Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

## **Electronic Supplementary Information**

1,3-Diethynylbicyclo[1.1.0]tetrasilanes:
 π-Conjugated species with an unsupported Si–Si π-bond obtained from direct π-extension

Takumi Nukazawa and Takeaki Iwamoto\*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan Email: takeaki.iwamoto@tohoku.ac.jp

## Contents

- 1. Experimental Details S2
- 2. NMR Spectra S5
- 3. X-ray Diffraction Analysis S14
- 4. UV-vis Absorption Spectra S17
- 5. Computational Study S20
- 6. References S39

#### **1. Experimental Details**

#### **General Procedures**

All reactions involving air-sensitive compounds were performed under argon or nitrogen atmosphere using a high-vacuum line and a standard Schlenk techniques, or a glove box, as well as dry and oxygenfree solvents. Reactions at lower temperatures were performed using an EYELA PSL-1400 cryobath. NMR spectra were recorded on a Bruker Avance III 500 FT NMR spectrometer. The <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts were referenced to residual <sup>1</sup>H and <sup>13</sup>C shifts of the solvents:  $C_6D_6$  (<sup>1</sup>H:  $\delta$  7.16 and <sup>13</sup>C:  $\delta$  128.0), toluene- $d_8$  (<sup>1</sup>H:  $\delta$  2.08).<sup>S1</sup> The <sup>29</sup>Si NMR chemical shifts were relative to Me<sub>4</sub>Si in ppm ( $\delta$ 0.00). The sampling of air-sensitive compounds was carried out using a VAC NEXUS 100027 type glove box. Mass spectra were recorded on a Bruker Daltonics SolariX 9.4T spectrometer and JEOL JMS-T100GCV spectrometer. UV-vis spectra were recorded on JASCO V-770 and V-660 spectrometers. X-ray analysis was carried out using a Bruker AXS APEXII CCD diffractometer.

### Materials

Dry and degassed hexane, and THF were prepared using a VAC 103991 solvent purifier. Benzene- $d_6$  was dried by molecular sieves 4Å after degassing through three freeze-pump-thaw cycles. Toluene- $d_8$  and 3-methylpentane were dried in a tube covered with potassium mirror and then distilled under reduced pressure prior to use. Hexamethyldisiloxane was dried by lithium aluminum hydride after degassing through three freeze-pump-thaw cycles. 1,3-Dichlorobicyclo[1.1.0]tetrasilane **1** was prepared according to the published procedure.<sup>82</sup> 1-Octynyllithium and lithium phenylacetylide were prepared by the reactions of the corresponding alkyne with butyl lithium in THF. 1-Octyne, phenylacetylene and butyl lithium were commercially available and used without further purification.

## Synthesis of 1,3-Dioctynylbicyclo[1.1.0]tetrasilane 3 [TN864,865]



To a Schlenk tube (30 mL) equipped with a magnetic stir bar, 1,3-dichlorobicyclotetrasilane **1** (30.1 mg, 34.5  $\mu$ mol) and 1-octynyllithium (25.5 mg, 220  $\mu$ mol) were charged. To the Schlenk tube, dry and degassed THF (3.0 mL, cooled down to -27 °C) was added and the mixture was stirred at 0 °C for 6 days. The color of the resulting solution turned from orange to dark red. After the volatiles were removed in vacuo at 0 °C, the crude was extracted with hexane and the filtrate was concentrated in vacuo. Recrystallization from hexamethyldisiloxane provided reddish purple crystals of **3** (23.4 mg, 22.9  $\mu$ mol) in 66% yield.

**3**: reddish purple crystals; mp 174-176 °C (decomp.); <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 296 K) 0.53 (s, 72H, SiC*H*<sub>3</sub>), 0.91 (t, *J* = 7.0 Hz, 6H, C*H*<sub>3</sub> (octynyl)), 1.16-1.24 (m, 4H, C*H*<sub>2</sub> (octynyl)), 1.26-1.38 (m, 8H, C*H*<sub>2</sub> (octynyl)), 1.50 (tt, *J* = 7.5 Hz, *J* = 7.0 Hz, 4H, C*H*<sub>2</sub> (octynyl)), 2.05 (s, 8H, C*H*<sub>2</sub> (silacyclopentane ring)), 2.30 (t, *J* = 7.0 Hz, 4H, C*H*<sub>2</sub> (octynyl)); <sup>13</sup>C NMR (126 MHz, C<sub>6</sub>D<sub>6</sub>, 297 K) 5.3 (SiCH<sub>3</sub>), 13.8 (C), 14.5 (CH<sub>3</sub> (octynyl)), 21.6 (CH<sub>2</sub> (octynyl)), 23.2 (CH<sub>2</sub> (octynyl)), 28.6 (CH<sub>2</sub> (octynyl)), 29.2 (CH<sub>2</sub> (octynyl)), 31.9 (CH<sub>2</sub> (octynyl)), 34.9 (CH<sub>2</sub> (silacyclopentane ring)), 88.5 (SiC=), 130.3 (Hex*C*=); <sup>29</sup>Si NMR (99 MHz, C<sub>6</sub>D<sub>6</sub>, 296 K) –8.0 (*Si*), 4.7 (*Si*Me<sub>3</sub>), 83.3 (*Si*C=); UV-vis (hexane, 293 K)  $\lambda_{max}/nm$  ( $\varepsilon$ ) 518 (5.6 × 10<sup>3</sup>), 475 (sh, 4.6 × 10<sup>3</sup>), 340 (1.9 × 10<sup>3</sup>), 248 (4.1 × 10<sup>4</sup>), 212 (4.3 × 10<sup>4</sup>); UV-vis (KBr matrix, 293 K)  $\lambda_{max}/nm$  552, 340, 249; HRMS (FD) Calcd for C<sub>48</sub>H<sub>106</sub>Si<sub>12</sub> [M<sup>+</sup>], 1018.55257; Found, 1018.55232; Anal. Calcd for C<sub>48</sub>H<sub>106</sub>Si<sub>12</sub>: C, 56.50; H, 10.47%. Found: C, 56.22; H, 10.78%.

### Synthesis of 1,3-Diphenylethynylbicyclo[1.1.0]tetrasilane 4 [TN575,577]



To a Schlenk tube (30 mL) equipped with a magnetic stir bar, 1,3-dichlorobicyclotetrasilane **1** (30.0 mg, 34.4  $\mu$ mol) and lithium phenylacetylide (17.9 mg, 142  $\mu$ mol) were charged. To the Schlenk tube, dry and degassed THF (5.0 mL, cooled down to  $-27 \,^{\circ}$ C) was added and the mixture was stirred at 0  $^{\circ}$ C for 2 days. The color of the resulting suspension turned from orange to purple. After the volatiles were removed in vacuo at 0  $^{\circ}$ C, the crude was extracted with hexane and the filtrate was concentrated in vacuo. The residue was washed with hexane to provide a blue solid of **4** (12.9 mg, 12.8  $\mu$ mol) in 37% yield.

4: a blue solid; mp 63-65 °C (decomp.); <sup>1</sup>H NMR (500 MHz, C<sub>6</sub>D<sub>6</sub>, 295 K) 0.54 (s, 72H, SiC*H*<sub>3</sub>), 2.05 (s, 8H, C*H*<sub>2</sub>), 6.94-6.99 (m, 2H, aryl), 7.01-7.05 (m, 4H, aryl), 7.64-7.68 (m, 4H, aryl); <sup>13</sup>C NMR (126 MHz, C<sub>6</sub>D<sub>6</sub>, 296 K) 5.2 (SiCH<sub>3</sub>), 14.1 (*C*), 34.9 (*C*H<sub>2</sub>), 98.6 (Si*C*=), 123.8 (aryl), 127.2 (Ph*C*=), 128.9 (aryl), 129.5 (aryl), 131.7 (aryl); <sup>29</sup>Si NMR (99 MHz, C<sub>6</sub>D<sub>6</sub>, 294 K) –6.1 (*Si*), 4.9 (*Si*Me<sub>3</sub>), 91.5 (*Si*C=); UV-vis (hexane, 293 K)  $\lambda_{max}/nm$  ( $\varepsilon$ ) 560 (7.8× 10<sup>3</sup>), 503 (sh, 4.9 × 10<sup>3</sup>), 312 (2.4 × 10<sup>4</sup>), 298 (sh, 2.2 × 10<sup>4</sup>), 277 (2.2 × 10<sup>4</sup>), 247 (3.8 × 10<sup>4</sup>); UV-vis (KBr matrix, 293 K)  $\lambda_{max}/nm$  602, 317, 247, 214; HRMS (APCI\_positive) Calcd for C<sub>48</sub>H<sub>90</sub>Si<sub>12</sub> [M<sup>+</sup>], 1002.42682; Found, 1002.42718; Anal. Calcd for C<sub>48</sub>H<sub>90</sub>Si<sub>12</sub>: C, 57.41; H, 9.03%. Found: C, 57.60; H, 9.22%.

### 2. NMR Spectra



**Figure S1.** <sup>1</sup>H NMR spectrum of **3** in C<sub>6</sub>D<sub>6</sub> at 296 K ( $\bullet$  = C<sub>6</sub>HD<sub>5</sub>, × = hexamethyldisiloxane).



Figure S2. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **3** in C<sub>6</sub>D<sub>6</sub> in 297 K ( $\bullet$  = C<sub>6</sub>D<sub>6</sub>).



Figure S3. <sup>13</sup>C (DEPT135) NMR spectrum of 3 in C<sub>6</sub>D<sub>6</sub> at 297 K ( $\bullet = C_6D_6$ ).



**Figure S4.** <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of **3** in  $C_6D_6$  at 296 K.



Figure S5. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of 3 in C<sub>6</sub>D<sub>6</sub> at 296 K.



Figure S6. <sup>29</sup>Si $\{^{1}H\}$  NMR spectrum of 3 in C<sub>6</sub>D<sub>6</sub> at 296 K.



Figure S7. <sup>1</sup>H-<sup>29</sup>Si HMBC NMR spectrum of **3** in C<sub>6</sub>D<sub>6</sub> at 296 K.



Figure S8. <sup>1</sup>H NMR spectrum of 4 in C<sub>6</sub>D<sub>6</sub> at 295 K ( $\bullet$  = C<sub>6</sub>HD<sub>5</sub>).



**Figure S9.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of **4** in C<sub>6</sub>D<sub>6</sub> in 296 K ( $\bullet = C_6D_6$ , **x** = hexane).



Figure S10. <sup>13</sup>C (DEPT135) NMR spectrum of 4 in  $C_6D_6$  at 294 K (• =  $C_6D_6$ ).



Figure S11. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of 4 in C<sub>6</sub>D<sub>6</sub> at 294 K.



Figure S12. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum of 4 in C<sub>6</sub>D<sub>6</sub> at 294 K.



Figure S13. <sup>29</sup>Si $\{^{1}H\}$  NMR spectrum of 4 in C<sub>6</sub>D<sub>6</sub> at 294 K.



Figure S14.  $^{1}H^{-29}Si$  HMBC NMR spectrum of 4 in C<sub>6</sub>D<sub>6</sub> at 293 K.



**Figure S15.** <sup>1</sup>H NMR spectra of **3** in toluene- $d_8$  at variable temperatures (× = C<sub>7</sub>D<sub>7</sub>H).

| Temperature/°C | <sup>29</sup> Si | n <sup>a,b</sup> | note              |             |  |
|----------------|------------------|------------------|-------------------|-------------|--|
| Temperature/ C | Bridgehead Si    | Bridge Si        | SiMe <sub>3</sub> | note        |  |
| 60             | 87.6             | -7.3             | 4.8               | TN880_NMR27 |  |
| 50             | 86.3             | -7.5             | 4.6               | TN880_NMR25 |  |
| 40             | 85.3             | -7.7             | 4.6               | TN880_NMR23 |  |
| 30             | 84.4             | -8.0             | 4.6               | TN880_NMR21 |  |
| 25             | 83.4             | -8.1             | 4.5               | TN880_NMR2  |  |
| 0              | 80.4             | -8.6             | 4.6               | TN880_NMR18 |  |
| -10            | 78.9             | -8.8             | 4.6               | TN880_NMR17 |  |
| -20            | 77.1             | -9.2             | 4.6               | TN880_NMR9  |  |
| -30            | 75.3             | -9.4             | 4.5               | TN880_NMR15 |  |
| -40            | 73.2             | -9.6             | 4.4               | TN880_NMR5  |  |

 Table S1. <sup>29</sup>Si Chemical Shifts of 3 at Variable Temperatures.

a. These values were obtained by measurement of the <sup>1</sup>H-<sup>29</sup>Si HMBC 2D NMR spectra in toluene-*d*<sub>8</sub>.

b. Spectral resolution is 0.39 ppm.



**Figure S16**. A plot of observed <sup>29</sup>Si chemical shift of **3** vs measurement temperature (a: bridgehead Si, b: bridge Si, c: SiMe<sub>3</sub>).

#### 3. X-ray Diffraction Analysis

Single crystals suitable for X-ray diffraction study were obtained by recrystallization in an inert atmosphere using the following conditions; from hexamethyldisiloxane at room temperature for **3**, from toluene at -27 °C for **4**. For data collection, the single crystals coated by Apiezon grease were mounted on the glass fibre and then transferred to the cold nitrogen gas stream of the diffractometer. X-ray diffraction data were collected on a Bruker AXS APEX II CCD diffractometer using a graphite monochromated Mo-K $\alpha$  radiation. An empirical absorption correction based on the multiple measurements of equivalent reflections was applied using the program SADABS<sup>S3</sup> and the structures were solved by direct methods and refined by full-matrix least squares against  $F^2$  using all data (SHELXL-2018/3).<sup>S4</sup> Molecular structure was analysed by Yadokari-XG software.<sup>S5</sup>

Crystal data of **3** [tn87a] (100 K) [CCDC-2095782]: C<sub>48</sub>H<sub>106</sub>Si<sub>12</sub>; Fw 1020.40; triclinic; *P*-1, *a* = 11.9028(5) Å, *b* = 12.0034(5) Å, *c* = 12.1944(5) Å, *a* = 79.1540(10)°, *β* = 81.4440(10)°, *γ* = 62.7870(10)°, *V* = 1517.81(11) Å<sup>3</sup>, *Z* = 1, *D*<sub>calc</sub> = 1.116 Mg/m<sup>3</sup>, *R*1 = 0.0304 (*I* > 2 $\sigma$ (*I*)), *wR*2 = 0.0786 (all data), GOF = 1.045.

Crystal data of **4** [tn53b] (100 K) [CCDC-2095783]: C<sub>48</sub>H<sub>90</sub>Si<sub>12</sub>; Fw 1004.27; monoclinic;  $P_{21/c}$ , a = 10.9137(5) Å, b = 23.4184(12) Å, c = 11.4842(6) Å,  $\beta = 90.4870(10)^{\circ}$ , V = 2935.0(3) Å<sup>3</sup>, Z = 2,  $D_{calc} = 1.136$  Mg/m<sup>3</sup>, R1 = 0.0400 ( $I > 2\sigma(I)$ ), wR2 = 0.1013 (all data), GOF = 1.076.



**Figure S17.** ORTEPs of **3** (a: top view, b: side view). Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms were omitted for clarity.



**Figure S18.** ORTEPs of **4** (a: top view, b: side view). Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms were omitted for clarity.

## 4. UV-vis Absorption Spectrum [TN575,840,865,867]



Figure S19. UV-Vis absorption spectrum of 3 in hexane at room temperature. [TN865]

Table S2. UV-vis Absorption Bands of 3 in Hexane at Room Temperature

| Absorption maximum / nm | $\varepsilon$ / cm <sup>-1</sup> mol <sup>-1</sup> dm <sup>3</sup> |
|-------------------------|--------------------------------------------------------------------|
| 518                     | 5,600                                                              |
| 475 sh <sup>a)</sup>    | 4,600                                                              |
| 340                     | 1,900                                                              |
| 248                     | 41,000                                                             |
| 212                     | 43,000                                                             |

a) sh = shoulder

\_



Figure S20. UV-Vis absorption spectrum of 3 in a KBr matrix at room temperature. [TN867]



**Figure S21.** UV-Vis absorption spectrum of **4** in hexane at room temperature. [TN575] **Table S3.** UV-vis Absorption Bands of **4** in Hexane at Room Temperature

| Absorption maximum / nm | $\varepsilon$ / cm <sup>-1</sup> mol <sup>-1</sup> dm <sup>3</sup> |
|-------------------------|--------------------------------------------------------------------|
| 560                     | 7,800                                                              |
| 503 sh <sup>a)</sup>    | 4,900                                                              |
| 312                     | 24,000                                                             |
| 298 sh <sup>a)</sup>    | 22,000                                                             |
| 277                     | 22,000                                                             |
| 247                     | 38,000                                                             |

\_



Figure S22. UV-Vis absorption spectrum of 4 in a KBr matrix at room temperature. [TN840]



Figure S23. Variable-temperature UV-Vis absorption spectra of 3 in 3-methylpentane at 40 K intervals

from 293 K to 93 K. [TN868]



Figure S24. Variable-temperature UV-Vis absorption spectra of 4 in 3-methylpentane at 40 K intervals

from 293 K to 93 K. [TN600]

#### 5. Computational Study

All theoretical calculations were performed using a Gaussian  $09^{86}$  program or GRRM14 program.<sup>87</sup> Geometry optimization was carried out at the  $\omega$ B97XD/6-311G(d) (**3**<sub>opt</sub>) and  $\omega$ B97XD/6-311G(d) (SCRF = heptane) (**5**<sub>p</sub>, **5**<sub>c</sub>, **5**<sub>c</sub>', and **5**<sub>c</sub>'') level of theory. Frontier Kohn-Sham orbitals and their energy levels of **3**<sub>cry</sub>, **4**<sub>cry</sub>, **5**<sub>p</sub>, and **5**<sub>c</sub> were shown in Figure S26. The atomic coordinates and energies of the optimized structures are summarized in the file named "optimized\_structures.xyz". The selected structural parameters of **3**<sub>cry</sub>, **3**<sub>opt</sub>, **5**<sub>p</sub>, **5**<sub>c</sub>, **5**<sub>c</sub>', and **5**<sub>c</sub>'' are summarized in Tables S4 and S5. Isotropic chemical shielding tensors were calculated at the GIAO/M06L/6-311+G(2df,p) level of theory (Table S6). Absolute isotropic shielding tensors of <sup>29</sup>Si nucleus in tetramethylsilane were calculated to be 361.4 (GIAO/M06L/6-311+G(2df,p)). Natural bond orbital (NBO)<sup>88</sup> calculations of **3**<sub>cry</sub> and **4**<sub>cry</sub> were performed at the  $\omega$ B97XD/6-311G(d) level of theory. Excitation energies and oscillator strengths of **3**<sub>cry</sub>, **4**<sub>cry</sub>, **5**<sub>p</sub>, and **5**<sub>c</sub> were calculated at the M06-2X/6-311G(d) level of theory (Tables S7-S10).



