound 6a (Figure S52)	S60
54	¹³ C NMR of compound 6a (Figure S53)	S61
55	¹ H NMR of compound 6b (Figure S54)	S61
56	¹³ C NMR of compound 6b (Figure S55)	S62
57	¹ H NMR of compound 6c (Figure S56)	S62
58	¹³ C NMR of compound 6c (Figure S57)	S63
59	¹ H NMR of compound 6d (Figure S58)	\$63
60	¹³ C NMR of compound 6d (Figure S59)	S64
61	¹ H NMR of compound 6f (Figure S60)	S64
62	¹³ C NMR of compound 6f (Figure S61)	\$65
63	¹ H NMR of compound 6h (Figure S62)	S65
64	¹³ C NMR of compound 6h (Figure S63)	\$66
65	¹ H NMR of compound 6i (Figure S64)	\$66
66	¹³ C NMR of compound 6i (Figure S65)	S67
67	¹ H NMR of compound 6j (Figure S66)	S67
68	¹³ C NMR of compound 6j (Figure S67)	S68
69	¹ H NMR of compound 6m (Figure S68)	S68
70	¹³ C NMR of compound 6m(Figure S69)	S69
71	¹ H NMR of compound 6n (Figure S70)	S69
72	¹ H NMR of compound 6q (Figure S71)	S70
73	¹³ C NMR of compound 6q (Figure S72)	S70
74	¹ H NMR of compound 4s (Figure S73)	S71
75	¹³ C NMR of compound 4s (Figure S74)	S71
76	¹ H NMR of compound 5s (Figure S75)	S72
77	¹³ C NMR of compound 5s (Figure S76)	S72
78	¹ H NMR of compound 6s (Figure S77)	S73
79	¹³ C NMR of compound 6s (Figure S78)	S73-S74
80	References	S74-S75

General Instrumentation:

¹H and ¹³C NMR spectra were recorded at room temperature on a Jeol JNM-ECS 400 spectrometer (400 MHz ¹H, 100 MHz¹³C) and Bruker Avance 500 (500 MHz ¹H, 125 MHz ¹³C) spectrometer with tetramethylsilane as the internal reference; chemical shifts (δ) are given in parts per million (ppm). Spectra were processed using Mest ReNova v5 and referenced to residual protonated solvent signals (CDCl₃: ¹H 7.26 ppm, ¹³C 77.16 ppm). Suitable crystals were collected on a Agilent SuperNova, Dual, Cu/Mo at zero, Eos diffractometer. The structure was solved using Olex2¹ and refined with the ShelXL² refinement package using Least Squares minimization. UV–visible absorption spectra were recorded on an Agilent Cary60 UV–vis spectrophotometer.

Materials:

All reagents were obtained from commercial sources (Sigma Aldrich, Spectrochem, Merck and Alfa Aesar) and used as received without further purification, unless otherwise specified. Toluene, Tetrahydrofuran (THF) and diethyether (Et₂O) were dried over sodium/benzophenone before use. Methanol and ethanol were dried using magnesium turning and iodine. Dry reactions were conducted in oven-dried glassware using a standard schlenk line under an inert atmosphere of dry nitrogen.

Caution: Trimethyltin chloride is a toxic and highly flammable compound. It is essential to perform the reaction using protective gloves/protective clothing/eye protection/face protection etc and dispose of the used syringe in the proper prescribed way for hazardous substances. (For more details, standard Material Safety Data Sheets can be referred).

Experimental Section

Synthesis of 3,4-di(hex-1-yn-1-yl)thiophene or 3,4-di(oct-1-yn-1-yl)thiophene

Scheme S1: Synthesis of 3,4-dialkyne substituted thiophene

To a solution of 3,4-dibromothiophene (2.0 g, 5.0 mmol), NaI (1.7 g, 11mmol), $Pd(PPh_3)Cl_2$ (0.18 g, 0.25 mmol) and CuI (0.14 g, 0.75 mmol) in distilled piperidine (50 mL) was added 1-hexyne/1-octyne (40 mmol) at room temperature. The mixture was refluxed for 24 h, and after cooling to room temperature, to the mixture was added aqueous saturated NH₄Cl, and extracted with EtOAc (3*15 mL). The combined organic phase was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane) to afford the title compound as brown liquid.

Synthesis of (3,4-di(hex-1-yn-1-yl)thiophene-2,5-diyl)bis(trimethylstannane)

Scheme S2: Di-stannylation of 3,4-dialkyne thiophene compound

A 50 ml two-necked oven dried round bottomed flask is charged with 6 ml THF under an inert atmosphere of nitrogen. This is followed by the addition of 10.24 mmol of diisopropylamine at room temperature. The solution is then cooled to 0 °C. After this 6.14 ml (10.24 mmol, 1.6 M in hexane) n-butyl lithium is added dropwise in the solution and stirred for 10 minutes while the temperature of the reaction bath still kept at 0 °C. After 10 minutes, the temperature of the reaction mixture was reduced to -50 °C. Once the temperature reaches -50 °C, 500 mg (2.04 mmol) of dialkyne compound (pre-dissolved in 5 ml THF and purged with nitrogen for three consecutive times in a single neck round bottomed flask fitted with a rubber septum) is added dropwise into the reaction mixture and the mixture is further stirred for 1.5 hours (the temperature at this stage is also maintained at -50 °C). This is followed by the addition of 8 ml (8.19 mmol) of trimethyl tin chloride (1M solution in THF) to the reaction mixture all at once and then the chiller is put off and the reaction mixture is allowed to come to room temperature keeping the stirring on. Once the reaction mixture reaches room temperature, the reaction is quenched by the addition of a small amount of water, and the contents are transferred to a single neck round bottomed flask. The THF layer is evaporated and the compound is

extracted using diethyl ether. The diethyl ether layer is washed three times with a saturated solution of potassium fluoride and finally with brine. The organic layer is dried using Na_2SO_4 and the solvent evaporated under rotary evaporation to give the desired distannyl compound in quantitative yield.

Synthesis of 3,4-di(hex-1-yn-1-yl)thiophen-2-yl)trimethylstannane

Scheme S3: Monostannylation of 3,4-dialkyne thiophene compound

A 50 ml two-necked oven dried round bottomed flask is charged with 1 equivalents of the dialkyne compound followed by the addition of 6 ml THF under an inert atmosphere of nitrogen. The reaction mixture is then cooled to -50 $^{\circ}$ C. 3 equivalents of n-butyl lithium is added to the reaction mixture at the same temperature and the mixture is further stirred for one and half hours (or 1.5 h). This is followed by the addition of 2 equivalents of trimethyl tin chloride to the reaction mixture all at once and then the chiller is put off and the reaction mixture is allowed to come to room temperature keeping the stirring on. Once the reaction mixture reaches room temperature, the reaction is quenched by the addition of a small amount of water, and the contents are transferred to a single neck round bottomed flask. The THF layer is evaporated and the compound is extracted using diethyl ether. The diethyl ether layer is washed three times with a saturated solution of potassium fluoride and finally with brine. The organic layer is dried using Na₂SO₄ and the solvent evaporated under rotary evaporation to give the desired monostannyl compound in quantitative yield.

Note: The amount of n-butyl lithium has a significant role in this reaction. If 1.1-2.1 equivalents n-butyl lithium is used, then the product obtained is a mixture of monostannyl and starting material. Using an excess of n-butyl lithium, i.e. 3 equivalents, always gives monostannyl compound in quantitative yield. Even if the amount of n-butyl lithium is increased, it does not

lead to any changes in the product formed (i.e. formation of distannyl compound is not observed).