**Figure S25.** Molecular structures (side view) of  $5_p$ ,  $5_c$ ,  $5_c$ ', and  $5_c$ '' optimized at the  $\omega$ B97XD/6-311G(d) (SCRF = heptane) level of theory.



Table S4. Selected Structural Parameters of 3<sub>cry</sub> and 3<sub>opt</sub>

a. optimized at the ωB97XD/6-311G(d) level of theory.

## Table S5. Selected Structural Parameters of $5_p$ , $5_c$ , $5_c$ ' and $5_c$ ''



| Cpd              |                                  |                                  |                                  |                                  | distance/Å                       |                                 |                                 |           |               |            |            | angle/°                                         |           |                                                                    | $E^{\mathrm{b,c}}$                   | $\Delta E^{c,e}$         | note       |
|------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|-----------|---------------|------------|------------|-------------------------------------------------|-----------|--------------------------------------------------------------------|--------------------------------------|--------------------------|------------|
|                  | Si <sup>1</sup> -Si <sup>2</sup> | Si <sup>1</sup> -Si <sup>3</sup> | Si <sup>1</sup> -Si <sup>4</sup> | Si <sup>2</sup> –Si <sup>3</sup> | Si <sup>2</sup> -Si <sup>4</sup> | Si <sup>1</sup> -C <sup>1</sup> | Si <sup>2</sup> -C <sup>3</sup> | $C^1-C^2$ | $C^{3}-C^{4}$ | C1-Si1-Si2 | C3-Si2-Si1 | C <sup>2</sup> -C <sup>1</sup> -Si <sup>1</sup> | C4-C3-Si2 | Si <sup>3</sup> -Si <sup>1</sup> -Si <sup>2</sup> -Si <sup>4</sup> | $[\Delta G]^{\mathrm{b},\mathrm{d}}$ | $[\Delta\Delta G]^{d,e}$ | (job name) |
| DFT <sup>a</sup> |                                  |                                  |                                  |                                  |                                  |                                 |                                 |           |               |            |            |                                                 |           |                                                                    |                                      |                          |            |
| 5p               | 2.67959                          | 2.29820                          | 2.30696                          | 2.30696                          | 2.29820                          | 1.81452                         | 1.81452                         | 1.21138   | 1.21138       | 178.373    | 178.373    | 177.273                                         | 177.273   | 180.000                                                            | -4972.787402                         | 0.0                      | TN116db    |
|                  |                                  |                                  |                                  |                                  |                                  |                                 |                                 |           |               |            |            |                                                 |           |                                                                    | [-4972.896005]                       | [0.0]                    |            |
| 5c               | 2.54519                          | 2.30283                          | 2.31023                          | 2.31023                          | 2.30283                          | 1.81026                         | 1.81026                         | 1.21045   | 1.21045       | 148.865    | 148.865    | 177.316                                         | 177.316   | 158.584                                                            | -4972.790314                         | -7.6                     | TN117bb    |
|                  |                                  |                                  |                                  |                                  |                                  |                                 |                                 |           |               |            |            |                                                 |           |                                                                    | [-4972.897349]                       | [-3.5]                   |            |
| 5e'              | 2.52079                          | 2.29977                          | 2.31678                          | 2.31467                          | 2.29824                          | 1.80992                         | 1.80837                         | 1.21003   | 1.20977       | 148.704    | 145.460    | 175.900                                         | 179.070   | 155.161                                                            | -4972.786789                         | 1.6                      | TN121bb    |
|                  |                                  |                                  |                                  |                                  |                                  |                                 |                                 |           |               |            |            |                                                 |           |                                                                    | [-4972.895845]                       | [0.4]                    |            |
| 5e″              | 2.63320                          | 2.32112                          | 2.32606                          | 2.32606                          | 2.32112                          | 1.81198                         | 1.81198                         | 1.21016   | 1.21016       | 142.545    | 142.545    | 176.549                                         | 176.549   | 171.213                                                            | -4972.783104                         | 11.3                     | TN124bb    |
|                  |                                  |                                  |                                  |                                  |                                  |                                 |                                 |           |               |            |            |                                                 |           |                                                                    | [-4972.888189]                       | [20.5]                   |            |

a. optimized at the  $\omega$ B97XD/6-311G(d) (SCRF = heptane) level of theory. b. in hartree. c. Zero-point vibrational energy corrections were included. d. at 298.15 K. e. in kJ mol<sup>-1</sup>.



**Figure S26.** Frontier Kohn-Sham orbitals of  $3_{cry}$ ,  $4_{cry}$ ,  $5_p$ , and  $5_c$  at the M06-2X/6-311G(d) level of theory.

| Compound                               | SiMe <sub>3</sub>        | Bridge Si     | Bridgehead Si | note              |
|----------------------------------------|--------------------------|---------------|---------------|-------------------|
| <b>3</b> <sub>cry</sub> <sup>a,b</sup> | 7.5 (353.9) <sup>c</sup> | -17.1 (378.5) | 137.2 (224.2) | nmrTN120_tn87a2   |
| 4 <sub>cry</sub> <sup>a,b</sup>        | 8.0 (353.4) <sup>c</sup> | -15.9 (377.3) | 129.9 (231.5) | nmr_TN100_tn53b_a |
| $5_{\mathbf{p}}^{a,b}$                 | 3.6 (357.8) <sup>c</sup> | -21.3 (382.7) | 133.7 (227.7) | nmrTN116db1       |
| <b>5</b> <sub>c</sub> <sup>a,b</sup>   | 2.7 (358.7) <sup>c</sup> | -15.3 (376.7) | -25.7 (387.1) | nmrTN117bb1       |
| <b>5</b> <sub>c</sub> ′ <sup>a,b</sup> | 3.6 (357.8) <sup>c</sup> | -16.8 (378.2) | -29.4 (390.8) | nmrTN121bb1       |
|                                        |                          | -17.5 (378.9) | -44.9 (406.3) |                   |
| 5°'' <sup>a,b</sup>                    | 3.7 (357.7) <sup>c</sup> | 18.2 (343.2)  | -27.4 (388.8) | nmrTN124bb1       |

Table S6. Theoretical Isotropic <sup>29</sup>Si Chemical Shifts of 3<sub>cry</sub>, 4<sub>cry</sub>, 5<sub>p</sub>, 5<sub>c</sub>, 5<sub>c</sub>', and 5<sub>c</sub>''

a. GIAO/M06L/6-311+G(2df,p) level of theory. Absolute chemical shift for tetramethylsilane = 361.4.

b. the absolute chemical shift is shown in the parentheses. c. average values.



Figure S27. Experimental UV-vis absorption spectrum of **3** in a KBr matrix at room temperature (black) and theoretical band positions of  $3_{cry}$  calculated at the TD-M06-2X/6-311G(d) level of theory (red bar). [tdTN120\_tn87a2]



Figure S28. Experimental UV-vis absorption spectrum of 4 in a KBr matrix at room temperature (black) and theoretical band positions of  $4_{cry}$  calculated at the TD-M06-2X/6-311G(d) level of theory (blue bar). [td\_TN100\_tn53b\_d]



Figure S29. Experimental UV-vis absorption spectrum of **3** in 3-methylpentane at 93 K (black) and theoretical band positions of  $5_p$  (blue bar) and  $5_c$  (red bar) calculated at the TD-M06-2X/6-311G(d) level of theory. [tdTN116db1, tdTN117bb1]

# **Table S7.** Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of $\mathbf{3}_{cry}$

| 1 | (The 281 <sup>th</sup> | orbital is high | est occunied | lorhital   | shown in | Figure | S26) | [tdTN120 | tn87a2         |
|---|------------------------|-----------------|--------------|------------|----------|--------|------|----------|----------------|
|   | 1110 201               | oronar is mgn   | csi occupico | i oi oi ai | SHOWIT   | riguic | 5201 | 10111120 | $uno/a \Delta$ |

| (                       |                | $\mathcal{O}$               | 1                |               |          | $\mathcal{O}$            |                 | / L       |            |             |          |
|-------------------------|----------------|-----------------------------|------------------|---------------|----------|--------------------------|-----------------|-----------|------------|-------------|----------|
| Excited State           | 1:             | Singlet-A                   | 2.1894 eV        | 566.29 nm     | f=0.1218 | Excited State            | 13:             | Singlet-A | 4.7722 eV  | 259.80 nm   | f=0.0142 |
| <s**2>=0.000</s**2>     |                | ů.                          |                  |               |          | <s**2>=0.000</s**2>      |                 |           |            |             |          |
| 281 -> 282              |                | 0.70400                     |                  |               |          | 255 -> 282               |                 | -0.12009  |            |             |          |
| This state for opti     | imizatio       | n and/or second-order co    | rrection.        |               |          | 269 -> 282               |                 | -0.26273  |            |             |          |
| Total Energy, E(T       | D-HF/1         | D-KS) = -5365.400347        | 99               |               |          | 270 -> 282               |                 | -0.11321  |            |             |          |
| Copying the excit       | ed stat        | e density for this state as | the 1-particle R | hoCI density. |          | 274 -> 282               |                 | 0.31873   |            |             |          |
|                         |                |                             |                  |               |          | 276 -> 282               |                 | -0.21253  |            |             |          |
| Excited State           | 2:             | Singlet-A                   | 2.4748 eV        | 500.98 nm     | f=0.0000 | 277 -> 282               |                 | -0.28704  |            |             |          |
| <s**2>=0.000</s**2>     |                | ÿ                           |                  |               |          | 281 -> 286               |                 | 0.31550   |            |             |          |
| 280 -> 282              |                | 0.69830                     |                  |               |          | 281 -> 287               |                 | 0.12555   |            |             |          |
|                         |                |                             |                  |               |          |                          |                 |           |            |             |          |
| Excited State           | 3:             | Singlet-A                   | 3.7583 eV        | 329.90 nm     | f=0.0211 | Excited State            | 14:             | Singlet-A | 4.8005 eV  | 258.27 nm   | f=0.0142 |
| <s**2>=0.000</s**2>     |                | 5                           |                  |               |          | <s**2>=0.000</s**2>      |                 | 5         |            |             |          |
| 272 -> 282              |                | -0.11190                    |                  |               |          | 255 -> 282               |                 | 0.11407   |            |             |          |
| 276 -> 282              |                | -0.14545                    |                  |               |          | 269 -> 282               |                 | 0.23811   |            |             |          |
| 279 -> 282              |                | 0.34366                     |                  |               |          | 270 -> 282               |                 | 0.10089   |            |             |          |
| 281 -> 284              |                | 0.56640                     |                  |               |          | 274 -> 282               |                 | 0.52493   |            |             |          |
|                         |                |                             |                  |               |          | 277 -> 282               |                 | -0.14357  |            |             |          |
| Excited State           | 4:             | Singlet-A                   | 3.8429 eV        | 322.63 nm     | f=0.0034 | 281 -> 286               |                 | -0.19927  |            |             |          |
| <s**2>=0.000</s**2>     |                | Ű                           |                  |               |          | 281 -> 287               |                 | -0.13629  |            |             |          |
| 272 -> 282              |                | -0.10406                    |                  |               |          |                          |                 |           |            |             |          |
| 279 -> 282              |                | 0.51078                     |                  |               |          | Excited State            | 15:             | Singlet-A | 4.8771 eV  | 254.21 nm   | f=0.0782 |
| 281 -> 284              |                | -0.38319                    |                  |               |          | <s**2>=0.000</s**2>      |                 | 5         |            |             |          |
| 281 -> 286              |                | -0.18874                    |                  |               |          | 269 -> 282               |                 | 0.14900   |            |             |          |
|                         |                |                             |                  |               |          | 280 -> 285               |                 | 0.20220   |            |             |          |
| Excited State           | 5:             | Singlet-A                   | 3.8683 eV        | 320.51 nm     | f=0.0000 | 281 -> 286               |                 | -0.10455  |            |             |          |
| <s**2>=0 000</s**2>     | 0.             | olingiot it                 | 0.0000 01        | 020101 1111   | 1 0.0000 | 281 -> 287               |                 | 0.61429   |            |             |          |
| 281 -> 283              |                | 0.69629                     |                  |               |          | 201 / 207                |                 | 0.01127   |            |             |          |
| 201 / 200               |                | 0.07027                     |                  |               |          | Excited State            | 16 <sup>.</sup> | Singlet-A | 5.1165 eV  | 242.32 nm   | f=0.0000 |
| Excited State           | 6 <sup>.</sup> | Singlet-A                   | 3.9886 eV        | 310.85 nm     | f=0.0005 | <\$**2>=0.000            |                 |           |            |             |          |
| <s**2>=0 000</s**2>     | 0.             | olingiot it                 | 0.7000 01        | 010100 1111   | 1 0.0000 | 280 -> 284               |                 | 0.66376   |            |             |          |
| 2/-0.000                |                | -0 11870                    |                  |               |          | 200 > 204                |                 | 0.11058   |            |             |          |
| 207-> 202               |                | 0.15346                     |                  |               |          | 201 -> 200               |                 | 0.11050   |            |             |          |
| 272 -> 202              |                | 0.16207                     |                  |               |          | Excited State            | 17.             | Singlet-A | 5 2006 eV  | 238.41 nm   | f=0.0000 |
| 274 -> 202              |                | 0.56065                     |                  |               |          | <\$**2>=0.000            | 17.             | Singici-A | J.2000 CV  | 230.41 1111 | 1-0.0000 |
| 270 -> 202              |                | 0.30003                     |                  |               |          | 22=0.000                 |                 | -0 22107  |            |             |          |
| 270 -> 202              |                | 0.13700                     |                  |               |          | 237 -> 202               |                 | 0.22107   |            |             |          |
| 217 -> 202              |                | 0.17700                     |                  |               |          | 204 -> 202               |                 | 0.21220   |            |             |          |
| 201 -> 200              |                | 0.14294                     |                  |               |          | 200 -> 202               |                 | -0.29307  |            |             |          |
| Excited State           | 7.             | Singlet A                   | 4.0500 01/       | 204 12 pm     | f 0.0000 | 271 -> 202               |                 | -0.23462  |            |             |          |
| EXCILEU SIGIE           | 7.             | Singlet-A                   | 4.0300 ev        | 300.13 1111   | 1=0.0000 | 273 -> 202               |                 | -0.17290  |            |             |          |
| <5 2>=0.000             |                | 0.700/0                     |                  |               |          | 280 -> 284               |                 | -0.11020  |            |             |          |
| 281 -> 285              |                | 0.70000                     |                  |               |          | 281 -> 288               |                 | 0.30380   |            |             |          |
| Evolted State           | 0.             | Cinal at A                  | 4 5022           | 270 52        | £ 0.0000 | Evolted State            | 10.             | Cinglet A | E 204/ aV/ | 220.22      | £ 0.0022 |
| EXCILED SIBLE           | 8:             | Singlet-A                   | 4.5832 eV        | 270.52 1111   | I=0.0000 | EXCILED SIBLE            | 18:             | Singlet-A | 5.2040 eV  | 238.22 1111 | I=0.0033 |
| <5 2>=0.000             |                | 0 40277                     |                  |               |          | <5 2>=0.000              |                 | 0.17445   |            |             |          |
| 270 -> 202              |                | 0.09377                     |                  |               |          | 270 -> 202               |                 | 0.17443   |            |             |          |
| Excited State           | 0.             | Singlet A                   | 14547 01         | 244.24 pm     | f 0.0225 | 272 -> 282               |                 | 0.08/02   |            |             |          |
| EXCILED SIBLE           | 9:             | Singlet-A                   | 4.0047 eV        | 200.30 1111   | I=0.0325 | 270 -> 282               |                 | -0.21049  |            |             |          |
| <5 2>=0.000             |                | 0.001/4                     |                  |               |          | 279 -> 282               |                 | 0.11074   |            |             |          |
| 274 -> 282              |                | 0.22104                     |                  |               |          | 280 -> 283               |                 | 0.11051   |            |             |          |
| 270 -> 282              |                | -0.21434                    |                  |               |          | Evolted State            | 10.             | Cinglet A | E 2404 oV  | 22E 40 nm   | f 0.011E |
| 211 -> 202              |                | 0.09000                     |                  |               |          | EXCILEU SIGLE            | 19.             | Singlet-A | 5.2004 eV  | 233.09 1111 | 1=0.0115 |
| 280 -> 583              |                | -0.12008                    |                  |               |          | <3 Z>=U.UUU<br>200 - 205 |                 | 0 22200   |            |             |          |
| Excited State           | 10.            | Singlet A                   | 4 7E24 oV        | 240.90 pm     | f 0 0144 | 200 -> 200               |                 | -0.23300  |            |             |          |
| C**2 -0 000             | 10.            | Singlet-A                   | 4.7524 EV        | 200.07 1111   | 1-0.0104 | 201 -> 209               |                 | 0.20070   |            |             |          |
| > 2>=0.000<br>255 - 202 |                | 0 1/390                     |                  |               |          | 201 -> 291               |                 | 0.00004   |            |             |          |
| 200 -> 282              |                | 0.14300                     |                  |               |          | Evolted State            | 20.             | Cinalat A | 5 3700 AV  | 225 22 nm   | f_0 0000 |
| 207 -> 282              |                | 0.31310                     |                  |               |          | EXUILEU SIGIE            | 20:             | Singlet-A | 0.2104 GA  | 230.23 HIT  | 1=0.0000 |
| 270 -> 282              |                | 0.14809                     |                  |               |          | <5 Z>=0.000              |                 | 0 10117   |            |             |          |
| 2/9 -> 282              |                | 0.1/90/                     |                  |               |          | 200 -> 282               |                 | 0.12117   |            |             |          |
| 201 -> 280              |                | 0.40103                     |                  |               |          | 257 -> 282               |                 | -U. 14U10 |            |             |          |
| 281 -> 289              |                | U.15284                     |                  |               |          | 208 -> 282               |                 | 0.104/9   |            |             |          |
| Evolted Chat-           | 11             | Classicia                   | 47/05 -11        | 2/0 //        | £ 0.0000 | 2/1 -> 282               |                 | 0.28056   |            |             |          |
| Excited State           | 11:            | Singlet-A                   | 4./0U5 eV        | ∠o∪.44 NM     | 1=0.0000 | 2/3 -> 282               |                 | 0.27884   |            |             |          |
| <5 2>=0.000             |                | 0.1/4/2                     |                  |               |          | 281 -> 288               |                 | 0.483/3   |            |             |          |
| 256 -> 282              |                | -U. 10403                   |                  |               |          | English of the           | 21              | 01-11-1   | E 0104 1   | 222.00      | £ 0.0000 |
| 257 -> 282              |                | U.34415                     |                  |               |          | Excited State            | 21:             | Singlet-A | 5.3194 eV  | 233.08 nm   | 1=0.0000 |
| 269 -> 288              |                | 0.111/2                     |                  |               |          | <5~2>=0.000              |                 | 0.15550   |            |             |          |
| 273 -> 282              |                | 0.43028                     |                  |               |          | 256 -> 282               |                 | 0.15550   |            |             |          |
| 275 -> 282              |                | -0.30276                    |                  |               |          | 257 -> 282               |                 | -0.21130  |            |             |          |
|                         | 40             |                             |                  | 0/0.57        | ( 0.05   | 259 -> 282               |                 | -0.16/37  |            |             |          |
| Excited State           | 12:            | Singlet-A                   | 4.7677 eV        | 260.05 nm     | f=0.0000 | 264 -> 282               |                 | 0.29810   |            |             |          |
| <s**2>=0.000</s**2>     |                |                             |                  |               |          | 266 -> 282               |                 | 0.17928   |            |             |          |
| 257 -> 282              |                | 0.13972                     |                  |               |          | 268 -> 282               |                 | -0.23600  |            |             |          |
| 273 -> 282              |                | 0.23849                     |                  |               |          | 271 -> 282               |                 | 0.17912   |            |             |          |
| 275 -> 282              |                | 0.62722                     |                  |               |          | 273 -> 282               |                 | 0.28890   |            |             |          |
|                         |                |                             |                  |               |          | 281 -> 288               |                 | -0.26773  |            |             |          |