Table S1: Optimization of reaction condition for Stille coupling reaction using bromobenzene as

 the model substrate

Catalyst	Solvent	Temperature (⁰ C)	Yield (%)
Pd(PPh ₃) ₄	Toluene	110	8-10
	THF	80	9
	DMF	45	2
$Pd(PPh_3)_2Cl_2$	Toluene	110	<10
	THF	80	5
Pd(PPh ₃) ₄ , CuI	Toluene	110	8-10
Pd(dba) ₂	Toluene	110	13
PdCl ₂ , PtBu ₃ , CsF,	DMF	45	20
Pd(PPh ₃) ₄ , CuCl, LiCl	DMSO	70	54
	THF	70	68

Synthesis of aromatic halides used for Stille coupling reaction

Figure S1: Aromatic halides used in Stille coupling reaction

Compounds 4a, 4b, 4c, 4d, 4e, 4f, 4h, 4i, 4j, 4n and 4o were obtained from commercial sources. All other monomers were synthesized by using the approach reported elsewhere. 4g was synthesized by using the approach described by Zhang and co-workers.³ 4k was synthesized by using the approach described by Gunji and group.⁴ 4l was synthesized by using the approach given by Lindgren and group.⁵ 4m was synthesized by using the approach described by Marder and group.⁶ 4pwas synthesized by using the approach given by Riede and group.⁷ 4qwas synthesized by using the approach described by Huang and group.⁹ 4s was obtained by the bromination of the syn-thienopentacene 6n by using 1 equivalents of NBS in CHCl₃ and few drops of acetic acid at 0 $^{\circ}$ C.

General procedure for Stille coupling of aromatic halides with distannyl of thiophene¹⁰

Scheme S4: Stille coupling of distannyl thiophene compounds with aromatic halides

An oven dried Schlenck tube (cooled in a dessicator) was charged with LiCl under inert atmosphere. Upon cooling, Pd(PPh₃)₄ and CuCl were added, and the mixture was degassed under high vacuum with N₂ purge. THF was introduced with concomitant stirring, followed by the addition of aromatic halide and the stannyl compound. The resulting mixture was further degassed three times using nitrogen balloon. The reaction mixture was stirred at room temperature for 1 h, then heated to 60 °C for the necessary period of time until the TLC indicated complete consumption of the aryl halide. The reaction mixture was then cooled, diluted with Et₂O and washed with a mixture of brine and 5% aqueous NH₄OH. The aqueous layer was further extracted with Et₂O and the combined organic layers were washed with water, then brine, dried over Na₂SO₄, and concentrated to a residue that was purified by silica gel column chromatography.

Note: For coupling of distannyl compound with the aromatic halide the equivalents of reagents are as follows:

Distannyl compound: 1 equivalents, CuCl: 5 equivalents, LiCl: 6 equivalents, $Pd(PPh_3)_4$: 10 mol%, Aromatic mono-halide: 3 equivalents (equivalents calculated with respect to the stannyl compound)

General procedure for NMP and DBU mediated alkyne annulations¹¹

Scheme S5: DBU and NMP mediated alkyne annulation

To a solution of alkyne compound (0.5 mmol, 1 equivalents) in NMP (7 mL) was added DBU (0.55 mmol, 1.1 equivalents) at room temperature. The mixture was stirred at 180 °C for 24 h. After cooling to room temperature, to the mixture was added an aqueous saturated solution of NH₄Cl, and extracted with EtOAc. The combined organic phase was dried over MgSO₄ and concentrated under reduced pressure. The residue was further purified by silica gel column chromatography to afford the annulated compound.

Gram scale synthesis as a representative example for the broad application of the devised strategy

a) Gram scale synthesis of stannyl compound

A gram scale synthesis of (3,4-di(hex-1-yn-1-yl)thiophene-2,5diyl)bis(trimethylstannane) **3** was carried out by using 2g (8.1 mmol) of the starting material using the procedure reported exactly as above. The distannyl derivative in this case was isolated in 97% yield (4.5g, 7.8 mmol) and the compound was of significant purity to use in next step.

b) Gram scale synthesis of Stille coupling product

Scheme S6: Gram scale synthesis of 5d

The gram scale synthesis of Stille coupling reaction was established by using distannyl derivative **3** (1.6 mmol) and mono-bromo compound **4d** (5 mmol) as the coupling partners using the general procedure as mentioned above. The Stille coupled product **5d** was isolated in 77 % yield (1.22 mmol).

c) Gram scale synthesis of DBU and NMP mediated alkyne annulation

Scheme S7: Gram scale synthesis of 6d

The gram scale synthesis DBU and NMP mediated alkyne annulation was established by using compound **5d** (1g, 2 mmol) as the starting material using the general procedure as mentioned above. The alkyne anniulated product **6d** was isolated in 87 % yield (1.7 mmol).

Purification procedure and characterization

Characterization details of compound1

Purification: Brown liquid, Starting material used: 4 g (16.56 mmol) of 3,4-dibromo thiophene, Product obtained: 3.15 g (13.90 mmol), Percentage yield: 78%, ¹H NMR (500 MHz, CDCl₃) δ 7.25 (s, 2H), 2.43 (t, *J* = 8.0 Hz, 4H), 1.47 – 1.60 (m, 8H), 0.95 (t, *J* = 5.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 126.9, 125.8, 92.4, 74.7, 30.9, 22.1, 19.3, 13.8, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₂₀SNa: 267.1183; Found: 267.1181. Characterization details of compound 2

Purification: No purification required. Product obtained after work up is of significant purity, brown liquid, Starting material used: 0.5 g (2.04 mmol) of **1**, Product obtained: 0.79 g (1.94 mmol), Percentage yield: 95%, ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 2.43 (t, *J* = 8.0 Hz, 4 H), 1.48-1.58 (m, 8H), 0.95 (t, *J* = 8.0 Hz, 6H), 0.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 133.2, 132.1, 126.9, 92.6, 91.6, 76.8, 74.9, 30.9, 22.0, 19.4, 19.3, 13.84, 13.8, -8.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₂₈SSnNa: 431.0826; Found: 431.0822.

Characterization details of compound 3

Purification: No purification required. Product obtained after work up is of significant purity, reddish sticky liquid, Starting material used: 0.5 g (2.04 mmol) of **1**, Product obtained: 1.12 g (1.96 mmol), Percentage yield: 96%, ¹H NMR (500 MHz, CDCl₃) δ 2.44 (t, J = 10.0 Hz, 4H), 1.44-1.58 (m, 8H), 0.95 (t, J = 5.0 Hz, 6H), 0.40 (s, 18H), ¹³C NMR (126 MHz, CDCl₃) δ 146.3, 134.4, 92.0, 31.1, 22.1, 19.4, 13.8, -8.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₃₆SSn₂Na: 595.0479; Found: 595.0465.

Purification: No purification required. Product obtained after work up is of significant purity, viscous yellow, Starting material used: 0.5 g (1.52 mmol) of 3,4-di(oct-1-yn-1-yl)thiophene, Product obtained: 0.93 g (1.43 mmol), Percentage yield: 94%, ¹H NMR (400 MHz, CDCl₃) δ 2.44 (t, *J* = 8.0 Hz, 4H), 1.58-1.63 (m, 4H), 1.44-1.48 (m, 4H), 1.31-1.33 (m, 8H), 0.91 (t, *J* = 8.0 Hz, 6H), 0.39 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 134.3, 92.1, 76.8, 31.7, 29.1, 28.9, 22.8, 19.8, 14.3, -8.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₄₄SSn₂Na: 651.1100; Found: 651.1094.

Characterization details of compound 5a

Purification: Column chromatography using silica gel (60-120 mesh),10% DCM/Hexane, light green solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.12 g (0.29 mmol), Percentage yield: 68%, ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 5.5, 3.5 Hz, 4H), 7.42 (t, J = 8.0 Hz, 4H), 7.35 (d, J = 8.0 Hz, 2H), 2.54 – 2.47 (m, 4H), 1.68 – 1.59 (m, 4H), 1.57 – 1.51 (m, 4H), 0.97 (t, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.5, 133.9, 128.8, 128.4, 127.9, 122.7, 95.4, 76.2, 31.1, 22.3, 19.8, 14.1, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₈SNa: 419.1804; Found: 419.1800.

Characterization details of compound 5b

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, light green solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.11 g (0.24 mmol), Product yield: 56%, ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 4H), 6.93 (d, *J* = 8.0 Hz, 4H), 3.49 (s, 6H), 2.48 (t, *J* = 6.8 Hz, 4H), 1.57-1.62 (m, 4H), 1.48-1.54 (m, 4H), 0.96 (t, *J* = 8.0 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 159.7, 141.7, 129.1, 126.8, 121.5, 114.2, 94.9, 76.4, 55.7, 30.1, 22.3, 19.8, 14.1, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₃₂O₂SNa: 479.2015; Found: 479.2011.

Characterization details of compound 5c

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, light green solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.11 g (0.25 mmol), Product yield: 60%, ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.81 (m, 4H), 7.22 (d, *J* = 8.0 Hz, 4H), 2.49 (t, *J* = 8.0 Hz, 4H), 2.40 (s, 6H), 1.49-1.64 (m, 8H), 0.97 (t, *J* = 8.0 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 142.1, 138.0, 130.9, 129.3, 127.5, 121.9, 94.9, 76.1, 30.9, 22.1, 21.5, 19.6, 13.9, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₃₂SNa: 447.2117; Found: 447.2110.

Characterization details of compound 5d

Purification: Column chromatography using silica gel (60-120 mesh), 20% DCM/Hexane, light green solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.16 g (0.35 mmol), Product yield: 80%, ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 4H), 7.70 (d, *J* = 8.5 Hz, 4H), 2.51 (t, *J* = 6.9 Hz, 4H), 1.67-1.59 (m, 4H), 1.52-1.47 (m, 4H), 0.97 (t, *J* = 8.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 137.6, 132.5, 127.9, 125.0, 118.8, 111.7, 97.7, 75.2, 30.7, 22.2, 19.6, 13.8, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₆N₂SNa: 469.1709; Found: 469.1702.

Characterization details of compound 5e

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, red solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.11 g (0.23 mmol), Product yield: 52%, ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 9.0 Hz, 4H), 6.74 (d, *J* = 9.0 Hz, 4H), 3.00 (s, 12H), 2.51 (t, *J* = 6.9 Hz, 4H), 1.66-1.61 (m, 4H), 1.58-1.53 (m, 4H), 0.98 (t, *J* = 8.0 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 141.6, 128.6, 128.4, 122.3, 119.9, 112.1, 94.1, 76.7, 40.5, 31.0, 22.2, 19.7, 13.9, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₂H₃₈N₂SNa: 505.2648; Found: 505.2642.

Characterization details of compound 5f

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, red solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.19 g (0.25 mmol), Product yield: 58%, ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.79 (m, 4H), 7.25-7.29 (m, 8H), 7.14 (d, *J* = 7.6 Hz, 8H), 7.03-7.07 (m, 8H), 2.48 (t, *J* = 6.8 Hz, 2H), 1.43-1.611(m, 8H), 0.92 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 141.5, 129.6, 128.4, 127.8, 125.1, 123.6, 123.1, 95.5, 76.5, 31.1, 22.3, 19.8, 14.1, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₅₂H₄₆N₂SNa: 753.3274; Found: 753.3272.

Characterization details of compound 5g

Purification: Column chromatography using silica gel (60-120 mesh), 20% DCM/Hexane, red solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.21 g (0.31 mmol), Product yield: 72%, ¹H NMR (400 MHz, CDCl₃) δ 8.74 (t, *J* = 4.6 Hz, 2H), 7.98-8.00 (m, 4H), 7.80 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 4H), 7.43-7.47 (m, 2H), 2.55 (t, *J* = 8.0 Hz, 4H), 1.52-1.66 (m, 8H), 0.98 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 153.7, 139.9, 137.6, 134.1, 129.6, 128.9, 128.8, 128.6, 128.4, 128.2, 125.8, 124.6, 97.3, 76.5, 31.1, 22.4, 19.9, 14.0, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₀H₃₂N₄S₃Na: 687.1681; Found: 687.1677.

Characterization details of compound 5h

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, yellowish green solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.14 g (0.28 mmol), Product yield: 66%, ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 1.1 Hz, 2H), 8.06 (dd, *J* = 8.5, 1.7 Hz, 2H), 7.83-7.87 (m, 6H), 7.48-7.50 (m, 4H), 2.54 (t, *J* = 6.8 Hz, 4H), 1.61-1.68 (m, 4H), 1.52-1.57 (m, 4H), 0.97 (t, *J* = 7.3 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 142.7, 133.7, 133.3, 131.4, 128.6, 128.4, 128.0, 126.7, 126.0, 123.2, 95.8, 76.4, 31.2, 22.4, 19.9, 14.1, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₆H₃₂SNa: 519.2117; Found: 519.2110.

Characterization details of compound 5i

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, yellowish green solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.17 g (0.34 mmol), Product yield: 80%, ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.18 (m, 2H), 7.91 (dd, J = 7.2, 2.5 Hz, 4H), 7.63-7.68 (m, 2H), 7.51-7.54 (m, 6H), 2.19 (t, J = 6.8 Hz, 4H), 1.21-1.28 (m, 4H), 1.05-1.12 (m, 4H), 0.71 (t, J = 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 134.0, 132.1, 131.4, 129.3, 128.5, 127.1, 126.5, 126.3, 125.4, 124.8, 95.3, 75.6, 30.7, 21.8, 19.5, 13.9, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₆H₃₃SNa: 519.2117; Found: 519.2114.

Characterization details of compound5j

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, yellowish green solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.21 g (0.35 mmol), Product yield: 80%, ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 15.3, 8.2 Hz, 4H), 8.25 (dd, J = 7.9, 1.0 Hz, 2H), 8.00 (s, 2H), 7.95 (d, J = 7.7 Hz, 2H), 7.63-7.70 (m, 8H), 2.18 (t, J = 6.9 Hz, 4H), 1.16-1.22 (m, 4H), 1.03-1.12 (m, 4H), 0.64 (t, J = 8.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 131.5, 130.9, 130.5, 130.2, 129.3, 127.9, 127.5, 127.2, 127.0, 126.9, 125.2, 123.0, 122.9, 95.7, 75.6, 30.7, 21.8, 19.5, 14.5, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₄H₃₆SNa: 619.2430; Found: 619.2424.