|                          |     |           |           |             |          | 261 -> 282               |      | 0.52110    |           |             |          |
|--------------------------|-----|-----------|-----------|-------------|----------|--------------------------|------|------------|-----------|-------------|----------|
| Excited State            | 22: | Singlet-A | 5.3742 eV | 230.70 nm   | f=0.0880 | 263 -> 282               |      | 0.12175    |           |             |          |
| <s**2>=0.000</s**2>      |     | 5         |           |             |          | 266 -> 282               |      | -0.26795   |           |             |          |
| 258 -> 282               |     | -0.32587  |           |             |          | 268 -> 282               |      | -0.23503   |           |             |          |
| 260 -> 282               |     | -0.10605  |           |             |          |                          |      |            |           |             |          |
| 265 -> 282               |     | -0.17302  |           |             |          | Excited State            | 32:  | Singlet-A  | 5.7361 eV | 216.15 nm   | f=0.0014 |
| 267 -> 282               |     | 0.20476   |           |             |          | <s**2>=0.000</s**2>      |      |            |           |             |          |
| 270 -> 282               |     | 0.10968   |           |             |          | 258 -> 282               |      | 0.33816    |           |             |          |
| 2/2 -> 282               |     | -0.16309  |           |             |          | 262 -> 282               |      | 0.19579    |           |             |          |
| 2/4 -> 282               |     | 0.1319/   |           |             |          | 265 -> 282               |      | 0.16902    |           |             |          |
| 280 -> 283               |     | 0.42104   |           |             |          | 207 -> 282               |      | 0.48797    |           |             |          |
| Excited State            | 23. | Singlet-A | 5.4201 eV | 228 75 nm   | f=0.0000 | 270-> 202                |      | 0.20304    |           |             |          |
| <s**2>=0.000</s**2>      | 20. | Singlet M | 5.4201 64 | 220.75 1111 | 1-0.0000 | Excited State            | 33:  | Singlet-A  | 5.8225 eV | 212.94 nm   | f=0.0000 |
| 256 -> 282               |     | -0.17279  |           |             |          | <s**2>=0.000</s**2>      |      | J. J.      |           |             |          |
| 257 -> 282               |     | 0.23432   |           |             |          | 257 -> 282               |      | 0.12520    |           |             |          |
| 263 -> 282               |     | 0.24785   |           |             |          | 259 -> 282               |      | 0.12420    |           |             |          |
| 271 -> 282               |     | 0.52129   |           |             |          | 261 -> 282               |      | 0.22432    |           |             |          |
| 273 -> 282               |     | -0.21217  |           |             |          | 263 -> 282               |      | -0.31923   |           |             |          |
|                          |     |           |           |             |          | 264 -> 282               |      | 0.10886    |           |             |          |
| Excited State            | 24: | Singlet-A | 5.4285 eV | 228.39 nm   | f=0.0781 | 266 -> 282               |      | 0.43929    |           |             |          |
| <5~2>=0.000              |     | 0 12702   |           |             |          | 280 -> 287               |      | -0.25035   |           |             |          |
| 200 -> 282               |     | -0.13783  |           |             |          | Excited State            | 24.  | Singlet A  | 5 9449 oV | 212.12 nm   | f_0.0027 |
| 202 -> 202               |     | -0.13404  |           |             |          | <s**2>=0.000</s**2>      | 54.  | Sillyiet-A | J.0440 EV | 212.13 1111 | 1-0.0027 |
| 269 -> 282               |     | -0.19029  |           |             |          | 254 -> 282               |      | 0.10154    |           |             |          |
| 270 -> 282               |     | 0.52955   |           |             |          | 260 -> 282               |      | 0.20497    |           |             |          |
| 272 -> 282               |     | -0.14596  |           |             |          | 262 -> 282               |      | 0.60464    |           |             |          |
| 280 -> 283               |     | -0.12165  |           |             |          | 267 -> 282               |      | -0.23013   |           |             |          |
| 280 -> 285               |     | 0.17297   |           |             |          | 269 -> 282               |      | -0.12183   |           |             |          |
|                          |     |           |           |             |          |                          |      |            |           |             |          |
| Excited State            | 25: | Singlet-A | 5.4490 eV | 227.53 nm   | f=0.4592 | Excited State            | 35:  | Singlet-A  | 5.8712 eV | 211.17 nm   | f=0.0000 |
| <s**2>=0.000</s**2>      |     |           |           |             |          | <s**2>=0.000</s**2>      |      |            |           |             |          |
| 265 -> 282               |     | -0.12161  |           |             |          | 261 -> 282               |      | 0.19107    |           |             |          |
| 267 -> 282               |     | 0.12269   |           |             |          | 266 -> 282               |      | 0.20316    |           |             |          |
| 2/0 -> 282               |     | -0.115//  |           |             |          | 280 -> 287               |      | 0.57925    |           |             |          |
| 280 -> 285               |     | 0.56332   |           |             |          | 280 -> 289               |      | 0.15781    |           |             |          |
| 281 -> 287               |     | -0.17080  |           |             |          | Excited State            | 26.  | Singlet A  | 5 9979 oV | 210.50 pm   | f_0.0000 |
| 201 -> 207               |     | 0.18586   |           |             |          | <\$**2>=0.000            | 50.  | Jiligici-A | 5.0070 CV | 210.30 1111 | 1-0.0000 |
| 201 / 271                |     | 0110000   |           |             |          | 281 -> 290               |      | 0.40951    |           |             |          |
| Excited State            | 26: | Singlet-A | 5.4997 eV | 225.44 nm   | f=0.0000 | 281 -> 292               |      | -0.35153   |           |             |          |
| <s**2>=0.000</s**2>      |     | 5         |           |             |          | 281 -> 293               |      | 0.13856    |           |             |          |
| 280 -> 286               |     | 0.62932   |           |             |          | 281 -> 298               |      | 0.19211    |           |             |          |
| 280 -> 289               |     | 0.19356   |           |             |          | 281 -> 301               |      | 0.23320    |           |             |          |
|                          |     |           |           |             |          | 281 -> 302               |      | 0.17527    |           |             |          |
| Excited State            | 27: | Singlet-A | 5.5168 eV | 224.74 nm   | f=0.4792 | -                        |      |            |           |             |          |
| <5**2>=0.000             |     | 0.0/110   |           |             |          | Excited State            | 37:  | Singlet-A  | 5.9040 eV | 210.00 nm   | t=0.0269 |
| 258 -> 282               |     | 0.26110   |           |             |          | <5 2>=0.000              |      | 0 20022    |           |             |          |
| 203 -> 202               |     | -0.10871  |           |             |          | 200 -> 202<br>260 -> 282 |      | -0.138/1   |           |             |          |
| 280 -> 283               |     | 0.48146   |           |             |          | 281 -> 289               |      | 0.34130    |           |             |          |
| 280 -> 285               |     | 0.13678   |           |             |          | 281 -> 291               |      | 0.23239    |           |             |          |
|                          |     |           |           |             |          | 281 -> 294               |      | -0.21222   |           |             |          |
| Excited State            | 28: | Singlet-A | 5.5678 eV | 222.68 nm   | f=0.0000 | 281 -> 296               |      | -0.28585   |           |             |          |
| <s**2>=0.000</s**2>      |     |           |           |             |          | 281 -> 308               |      | -0.11670   |           |             |          |
| 259 -> 282               |     | -0.19050  |           |             |          | 281 -> 312               |      | -0.14696   |           |             |          |
| 261 -> 282               |     | 0.18507   |           |             |          | -                        |      |            |           |             |          |
| 263 -> 282               |     | 0.146/8   |           |             |          | Excited State            | 38:  | Singlet-A  | 5.9217 eV | 209.37 nm   | t=0.0055 |
| 264 -> 282               |     | 0.3/050   |           |             |          | <5 2>=0.000              |      | 0 54005    |           |             |          |
| 200 -> 282<br>268 ~ 262  |     | 0.10314   |           |             |          | 200 -> 282<br>262 ~ 202  |      | 0.00000    |           |             |          |
| 200 -> 202               |     | 0.40450   |           |             |          | 202 -> 202<br>267 -> 282 |      | 0.16987    |           |             |          |
| Excited State            | 29: | Singlet-A | 5.5727 eV | 222.48 nm   | f=0.0465 | 270 -> 282               |      | 0.11938    |           |             |          |
| <s**2>=0.000</s**2>      |     |           |           |             |          | 281 -> 289               |      | -0.16570   |           |             |          |
| 258 -> 282               |     | -0.35256  |           |             |          |                          |      |            |           |             |          |
| 265 -> 282               |     | 0.56120   |           |             |          | Excited State            | 39:  | Singlet-A  | 5.9401 eV | 208.73 nm   | f=0.0000 |
| 267 -> 282               |     | 0.12014   |           |             |          | <s**2>=0.000</s**2>      |      |            |           |             |          |
| 270 -> 282               |     | -0.14496  |           |             |          | 259 -> 282               |      | 0.52188    |           |             |          |
|                          |     |           |           |             |          | 261 -> 282               |      | -0.23785   |           |             |          |
| Excited State            | 30: | Singlet-A | 5.7273 eV | 216.48 nm   | f=0.0000 | 263 -> 282               |      | 0.19947    |           |             |          |
| <5-2>=0.000              |     | 0 110/2   |           |             |          | 264 -> 282               |      | 0.29277    |           |             |          |
| 201 -> 282               |     | 0.11943   |           |             |          | 271 -> 282               |      | -U.14Z41   |           |             |          |
| 203 -> 282<br>264 -> 282 |     | -0 29406  |           |             |          | Excited State            | 40.  | Singlet-A  | 59778 eV  | 207.41 nm   | f=0 01₫8 |
| 266 -> 282               |     | 0.33956   |           |             |          | <s**2>=0.000</s**2>      | -10. | Singici-A  | 5.7770 CV | 201.71 100  | 1-0.0140 |
| 271 -> 282               |     | -0.12746  |           |             |          | 281 -> 286               |      | -0.22638   |           |             |          |
|                          |     |           |           |             |          | 281 -> 289               | ,    | 0.41552    |           |             |          |
| Excited State            | 31: | Singlet-A | 5.7308 eV | 216.35 nm   | f=0.0000 | 281 -> 291               |      | 0.19039    |           |             |          |
| <s**2>=0.000</s**2>      |     |           |           |             |          | 281 -> 294               |      | 0.20051    |           |             |          |
| 256 -> 282               |     | 0.11080   |           |             |          | 281 -> 296               |      | 0.25911    |           |             |          |
| 250 -> 282               |     | 0.20557   |           |             |          | 281 -> 297               |      | -0.13955   |           |             |          |

| 281 -> 312                           |     | 0.13744   |           |            |             |          | Excited State<br><s**2>=0.000</s**2> | 51: | Singlet-A | 6.3483 eV | 195.30 nm   | f=0.0052 |
|--------------------------------------|-----|-----------|-----------|------------|-------------|----------|--------------------------------------|-----|-----------|-----------|-------------|----------|
| Excited State<br><s**2>=0.000</s**2> | 41: | Singlet-A | 6.0316 eV | V 2        | 205.56 nm   | f=0.0071 | 252 -> 282                           |     | 0.68416   |           |             |          |
| 254 -> 282                           |     | 0 30898   |           |            |             |          | Excited State                        | 52  | Singlet-A | 6.3488 eV | 195.29 nm   | f=0 0000 |
| 255 -> 282                           |     | -0.20883  |           |            |             |          | <\$**2>=0.000                        | 52. | Singlet M | 0.0400 CV | 175.27 1111 | 1-0.0000 |
| 269 -> 282                           |     | 0.27003   |           |            |             |          | 253 -> 282                           |     | 0 45835   |           |             |          |
| 280 -> 288                           |     | -0 25077  |           |            |             |          | 258 -> 283                           |     | -0 10717  |           |             |          |
| 281 -> 294                           |     | -0 11275  |           |            |             |          | 276 -> 285                           |     | -0 17048  |           |             |          |
| 281 -> 296                           |     | -0.11273  |           |            |             |          | 270 -> 203                           |     | 0 12927   |           |             |          |
| 201 9 270                            |     | 0.12000   |           |            |             |          | 277 -> 285                           |     | -0.38768  |           |             |          |
| Excited State                        | 12. | Singlet-A | 6 0/76 0  |            | 005.01 nm   | f=0.0000 | 277 > 203                            |     | 0.11576   |           |             |          |
| <s**2>=0.000</s**2>                  | 42. | Singici-A | 0.0470 01 | v 2        | 203.01 1111 | 1-0.0000 | 201 -> 272                           |     | 0.11370   |           |             |          |
| 281 -> 290                           |     | 0 49939   |           |            |             |          | Excited State                        | 53  | Singlet-A | 63696 eV  | 194.65 nm   | f=0.0090 |
| 281 -> 292                           |     | 0.30250   |           |            |             |          | <\$**2>=0.000                        | 00. | ongiotit  | 0.0070 01 | 171100 1111 | 1 0.0070 |
| 281 -> 293                           |     | -0.29032  |           |            |             |          | 255 -> 282                           |     | 0 11659   |           |             |          |
| 281 -> 301                           |     | -0 11985  |           |            |             |          | 258 -> 291                           |     | -0 13504  |           |             |          |
| 201 / 001                            |     | 0.11700   |           |            |             |          | 259 -> 283                           |     | 0 20693   |           |             |          |
| Excited State                        | 43· | Singlet-A | 6 1234 e\ | 1 3        | 202.48 nm   | f=0.0000 | 264 -> 283                           |     | -0 19193  |           |             |          |
| <s**2>=0.000</s**2>                  |     |           |           |            |             |          | 268 -> 283                           |     | 0.16221   |           |             |          |
| 256 -> 282                           |     | 0.57212   |           |            |             |          | 278 -> 285                           |     | 0.13284   |           |             |          |
| 257 -> 282                           |     | 0.36532   |           |            |             |          | 280 -> 288                           |     | 0.31499   |           |             |          |
| 261 -> 282                           |     | -0.11366  |           |            |             |          | 281 -> 295                           |     | 0.14857   |           |             |          |
|                                      |     |           |           |            |             |          | 281 -> 297                           |     | 0.10067   |           |             |          |
| Excited State                        | 44: | Singlet-A | 6.1365 e\ | v 2        | 202.04 nm   | f=0.0134 | 281 -> 306                           |     | 0.18517   |           |             |          |
| <s**2>=0.000</s**2>                  |     |           |           |            |             |          |                                      |     |           |           |             |          |
| 254 -> 282                           |     | 0.54152   |           |            |             |          | Excited State                        | 54: | Singlet-A | 6.4165 eV | 193.23 nm   | f=0.0000 |
| 255 -> 282                           |     | 0.24840   |           |            |             |          | <s**2>=0.000</s**2>                  |     |           |           |             |          |
| 260 -> 282                           |     | -0.15662  |           |            |             |          | 278 -> 284                           |     | -0.11736  |           |             |          |
| 272 -> 282                           |     | -0.15633  |           |            |             |          | 281 -> 290                           |     | -0.14307  |           |             |          |
| 279 -> 284                           |     | -0.10229  |           |            |             |          | 281 -> 292                           |     | 0.15494   |           |             |          |
| 280 -> 288                           |     | 0.19146   |           |            |             |          | 281 -> 293                           |     | -0.35959  |           |             |          |
|                                      |     |           |           |            |             |          | 281 -> 298                           |     | 0.45208   |           |             |          |
| Excited State                        | 45: | Singlet-A | 6.1659 e\ | V 2        | 201.08 nm   | f=0.0025 | 281 -> 301                           |     | 0.14164   |           |             |          |
| <s**2>=0.000</s**2>                  |     | J         |           |            |             |          | 281 -> 302                           |     | 0.14926   |           |             |          |
| 255 -> 282                           |     | 0.45960   |           |            |             |          | 281 -> 303                           |     | -0.11872  |           |             |          |
| 280 -> 288                           |     | -0.43761  |           |            |             |          |                                      |     |           |           |             |          |
|                                      |     |           |           |            |             |          | Excited State                        | 55: | Singlet-A | 6.4448 eV | 192.38 nm   | f=0.6027 |
| Excited State                        | 46: | Singlet-A | 6.1921 e\ | V 2        | 200.23 nm   | f=0.0000 | <s**2>=0.000</s**2>                  |     | 5.0       |           |             |          |
| <s**2>=0.000</s**2>                  |     | 5         |           |            |             |          | 276 -> 284                           |     | 0.48132   |           |             |          |
| 281 -> 292                           |     | 0.40174   |           |            |             |          | 277 -> 284                           |     | 0.17457   |           |             |          |
| 281 -> 293                           |     | 0.47295   |           |            |             |          | 279 -> 284                           |     | 0.29965   |           |             |          |
| 281 -> 298                           |     | 0.21848   |           |            |             |          | 281 -> 294                           |     | 0.22084   |           |             |          |
|                                      |     |           |           |            |             |          |                                      |     |           |           |             |          |
| Excited State                        | 47: | Singlet-A | 6.2427 eV | <b>V</b> 1 | 198.61 nm   | f=0.1251 | Excited State                        | 56: | Singlet-A | 6.4861 eV | 191.15 nm   | f=0.1196 |
| <s**2>=0.000</s**2>                  |     |           |           |            |             |          | <s**2>=0.000</s**2>                  |     |           |           |             |          |
| 272 -> 284                           |     | -0.11497  |           |            |             |          | 276 -> 284                           |     | -0.16703  |           |             |          |
| 274 -> 284                           |     | -0.10660  |           |            |             |          | 277 -> 284                           |     | -0.10127  |           |             |          |
| 276 -> 284                           |     | -0.29830  |           |            |             |          | 279 -> 284                           |     | -0.10664  |           |             |          |
| 279 -> 284                           |     | 0.54962   |           |            |             |          | 281 -> 294                           |     | 0.45652   |           |             |          |
|                                      |     |           |           |            |             |          | 281 -> 295                           |     | 0.38594   |           |             |          |
| Excited State                        | 48: | Singlet-A | 6.2710 eV | <b>V</b> 1 | 197.71 nm   | f=0.0000 | 281 -> 297                           |     | 0.12275   |           |             |          |
| <s**2>=0.000</s**2>                  |     |           |           |            |             |          | 281 -> 312                           |     | -0.10000  |           |             |          |
| 256 -> 282                           |     | -0.10329  |           |            |             |          |                                      |     |           |           |             |          |
| 257 -> 282                           |     | 0.18860   |           |            |             |          | Excited State                        | 57: | Singlet-A | 6.5251 eV | 190.01 nm   | f=0.0000 |
| 258 -> 283                           |     | 0.31777   |           |            |             |          | <s**2>=0.000</s**2>                  |     |           |           |             |          |
| 259 -> 291                           |     | -0.12378  |           |            |             |          | 251 -> 282                           |     | -0.18996  |           |             |          |
| 264 -> 291                           |     | 0.11510   |           |            |             |          | 276 -> 283                           |     | 0.20785   |           |             |          |
| 272 -> 283                           |     | -0.15035  |           |            |             |          | 276 -> 285                           |     | -0.33431  |           |             |          |
| 274 -> 283                           |     | 0.14571   |           |            |             |          | 280 -> 289                           |     | -0.18940  |           |             |          |
| 276 -> 283                           |     | -0.14234  |           |            |             |          | 280 -> 291                           |     | 0.40090   |           |             |          |
| 277 -> 283                           |     | 0.15638   |           |            |             |          |                                      |     |           |           |             |          |
| 279 -> 283                           |     | 0.10981   |           |            |             |          | Excited State                        | 58: | Singlet-A | 6.5429 eV | 189.50 nm   | f=0.0000 |
| 281 -> 298                           |     | 0.10463   |           |            |             |          | <s**2>=0.000</s**2>                  |     |           |           |             |          |
|                                      |     |           |           |            |             |          | 241 -> 282                           |     | -0.12968  |           |             |          |
| Excited State                        | 49: | Singlet-A | 6.3279 e\ | <b>V</b> 1 | 195.93 nm   | f=0.0000 | 249 -> 282                           |     | 0.11904   |           |             |          |
| <s**2>=0.000</s**2>                  |     |           |           |            |             |          | 251 -> 282                           |     | 0.62977   |           |             |          |
| 253 -> 282                           |     | -0.13453  |           |            |             |          | 280 -> 291                           |     | 0.10763   |           |             |          |
| 272 -> 283                           |     | -U.15667  |           |            |             |          |                                      |     | <b>O</b>  |           | 100.05      | (        |
| 274 -> 283                           |     | -0.15691  |           |            |             |          | Excited State                        | 59: | Singlet-A | 6.5593 eV | 189.02 nm   | t=0.0012 |
| 276 -> 283                           |     | -0.30566  |           |            |             |          | <s**2>=0.000</s**2>                  |     | 0.44746   |           |             |          |
| 279 -> 283                           |     | 0.46880   |           |            |             |          | 278 -> 285                           |     | 0.11/49   |           |             |          |
| 280 -> 286                           |     | 0.11150   |           |            |             |          | 281 -> 294                           |     | -0.29651  |           |             |          |
| 280 -> 291                           |     | 0.12557   |           |            |             |          | 281 -> 295                           |     | 0.31558   |           |             |          |
| Even I Colo                          | 50  | <u> </u>  | ( 00000   | ,          |             | 6 0 0000 | 281 -> 296                           |     | 0.41927   |           |             |          |
| Excited State                        | 50: | Singlet-A | 6.3397 eV | V 1        | 195.57 nm   | t=0.0000 | 281 -> 305                           |     | 0.13950   |           |             |          |
| <s**2>=0.000</s**2>                  |     | 0.47000   |           |            |             |          |                                      |     | <b>O</b>  |           | 107.0.      | (        |
| 253 -> 282                           |     | 0.47822   |           |            |             |          | Excited State                        | 60: | Singlet-A | 6.6176 eV | 187.36 nm   | f=0.0000 |
| 276 -> 285                           |     | 0.1/198   |           |            |             |          | <s**2>=0.000</s**2>                  |     |           |           |             |          |
| 279 -> 285                           |     | 0.42/21   |           |            |             |          | 275 -> 284                           |     | 0.11561   |           |             |          |
| 280 -> 291                           |     | 0.10679   |           |            |             |          | 276 -> 283                           |     | -0.12246  |           |             |          |
|                                      |     |           |           |            |             |          | 276 -> 285                           |     | -0.14926  |           |             |          |