Characterization details of compound 5k

Purification: Column chromatography using silica gel (60-120 mesh), 40% DCM/Hexane, dark brown solid, Starting material used: 0.0.25 g (0.44 mmol) of **3**, Product obtained: 0.26 g (0.33 mmol), Product yield: 76%, ¹H NMR (400 MHz, CDCl₃) δ 9.76 (d, *J* = 11.2 Hz, 4H), 8.82 (s, 2H), 8.30 (dd, *J* = 10.1, 1.1 Hz, 4H), 4.46 (q, *J* = 7.2 Hz, 8H), 2.52 (t, *J* = 7.0 Hz, 4H), 1.56-1.62 (m, 4H), 1.46-1.52 (m, 16H), 0.95 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 144.1, 143.5, 138.3, 130.8, 119.4, 117.3, 77.0, 60.5, 30.9, 30.1, 22.4, 19.8, 14.9, 13.9, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₈H₄₈O₈SNa: 807.2962; Found: 807.2959.

Characterization details of compound 51

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, orange, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.23 g (0.36 mmol), Product yield: 83%, ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 9.2 Hz, 2H), 8.23 (m, 8H), 8.15 (m, 6H), 8.05 (t, *J* = 7.6 Hz, 2H), 2.16 (t, *J* = 6.9 Hz, 4H), 1.15-1.22 (m, 4H), 0.94-1.03 (m, 4H), 0.47 (t, *J* = 7.3 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 143.5, 131.9, 131.7, 131.4, 129.9, 129.3, 128.6, 128.3, 127.9, 127.7, 126.4, 125.6, 125.3, 125.0, 124.7, 95.4, 75.8, 30.7, 21.8, 19.5, 13.6, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₈H₃₆SNa: 667.2430; Found: 667.2424.

Characterization details of compound 5m

Purification: Column chromatography using silica gel (60-120 mesh), 20% DCM/Hexane, orange solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.225 g (0.35 mmol), Product yield: 80%, ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 7.8 Hz, 2H), 8.37 (s, 2H), 8.25 (t, *J* = 7.0 Hz, 6H), 8.10-8.16 (m, 4H), 8.04-8.08 (m, 4H), 2.14 (t, *J* = 6.9 Hz, 4H), 1.00-1.15 (m, 4H), 0.95-0.98 (m, 4H), 0.49 (t, *J* = 7.3 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 142.2, 131.6, 131.5, 130.9, 130.9, 130.8, 130.2, 128.1, 127.4, 126.5, 126.2, 125.9, 125.8, 125.4, 125.1,

95.9, 75.7, 30.7, 21.8, 19.5, 13.6, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₈H₃₆SNa: 667.2330; Found: 667.2327.

Characterization details of compound 5n

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, light green solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.093 g (0.23 mmol), Product yield: 52%, ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 3.9 Hz, 2H), 7.29 (d, *J* = 5.8 Hz, 2H), 7.04-7.06 (m, 2H), 2.56 (t, *J* = 7.1 Hz, 4H), 1.65-1.69 (m, 4H), 1.57-1.59 (m, 4H), 0.98 (t, *J* = 4 Hz, 6H).

Characterization details of compound 50

Purification: Column chromatography using silica gel (60-120 mesh), 30% DCM/Hexane, orange, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.14 g (0.29 mmol), Product yield: 68%, ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 3.9 Hz, 2H), 7.36 (d, J = 3.9 Hz, 2H), 2.61 (t, J = 7.0 Hz, 4H), 1.52-1.70 (m, 8H), 1.00 (t, J = 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 137.1, 134.4, 125.2, 124.3, 114.4, 108.9, 102.5, 75.0, 30.4, 22.2, 19.9, 13.8, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₂N₂S₃Na: 481.0837; Found: 481.0831.

Characterization details of compound 5p

Purification: Column chromatography using silica gel (60-120 mesh), 40% DCM/Hexane, brown solid, Starting material used: 0.25 g (0.44 mmol) of **3**, Product obtained: 0.18 g (0.31 mmol), Product yield: 70%, ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 2H), 7.65 (d, *J* = 4.2 Hz, 2H), 7.51 (d, *J* = 4.2 Hz, 2H), 2.68 (t, *J* = 7.1 Hz, 4H), 1.51-1.70 (m, 8H), 0.98 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 146.2, 138.7, 135.5, 134.9, 126.5, 126.1, 114.3, 113.5, 105.3, 75.1, 30.5, 22.2, 19.8, 13.8, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₂H₂₄N₄S₃Na: 583.1055; Found: 583.1051.

Characterization details of compound 5q

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, yellow viscous liquid, Starting material used: 0.1 g (0.18 mmol) of **3**, Product obtained: 0.1 g (0.09 mmol), Product yield: 54%, ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 2H), 7.50 (d, J = 5.4 Hz, 2H), 7.36 (d, J = 5.4 Hz, 2H), 4.17-4.23 (m, 8H), 2.66 (t, J = 7.0 Hz, 4H), 1.77-1.86 (m, 16H), 1.61-1.66 (m, 4H), 1.35-1.42 (m, 20H), 1.03 (t, J = 7.3 Hz, 6H), 0.91-96 (m, 12H), ¹³C NMR (126 MHz, CDCl₃) δ 144.0, 143.6, 136.1, 135.3, 134.4, 134.1, 129.2, 129.0, 124.9, 123.1, 122.5, 120.2, 99.9, 75.9, 74.8, 74.7, 32.1, 32.1, 30.8, 30.8, 30.7, 26.2, 23.1, 23.0, 22.5, 20.2, 14.5, 14.4, 14.1, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₆₀H₆₈O₈S₅Na: 1099.3415; Found: 1099.3411.

Characterization details of compound 5r

Purification: Column chromatography using silica gel (60-120 mesh), 20% DCM/Hexane, red solid, Starting material used: 0.2 g (0.33 mmol) of **4r**, Product obtained: 0.15 g (0.14 mmol), Product yield: 42%, ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 4.0 Hz, 2H), 7.19 (s, 2H), 7.16 (d, *J* = 5.0 Hz, 2H), 4.39-4.47 (m, 8H), 1.76-1.85 (m, 8H), 1.12-1.19 (m, 24H), 0.76-0.80 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 147.4, 145.9, 143.4, 132.1, 131.4, 127.3, 121.5, 115.3, 113.6, 112.0, 111.3, 110.9, 50.7, 31.6, 30.4, 26.6, 22.7, 14.2, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₅₂H₅₀N₈O₄S₆Na: 1065.2177; Found: 1065.2170.

Characterization details of compound 6a

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, offwhite solid, Starting material used: 0.1 g (0.25 mmol) of **5a**, Product obtained: 0.07 g (0.18 mmol), Product yield: 71%, ¹H NMR (400 MHz, CDCl₃) δ 8.25-8.27 (m, 2H), 8.17-8.19 (m, 2H), 8.07 (s, 2H), 7.57-7.63 (m, 4H), 3.21-3.25 (m, 4H), 1.83-1.88 (m, 4H), 1.51-1.56 (m, 4H), 1.04 (t, *J* = 8.0 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 136.9, 135.6, 133.9, 131.3, 129.9, 126.7, 126.2, 125.6, 125.5, 119.9, 33.7, 30.1, 23.4, 14.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₈SNa: 419.1804; Found: 419.1801. Characterization details of compound 6b

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, white solid, Starting material used: 0.1 g (0.21 mmol) of **5c**, Product obtained: 0.065 g (0.14 mmol), Product yield: 65%, ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.0 Hz, 2H), 8.01 (s, 2H), 7.47 (d, *J* = 4.0 Hz, 2H), 7.29 (dd, *J* = 8.0, 2.5 Hz, 2H), 4.00 (s, 6H), 3.16-3.20 (m, 4H), 1.83-1.91 (m, 4H), 1.53-1.57 (m, 4H), 1.05 (t, *J* = 8.0 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 158.0, 135.7, 135.1, 132.4, 126.8, 124.9, 120.2, 117.9, 115.0, 105.5, 55.8, 33.8, 33.1, 23.3, 14.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₃₂O₂SNa: 479.2015; Found: 479.2010.

Characterization details of compound 6c

Purification: Column chromatography using silica gel (60-120 mesh), 10% DCM/Hexane, white solid, Starting material used: 0.1 g (0.24 mmol) of **5b**, Product obtained: 0.07 g (0.16 mmol), Product yield: 68%, ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.95 (s, 2H), 7.86 (s, 2H), 7.38-7.40 (m, 2H), 3.12-3.16 (m, 4H), 2.55 (s, 6H), 1.80 (t, *J* = 8.0 Hz, 4H), 1.47-1.51 (m, 4H), 0.98 (t, *J* = 8.0 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 136.2, 135.8, 135.3, 133.3, 131.4, 128.6, 127.9, 125.3, 124.8, 119.9, 33.6, 33.5, 23.4, 22.5, 14.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₃₂SN: 447.2117; Found: 447.2111

Purification: Column chromatography using silica gel (60-120 mesh), 20% DCM/Hexane, yellow solid, Starting material used: 0.15 g (0.34 mmol) of **5d**, Product obtained: 0.12 g (0.27 mmol), Product yield: 81%, ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 2H), 8.23 (d, *J* = 8.0 Hz, 2H), 8.08 (s, 2H), 7.76 (dd, *J* = 8.5, 1.5 Hz, 2H), 3.17-3.21 (m, 4H), 1.79-1.85 (m, 4H), 1.52-1.57 (m, 4H), 1.05 (t, *J* = 8.0 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 137.7, 135.6, 132.6, 131.6, 130.8, 130.2, 127.7, 126.5, 121.3, 119.7, 109.9, 33.6, 30.1, 23.3, 14.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₆N₂SNa: 469.1709; Found: 469.1701.

Characterization details of compound 6f

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, brownsolid, Starting material used: 0.15 g (0.2 mmol) of **5f**, Product obtained: 0.11 g (0.15 mmol), Product yield: 75%, ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.93 (s, 2H), 7.69 (d, *J* = 4.0 Hz, 2H), 7.37-7.40 (m, 2H), 7.30-7.32 (m, 8H), 7.20-7.26 (m, 8H), 7.07 (dd, *J* = 9.3, 5.3 Hz, 6H), 2.92-2.96 (m, 4H), 1.30-1.62 (m, 8H), 0.96 (d, *J* = 8.0 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 148.1, 145.9, 136.1, 135.1, 132.9, 132.2, 129.7, 126.2, 125.8, 124.8, 124.4, 123.4, 120.1, 118.8, 33.8, 32.3, 23.1, 14.5, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₅₂H₄₆N₂SNa: 753.3274; Found: 753.3269.

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, off white solid, Starting material used: 0.130 g (0.26 mmol) of **5h**, Product obtained: 0.09 g (0.19 mmol), Product yield: 72%, ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 8.0 Hz, 2H), 8.28 (s, 2H), 8.16 (d, *J* = 8.0 Hz, 2H), 7.98 (dd, *J* = 7.6, 1.5 Hz, 2H), 7.89 (d, *J* = 8.8 Hz, 2H), 7.62-7.67 (m, 4H), 3.61-3.65 (m, 4H), 2.01-2.07 (m, 4H), 1.61-1.70 (m, 4H), 1.10 (t, *J* = 8.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.1, 133.8, 131.9, 129.5, 129.1, 128.5, 127.7, 126.4, 126.2, 124.8, 123.6, 121.6, 38.9, 33.8, 23.5, 14.5, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₆H₃₂SNa: 519.2117; Found: 519.2111.

Characterization details of compound 6i

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, white solid,Starting material used: 0.150 g (0.30 mmol) of **5i**, Product obtained: 0.098 g (0.2 mmol), Product yield: 65%, ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, *J* = 8.0 Hz, 2H), 8.42 (s, 2H), 8.22 (d, *J* = 8.0 Hz, 2H), 8.07 (d, *J* = 8.0 Hz, 2H), 7.96-8.00 (m, 2H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 3.33-3.37 (m, 4H), 1.89-1.92 (m, 4H), 1.57-1.61 (m, 4H), 1.06 (t, *J* = 8.0 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 137.4, 134.3, 132.9, 130.8, 129.1, 128.5, 127.3, 127.0, 126.8, 126.7, 123.9, 120.9, 34.7, 34.0, 23.4, 14.5, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₆H₃₂SNa: 519.2117; Found: 519.2111.

Characterization details of compound 6j

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, white solid, Starting material used: 0.2 g (0.34 mmol) of **5j**, Product obtained: 0.14 g (0.23 mmol), Product yield: 70%, ¹H NMR (400 MHz, CDCl₃) δ 9.45 (d, *J* = 8.0 Hz, 2H), 8.70 (d, *J* = 8.0 Hz, 2H), 8.63 (d, *J* = 8.0 Hz, 2H), 8.44 (s, 2H), 8.41 (d, *J* = 8.0 Hz, 2H), 7.81-7.84 (m, 2H), 7.73 (t, *J* = 7.4 Hz, 2H), 7.64 (dd, *J* = 10.9, 4.0 Hz, 2H), 7.56 (m, 2H), 3.52-3.56 (m, 4H), 1.93-1.99 (m, 4H), 1.43-1.46 (m, 4H), 1.00 (t, *J* = 8.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.4, 134.3, 133.3, 131.7, 130.9, 130.5, 129.3, 128.1, 127.8, 127.6, 127.1, 126.9, 125.9, 123.8, 123.6, 122.6, 37.1, 34.9, 23.4, 14.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₄H₃₆SNa: 619.2430; Found: 619.2421.

Characterization details of compound 6m

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, white solid, Starting material used: 0.05 g (0.08 mmol) of **5m**, Product obtained: 0.032 g (0.048 mmol), Product yield: 65%, ¹H NMR (400 MHz, CDCl₃) δ 9.79 (dd, J = 7.1, 1.7 Hz, 2H), 8.79 (d, J = 8.0 Hz, 2H), 8.62 (s, 2H), 8.27 (dd, J = 11.9, 4.7 Hz, 4H), 8.21 (d, J = 8.0 Hz, 2H), 8.12 (s, 4H), 8.00 (t, J = 8.0 Hz, 2H), 3.71 (t, J = 8.0 Hz, 4H), 2.06-2.13 (m, 4H), 1.54-1.57 (m, 4H), 1.05 (t, J = 8.0 Hz, 6H), ¹³C NMR (126 MHz, CDCl₃) δ 138.2, 134.5, 134.2, 132.1, 131.7, 131.4, 130.1, 130.1, 128.8, 127.8, 127.6, 126.7, 126.6, 126.3, 125.1, 125.1, 124.9, 124.7, 123.2, 37.7, 30.1, 23.4, 14.5, 14.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₈H₃₆SNa: 667.2430; Found: 667.2425.