| 278 -> 284          | 0.5614   | 5       |           |           |          | 281 -> 304          |     | 0.16239   |           |           |          |
|---------------------|----------|---------|-----------|-----------|----------|---------------------|-----|-----------|-----------|-----------|----------|
| 281 -> 298          | 0.1848   | 6       |           |           |          | 281 -> 311          |     | 0.10881   |           |           |          |
| Excited State       | 61: Sir  | nglet-A | 6.6351 eV | 186.86 nm | f=0.0162 | Excited State       | 63: | Singlet-A | 6.6607 eV | 186.14 nm | f=0.0311 |
| <s**2>=0.000</s**2> |          |         |           |           |          | <s**2>=0.000</s**2> |     |           |           |           |          |
| 274 -> 284          | -0.12304 |         |           |           |          | 274 -> 284          |     | -0.11544  |           |           |          |
| 276 -> 284          | -0.11128 |         |           |           |          | 277 -> 284          |     | 0.37873   |           |           |          |
| 277 -> 284          | 0.2462   | 1       |           |           |          | 278 -> 285          |     | 0.10598   |           |           |          |
| 278 -> 285          | 0.3153   | 2       |           |           |          | 281 -> 295          |     | 0.21505   |           |           |          |
| 281 -> 295          | -0.28166 |         |           |           |          | 281 -> 296          |     | -0.22102  |           |           |          |
| 281 -> 297          | 0.3121   |         |           |           |          | 281 -> 297          |     | -0.37123  |           |           |          |
| 281 -> 306          | 0.1259   | 5       |           |           |          | 281 -> 305          |     | -0.10152  |           |           |          |
|                     |          |         |           |           |          | 281 -> 308          |     | 0.12553   |           |           |          |
| Excited State       | 62: Si   | nglet-A | 6.6603 eV | 186.15 nm | f=0.0001 |                     |     |           |           |           |          |
| <s**2>=0.000</s**2> |          |         |           |           |          | Excited State       | 64: | Singlet-A | 6.6885 eV | 185.37 nm | f=0.0073 |
| 275 -> 284          | 0.1467   | 1       |           |           |          | <s**2>=0.000</s**2> |     |           |           |           |          |
| 276 -> 283          | 0.1540   | 3       |           |           |          | 276 -> 284          |     | -0.11548  |           |           |          |
| 276 -> 285          | 0.2821   | 3       |           |           |          | 277 -> 284          |     | 0.36359   |           |           |          |
| 278 -> 284          | 0.1757   | 7       |           |           |          | 278 -> 283          |     | 0.16130   |           |           |          |
| 279 -> 283          | 0.1539   | 1       |           |           |          | 278 -> 285          |     | -0.34302  |           |           |          |
| 281 -> 300          | 0.2886   | 3       |           |           |          | 281 -> 296          |     | 0.12392   |           |           |          |
| 281 -> 301          | 0.2014   | 1       |           |           |          | 281 -> 297          |     | 0.23002   |           |           |          |
| 281 -> 302          | 0.2000   | 2       |           |           |          | 281 -> 306          |     | -0.15532  |           |           |          |
|                     |          |         |           |           |          |                     |     |           |           |           |          |

# **Table S8.** Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of $4_{cry}$

(The 273<sup>th</sup> orbital is highest occupied orbital shown in Figure S26) [td\_TN100\_tn53b\_d]

| Excited State       | 1:             | Singlet-A                   | 2.0683 eV           | 599.46 nm      | f=0.2531 | <s**2>=0.000<br/>273 -&gt; 275</s**2> |     | -0 38431   |           |             |          |
|---------------------|----------------|-----------------------------|---------------------|----------------|----------|---------------------------------------|-----|------------|-----------|-------------|----------|
| 273 -> 274          |                | 0 70253                     |                     |                |          | 273 -> 277                            |     | 0.41740    |           |             |          |
| This state for onti | mizatio        | n and/or second-order c     | orrection           |                |          | 273 -> 280                            |     | -0 12836   |           |             |          |
| Total Energy E(T)   | D-HE/I         | D-KS) = -5355.85581         | 669                 |                |          | 273 -> 281                            |     | -0 35826   |           |             |          |
| Conving the excite  | ed stat        | e density for this state as | s the 1-particle RI | hoCI density   |          | 213 7 201                             |     | 0.00020    |           |             |          |
| oopjing tilo oxor   | ou olui        |                             | o allo i paraolo ra | liber density. |          | Excited State                         | ٩.  | Singlet-A  | 4 2873 eV | 289.19 nm   | f=0 4400 |
| Excited State       | 2.             | Singlet-A                   | 2.4338 eV           | 509.42 nm      | f=0.0000 | <s**2>=0.000</s**2>                   |     | ongiotiti  | 112070 01 | 20/11/ 1111 | 1 0.1100 |
| <s**2>=0.000</s**2> | 2.             | Singlet M                   | 2.4550 61           | 307.42 1111    | 1-0.0000 | 265 -> 274                            |     | 0 24723    |           |             |          |
| 272 -> 274          |                | 0.69128                     |                     |                |          | 263 > 274                             |     | -0.24980   |           |             |          |
| 212 2214            |                | 0.07120                     |                     |                |          | 260 -> 274                            |     | -0.20276   |           |             |          |
| Excited State       | 3.             | Singlet-A                   | 3.5927 eV           | 345.10 nm      | f=0.0000 | 207 -> 274                            |     | 0.53926    |           |             |          |
| <s**2>=0.000</s**2> | 5.             | Singlet M                   | 3.3727 64           | 545.10 mm      | 1-0.0000 | 211 2214                              |     | 0.00720    |           |             |          |
| 273 -> 275          |                | 0 54687                     |                     |                |          | Excited State                         | 10. | Singlet-A  | 1 3311 AV | 286.26 nm   | f=0.0000 |
| 273 -> 273          |                | 0.39382                     |                     |                |          | <\$**2>=0.000                         | 10. | Siligici-A | 4.5511 CV | 200.20 1111 | 1-0.0000 |
| 273 -> 280          |                | -0 14822                    |                     |                |          | 240 -> 274                            |     | 0 10632    |           |             |          |
| 273 7 200           |                | 0.14022                     |                     |                |          | 270 -> 274                            |     | 0.64426    |           |             |          |
| Excited State       | ٨.             | Singlet-A                   | 3 7244 01           | 332.00 nm      | f=0.0235 | 210-2214                              |     | 0.04420    |           |             |          |
| <s**2>=0.000</s**2> | 1.             | Singlet M                   | 3.7244 60           | 332.70 mm      | 1-0.0200 | Excited State                         | 11. | Singlet-A  | 4.4757 eV | 277.02 nm   | f=0.0634 |
| 260 -> 274          |                | 0 10504                     |                     |                |          | <s**2>=0.000</s**2>                   |     | Singlet A  | 4.4757 64 | 277.02 1111 | 1-0.0034 |
| 265 -> 274          |                | -0 11439                    |                     |                |          | 244 -> 274                            |     | 0 10564    |           |             |          |
| 269 -> 274          |                | -0 37159                    |                     |                |          | 264 -> 274                            |     | -0 14064   |           |             |          |
| 207 > 274           |                | 0 15090                     |                     |                |          | 265 -> 274                            |     | 0.13539    |           |             |          |
| 273 -> 278          |                | 0.52565                     |                     |                |          | 203 -> 274                            |     | 0.13337    |           |             |          |
| 213 7 210           |                | 0.02000                     |                     |                |          | 272 > 275                             |     | 0.55163    |           |             |          |
| Excited State       | 5.             | Singlet-A                   | 3.8058 eV           | 325.78 nm      | f=0.0139 | 273 -> 278                            |     | -0 11255   |           |             |          |
| <s**2>=0 000</s**2> | υ.             | Singlet M                   | 3.0050 CV           | 525.70 mm      | 1-0.0137 | 273 -> 283                            |     | 0.13621    |           |             |          |
| 269 -> 274          |                | 0 46444                     |                     |                |          | 273 -> 284                            |     | -0 14103   |           |             |          |
| 271 -> 274          |                | 0 17930                     |                     |                |          | 270 7 201                             |     | 0.11100    |           |             |          |
| 273 -> 278          |                | 0.39781                     |                     |                |          | Excited State                         | 12. | Singlet-A  | 4 4769 eV | 276.94 nm   | f=0 0000 |
| 273 -> 282          |                | -0 16517                    |                     |                |          | <s**2>=0 000</s**2>                   |     | Ungiot / t |           | 270.71 1111 | 1 0.0000 |
| 210 7 202           |                | 0.10017                     |                     |                |          | 268 -> 274                            |     | 0.68956    |           |             |          |
| Excited State       | 6 <sup>.</sup> | Singlet-A                   | 3.8962 eV           | 318.22 nm      | f=0.0566 | 200 / 2/1                             |     | 0.00700    |           |             |          |
| <s**2>=0.000</s**2> | 0.             | oligiotri                   | 0.0702 01           | OTOLEE TIM     | 1 0.0000 | Excited State                         | 13: | Singlet-A  | 4.5948 eV | 269.83 nm   | f=0.1220 |
| 254 -> 274          |                | -0.11254                    |                     |                |          | <s**2>=0.000</s**2>                   |     |            |           |             |          |
| 260 -> 274          |                | -0.12464                    |                     |                |          | 244 -> 274                            |     | 0.14681    |           |             |          |
| 265 -> 274          |                | 0.40284                     |                     |                |          | 253 -> 274                            |     | 0.15208    |           |             |          |
| 267 -> 274          |                | -0.30580                    |                     |                |          | 254 -> 274                            |     | 0.12377    |           |             |          |
| 271 -> 274          |                | -0.34001                    |                     |                |          | 264 -> 274                            |     | -0.26872   |           |             |          |
| 272 -> 275          |                | -0.10428                    |                     |                |          | 265 -> 274                            |     | 0.24810    |           |             |          |
| 273 -> 278          |                | 0.12889                     |                     |                |          | 267 -> 274                            |     | 0.30395    |           |             |          |
| 273 -> 282          |                | -0.12747                    |                     |                |          | 269 -> 274                            |     | -0.12778   |           |             |          |
|                     |                |                             |                     |                |          | 272 -> 275                            |     | 0.25537    |           |             |          |
| Excited State       | 7:             | Singlet-A                   | 4.0407 eV           | 306.84 nm      | f=0.0000 | 273 -> 276                            |     | -0.23240   |           |             |          |
| <s**2>=0.000</s**2> |                | 2                           |                     |                |          | 273 -> 282                            |     | -0.12188   |           |             |          |
| 273 -> 275          |                | -0.16230                    |                     |                |          |                                       |     |            |           |             |          |
| 273 -> 277          |                | 0.29352                     |                     |                |          | Excited State                         | 14: | Singlet-A  | 4.6313 eV | 267.71 nm   | f=0.0106 |
| 273 -> 280          |                | -0.16112                    |                     |                |          | <s**2>=0.000</s**2>                   |     |            |           |             |          |
| 273 -> 281          |                | 0.59153                     |                     |                |          | 244 -> 274                            |     | -0.10742   |           |             |          |
|                     |                |                             |                     |                |          | 253 -> 274                            |     | -0.11278   |           |             |          |
| Excited State       | 8:             | Singlet-A                   | 4.2487 eV           | 291.81 nm      | f=0.0000 | 254 -> 274                            |     | -0.12052   |           |             |          |
|                     |                |                             |                     |                |          |                                       |     |            |           |             |          |

| 1/4 . 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | E 1. 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | <u> </u>                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|
| 204 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.16503                                                                                                                                                                                                                                                                                                     |                        |                        |                      | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23:               | Singlet-A                                                                                                                                                                                                                                                                | 5.0972 eV                           | 243.24 nm                           | f=0.0000                         |
| 265 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.33405                                                                                                                                                                                                                                                                                                     |                        |                        |                      | <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 267 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.46356                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 272 -> 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0 10025                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 207 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 0.10000                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 272 - 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0.17023                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 212 -> 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0.19983                                                                                                                                                                                                                                                                                                    |                        |                        |                      | 212 -> 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.04403                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 273 -> 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.15259                                                                                                                                                                                                                                                                                                     |                        |                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24:               | Singlet-A                                                                                                                                                                                                                                                                | 5.1128 eV                           | 242.50 nm                           | f=0.0000                         |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15         | Singlet-A                                                                                                                                                                                                                                                                                                   | 4.6386 eV              | 267.29 nm              | f=0.0000             | <\$**2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | •                                                                                                                                                                                                                                                                        |                                     |                                     |                                  |
| <pre> - Exerced Otate - Exerced 0 000 - Exerce</pre> | 10.        | olingiot                                                                                                                                                                                                                                                                                                    |                        | 207127 1111            | 1 0.0000             | 242 - 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0 11701                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| <5 2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 243 -> 2/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0.11701                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
| 261 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.16217                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 246 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.21341                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 266 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.65404                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 247 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.10981                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 257 > 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0 12006                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 237 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.13770                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16:        | Singlet-A                                                                                                                                                                                                                                                                                                   | 4./365 eV              | 261./6 nm              | t=0.0000             | 259 -> 2/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.23/93                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 261 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.51016                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 244 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0 10417                                                                                                                                                                                                                                                                                                    |                        |                        |                      | 272 -> 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0 18470                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 244 . 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0.00040                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 212 - 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0.10170                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 240 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0.23948                                                                                                                                                                                                                                                                                                    |                        |                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 247 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0.25549                                                                                                                                                                                                                                                                                                    |                        |                        |                      | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25:               | Singlet-A                                                                                                                                                                                                                                                                | 5.1273 eV                           | 241.81 nm                           | f=0.0237                         |
| 253 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0.12415                                                                                                                                                                                                                                                                                                    |                        |                        |                      | <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 241 . 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0.20774                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 245 - 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0 15052                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 201->2/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 0.39774                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 243 -> 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0.10000                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
| 266 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0.24187                                                                                                                                                                                                                                                                                                    |                        |                        |                      | 258 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.28933                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 270 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.14825                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 260 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.51652                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 272 - 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0 14520                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 265 > 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0 12022                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 212 -> 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0.14320                                                                                                                                                                                                                                                                                                    |                        |                        |                      | 203 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.12733                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 269 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.14885                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17:        | Singlet-A                                                                                                                                                                                                                                                                                                   | 4.7933 eV              | 258.66 nm              | f=0.0664             | 272 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.15755                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| <\$**2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | -                                                                                                                                                                                                                                                                                                           |                        |                        |                      | 273 -> 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0 13633                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
| \[         \lap{a}     \]                  |            | 0.00000                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 210 7 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0.13033                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 264 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0.22088                                                                                                                                                                                                                                                                                                    |                        |                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 265 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.10323                                                                                                                                                                                                                                                                                                     |                        |                        |                      | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26:               | Singlet-A                                                                                                                                                                                                                                                                | 5.2284 eV                           | 237.13 nm                           | f=0.0000                         |
| 269 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0 18215                                                                                                                                                                                                                                                                                                     |                        |                        |                      | <\$**2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 272 . 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0.1147/                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 250 . 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0 12017                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 213 -> 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.11470                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 259 -> 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0.13017                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
| 273 -> 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.56737                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 262 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0.11177                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
| 273 -> 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0.10833                                                                                                                                                                                                                                                                                                    |                        |                        |                      | 263 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0.43140                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 272 . 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0 10402                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 213->211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 0.10003                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18:        | Singlet-A                                                                                                                                                                                                                                                                                                   | 4.8816 eV              | 253.98 nm              | f=0.0153             | 273 -> 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.48043                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 211 -> 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0 12202                                                                                                                                                                                                                                                                                                     |                        |                        |                      | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.               | Singlat_A                                                                                                                                                                                                                                                                | 5 2203 oV                           | 237.00 nm                           | f_0.0222                         |
| 244 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.12272                                                                                                                                                                                                                                                                                                     |                        |                        |                      | C**2 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.               | Jiligici-A                                                                                                                                                                                                                                                               | J.2275 CV                           | 237.07 1111                         | 1-0.0222                         |
| 253 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.14658                                                                                                                                                                                                                                                                                                     |                        |                        |                      | <5~~2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 254 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.10206                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 262 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0.43459                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
| 264 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0 53631                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 263 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0 11707                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
| 204 2 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0.10000                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 203 / 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0.11707                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 265 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.13823                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 213 -> 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.52004                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 272 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.22937                                                                                                                                                                                                                                                                                                     |                        |                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 273 -> 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.17956                                                                                                                                                                                                                                                                                                     |                        |                        |                      | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28:               | Singlet-A                                                                                                                                                                                                                                                                | 5.2635 eV                           | 235.55 nm                           | f=0.0821                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | ·C**2> 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | - J                                                                                                                                                                                                                                                                      |                                     |                                     |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | <3 2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19:        | Singlet-A                                                                                                                                                                                                                                                                                                   | 4.9323 eV              | 251.37 nm              | t=0.0192             | 253 -> 2/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.11331                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 270 -> 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.12019                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 262 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0 36058                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 273 -> 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0 17137                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 202 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.30730                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 273 -> 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.17137                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 262 -> 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.13036                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 273 -> 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0.11467                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
| 263 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.19007                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 273 -> 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.58527                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 270 -> 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | -0 1/302                                                                                                                                                                                                                                                                                                    |                        |                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 270 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 0.13/50                                                                                                                                                                                                                                                                                                     |                        |                        |                      | Evolted State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.               | Cinglet A                                                                                                                                                                                                                                                                | F 2/02 aV                           | 225.25                              | £ 0.0000                         |
| 211->219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | -0.13038                                                                                                                                                                                                                                                                                                    |                        |                        |                      | Exciled State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29:               | Singlet-A                                                                                                                                                                                                                                                                | 5.2082 eV                           | 235.35 1111                         | I=0.0000                         |
| 273 -> 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.40983                                                                                                                                                                                                                                                                                                     |                        |                        |                      | <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 273 -> 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.23572                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 246 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | -0.12746                                                                                                                                                                                                                                                                 |                                     |                                     |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 240 > 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | 0 12092                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 247 -> 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.12002                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20:        | Singlet-A                                                                                                                                                                                                                                                                                                   | 4.9356 eV              | 251.20 nm              | t=0.0000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 0.12985                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 250 -> 2/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 0.12705                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 262 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                                                                                                                                                                                                                                             |                        |                        |                      | 250 -> 274<br>259 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 0.58375                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 202 / 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0 21034                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 250 -> 274<br>259 -> 274<br>261 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 0.58375                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 2/2 . 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0.21034                                                                                                                                                                                                                                                                                                     |                        |                        |                      | 250 -> 274<br>259 -> 274<br>261 -> 274<br>272 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 0.58375                                                                                                                                                                                                                                                                  |                                     |                                     |                                  |
| 263 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.21034<br>0.40911                                                                                                                                                                                                                                                                                          |                        |                        |                      | 250 -> 274<br>259 -> 274<br>261 -> 274<br>272 -> 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 0.58375<br>-0.12718<br>-0.11797                                                                                                                                                                                                                                          |                                     |                                     |                                  |
| 263 -> 274<br>263 -> 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 0.21034<br>0.40911<br>0.14436                                                                                                                                                                                                                                                                               |                        |                        |                      | 250 -> 274<br>259 -> 274<br>261 -> 274<br>272 -> 276<br>273 -> 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 0.58375<br>-0.12718<br>-0.11797<br>0.10418                                                                                                                                                                                                                               |                                     |                                     |                                  |
| 263 -> 274<br>263 -> 276<br>270 -> 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 0.21034<br>0.40911<br>0.14436<br>-0.17070                                                                                                                                                                                                                                                                   |                        |                        |                      | 250 -> 274<br>259 -> 274<br>261 -> 274<br>272 -> 276<br>273 -> 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 0.58375<br>-0.12718<br>-0.11797<br>0.10418                                                                                                                                                                                                                               |                                     |                                     |                                  |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071                                                                                                                                                                                                                                                       |                        |                        |                      | 250 -> 274<br>259 -> 274<br>261 -> 274<br>272 -> 276<br>273 -> 280<br>Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A                                                                                                                                                                                                                  | /\م 5 3128                          | 233 37 nm                           | f=0 0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071                                                                                                                                                                                                                                                       |                        |                        |                      | 250 -> 274<br>259 -> 274<br>261 -> 274<br>272 -> 276<br>273 -> 280<br>Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A                                                                                                                                                                                                                  | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536                                                                                                                                                                                                                                            |                        |                        |                      | 250 -> 274<br>259 -> 274<br>261 -> 274<br>273 -> 280<br>Excited State<br><\$**2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A                                                                                                                                                                                                                  | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836                                                                                                                                                                                                                                 |                        |                        |                      | 250 -> 274<br>259 -> 274<br>261 -> 274<br>272 -> 276<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>248 -&gt; 274</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693                                                                                                                                                                                                       | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836                                                                                                                                                                                                                                 |                        |                        |                      | 250 > 214<br>259 > 274<br>261 > 274<br>272 > 276<br>273 > 280<br>Excited State<br><\$**2>=0.000<br>248 > 274<br>251 > 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30:               | 0.153375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770                                                                                                                                                                                           | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836                                                                                                                                                                                                                                 | 1 0520 011             | 250.32 pm              | f-0 1404             | 250 >> 274<br>259 >> 274<br>261 >> 274<br>272 -> 276<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>248 -> 274<br>251 >> 274<br>254 >> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30:               | 0.15/375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577                                                                                                                                                                                | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A                                                                                                                                                                                                                    | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 >> 274<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>251 -> 274<br>254 >> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30:               | 0.1270<br>0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577                                                                                                                                                                       | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><\$**2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A                                                                                                                                                                                                                    | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 -> 276<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>248 -> 274<br>251 -> 274<br>254 -> 274<br>256 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30:               | 0.18375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034                                                                                                                                                                      | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>253 -&gt; 274</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538                                                                                                                                                                                                        | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 → 274<br>259 → 274<br>261 → 274<br>272 → 276<br>273 → 280<br>Excited State<br><s**2>=0.000<br/>248 → 274<br/>251 → 274<br/>254 → 274<br/>256 → 274<br/>258 → 274</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30:               | 0.12703<br>0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968                                                                                                                                                | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 270<br>273 -> 280<br>Excited State<br><\$**2>=0.00<br>253 -> 274<br>263 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485                                                                                                                                                                                            | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 > 2/4<br>259 > 274<br>261 > 274<br>272 > 276<br>273 > 280<br>Excited State<br>$=0.000$<br>248 > 274<br>251 > 274<br>254 > 274<br>256 > 274<br>258 > 274<br>258 > 274<br>258 > 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30:               | 0.12103<br>0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434                                                                                                                                    | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>253 -&gt; 274<br/>262 -&gt; 274</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065                                                                                                                                                                                 | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 >> 274<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>251 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30:               | 0.1203<br>0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434                                                                                                                                     | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065                                                                                                                                                                                 | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 -> 274<br>251 -> 274<br>254 -> 274<br>256 >> 274<br>258 -> 274<br>258 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434                                                                                                                                               | 5.3128 eV                           | 233.37 nm                           | f=0.0157                         |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063                                                                                                                                                                     | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>248 -&gt; 274<br/>251 -&gt; 274<br/>256 -&gt; 274<br/>256 -&gt; 274<br/>258 -&gt; 274<br/>260 -&gt; 274<br/>Excited State</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A                                                                                                                                  | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281<br>273 -> 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687                                                                                                                                                         | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>251 >> 274<br>254 >> 274<br>256 >> 274<br>258 >> 274<br>260 -> 274<br>Excited State<br><\$**2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30:<br>31:        | 0.12/03<br>0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A                                                                                                                       | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281<br>273 -> 279<br>273 -> 279<br>273 -> 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844                                                                                                                                              | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 > 2/4<br>259 > 274<br>261 > 274<br>272 > 276<br>273 > 280<br>Excited State<br>$=0.000$<br>248 > 274<br>251 > 274<br>256 > 274<br>256 > 274<br>266 > 274<br>260 > 274<br>Excited State<br>$=0.000$<br>271 > 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30:<br>31:        | 0.153375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423                                                                                                                      | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>253 -&gt; 274<br/>262 -&gt; 274<br/>262 -&gt; 274<br/>272 -&gt; 281<br/>273 -&gt; 283<br/>273 -&gt; 289</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11/22                                                                                                                                   | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>251 >> 274<br>256 >> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30:<br>31:        | 0.153375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>0.18722                                                                                                           | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281<br>273 -> 279<br>273 -> 283<br>273 -> 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692                                                                                                                                   | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>251 >> 274<br>254 >> 274<br>256 >> 274<br>258 >> 274<br>260 -> 274<br>Excited State<br><\$**2>=0.000<br>251 >> 271<br>251 >> 274<br>253 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30:<br>31:        | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172                                                                                                           | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281<br>273 -> 279<br>273 -> 283<br>273 -> 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21:        | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692                                                                                                                                   | 4.9528 eV              | 250.33 nm              | f=0.1494             | 250 > 274<br>259 > 274<br>225 > 274<br>272 > 276<br>273 > 280<br>Excited State<br>$<^{5**2}>=0.000$<br>248 > 274<br>251 > 274<br>254 > 274<br>256 > 274<br>260 > 274<br>Excited State<br>$<^{5**2}>=0.000$<br>251 > 274<br>250 > 274<br>251 > 274<br>250 > 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30:<br>31:        | 0.18375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137                                                                                                | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>253 -&gt; 274<br/>262 -&gt; 274<br/>272 -&gt; 275<br/>272 -&gt; 281<br/>273 -&gt; 283<br/>273 -&gt; 284<br/>Excited State</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A                                                                                                                      | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>251 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>Excited State<br><\$**2>=0.000<br>251 -> 274<br>253 >> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521                                                                                    | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281<br>273 -> 283<br>273 -> 284<br>Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A                                                                                                                      | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 > 274<br>259 > 274<br>261 > 274<br>272 > 276<br>273 > 280<br>Excited State<br>$=0.000$<br>248 > 274<br>254 > 274<br>256 > 274<br>258 > 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30:               | 0.154375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.13276                                                                       | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>253 -&gt; 274<br/>262 -&gt; 274<br/>272 -&gt; 275<br/>272 -&gt; 281<br/>273 -&gt; 283<br/>273 -&gt; 284<br/>Excited State<br/><s**2>=0.000</s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A                                                                                                                      | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>251 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>Excited State<br><\$**2>=0.000<br>251 >> 274<br>Excited State<br><\$**2>=0.000<br>251 >> 274<br>253 >> 274<br>253 >> 274<br>253 >> 274<br>253 >> 274<br>254 >> 274<br>255 >>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376                                                                        | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281<br>273 -> 283<br>273 -> 284<br>Excited State<br><\$**2>=0.000<br>244 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A<br>-0.12720                                                                                                          | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 > 274<br>259 > 274<br>259 > 274<br>221 > 276<br>273 > 280<br>Excited State<br>$<5^{**}2=0.000$<br>248 > 274<br>254 > 274<br>256 > 274<br>256 > 274<br>258 > 274<br>260 > 274<br>Excited State<br>$<5^{**}2>=0.000$<br>251 > 274<br>253 > 274<br>254 > 274<br>254 > 274<br>254 > 274<br>256 > 274<br>258 > 274<br>256 > 274<br>258 > 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605                                                             | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281<br>273 -> 279<br>273 -> 283<br>273 -> 284<br>=xcited State<br><\$**2>=0.000<br>244 -> 274<br>253 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A<br>-0.12720<br>-0.22746                                                                                              | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>254 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>260 >> 274<br>Excited State<br><\$**2>=0.000<br>251 >> 274<br>253 >> 274<br>254 >> 274<br>254 >> 274<br>255 >> 274<br>254 >> 274<br>255 >> 274<br>255 >> 274<br>254 >> 274<br>255 >> 274<br>258 >> 274 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30:<br>31:        | 0.18375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605<br>-0.11000                                                 | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>253 -&gt; 274<br/>262 -&gt; 274<br/>272 -&gt; 275<br/>272 -&gt; 281<br/>273 -&gt; 283<br/>273 -&gt; 284<br/>Excited State<br/><s**2>=0.000<br/>244 -&gt; 274<br/>253 -&gt; 274</s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A<br>-0.12720<br>-0.22746<br>-0.22746<br>-0.14857                                                                      | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 > 274<br>259 > 274<br>259 > 274<br>225 > 276<br>273 > 280<br>Excited State<br>$<5^{**}2>=0.000$<br>248 > 274<br>251 > 274<br>256 > 274<br>256 > 274<br>256 > 274<br>Excited State<br>$<5^{**}2>=0.000$<br>251 > 274<br>253 > 274<br>254 > 274<br>255 > 274<br>255 > 274<br>255 > 274<br>256 > 274<br>256 > 274<br>256 > 274<br>253 > 274<br>256 > 274<br>253 > 274<br>256 > 274<br>253 > 274<br>255 > 274<br>257 > 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605<br>-0.11000<br>0.13620                                      | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 281<br>273 -> 283<br>273 -> 283<br>273 -> 284<br>Excited State<br><\$**2>=0.000<br>244 -> 274<br>253 -> 274<br>254 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A<br>-0.12720<br>-0.22746<br>-0.14857<br>0.12023                                                                       | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 > 274<br>259 > 274<br>259 > 274<br>221 > 276<br>273 > 280<br>Excited State<br>$=0.000$<br>248 > 274<br>251 > 274<br>256 > 274<br>256 > 274<br>266 > 274<br>266 > 274<br>258 > 274<br>260 - 274<br>Excited State<br>$=0.000$<br>251 > 274<br>253 - 274<br>254 - 274<br>255 - 274<br>254 - 274<br>255 - 274<br>254 - 274<br>255 - 274<br>256 - 274<br>258 - 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30:               | 0.18375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605<br>-0.11000<br>0.13620                                      | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>253 -&gt; 274<br/>262 -&gt; 274<br/>272 -&gt; 275<br/>272 -&gt; 281<br/>273 -&gt; 283<br/>273 -&gt; 284<br/>Excited State<br/><s**2>=0.000<br/>244 -&gt; 274<br/>253 -&gt; 274<br/>253 -&gt; 274<br/>253 -&gt; 274<br/>253 -&gt; 274</s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A<br>-0.12720<br>-0.22746<br>-0.12720<br>-0.22746<br>-0.14857<br>-0.19832                                              | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 > 274<br>259 > 274<br>259 > 274<br>221 > 276<br>273 > 280<br>Excited State<br>$<5^{**}2>=0.000$<br>248 > 274<br>254 > 274<br>256 > 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30:               | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605<br>-0.11000<br>0.13620                                      | 5.3128 eV<br>5.3854 eV              | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019             |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281<br>273 -> 283<br>273 -> 284<br>Excited State<br><\$**2>=0.000<br>244 -> 274<br>253 -> 274<br>253 -> 274<br>253 -> 274<br>254 -> 274<br>254 -> 274<br>254 -> 274<br>254 -> 274<br>254 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A<br>-0.12720<br>-0.22746<br>-0.14857<br>-0.19832<br>0.43787                                                           | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><s**2>=0.000<br/>248 &gt;&gt; 274<br/>254 &gt;&gt; 274<br/>256 &gt;&gt; 274<br/>258 &gt;&gt; 274<br/>258 &gt;&gt; 274<br/>258 &gt;&gt; 274<br/>258 &gt;&gt; 274<br/>253 &gt;&gt; 274<br/>253 &gt;&gt; 274<br/>253 &gt;&gt; 274<br/>254 &gt;&gt; 274<br/>258 &gt;&gt; 274<br/>253 &gt;&gt; 274<br/>258 &gt;&gt; 274 &gt;&gt; 275</s**2> | 30:<br>31:<br>32: | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605<br>-0.11000<br>0.13620<br>Singlet-A                         | 5.3128 eV<br>5.3854 eV<br>5.4184 eV | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019<br>f=0.0000 |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 283<br>273 -> 283<br>273 -> 283<br>273 -> 284<br>Excited State<br><\$**2>=0.000<br>244 -> 274<br>253 -> 274<br>254 -> 274<br>260 -> 274<br>272 -> 275<br>272 -> 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A<br>-0.12720<br>-0.22746<br>-0.12720<br>-0.22746<br>-0.14857<br>-0.19832<br>0.43787<br>0.19832<br>0.43787<br>0.19832  | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>254 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>256 >> 274<br>253 >> 274<br>254 >> 274<br>254 >> 274<br>254 >> 274<br>255 >> 274<br>254 >> 274<br>255 >> 274<br>255 >> 274<br>258 >> 274 >> 274 >> 288 >> 274 >> 274 >> 274 >> 274 >> 276 >> 274 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >> 276 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30:<br>31:<br>32: | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605<br>-0.11000<br>0.13620<br>Singlet-A                         | 5.3128 eV<br>5.3854 eV<br>5.4184 eV | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019<br>f=0.0000 |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>253 -&gt; 274<br/>262 -&gt; 274<br/>272 -&gt; 275<br/>272 -&gt; 281<br/>273 -&gt; 283<br/>273 -&gt; 284<br/>Excited State<br/><s**2>=0.000<br/>244 -&gt; 274<br/>253 -&gt; 275<br/>272 -&gt; 275<br/>272 -&gt; 275<br/>272 -&gt; 275</s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A<br>-0.127720<br>-0.22746<br>-0.22746<br>-0.12857<br>-0.19832<br>0.43787<br>0.19371<br>0.13371<br>0.13379             | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 > 274<br>259 > 274<br>259 > 274<br>225 > 276<br>273 > 280<br>Excited State<br>$<5^{**}2>=0.000$<br>248 > 274<br>251 > 274<br>256 > 274<br>256 > 274<br>256 > 274<br>Excited State<br>$<5^{**}2>=0.000$<br>251 > 274<br>253 > 274<br>256 > 274<br>253 > 274<br>254 > 274<br>255 > 272 > 281<br>Excited State<br>$<5^{**}2>=0.000$<br>272 > 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30:<br>31:<br>32: | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605<br>-0.11000<br>0.13620<br>Singlet-A                         | 5.3128 eV<br>5.3854 eV<br>5.4184 eV | 233.37 nm<br>230.22 nm<br>228.82 nm | f=0.0157<br>f=0.1019<br>f=0.0000 |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><\$**2>=0.000<br>253 -> 274<br>262 -> 274<br>272 -> 275<br>272 -> 281<br>273 -> 283<br>273 -> 284<br>Excited State<br><\$**2>=0.000<br>244 -> 274<br>253 -> 274<br>254 -> 274<br>254 -> 274<br>254 -> 274<br>254 -> 274<br>254 -> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.51844<br>0.11692<br>Singlet-A<br>-0.12720<br>-0.22746<br>-0.12720<br>-0.22746<br>-0.14857<br>-0.19832<br>0.43787<br>0.19371<br>0.13478<br>0.13478  | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 >> 214<br>259 >> 274<br>261 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>254 >> 274<br>256 >> 274<br>258 >> 274<br>258 >> 274<br>258 >> 274<br>258 >> 274<br>253 >> 274<br>251 >> 277<br>253 >> 274<br>254 >> 274<br>254 >> 274<br>258 >> 274 >> 274<br>258 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 274 >> 276 >> 274 >> 276 >> 274 >> 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30:<br>31:<br>32: | 0.18375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605<br>-0.11000<br>0.13620<br>Singlet-A<br>-0.12238<br>-0.12238 | 5.3128 eV<br>5.3854 eV<br>5.4184 eV | 233.37 nm<br>230.22 nm<br>228.82 nm | f=0.0157<br>f=0.1019<br>f=0.0000 |
| 263 -> 274<br>263 -> 276<br>270 -> 279<br>271 -> 280<br>273 -> 277<br>273 -> 280<br>Excited State<br><s**2>=0.000<br/>253 -&gt; 274<br/>262 -&gt; 274<br/>272 -&gt; 275<br/>272 -&gt; 281<br/>273 -&gt; 283<br/>273 -&gt; 284<br/>Excited State<br/><s**2>=0.000<br/>244 -&gt; 274<br/>253 -&gt; 274<br/>253 -&gt; 274<br/>254 -&gt; 274<br/>254 -&gt; 274<br/>260 -&gt; 274<br/>272 -&gt; 275<br/>272 -&gt; 275<br/>272 -&gt; 275<br/>272 -&gt; 277<br/>273 -&gt; 276<br/>273 -&gt; 283</s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21:<br>22: | 0.21034<br>0.40911<br>0.14436<br>-0.17070<br>-0.14071<br>0.15536<br>0.40836<br>Singlet-A<br>-0.10538<br>-0.17485<br>0.17485<br>0.14065<br>-0.22063<br>-0.15687<br>0.11692<br>Singlet-A<br>-0.12720<br>-0.22746<br>-0.12720<br>-0.22746<br>-0.14857<br>-0.19832<br>0.43787<br>0.19371<br>0.13478<br>-0.22155 | 4.9528 eV<br>5.0674 eV | 250.33 nm<br>244.67 nm | f=0.1494<br>f=0.4331 | 250 >> 214<br>259 >> 274<br>251 >> 274<br>272 >> 276<br>273 >> 280<br>Excited State<br><\$**2>=0.000<br>248 >> 274<br>251 >> 274<br>256 >> 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30:<br>31:<br>32: | 0.58375<br>-0.12718<br>-0.11797<br>0.10418<br>Singlet-A<br>0.12693<br>0.12770<br>0.26577<br>0.12034<br>0.51968<br>-0.29434<br>Singlet-A<br>0.17423<br>-0.18172<br>0.40137<br>-0.35521<br>-0.12376<br>0.25605<br>-0.11000<br>0.13620<br>Singlet-A<br>-0.12238<br>0.17424  | 5.3128 eV<br>5.3854 eV<br>5.4184 eV | 233.37 nm<br>230.22 nm              | f=0.0157<br>f=0.1019<br>f=0.0000 |