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, light green solid, Starting material used: 0.1 g (0.24 mmol) of **5n**, Product obtained: 0.075 g (0.183 mmol), Product yield: 75%, ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 4.0 Hz, 2H), 3.12 (t, *J* = 8.0 Hz, 4H), 1.79-1.83 (m, 4H), 1.47-1.50 (m, 4H), 1.01 (t, *J* = 8.0 Hz, 6H)

Characterization details of compound 6q

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, light yellow, Starting material used: 0.05 g (0.05 mmol) of **5q**, Product obtained: 0.04 g (0.03 mmol), Product yield: 70%, ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 2H), 7.56 (d, J = 5.0 Hz, 2H), 7.46 (d, J = 5.0 Hz, 2H), 4.35 (t, J = 5.0 Hz, 4H), 3.95 (d, J = 8.0 Hz, 4H), 3.66-3.69 (m, 4H), 1.88-1.92 (m, 8H), 1.79-1.83 (m, 8H), 1.35-1.40 (m, 12H), 1.26-1.29 (m, 12H), 0.91 (m, 18H).¹³C NMR (126 MHz, CDCl₃) δ 146.6, 145.9, 139.3, 135.6, 134.8, 134.1, 133.7, 131.0, 129.9, 129.8, 128.4, 126.4, 122.3, 121.5, 75.4, 75.1, 38.6, 33.9, 32.1, 32.0, 30.8, 30.2, 30.1, 26.3, 26.0, 23.1, 22.9, 14.5, 14.4, 14.3, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₆₀H₆₈O₈S₅Na: 1099.3415; Found: 1099.3411.

Purification: Column chromatography using silica gel (60-120 mesh), Hexane, off white solid,Starting material used: 0.3 g (0.73 mmol) of **6n**, Product obtained: 0.29 g (0.58 mmol), Product yield: 80%, ¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 2H), 7.79 (s, 2H), 7.52 (d, *J* = 5.0 Hz, 2H), 7.45-7.47 (m, 4H), 3.06 (t, *J* = 5.0 Hz, 4H), 2.96 (t, *J* = 5.0 Hz, 4H), 1.75-1.80 (m, 8H), 1.46-1.49 (m, 8H), 1.01 (t, *J* = 8.0 Hz, 12H).¹³C NMR (126 MHz, CDCl₃) δ 138.5, 137.9, 135.4, 134.9, 134.3, 133.9, 133.7, 133.1, 129.8, 128.8, 126.0, 124.9, 123.2, 118.3, 117.7, 113.5, 34.2, 34.1, 33.5, 33.4, 22.9, 22.9, 14.2, 14.2, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₂₃BrS₃Na: 509.0037; Found: 509.0031.

Characterization details of compound 5s

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, red solid,Starting material used: 0.05 g (0.09 mmol) of **3**, Product obtained: 0.07 g (0.07 mmol), Product yield: 76%, ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 2H), 7.81 (d, *J* = 4.0 Hz, 4H), 7.48 (d, *J* = 4.0 Hz, 2H), 7.45 (d, *J* = 4.0 Hz, 2H), 3.03-3.10 (m, 8H), 2.72 (t, *J* = 8.0 Hz, 4H), 1.69-1.88 (m, 8H), 1.48-1.58 (m, 4H), 1.26-1.31 (m, 4H), 0.96-1.10 (m, 8H), 0.84-0.90 (m, 18H), ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 137.9, 135.9, 135.3, 135.1, 134.5, 134.1, 133.9, 133.6, 130.3, 129.4, 124.9, 123.4, 122.9, 120.8, 118.2, 117.8, 114.4, 100.1, 76.2, 34.4, 33.7, 33.5, 32.3, 30.9,

30.1, 23.2, 22.7, 20.3, 14.4, 14.3, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₆₄H₆₄S₇Na: 1079.2951; Found: 1079.2947.

Characterization details of compound 6s

Purification: Column chromatography using silica gel (60-120 mesh), 5% DCM/Hexane, white solid,Starting material used: 0.05 g (0.09 mmol) of **5s**, Product obtained: 0.04 g (0.03 mmol), Product yield: 69%, ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 2H), 8.16 (s, 2H), 7.98 (s, 2H), 7.59 (d, *J* = 4.0 Hz, 2H), 7.54 (d, *J* = 4.0 Hz, 2H), 3.33-3.38 (m, 8H), 3.15 (t, *J* = 8.0 Hz, 4H), 1.85 (t, *J* = 8.0 Hz, 4H), 1.71-1.76 (m, 8H), 1.26-1.34 (m, 4H), 1.03 (t, *J* = 8.0 Hz, 8H), 0.86-0.93 (m, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 144.7, 142.7, 139.0, 137.5, 135.8, 135.5, 134.9, 134.3, 133.8, 133.6, 133.3, 131.1, 125.6, 123.9, 123.5, 120.4, 34.6, 34.5, 33.7, 32.3, 30.1, 30.1, 29.7, 23.2, 23.2, 14.5, 14.4, 14.4, HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₆₄H₆₄S₇Na: 1079.2951; Found: 1079.2945.

Table S2: Crystallographic data and structure refinement parameters

Compound	бј
Formula	$C_{44}H_{36}S$
Crystal system	Monoclinic
space group	P 1 21/n 1
Hall group	-P 2yn
a [Å]	12.8904(2)
b [Å]	7.48810(10)
c [Å]	31.9207(4)
α [deg]	90
β [deg]	101.5840(10)

γ [deg]	90
V [Å3]	3018.37(7)
Z	4
λ[Å]	1.54184
pcalcd	1.313
F[000]	1264
μ[mm-1]	1.186
θ [deg]	2.77-66.0970
index ranges	$-15 \le h \le 15$
	$-6 \le k \le 8$
	$-37 \le 1 \le 37$
T [K]	99.99(10)
R1	0.0338
wR2	0.0875
parameters	408
CCDC No.	2053380

(A1,A2)-(B1,B2)

(c) Four Sterioisomers (Pair of two enantiomers)

Figure S2: Crystallographic insights into the single crystal of 6j

Figure S3: UV-Visible spectra of (a) 6h, 6i, 6j and 6m (b) 6n, 6q and 6s

Computational details

All the calculations were performed using Gaussian 16 suite of programs.¹² The geometries of the molecules in their neutral, cationic and anionic states were fully optimized at B3LYP/6-31g(d). The single point energies of the optimized structures were also calculated at B3LYP/6-31g(d) level. The reorganization energies (hole and electron) were calculated by using adiabatic potential energy surfaces method. The transfer integrals for the different hopping pathways in the crystal structure were done at PW91PW91/6-31g level by fragment molecular orbital approach^{13,14} and using the AOMix program.¹⁵ The PW91PW91 functional has been successfully employed for the calculations of transfer integrals.¹⁶ The dimers for the calculations were extracted from the crystal structure of the molecule from Mercury software.¹⁷

The charge mobility is one of the most crucial parameters, which measures the performance of organic electronic devices. The anisotropic charge mobilities of the organic crystals were predicted based on the combination of first-principles quantum mechanics calculations¹⁸ and Marcus-Hush theory.^{19, 20}

The drift mobility, μ can be computed according to the Einstein relation, and is expressed as

where, *D* is diffusion coefficient, *e* is the electronic charge, k_b is the Boltzmann constant, T is the temperature (298), d_i is the centroid to centroid distance between the *i*th molecule and its neighbor, k_i is the hopping rate, *n* is the spatial dimensionality and $P_i = \frac{k_i}{\sum k_i}$ is the probability of the charge transfer to the *i*th pathway.

The charge hopping rate for each hopping event can be expressed by Marcus-Hush equation:

$$k = \frac{4\pi^2}{h} \cdot \frac{1}{\sqrt{4\pi\lambda k_b T}} \cdot V_{eff}^2 \cdot e^{-\frac{\lambda}{4k_b T}} \dots \dots \dots \dots \dots (3)$$

where *h* is Planck constant, λ is the internal reorganization energy, V_{eff} is the effective charge transfer integral between the molecules in the dimers given by:

$$V_{eff}^{e/h} = \frac{J_{RP} - \frac{1}{2}S_{RP}(H_{RR}/L_{RR} + H_{PP}/L_{PP})}{1 - S_{RP}^2} \dots \dots \dots \dots \dots \dots \dots \dots (4)$$

where, J_{RP} is the respective charge transfer integral values for hole or electrons, S_{RP} is the spatial overlap, H_{RR}/L_{RR} and H_{PP}/L_{PP} are the site energies of the fragments present in a particular dimer for hole/electron.