| 257 -> 274                           |             | 0.52913     |            |             |           | 256 -> 274                           |     | -0.13613  |           |             |          |
|--------------------------------------|-------------|-------------|------------|-------------|-----------|--------------------------------------|-----|-----------|-----------|-------------|----------|
| Excited State<br><s**2>=0.000</s**2> | 33:         | Singlet-A   | 5.4380 eV  | 227.99 nm   | f=0.3114  | Excited State<br><s**2>=0.000</s**2> | 42: | Singlet-A | 5.7390 eV | 216.04 nm   | f=0.0124 |
| 253 -> 274                           |             | 0.24587     |            |             |           | 248 -> 274                           |     | -0.12415  |           |             |          |
| 256 -> 274                           |             | 0.32589     |            |             |           | 251 -> 274                           |     | -0.16540  |           |             |          |
| 272 -> 277                           |             | 0.41967     |            |             |           | 253 -> 274                           |     | 0.12666   |           |             |          |
| 272 -> 280                           |             | -0.17266    |            |             |           | 254 -> 274                           |     | 0.15114   |           |             |          |
| 272 -> 281                           |             | 0.23404     |            |             |           | 270 -> 275                           |     | 0.32965   |           |             |          |
| 273 -> 283                           |             | 0.10571     |            |             |           | 270 -> 277                           |     | 0.24024   |           |             |          |
|                                      |             |             |            |             |           | 271 -> 276                           |     | 0 18350   |           |             |          |
| Excited State                        | 34.         | Singlet-A   | 5 4938 eV  | 225.68 nm   | f=0.0000  | 271 -> 284                           |     | -0 14148  |           |             |          |
| <s**2>=0.000</s**2>                  | 54.         | Singlet A   | 0.4750 CV  | 220.00 1111 | 1-0.0000  | 277 -> 204                           |     | -0 16006  |           |             |          |
| 246 -> 274                           |             | -0 11081    |            |             |           | 273 -> 284                           |     | -0 17410  |           |             |          |
| 247 -> 274                           |             | -0 11556    |            |             |           | 270 - 201                            |     | 0.17 110  |           |             |          |
| 250 -> 274                           |             | 0.13020     |            |             |           | Excited State                        | 13. | Singlet-A | 57/00 oV  | 215.07 nm   | f=0.0000 |
| 230 -> 274                           |             | 0.13720     |            |             |           | <s**2>=0.000</s**2>                  | 43. | Singici-A | 3.7407 CV | 213.77 1111 | 1-0.0000 |
| 271 -> 273                           |             | 0.11007     |            |             |           | 2/4 274                              |     | 0 10290   |           |             |          |
| 212 -> 210                           |             | 0.29103     |            |             |           | 240 -> 274                           |     | -0.10300  |           |             |          |
| 212 -> 210                           |             | -0.13734    |            |             |           | 249 -> 274                           |     | 0.42932   |           |             |          |
| 272 -> 282                           |             | 0.48420     |            |             |           | 250 -> 274                           |     | 0.14144   |           |             |          |
| 272 -> 285                           |             | -0.11498    |            |             |           | 252 -> 274                           |     | -0.25499  |           |             |          |
| E 11 1 01 1                          | 05          | <u> </u>    | F 1070 V   | 005 54      | 6 0 1000  | 2/1 -> 2//                           |     | -0.13252  |           |             |          |
| Excited State                        | 35:         | Singlet-A   | 5.4973 eV  | 225.54 nm   | f=0.4028  | 2/2 -> 2/6                           |     | 0.24702   |           |             |          |
| <s**2>=0.000</s**2>                  |             |             |            |             |           | 272 -> 282                           |     | -0.17311  |           |             |          |
| 254 -> 274                           |             | -0.12611    |            |             |           | 272 -> 283                           |     | 0.10966   |           |             |          |
| 256 -> 274                           |             | -0.11193    |            |             |           |                                      |     |           |           |             |          |
| 272 -> 277                           |             | -0.21578    |            |             |           | Excited State                        | 44: | Singlet-A | 5.7632 eV | 215.13 nm   | f=0.0040 |
| 272 -> 281                           |             | 0.56595     |            |             |           | <s**2>=0.000</s**2>                  |     |           |           |             |          |
| 273 -> 283                           |             | 0.16371     |            |             |           | 248 -> 274                           |     | 0.62640   |           |             |          |
| 273 -> 284                           |             | 0.13853     |            |             |           | 253 -> 274                           |     | -0.16431  |           |             |          |
|                                      |             |             |            |             |           | 258 -> 274                           |     | -0.15993  |           |             |          |
| Excited State                        | 36:         | Singlet-A   | 5.5617 eV  | 222.93 nm   | f=0.0000  |                                      |     |           |           |             |          |
| <s**2>=0.000</s**2>                  |             |             |            |             |           | Excited State                        | 45: | Singlet-A | 5.8018 eV | 213.70 nm   | f=0.0000 |
| 249 -> 274                           |             | -0.27670    |            |             |           | <s**2>=0.000</s**2>                  |     | -         |           |             |          |
| 250 -> 274                           |             | 0.49449     |            |             |           | 246 -> 274                           |     | 0.21220   |           |             |          |
| 252 -> 274                           |             | -0.17830    |            |             |           | 247 -> 274                           |     | 0.24676   |           |             |          |
| 255 -> 274                           |             | -0.13013    |            |             |           | 249 -> 274                           |     | 0.38089   |           |             |          |
| 257 -> 274                           |             | -0.29882    |            |             |           | 250 -> 274                           |     | 0.16967   |           |             |          |
| 207 - 271                            |             | 0127002     |            |             |           | 252 -> 274                           |     | -0 10737  |           |             |          |
| Excited State                        | 37.         | Singlet-A   | 5.5740 eV  | 222.43 nm   | f=0.0000  | 271 -> 275                           |     | 0 11154   |           |             |          |
| <s**2>=0.000</s**2>                  | 07.         | Chilgiot II | 0.0710 01  |             | 1 0.0000  | 271 -> 277                           |     | 0 12008   |           |             |          |
| 250 -> 274                           |             | 0 3/025     |            |             |           | 277 -> 277                           |     | -0.2/832  |           |             |          |
| 250 -> 274                           |             | 0.34723     |            |             |           | 272 -> 270                           |     | 0.12781   |           |             |          |
| 252 -> 274                           |             | 0.30073     |            |             |           | 212 -> 202                           |     | 0.12701   |           |             |          |
| 200 -> 274                           |             | 0.40334     |            |             |           | Evolted State                        | 14. | Singlet A | E 9040 oV | 210.20 pm   | f 0.00E0 |
| 257 -> 274                           |             | 0.14075     |            |             |           | EXCILED SIBLE                        | 40: | Singlet-A | 2.8400 GA | 210.29 1111 | 1=0.0059 |
| 209 -> 214                           |             | -0.14025    |            |             |           | <5 2>=0.000                          |     | 0.202/5   |           |             |          |
| Evolution Charles                    | 20          | Circulat A  | F F00( -)/ | 000 17      | 6 0 00 15 | 262 -> 274                           |     | 0.29265   |           |             |          |
| Exciled State                        | 38:         | Singlet-A   | 5.5806 eV  | 222.17 nm   | 1=0.0345  | 262 -> 275                           |     | -0.12286  |           |             |          |
| <s<sup>2&gt;=0.000</s<sup>           |             |             |            |             |           | 262 -> 276                           |     | -0.19634  |           |             |          |
| 248 -> 2/4                           |             | -0.15605    |            |             |           | 263 -> 2/4                           |     | 0.1/44/   |           |             |          |
| 251 -> 274                           |             | 0.29035     |            |             |           | 263 -> 275                           |     | -0.21203  |           |             |          |
| 253 -> 274                           |             | -0.15843    |            |             |           | 263 -> 276                           |     | -0.11716  |           |             |          |
| 254 -> 274                           |             | 0.21893     |            |             |           | 270 -> 279                           |     | 0.12934   |           |             |          |
| 256 -> 274                           |             | 0.44610     |            |             |           | 270 -> 280                           |     | 0.20690   |           |             |          |
| 258 -> 274                           |             | -0.20065    |            |             |           | 271 -> 279                           |     | 0.22638   |           |             |          |
| 260 -> 274                           |             | 0.14024     |            |             |           | 271 -> 280                           |     | 0.12160   |           |             |          |
| 272 -> 277                           |             | -0.16720    |            |             |           | 272 -> 279                           |     | 0.11044   |           |             |          |
|                                      |             |             |            |             |           | 272 -> 280                           |     | 0.16906   |           |             |          |
| Excited State                        | 39:         | Singlet-A   | 5.6223 eV  | 220.52 nm   | f=0.0000  | 273 -> 279                           |     | 0.12644   |           |             |          |
| <s**2>=0.000</s**2>                  |             |             |            |             |           |                                      |     |           |           |             |          |
| 270 -> 276                           |             | -0.17862    |            |             |           | Excited State                        | 47: | Singlet-A | 5.8961 eV | 210.28 nm   | f=0.0021 |
| 270 -> 284                           |             | 0.12113     |            |             |           | <s**2>=0.000</s**2>                  |     |           |           |             |          |
| 271 -> 275                           |             | -0.32318    |            |             |           | 262 -> 274                           |     | -0.17421  |           |             |          |
| 271 -> 277                           |             | -0.22009    |            |             |           | 262 -> 275                           |     | -0.21076  |           |             |          |
| 272 -> 276                           |             | -0.23978    |            |             |           | 262 -> 276                           |     | 0.11684   |           |             |          |
| 272 -> 282                           |             | 0.33186     |            |             |           | 263 -> 274                           |     | 0.29297   |           |             |          |
|                                      |             |             |            |             |           | 263 -> 275                           |     | 0.12368   |           |             |          |
| Excited State                        | 40:         | Singlet-A   | 5.6594 eV  | 219.08 nm   | f=0.0000  | 263 -> 276                           |     | -0.19668  |           |             |          |
| <s**2>=0.000</s**2>                  |             | . J         |            |             |           | 270 -> 279                           |     | 0.21856   |           |             |          |
| 249 -> 274                           |             | 0.18843     |            |             |           | 270 -> 280                           |     | -0.12237  |           |             |          |
| 252 -> 274                           |             | 0.47396     |            |             |           | 271 -> 270                           |     | -0.13292  |           |             |          |
| 255 -> 274                           |             | -0.38436    |            |             |           | 271 -> 280                           |     | 0.20728   |           |             |          |
| 257 -> 274                           |             | -0 22993    |            |             |           | 271 -> 200                           |     | 0.18683   |           |             |          |
| 257 -> 274                           |             | 0 10188     |            |             |           | 212-217                              |     | .0 10000  |           |             |          |
| 237 -> 214                           |             | 0.10100     |            |             |           | 212 -> 200                           |     | 0.10007   |           |             |          |
| Excited State                        | <b>∆</b> 1· | Singlet A   | 5 6771 01  | 212 20 nm   | f=0.0004  | 213->280                             |     | 0.11/73   |           |             |          |
| -C**2>-0 000                         | 41.         | Sillylet-A  | 5.0771 eV  | 210.37 1111 | 1-0.0000  | Excited State                        | 10. | Singlet A | 5 0102 AV | 200.70      | f_0.0000 |
| NUUU 2/4 - 274                       |             | 0 10/02     |            |             |           | EXLICEU SIGIO                        | 40: | Singlet-A | 2.4107 GA | ∠U7./Ծ IIIN | 1=0.0000 |
| 244 -> 2/4                           |             | -0.10403    |            |             |           | <.3 Z>=U.UUU                         |     | 0.20404   |           |             |          |
| 248 -> 2/4                           |             | 0.10779     |            |             |           | 269 -> 2/5                           |     | -U.2U490  |           |             |          |
| 251 -> 274                           |             | 0.54505     |            |             |           | 212 -> 276                           |     | -0.10083  |           |             |          |
| 253 -> 2/4                           |             | 0.1/502     |            |             |           | 272 -> 283                           |     | 0.554/3   |           |             |          |
| 254 -> 2/4                           |             | -U. 10082   |            |             |           | 272 -> 284                           |     | U.12407:  |           |             |          |