The reorganization energies of the compounds were calculated according to the following equation:

where, E^0M^0 , E^+M^+ and E^-M^- are the ground state energies of the neutral, cationic and anionic species respectively; E^0M^+ is the energy of the neutral state at the cationic geometry, E^0M^- is the energy of the neutral state at the anionic geometry, E^+M^0 is the energy of cationic state at the neutral geometry and E^-M^0 is the energy of anionic state at the neutral geometry

For organic crystals, the value of anisotropic charge mobility are calculated along certain direction, which depends on the orientation of the crystals. For this, we analyze the mobility of the organic crystals along each directions in terms of angles (γ_i) between the charge- hopping pathways and the plane of interest ($k_i d_i \cos \gamma_i$). Φ is the angle of orientation of the transport channel relative to the reference axis (such as crystallographic axes *a*, *b* or *c*), and { θ_i } is the hopping angles between the dimers present in the semiconductor crystals and the reference axes. Since, in a perfect crystal, the orientation of the surrounding molecules are identical; hence, taking a particular portion into consideration, the anisotropic mobility for the whole crystal can be expressed by the following equation:

where, $(\theta_i - \Phi)$ is the orientation angles of the dimer present in the crystals. Since, we are assuming that by considering a particular plane of interest, it would also be applicable for the whole crystal because the surrounding molecules are identical; hence the angle(γ_i) between the charge hopping pathways and interest crystal plane is taken as zero.

Figure S5: Charge transport pathways of compound 6j.

Table S3: Calculated spatial overlap (S), site energy (t), effective transfer integral (V_{eff}) and the maximum simulated anisotropic hole and electron mobility of compound.

Dimers	H_{RR}/L_{RR} (eV)	H_{PP}/L_{PP} (eV)	S_{RP}^{\Box}/S_{RP}^{e}	$V_{eff}^{\Box}/V_{eff}^{e}$ (meV)	$\mu_{\Phi}^{\Box}/\mu_{\Phi}^{e} (\mathrm{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1})$
P ₁	-4.716/	-4.935/	-0.0033/	28.7/	
	-1.826	-2.041	0.0008	-4.1	
T ₁	-4.815/	-4.815/	-0.0002/	1/	
	-1.931	-1.931	0.0	-0.2	
T ₂	-4.82/	-4.82/	0.0/	0.1/	0.1061/0.0049
	-1.934	-1.934	-0.0001	0.8	
P ₂	-4.935/	-4.716/	-0.0033/	28.7	
	-2.04	-1.826	0.0008	/-4.1	
T ₃	-4.71/	-4.83/	0.0/	0.4/	
	-1.82	-1.939	0.0003	-2.1	
T_4	-4.83/	-4.71/	0.0/	0.4/	
	-1.938	-1.82	0.0003	-2.1	

In the crystal structure of **6j**, two types of dimers are observed: Parallel (P) or face to face and Transverse(T) or edge to edge dimers. The value of the hopping distances between the dimers and the angles with respect to the reference axes of the crystal are depicted in the **Figure S5**. The intermolecular distances corresponding to the hopping pathways P₁, T₁, T₂, P₂, T₃, and T₄ are denoted as \mathbf{r}_{P_1} , \mathbf{r}_{T_1} , \mathbf{r}_{T_2} , \mathbf{r}_{P_2} , \mathbf{r}_{T_3} and \mathbf{r}_{T_4} and the corresponding angles are θ_{P_1} , θ_{T_1} , θ_{T_2} , θ_{P_2} , θ_{T_3} and θ_{T_4}

The computed values of the site energies (H, L), spatial overlap (S) and the effective charge transfer integral (V_{eff}) of the hopping pathways are summarized in the **Table S3**. The largest value for the effective electronic coupling for hole (V_{eff}^{\Box}) as well as for the electron (V_{eff}^{e}) was found to be 28.7 meV for a hole and -4.1 meV for an electron along the P₁ and P₂ pathways. This is because of the smaller intermolecular distance (7.16Å) and maximum overlap in the P₁ and P₂ paths. Among the transverse paths, the T₁ dimer has a larger V_{eff}^{\Box} value of 1 meV whereas, the T₃ and T₄ transverse path has the larger V_{eff}^{e} . This difference in effective electronic coupling along different transverse pathways arises because of different spatial overlaps of hole and electron along with the path T₁, T₃ and T₄. The T₁ has path more hole spatial overlap, whereas the T₃ and T₄ paths have more electron spatial overlap. The reorganization energy of the compound was calculated as shown in **Table S4**. The hole reorganization energy was found to be 0.295 eV and the electron reorganization energy was found to be 0.231 eV

Species[B3LYP/6-31G(d)]	Energy (in hartree)	$\lambda_h(eV)$	$\lambda_e(\mathrm{eV})$
$E^{0}M^{0}$	-2096.644961		
E^-M^0	-2096.660504		
E^+M^0	-2096.405265		
E^0M^+	-2096.640559	0.295	0.231
E^+M^+	-2096.411682		
$E^{0}M^{-}$	-2096.640689		
E ⁻ M ⁻	-2096.664693		

Table S4: Energies of different states of molecule and reorganization energy
Considering the effective intermolecular electronic coupling and the reorganization energies, the anisotropic charge carrier mobilities were calculated using the angular anisotropic mobility equation in Matlab software. The maximum hole (μ_{Φ}^{h}) and electron (μ_{Φ}^{e}) mobility values were found to be 0.1061 cm² V⁻¹ s⁻¹ and 0.0049 cm² V⁻¹ s⁻¹ respectively at an angle Φ =90°/270° for both hole and electron (**Figure S6**). Similarly, the minimum hole (μ_{Φ}^{h}) and electron (μ_{Φ}^{e}) mobility values were found to be 0.00399 cm² V⁻¹ s⁻¹ and 0.0015 cm² V⁻¹ s⁻¹respectively at an angle Φ =0°/180° for both hole and electron. Even though the values of reorganization energy of hole (0.295eV) is greater than that of electron (0.231eV), it is found that the anisotropic hole mobility is far greater than anisotropic electron mobility. This is because the hole has larger values of the effective electronic coupling (28.7meV) when compared to that of electron (-4.1meV) along with P₁ and P₂ pathways.