# Table S9. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of $\mathbf{5}_p$

(The 241<sup>th</sup> orbital is highest occupied orbital shown in Figure S26) [tdTN116db1]

| Excited State                                                                                                                                                                                                                                                                                               | 1:         | Singlet-AU                                                                                                                                                                                | 2.2067 e                                                                | V 561.84                                                         | nm       | f=0.1023                         | 230 -> 242<br>231 -> 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | -0.11841                                                                                                                                                                                                   |                        |                        |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|----------------------|
| 2/1 2/2                                                                                                                                                                                                                                                                                                     |            | 0 70220                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 221 > 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 0.25795                                                                                                                                                                                                    |                        |                        |                      |
| Z41 -> Z4Z<br>This state for onti                                                                                                                                                                                                                                                                           | Imizatio   | 0.70320                                                                                                                                                                                   | reation                                                                 |                                                                  |          |                                  | 233 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.33763                                                                                                                                                                                                    |                        |                        |                      |
| This state for opti                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                           | niection.                                                               |                                                                  |          |                                  | 230 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.45293                                                                                                                                                                                                    |                        |                        |                      |
| Total Energy, E(1                                                                                                                                                                                                                                                                                           | D-HF/I     | D-KS) = -49/3.383342                                                                                                                                                                      | 34                                                                      |                                                                  |          |                                  | 238 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0.12637                                                                                                                                                                                                   |                        |                        |                      |
| Copying the excit                                                                                                                                                                                                                                                                                           | ted stat   | e density for this state as                                                                                                                                                               | the 1-particle                                                          | e RhoCl den                                                      | sity.    |                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                            |                        |                        |                      |
|                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                           |                                                                         |                                                                  |          |                                  | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13:        | Singlet-AU                                                                                                                                                                                                 | 4.7500 eV              | 261.02 nm              | f=0.0082             |
| Excited State                                                                                                                                                                                                                                                                                               | 2:         | Singlet-AG                                                                                                                                                                                | 2.4947 e                                                                | V 496.98                                                         | nm       | f=0.0000                         | <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                                                                                                                                            |                        |                        |                      |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                           |                                                                         |                                                                  |          |                                  | 234 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.53368                                                                                                                                                                                                    |                        |                        |                      |
| 240 -> 242                                                                                                                                                                                                                                                                                                  |            | 0.69761                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 235 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.10919                                                                                                                                                                                                    |                        |                        |                      |
|                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                           |                                                                         |                                                                  |          |                                  | 237 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.39784                                                                                                                                                                                                    |                        |                        |                      |
| Excited State                                                                                                                                                                                                                                                                                               | 3:         | Singlet-AU                                                                                                                                                                                | 3.7962 e                                                                | V 326.60                                                         | nm       | f=0.0203                         | 240 -> 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.11637                                                                                                                                                                                                    |                        |                        |                      |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                         |            | ě                                                                                                                                                                                         |                                                                         |                                                                  |          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                            |                        |                        |                      |
| 232 -> 242                                                                                                                                                                                                                                                                                                  |            | -0.11554                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14:        | Singlet-AU                                                                                                                                                                                                 | 4.8080 eV              | 257.87 nm              | f=0.0943             |
| 239 -> 242                                                                                                                                                                                                                                                                                                  |            | 0 40747                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | <\$**2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                            |                        |                        |                      |
| 241 -> 244                                                                                                                                                                                                                                                                                                  |            | 0.53048                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 231 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0 17320                                                                                                                                                                                                    |                        |                        |                      |
| 241-2244                                                                                                                                                                                                                                                                                                    |            | 0.33040                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 231 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.11320                                                                                                                                                                                                    |                        |                        |                      |
| Evolted State                                                                                                                                                                                                                                                                                               | 4.         | Cinglet AC                                                                                                                                                                                | 2 0027                                                                  | V 225.07                                                         |          | £ 0.0000                         | 234 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0.11134                                                                                                                                                                                                   |                        |                        |                      |
| Exciled State                                                                                                                                                                                                                                                                                               | 4:         | Singlet-AG                                                                                                                                                                                | 3.8037 e                                                                | V 320.90                                                         |          | 1=0.0000                         | 240 -> 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0.13420                                                                                                                                                                                                   |                        |                        |                      |
| <5~2>=0.000                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                           |                                                                         |                                                                  |          |                                  | 241 -> 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.35087                                                                                                                                                                                                    |                        |                        |                      |
| 241 -> 243                                                                                                                                                                                                                                                                                                  |            | 0.69593                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 241 -> 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.48987                                                                                                                                                                                                    |                        |                        |                      |
|                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                           |                                                                         |                                                                  |          |                                  | 241 -> 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0.15387                                                                                                                                                                                                   |                        |                        |                      |
| Excited State                                                                                                                                                                                                                                                                                               | 5:         | Singlet-AU                                                                                                                                                                                | 3.8590 e                                                                | V 321.29                                                         | nm       | f=0.0053                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                            |                        |                        |                      |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                           |                                                                         |                                                                  |          |                                  | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15:        | Singlet-AU                                                                                                                                                                                                 | 4.8747 eV              | 254.34 nm              | f=0.0481             |
| 239 -> 242                                                                                                                                                                                                                                                                                                  |            | 0.47933                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                                                                                                                                            |                        |                        |                      |
| 241 -> 244                                                                                                                                                                                                                                                                                                  |            | -0.44044                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | 231 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0.13400                                                                                                                                                                                                   |                        |                        |                      |
| 241 -> 246                                                                                                                                                                                                                                                                                                  |            | -0.13289                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | 235 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.14767                                                                                                                                                                                                    |                        |                        |                      |
| 241 -> 250                                                                                                                                                                                                                                                                                                  |            | 0 10706                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 239 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0 13217                                                                                                                                                                                                    |                        |                        |                      |
| 211 + 200                                                                                                                                                                                                                                                                                                   |            | 0.10700                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 241 -> 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.44400                                                                                                                                                                                                    |                        |                        |                      |
| Excited State                                                                                                                                                                                                                                                                                               | 6.         | Singlet ALL                                                                                                                                                                               | 4 0 4 0 2 0                                                             | 1 206.00                                                         | nm       | f_0.0012                         | 241 -> 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.27900                                                                                                                                                                                                    |                        |                        |                      |
|                                                                                                                                                                                                                                                                                                             | 0.         | Sillyiet-Au                                                                                                                                                                               | 4.0402 C                                                                | v 300.00                                                         |          | 1-0.0013                         | 241-2247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | -0.37007                                                                                                                                                                                                   |                        |                        |                      |
| <5 2>=0.000                                                                                                                                                                                                                                                                                                 |            | 0 11000                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 241 -> 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0.19870                                                                                                                                                                                                   |                        |                        |                      |
| 231 -> 242                                                                                                                                                                                                                                                                                                  |            | 0.11222                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                            |                        |                        |                      |
| 232 -> 242                                                                                                                                                                                                                                                                                                  |            | -0.16820                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16:        | Singlet-AG                                                                                                                                                                                                 | 5.1141 eV              | 242.43 nm              | f=0.0000             |
| 234 -> 242                                                                                                                                                                                                                                                                                                  |            | -0.20897                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                                                                                                                                            |                        |                        |                      |
| 235 -> 242                                                                                                                                                                                                                                                                                                  |            | 0.56404                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 228 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.16061                                                                                                                                                                                                    |                        |                        |                      |
| 237 -> 242                                                                                                                                                                                                                                                                                                  |            | 0.15898                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | 240 -> 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.36013                                                                                                                                                                                                    |                        |                        |                      |
| 239 -> 242                                                                                                                                                                                                                                                                                                  |            | -0.12028                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | 240 -> 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0.10339                                                                                                                                                                                                   |                        |                        |                      |
| 241 -> 246                                                                                                                                                                                                                                                                                                  |            | -0.10514                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | 241 -> 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.49761                                                                                                                                                                                                    |                        |                        |                      |
|                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                           |                                                                         |                                                                  |          |                                  | 241 -> 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0 12182                                                                                                                                                                                                   |                        |                        |                      |
| Excited State                                                                                                                                                                                                                                                                                               | 7.         | Singlet-AG                                                                                                                                                                                | 4 1716 e                                                                | V 297.21                                                         | nm       | f=0.0000                         | 211 / 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 0.12102                                                                                                                                                                                                    |                        |                        |                      |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                         | 7.         | Singici-AO                                                                                                                                                                                | 4.1710 0                                                                | v 277.21                                                         |          | 1-0.0000                         | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.        | Singlet AC                                                                                                                                                                                                 | 5 1659 oV              | 240.01 pm              | f_0.0000             |
| 22-0.000                                                                                                                                                                                                                                                                                                    |            | 0.0045                                                                                                                                                                                    |                                                                         |                                                                  |          |                                  | C**2: 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.        | Sillyiet-AG                                                                                                                                                                                                | 3.1030 64              | 240.01 1111            | 1-0.0000             |
| 241 -> 245                                                                                                                                                                                                                                                                                                  |            | 0.09945                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | <5 2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 0.57///                                                                                                                                                                                                    |                        |                        |                      |
| E 11 1 01 1                                                                                                                                                                                                                                                                                                 | •          | 01 1 1 4 0                                                                                                                                                                                | 1 5070                                                                  |                                                                  |          | (                                | 240 -> 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.57666                                                                                                                                                                                                    |                        |                        |                      |
| Excited State                                                                                                                                                                                                                                                                                               | 8:         | Singlet-AG                                                                                                                                                                                | 4.58/3 e                                                                | V 270.28                                                         | nm       | t=0.0000                         | 241 -> 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0.31451                                                                                                                                                                                                   |                        |                        |                      |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                           |                                                                         |                                                                  |          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                            |                        |                        |                      |
| 236 -> 242                                                                                                                                                                                                                                                                                                  |            | 0.21117                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18:        | Singlet-AU                                                                                                                                                                                                 | 5.2126 eV              | 237.85 nm              | f=0.0122             |
| 238 -> 242                                                                                                                                                                                                                                                                                                  |            | 0.66342                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                                                                                                                                            |                        |                        |                      |
|                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                           |                                                                         |                                                                  |          |                                  | 231 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.11669                                                                                                                                                                                                    |                        |                        |                      |
| Excited State                                                                                                                                                                                                                                                                                               | 9:         | Singlet-AU                                                                                                                                                                                | 4.6594 e                                                                | V 266.09                                                         | nm       | f=0.0164                         | 240 -> 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.15999                                                                                                                                                                                                    |                        |                        |                      |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                         |            | 5                                                                                                                                                                                         |                                                                         |                                                                  |          |                                  | 241 -> 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | -0.25697                                                                                                                                                                                                   |                        |                        |                      |
| 234 -> 242                                                                                                                                                                                                                                                                                                  |            | -0 30170                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | 241 -> 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0 58118                                                                                                                                                                                                    |                        |                        |                      |
| 234 > 242                                                                                                                                                                                                                                                                                                   |            | -0.26762                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | 241 2251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 0.00110                                                                                                                                                                                                    |                        |                        |                      |
| 233 -> 242                                                                                                                                                                                                                                                                                                  |            | 0.20702                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.        | Singlet AC                                                                                                                                                                                                 | 5 2290 oV              | 226.66 pm              | f_0.0000             |
| 237 -> 242                                                                                                                                                                                                                                                                                                  |            | 0.10741                                                                                                                                                                                   |                                                                         |                                                                  |          |                                  | C**2: 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.        | Sillyiet-AG                                                                                                                                                                                                | J.2307 EV              | 230.00 1111            | 1-0.0000             |
| 240 -> 243                                                                                                                                                                                                                                                                                                  |            | -0.12741                                                                                                                                                                                  |                                                                         |                                                                  |          |                                  | <5 2>=0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 0 10 /01                                                                                                                                                                                                   |                        |                        |                      |
| Evolted Ctata                                                                                                                                                                                                                                                                                               | 10         | Cinglet AC                                                                                                                                                                                |                                                                         |                                                                  |          |                                  | /1/->/4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | -U. IZ401                                                                                                                                                                                                  |                        |                        |                      |
| Excited State                                                                                                                                                                                                                                                                                               | 10:        | Singlot_A(                                                                                                                                                                                | 1 7054                                                                  |                                                                  |          | 1 0 0000                         | 010 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 0.45007                                                                                                                                                                                                    |                        |                        |                      |
|                                                                                                                                                                                                                                                                                                             |            | Siligici-AG                                                                                                                                                                               | 4.7251 e                                                                | V 262.40                                                         | nm       | f=0.0000                         | 218 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0.15327                                                                                                                                                                                                    |                        |                        |                      |
| <s**2>=0.000</s**2>                                                                                                                                                                                                                                                                                         |            | Singlet-Ad                                                                                                                                                                                | 4.7251 e'                                                               | V 262.40                                                         | nm       | f=0.0000                         | 218 -> 242<br>223 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 0.15327<br>0.12710                                                                                                                                                                                         |                        |                        |                      |
| <s**2>=0.000<br/>217 -&gt; 242</s**2>                                                                                                                                                                                                                                                                       |            | 0.24737                                                                                                                                                                                   | 4.7251 e'                                                               | V 262.40                                                         | nm       | f=0.0000                         | 218 -> 242<br>223 -> 242<br>227 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 0.15327<br>0.12710<br>0.18246                                                                                                                                                                              |                        |                        |                      |
| <s**2>=0.000<br/>217 -&gt; 242<br/>230 -&gt; 242</s**2>                                                                                                                                                                                                                                                     |            | 0.24737<br>0.10699                                                                                                                                                                        | 4.7251 e                                                                | V 262.40                                                         | nm       | f=0.0000                         | 218 -> 242<br>223 -> 242<br>227 -> 242<br>228 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 0.15327<br>0.12710<br>0.18246<br>0.37490                                                                                                                                                                   |                        |                        |                      |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242                                                                                                                                                                                                                                                     |            | 0.24737<br>0.10699<br>-0.30194                                                                                                                                                            | 4.7251 e'                                                               | V 262.40                                                         | nm       | f=0.0000                         | 218 -> 242<br>223 -> 242<br>227 -> 242<br>228 -> 242<br>230 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461                                                                                                                                                       |                        |                        |                      |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>236 -> 242                                                                                                                                                                                                                                       |            | 0.24737<br>0.10699<br>-0.30194<br>0.48650                                                                                                                                                 | 4.7251 e                                                                | V 262.40                                                         | nm       | f=0.0000                         | 218 -> 242<br>223 -> 242<br>227 -> 242<br>228 -> 242<br>230 -> 242<br>233 -> 242<br>233 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153                                                                                                                                           |                        |                        |                      |
| <s**2>=0.000<br/>217 -&gt; 242<br/>230 -&gt; 242<br/>233 -&gt; 242<br/>236 -&gt; 242<br/>238 -&gt; 242</s**2>                                                                                                                                                                                               |            | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233                                                                                                                                     | 4.7251 e                                                                | V 262.40                                                         | nm       | f=0.0000                         | 218 -> 242<br>223 -> 242<br>227 -> 242<br>228 -> 242<br>230 -> 242<br>233 -> 242<br>233 -> 242<br>241 -> 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153<br>-0.28931                                                                                                                               |                        |                        |                      |
| <s**2>=0.000<br/>217 -&gt; 242<br/>230 -&gt; 242<br/>233 -&gt; 242<br/>236 -&gt; 242<br/>238 -&gt; 242</s**2>                                                                                                                                                                                               |            | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233                                                                                                                                     | 4.7251 e                                                                | V 262.40                                                         | nm       | f=0.0000                         | 218 -> 242<br>223 -> 242<br>227 -> 242<br>228 -> 242<br>230 -> 242<br>233 -> 242<br>233 -> 242<br>241 -> 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153<br>-0.28931                                                                                                                               |                        |                        |                      |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>236 -> 242<br>236 -> 242<br>238 -> 242<br>238 -> 242                                                                                                                                                                                             | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU                                                                                                                       | 4.7251 e <sup>-1</sup>                                                  | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>227 -> 242<br>238 -> 242<br>230 -> 242<br>233 -> 242<br>241 -> 248<br>Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153<br>-0.28931<br>Sinalet-AU                                                                                                                 | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <s**2>=0.000<br/>217 -&gt; 242<br/>230 -&gt; 242<br/>233 -&gt; 242<br/>236 -&gt; 242<br/>238 -&gt; 242<br/>238 -&gt; 242<br/>Excited State<br/><s**2>=0.000</s**2></s**2>                                                                                                                                   | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU                                                                                                                       | 4.7251 e <sup>4</sup><br>4.7350 e <sup>4</sup>                          | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>227 -> 242<br>228 -> 242<br>230 -> 242<br>230 -> 242<br>233 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153<br>-0.28931<br>Singlet-AU                                                                                                                 | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>236 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>5**2>=0.000<br>214 -> 242                                                                                                                                                                | 11:        | 0.24737<br>0.10699<br>-0.30194<br>-0.30194<br>-0.18233<br>Singlet-AU                                                                                                                      | 4.7251 e <sup>4</sup><br>4.7350 e <sup>4</sup>                          | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>227 -> 242<br>238 -> 242<br>230 -> 242<br>233 -> 242<br>233 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0.000<br>215 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153<br>-0.28931<br>Singlet-AU                                                                                                                 | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>236 -> 242<br>238 -> 242<br>238 -> 242<br>Excited State<br><\$**2>=0.000<br>214 -> 242<br>215 -> 242                                                                                                                                             | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641                                                                                                | 4.7251 e <sup>-</sup><br>4.7350 e <sup>-</sup>                          | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>227 -> 242<br>238 -> 242<br>233 -> 242<br>233 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0.000<br>215 -> 242<br>258 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153<br>-0.28931<br>Singlet-AU<br>0.11509<br>0.19242                                                                                           | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <s**2>=0.000<br/>217 -&gt; 242<br/>230 -&gt; 242<br/>233 -&gt; 242<br/>236 -&gt; 242<br/>238 -&gt; 242<br/>238 -&gt; 242<br/>Excited State<br/><s**2>=0.000<br/>214 -&gt; 242<br/>215 -&gt; 242</s**2></s**2>                                                                                               | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49640                                                                                     | 4.7251 e <sup>4</sup><br>4.7350 e <sup>4</sup>                          | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>228 -> 242<br>238 -> 242<br>230 -> 242<br>233 -> 242<br>233 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0.000<br>215 -> 242<br>229 -> 242<br>229 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>0.29461<br>-0.22153<br>-0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10522                                                                                 | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>236 -> 242<br>238 -> 242<br>238 -> 242<br>Excited State<br><\$**2>=0.000<br>214 -> 242<br>215 -> 242<br>231 -> 242                                                                                                                               | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660                                                                                     | 4.7251 e <sup>4</sup><br>4.7350 e <sup>4</sup>                          | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>228 -> 242<br>230 -> 242<br>230 -> 242<br>233 -> 242<br>231 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0.000<br>215 -> 242<br>229 -> 242<br>231 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153<br>-0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51327                                                                     | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>Excited State<br><\$**2>=0.000<br>214 -> 242<br>215 -> 242<br>231 -> 242<br>232 -> 242                                                                                     | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660<br>-0.10758                                                                         | 4.7251 e <sup>i</sup><br>4.7350 e <sup>i</sup>                          | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>228 -> 242<br>230 -> 242<br>233 -> 242<br>233 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0.000<br>215 -> 242<br>229 -> 242<br>231 -> 242<br>232 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153<br>-0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51726                                                                     | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>215 -> 242<br>231 -> 242<br>232 -> 242<br>237 -> 242                                                                                                         | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660<br>-0.10758<br>-0.12469                                                             | 4.7251 e <sup>i</sup><br>4.7350 e <sup>i</sup>                          | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>228 -> 242<br>238 -> 242<br>233 -> 242<br>233 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0.000<br>215 -> 242<br>229 -> 242<br>231 -> 242<br>232 -> 242<br>235 -> 242                                                                                                                                                                                                                                                                                                                                                                                                                       | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>0.29461<br>-0.22153<br>-0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51726<br>0.18701                                                           | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>236 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>215 -> 242<br>231 -> 242<br>231 -> 242<br>233 -> 242<br>237 -> 242<br>239 -> 242                                                                                           | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660<br>-0.10758<br>-0.12469<br>0.12469<br>0.10400                                       | 4.7251 e <sup>i</sup><br>4.7350 e <sup>i</sup>                          | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>228 -> 242<br>230 -> 242<br>230 -> 242<br>231 -> 242<br>241 -> 248<br>Excited State<br>-<5**2>=0.000<br>215 -> 242<br>239 -> 242<br>231 -> 242<br>235 -> 242<br>235 -> 242<br>239 -> 242                                                                                                                                                                                                                                                                                                                                                                                                         | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>0.29461<br>0.22153<br>0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51726<br>0.18701<br>0.12706                                                  | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>215 -> 242<br>215 -> 242<br>231 -> 242<br>237 -> 242<br>237 -> 242<br>239 -> 242<br>240 -> 248                                                                             | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660<br>-0.10758<br>-0.12469<br>0.10400<br>0.10915                                       | 4.7251 e'<br>4.7350 e'                                                  | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>228 -> 242<br>230 -> 242<br>233 -> 242<br>231 -> 242<br>231 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0.000<br>215 -> 242<br>229 -> 242<br>231 -> 242<br>232 -> 242<br>235 -> 242<br>235 -> 242<br>235 -> 242<br>239 -> 242<br>235 -> 242<br>239 -> 242<br>240 -> 243 | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>0.29461<br>0.22153<br>-0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51726<br>0.18701<br>0.12706<br>-0.24190                                     | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>213 -> 242<br>215 -> 242<br>231 -> 242<br>233 -> 242<br>237 -> 242<br>237 -> 242<br>239 -> 242<br>240 -> 248<br>241 -> 247                                                 | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660<br>-0.10758<br>-0.12469<br>0.10400<br>0.10915<br>-0.23882                           | 4.7251 e <sup>i</sup><br>4.7350 e <sup>i</sup>                          | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>228 -> 242<br>233 -> 242<br>233 -> 242<br>233 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0.000<br>215 -> 242<br>229 -> 242<br>231 -> 242<br>235 -> 242<br>235 -> 242<br>239 -> 242<br>239 -> 242<br>239 -> 242<br>239 -> 242<br>239 -> 242<br>240 -> 243<br>241 -> 246                                                                                                                                                                                                                                                                                                                     | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>-0.29461<br>-0.22153<br>-0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51726<br>0.18701<br>0.12706<br>-0.24190<br>-0.2190<br>-0.10139            | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>237 -> 242<br>231 -> 242<br>231 -> 242<br>237 -> 242<br>237 -> 242<br>239 -> 242<br>240 -> 248<br>241 -> 247                                                               | 11:        | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660<br>-0.10758<br>-0.12469<br>0.10400<br>0.10915<br>-0.23882                           | 4.7251 e <sup>i</sup>                                                   | V 262.40<br>V 261.84                                             | nm       | f=0.0000<br>f=0.0044             | $\begin{array}{c} 218 \\ > 242 \\ 223 \\ > 242 \\ 228 \\ > 242 \\ 230 \\ > 242 \\ 233 \\ > 242 \\ 231 \\ > 242 \\ 241 \\ > 248 \\ \hline \\ \text{Excited State} \\ <5^{**}2 > = 0.000 \\ 215 \\ > 242 \\ 229 \\ > 242 \\ 231 \\ > 242 \\ 235 \\ > 242 \\ 235 \\ > 242 \\ 235 \\ > 242 \\ 239 \\ > 242 \\ 240 \\ > 243 \\ 241 \\ > 246 \end{array}$                                                                                                                                                                                                                                                                          | 20:        | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>0.29461<br>0.22153<br>0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51726<br>0.18701<br>0.12706<br>0.24190<br>-0.10139                           | 5.2443 eV              | 236.41 nm              | f=0.0185             |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>215 -> 242<br>231 -> 242<br>231 -> 242<br>237 -> 242<br>237 -> 242<br>239 -> 242<br>240 -> 248<br>241 -> 247<br>Excited State                                              | 11:<br>12: | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660<br>-0.10758<br>-0.12469<br>0.10400<br>0.10915<br>-0.23882<br>Singlet-AG             | 4.7251 e <sup>i</sup><br>4.7350 e <sup>i</sup><br>4.7352 e <sup>i</sup> | <ul> <li>✓ 262.40</li> <li>✓ 261.84</li> <li>✓ 261.83</li> </ul> | nm<br>nm | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>228 -> 242<br>230 -> 242<br>231 -> 242<br>231 -> 242<br>241 -> 248<br>Excited State<br>-\$**2>=0.000<br>215 -> 242<br>231 -> 242<br>232 -> 242<br>235 -> 242<br>235 -> 242<br>239 -> 242<br>240 -> 243<br>241 -> 246<br>Excited State                                                                                                                                                                                                                                                                                                                                                            | 20:<br>21: | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>0.29461<br>0.22153<br>0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51726<br>0.18701<br>0.12706<br>0.24190<br>-0.20139<br>Singlet-AG             | 5.2443 eV<br>5.3108 eV | 236.41 nm<br>233.46 nm | f=0.0185<br>f=0.0000 |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>215 -> 242<br>215 -> 242<br>231 -> 242<br>237 -> 242<br>239 -> 242<br>239 -> 242<br>240 -> 248<br>241 -> 247<br>Excited State<br><\$**2>=0.000                             | 11:<br>12: | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660<br>-0.10758<br>-0.12469<br>0.10400<br>0.10915<br>-0.23882<br>Singlet-AG             | 4.7251 e <sup>2</sup><br>4.7350 e <sup>1</sup><br>4.7352 e <sup>2</sup> | <ul> <li>✓ 262.40</li> <li>✓ 261.84</li> <li>✓ 261.83</li> </ul> | nm<br>nm | f=0.0000<br>f=0.0044<br>f=0.0000 | 218 -> 242<br>223 -> 242<br>228 -> 242<br>230 -> 242<br>231 -> 242<br>231 -> 242<br>241 -> 248<br>Excited State<br><s**2>=0.000<br/>215 -&gt; 242<br/>231 -&gt; 242<br/>235 -&gt; 242<br/>235 -&gt; 242<br/>235 -&gt; 242<br/>239 -&gt; 242<br/>235 -&gt; 242<br/>239 -&gt; 242<br/>239 -&gt; 242<br/>240 -&gt; 243<br/>241 -&gt; 246<br/>Excited State<br/><s**2>=0.000</s**2></s**2>                                                                                                                                                                                                                                       | 20:<br>21: | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>0.29461<br>0.22153<br>-0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51726<br>0.18701<br>0.12706<br>-0.24190<br>-0.10139<br>Singlet-AG           | 5.2443 eV<br>5.3108 eV | 236.41 nm<br>233.46 nm | f=0.0185<br>f=0.0000 |
| <\$**2>=0.000<br>217 -> 242<br>230 -> 242<br>233 -> 242<br>233 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>238 -> 242<br>215 -> 242<br>231 -> 242<br>231 -> 242<br>237 -> 242<br>237 -> 242<br>239 -> 242<br>240 -> 248<br>241 -> 248<br>241 -> 247<br>Excited State<br><\$**2>=0.000<br>217 -> 242 | 11:<br>12: | 0.24737<br>0.10699<br>-0.30194<br>0.48650<br>-0.18233<br>Singlet-AU<br>-0.14281<br>0.12641<br>0.49660<br>-0.10758<br>-0.12469<br>0.10400<br>0.10915<br>-0.23882<br>Singlet-AG<br>-0.25453 | 4.7251 e <sup>2</sup><br>4.7350 e <sup>2</sup><br>4.7352 e <sup>2</sup> | <ul> <li>✓ 262.40</li> <li>✓ 261.84</li> <li>✓ 261.83</li> </ul> | nm<br>nm | f=0.0000<br>f=0.0044             | 218 -> 242<br>223 -> 242<br>228 -> 242<br>233 -> 242<br>233 -> 242<br>233 -> 242<br>241 -> 248<br>Excited State<br><\$**2>=0.000<br>215 -> 242<br>231 -> 242<br>232 -> 242<br>235 -> 242<br>235 -> 242<br>239 -> 242<br>240 -> 243<br>241 -> 246<br>Excited State<br><\$**2>=0.000<br>216 -> 242                                                                                                                                                                                                                                                                                                                             | 20:<br>21: | 0.15327<br>0.12710<br>0.18246<br>0.37490<br>0.29461<br>0.22153<br>0.28931<br>Singlet-AU<br>0.11509<br>0.19343<br>0.10580<br>0.51726<br>0.18701<br>0.12706<br>-0.24190<br>-0.10139<br>Singlet-AG<br>0.13891 | 5.2443 eV<br>5.3108 eV | 236.41 nm<br>233.46 nm | f=0.0185<br>f=0.0000 |