Figure S6: Anisotropic hole and electron mobility $(cm^2 V^{-1} s^{-1})$ of compound **6**j

Figure S7: ¹H NMR spectrum of 1 (CDCl₃, 500 MHz)

Figure S8: ¹³C NMRspectrum of 1 (126 MHz, CDCl₃)

Figure S9:¹H NMRspectrum of a mixture of **2** and **1** formed on using 2.1 equivalents n-BuLi (400 MHz, CDCl₃)

Figure S10: ¹H NMRspectrum of a mixture of **2** and **1** formed on carrying the reaction at elevated temperature (400 MHz, CDCl₃)

Figure S11: ¹H NMR spectrum of 2 (400 MHz, CDCl₃)

Figure S12: ¹³C NMR spectrum of 2 (101 MHz, CDCl₃)

Figure S13:¹H NMR spectrum of 3 (500 MHz, CDCl₃)

Figure S14:¹³C NMR spectrum of 3 (126 MHz, CDCl₃)

Figure S15:¹H NMR spectrum of 3a (400 MHz, CDCl₃)

Figure S16: ¹³C NMR spectrum of **3a** (101 MHz, CDCl₃)

Figure S17: ¹H NMR spectrum of 5a(400 MHz, CDCl₃)

Figure S19: ¹H NMR spectrum of 5b (400 MHz, CDCl₃)

Figure S22: ¹³C NMR spectrum of 5c (101 MHz, CDCl₃)

Figure S24: ¹³C NMR spectrum of 5d (101 MHz, CDCl₃)

Figure S25: ¹H NMR spectrum of 5e (400 MHz, CDCl₃)

Figure S26: ¹³C NMR spectrum of 5e (101 MHz, CDCl₃)

Figure S27: ¹H NMR spectrum of 5f (400 MHz, CDCl₃)

Figure S28: ¹³C NMR spectrum of 5f (101 MHz, CDCl₃)

Figure S30: ¹³C NMR spectrum of 5g (101 MHz, CDCl₃)

Figure S31: ¹H NMR spectrum of 5h (400 MHz, CDCl₃)

Figure S33:¹H NMR spectrum of 5i (400 MHz, CDCl₃)

Figure S34: ¹³C NMR spectrum of 5i (101 MHz, CDCl₃)

Figure S35: ¹H NMR spectrum of 5j (400 MHz, CDCl₃)

Figure S36: ¹³C NMR spectrum of 5j (101 MHz, CDCl₃)

Figure S37: ¹H NMR spectrum of 5k (400 MHz, CDCl₃)

Figure S38: ¹³C NMR spectrum of 5k(101 MHz, CDCl₃)

Figure S39: ¹H NMR spectrum of 5l (400 MHz, CDCl₃)

Figure S40: ¹³C NMR spectrum of 5l (101 MHz, CDCl₃)

Figure S41: ¹H NMR spectrum of 5m (400 MHz, CDCl₃)

Figure S42: ¹³C NMR spectrum of 5m (126 MHz, CDCl₃)

Figure S44: ¹H NMR spectrum of 50 (400 MHz, CDCl₃)

Figure S45: ¹³C NMR spectrum of 50 (400 MHz, CDCl₃)

Figure S46: ¹H NMR spectrum of 5p (400 MHz, CDCl₃)

Figure S47: ¹³C NMR spectrum of 5p (101 MHz, CDCl₃)

Figure S48: ¹H NMR spectrum of 5q (400 MHz, CDCl₃)

Figure S49: ¹³C NMR spectrum of 5q (126 MHz, CDCl₃)

Figure S50: ¹H NMR spectrum of 5r (400 MHz, CDCl₃)

Figure S51:¹³C NMR ¹³C NMR spectrum of 5r (101 MHz, CDCl₃)

Figure S52: ¹H NMR spectrum of 6a (400 MHz, CDCl₃)

Figure S54: ¹H NMR spectrum of 6b (400 MHz, CDCl₃)

Figure S55: ^{13C} NMR spectrum of 6b (126 MHz, CDCl₃)

Figure S56: ¹H NMR spectrum of 6c (400 MHz, CDCl₃)

Figure S58: ¹H NMR spectrum of 6d (400 MHz, CDCl₃)

Figure S59: ¹³C NMR spectrum of 6d (101 MHz, CDCl₃)

Figure S60: ¹H NMR spectrum of 6f (400 MHz, CDCl₃)

Figure S61: ¹³C NMR spectrum of 6f (101 MHz, CDCl₃)

Figure S62: ¹H NMR spectrum of 6h (400 MHz, CDCl₃)

Figure S63: ¹³C NMR spectrum of 6h (101 MHz, CDCl₃)

Figure S64: ¹H NMR spectrum of 6i (400 MHz, CDCl₃)

Figure S66:¹H NMR spectrum of 6j (400 MHz, CDCl₃)

Figure S67:¹³C NMR spectrum of 6j (101 MHz, CDCl₃)

Figure S68: ¹³C NMR spectrum of 6m (400 MHz, CDCl₃)

Figure S69: ¹³C NMR spectrum of 6m (126 MHz, CDCl₃)

Figure S70: ¹H NMR spectrum of 6n (400 MHz, CDCl₃)

FigureS74: ¹³C NMR spectrum of 4s (126 MHz, CDCl₃)

Figure S75: ¹H NMR spectrum of 5s (400 MHz, CDCl₃)

Figure S76: ¹³C NMR spectrum of 5s (101 MHz, CDCl₃)

Figure S77: ¹H NMR spectrum of 6s (400 MHz, CDCl₃)

Figure S78: ¹³C NMR spectrum of 6s(126 MHz, CDCl₃)

References:

¹ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* 2009, **42**, 339-341.

² G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.

³ C. T. J. Ferguson, N. Huber, K. Landfester, K. A. I. Zhang, *Angew. Chem. Int. Ed.* 2019, **58**, 31, 10567-10571.

⁴ K. Ohtsu, R. Hayami, T. Sagawa,; S. Tsukada, K. Yamamoto, T. Gunji, *Tetrahedron*, 2019, **75**, 130658.

⁵ J. Zhang, J. Wang, A. Sandberg, X. Wu, S. Nystrom, H. III Levine, P. Konradsson, P. Hammarstrom, B. Durbeej, M. Lindgren, *ChemPhysChem* 2018, **19**, 3001-3009.

⁶ Q. Lu, G. K. Kole, A. Friedrich, K. M. Buschbaum, Z. Liu, X. Yu, T. B. Marder, *J. Org. Chem.* 2020, **85**, 4256-4266.

⁷ H. Ziehlke, R. Fitzner, C. Koerner, R. Gresser, E. Reinold, P. Bauerle, K. Leo, M. K. Riede, *J. Phys. Chem. A*, 2011, **115**, 8437–8446.

⁸ A. Bedi, J. D. Winter, P. Gerbaux, G. Koeckelberghs, *J. Polym. Sci., Part A-1: Polym. Chem.* 2016, **54**, 1706-1712.

⁹ T-Y.Quan, Q. Li, Z. Wang, H. Ma, J. Dong, Z-S.Huang, *Dyes Pigm.* 2020, **173**, 107999.

¹⁰ X. Han, B. M. Stoltz, E. J.Corey, J. Am. Chem. Soc. 1999, **121**, 7600-7605.

¹¹ K. Mitsudo, H. Sato, A. Yamasaki, N. Kamimoto, J. Goto, H. Mandai, S. Suga, *Org. Lett.* 2015, **17**, 4858–4861.

¹² M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

¹³ K. Senthilkumar, F. Grozema, F. Bickelhaupt, L. Siebbeles, *J. Chem. Phys.* 2003, **119**, 9809–9817.

- ¹⁴ H. Li, J. L. Bredas, C. J. Lennartz, C. J. Chem. Phys. 2007, **126**, 164704
- ¹⁵ S. I. Gorelsky, S. Ghosh, E. I. Solomon, J. Am. Chem. Soc. 2006, **128**, 278–290.
- ¹⁶ J. Huang, M. Kertesz, *Chem. Phys. Lett.* 2004, **390**, 110–115.
- ¹⁷ C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G.

P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Cryst. 2020, 53, 226-235.

- ¹⁸ W.Q. Deng, L. Sun, J.D. Huang, S. Chai, S.H. Wen, K. L. Han, *Nat. Protoc.* 2015, **10**, 632–642.
- ¹⁹ R. A. Marcus, *I. J. Chem. Phys.* 1956, **24**, 966–978.
- ²⁰ N. S. Hush, J. Chem. Phys. 1958, 28, 962–972.