| 218 -> 242<br>225 -> 242 |         | 0.13602<br>0.12937 |             |             |          | Excited State<br><s**2>=0.000</s**2> | 31: | Singlet-AU  | 5.8061 eV  | 213.54 nm   | f=0.0031  |
|--------------------------|---------|--------------------|-------------|-------------|----------|--------------------------------------|-----|-------------|------------|-------------|-----------|
| 227 -> 242               |         | 0.22910            |             |             |          | 241 -> 246                           |     | 0.33719     |            |             |           |
| 228 -> 242               |         | 0.25647            |             |             |          | 241 -> 250                           |     | 0.54929     |            |             |           |
| 230 -> 242               |         | 0.11278            |             |             |          | 241 -> 251                           |     | 0.22086     |            |             |           |
| 233 -> 242               |         | 0.45019            |             |             |          | Excited State                        | 32: | Singlet-AG  | 5.8165 eV  | 213.16 nm   | f=0.0000  |
| Excited State            | 22:     | Singlet-AU         | 5.3218 eV   | 232.97 nm   | f=0.1734 | <s**2>=0.000</s**2>                  |     | <u>,</u>    |            |             |           |
| <s**2>=0.000</s**2>      |         |                    |             |             |          | 240 -> 247                           |     | -0.25665    |            |             |           |
| 220 -> 242               |         | 0.20634            |             |             |          | 241 -> 248                           |     | 0.12887     |            |             |           |
| 222 -> 242               |         | -0.10460           |             |             |          | 241 -> 249                           |     | 0.58937     |            |             |           |
| 224 -> 242               |         | 0.19561            |             |             |          | 241 -> 252                           |     | -0.13999    |            |             |           |
| 232 -> 242               |         | 0.29104            |             |             |          |                                      |     |             |            |             |           |
| 234 -> 242               |         | -0.17225           |             |             |          | Excited State                        | 33: | Singlet-AG  | 5.8716 eV  | 211.16 nm   | f=0.0000  |
| 240 -> 243               |         | 0.47610            |             |             |          | <s**2>=0.000</s**2>                  |     |             |            |             |           |
|                          |         |                    |             |             |          | 216 -> 242                           |     | -0.14516    |            |             |           |
| Excited State            | 23:     | Singlet-AU         | 5.4813 eV   | 226.19 nm   | t=0.2998 | 218 -> 242                           |     | 0.1/381     |            |             |           |
| <s**2>=0.000</s**2>      |         |                    |             |             |          | 221 -> 242                           |     | 0.50039     |            |             |           |
| 219 -> 242               |         | -0.11/21           |             |             |          | 225 -> 242                           |     | 0.33833     |            |             |           |
| 220 -> 242               |         | -0.35847           |             |             |          | 228 -> 242                           |     | -0.19830    |            |             |           |
| 224 -> 242               |         | -0.22192           |             |             |          | 240 -> 247                           |     | -0.11927    |            |             |           |
| 229 -> 242               |         | 0.35863            |             |             |          | E 11 1 01 1                          | ~ / | <u> </u>    | 5 004 / 1/ |             | (         |
| 240 -> 243               |         | 0.36568            |             |             |          | Excited State                        | 34: | Singlet-AG  | 5.8916 eV  | 210.44 nm   | t=0.0000  |
|                          |         |                    |             |             |          | <s**2>=0.000</s**2>                  |     |             |            |             |           |
| Excited State            | 24:     | Singlet-AU         | 5.5035 eV   | 225.28 nm   | t=0.5221 | 216 -> 242                           |     | 0.11244     |            |             |           |
| <s**2>=0.000</s**2>      |         |                    |             |             |          | 21/->242                             |     | 0.13257     |            |             |           |
| 240 -> 245               |         | 0.64322            |             |             |          | 218 -> 242                           |     | 0.12304     |            |             |           |
| 241 -> 247               |         | 0.15419            |             |             |          | 221 -> 242                           |     | -0.21444    |            |             |           |
| 241 -> 251               |         | -0.13459           |             |             |          | 223 -> 242                           |     | 0.48129     |            |             |           |
|                          |         |                    |             |             |          | 225 -> 242                           |     | 0.30097     |            |             |           |
| Excited State            | 25:     | Singlet-AG         | 5.5684 eV   | 222.66 nm   | t=0.0000 | 227 -> 242                           |     | -0.16932    |            |             |           |
| <s**2>=0.000</s**2>      |         |                    |             |             |          | 228 -> 242                           |     | -0.14451    |            |             |           |
| 217->242                 |         | -0.12905           |             |             |          | 230 -> 242                           |     | -0.12343    |            |             |           |
| 223 -> 242               |         | 0.28303            |             |             |          | E 11 1 01 1                          | 05  | <u> </u>    | 5 0070 V   |             | 6 0 000 0 |
| 228 -> 242               |         | 0.20273            |             |             |          | Excited State                        | 35: | Singlet-AU  | 5.9072 eV  | 209.89 nm   | t=0.0024  |
| 230 -> 242               |         | 0.52207            |             |             |          | <5**2>=0.000                         |     | 0.00000     |            |             |           |
| 240 -> 246               |         | 0.20599            |             |             |          | 219 -> 242                           |     | 0.29298     |            |             |           |
| 240 -> 250               |         | -0.11135           |             |             |          | 220 -> 242                           |     | 0.26152     |            |             |           |
| E 11 1 01 1              | <i></i> | <u> </u>           | 5 57 4A . V | 000.40      | 6 0 00/0 | 222 -> 242                           |     | 0.18141     |            |             |           |
| Excited State            | 26:     | Singlet-AU         | 5.5/41 eV   | 222.43 nm   | t=0.0369 | 224 -> 242                           |     | -0.16098    |            |             |           |
| <s2>=0.000</s2>          |         | 0.11//1            |             |             |          | 226 -> 242                           |     | 0.40241     |            |             |           |
| 219 -> 242               |         | 0.11661            |             |             |          | 229 -> 242                           |     | 0.1/061     |            |             |           |
| 222 -> 242               |         | -0.20625           |             |             |          | 240 -> 248                           |     | -0.12168    |            |             |           |
| 224 -> 242               |         | 0.30211            |             |             |          | Evolted Cloth                        | 24  | Circlet AC  | F 0000 -V  | 200.22      | 6 0 0000  |
| 226 -> 242               |         | -0.13857           |             |             |          | Exciled State                        | 30: | Singlet-AG  | 5.9228 eV  | 209.33 nm   | T=0.0000  |
| 229 -> 242               |         | 0.50989            |             |             |          | <5 2>=0.000                          |     | 0 101/7     |            |             |           |
| 232 -> 242               |         | -0.10862           |             |             |          | 234 -> 243                           |     | -0.10147    |            |             |           |
| 240 -> 243               |         | -0.11290           |             |             |          | 241->249                             |     | 0.1/04/     |            |             |           |
| Evolted State            | 27.     | Cinglet AC         | F F027 aV   | 222.00      | £ 0.0000 | 241 -> 252                           |     | 0.48407     |            |             |           |
| EXCILED SIBLE            | 27:     | Singlet-AG         | 5.5827 eV   | 222.09 1111 | 1=0.0000 | 241 -> 257                           |     | -0.20178    |            |             |           |
| <5 2>=0.000              |         | 0 11117            |             |             |          | 241 -> 209                           |     | -0.24412    |            |             |           |
| 223 -> 242               |         | -0.11117           |             |             |          | Excited State                        | 27. | Singlet ALL | E 0242 oV  | 200.21 nm   | f 0.0112  |
| 220 -> 242               |         | 0.11030            |             |             |          | <s**2>=0.000</s**2>                  | 57. | Sillyiet-AU | J.7202 CV  | 207.21 1111 | 1-0.0112  |
| 230 -> 242               |         | 0.10230            |             |             |          | 22=0.000                             |     | 0 14604     |            |             |           |
| 240 -> 240               |         | 0.32403            |             |             |          | 220 -> 242                           |     | 0.14074     |            |             |           |
| 240 -> 250               |         | -0.20277           |             |             |          | 224 -> 242                           |     | 0.12550     |            |             |           |
| 240 9 201                |         | 0.13312            |             |             |          | 220 > 242                            |     | -0.12080    |            |             |           |
| Excited State            | 28.     | Singlet-AG         | 5.6516 eV   | 219.38 nm   | f=0.0000 | 220 > 240                            |     | -0 17085    |            |             |           |
| <s**2>=0 000</s**2>      | 20.     | Singlet No         | 3.0310 64   | 217.50 1111 | 1-0.0000 | 240 -> 248                           |     | 0 24149     |            |             |           |
| 218 -> 242               |         | 0.12562            |             |             |          | 241 -> 254                           |     | -0.12188    |            |             |           |
| 223 -> 242               |         | 0.15149            |             |             |          | 241 -> 255                           |     | -0.14943    |            |             |           |
| 225 -> 242               |         | -0.12386           |             |             |          | 241 -> 256                           |     | -0.23403    |            |             |           |
| 227 -> 242               |         | 0.53547            |             |             |          | 241 -> 258                           |     | 0.20364     |            |             |           |
| 228 -> 242               |         | -0.34560           |             |             |          | 241 -> 262                           |     | 0 17846     |            |             |           |
|                          |         |                    |             |             |          | 241 -> 277                           |     | -0.10815    |            |             |           |
| Excited State            | 29:     | Sinalet-AU         | 5.7248 eV   | 216.57 nm   | f=0.0019 |                                      |     |             |            |             |           |
| <s**2>=0.000</s**2>      |         |                    |             |             |          | Excited State                        | 38: | Sinalet-AU  | 5.9636 eV  | 207.90 nm   | f=0.0005  |
| 219 -> 242               |         | -0.15276           |             |             |          | <s**2>=0.000</s**2>                  |     |             |            |             |           |
| 220 -> 242               |         | -0.21450           |             |             |          | 214 -> 242                           |     | 0.12231     |            |             |           |
| 222 -> 242               |         | -0.14579           |             |             |          | 222 -> 242                           |     | 0.59701     |            |             |           |
| 224 -> 242               |         | 0.37032            |             |             |          | 224 -> 242                           |     | 0.30521     |            |             |           |
| 226 -> 242               |         | 0.50138            |             |             |          |                                      |     |             |            |             |           |
|                          |         |                    |             |             |          | Excited State                        | 39: | Sinalet-AG  | 5.9762 eV  | 207.46 nm   | f=0.0000  |
| Excited State            | 30:     | Singlet-AG         | 5.7835 eV   | 214.38 nm   | f=0.0000 | <s**2>=0.000</s**2>                  |     |             |            |             |           |
| <s**2>=0.000</s**2>      |         |                    |             |             |          | 217 -> 242                           |     | -0.21713    |            |             |           |
| 221 -> 242               |         | 0.16732            |             |             |          | 218 -> 242                           |     | -0.26691    |            |             |           |
| 240 -> 247               |         | 0.57145            |             |             |          | 221 -> 242                           |     | -0.20533    |            |             |           |
| 240 -> 251               |         | -0.15427           |             |             |          | 223 -> 242                           |     | -0.18617    |            |             |           |
| 241 -> 248               |         | 0.12104            |             |             |          | 225 -> 242                           |     | 0.48281     |            |             |           |
| 241 -> 249               |         | 0.23329            |             |             |          | 227 -> 242                           |     | 0.16539     |            |             |           |
|                          |         |                    |             |             |          |                                      |     |             |            |             |           |

| Excited State       | 40: | Singlet-AU  | 6.0244 eV | 205.80 nm | f=0.0274 | Excited State       | 40.  | Singlet ALL         | 6 2445 oV | 109 55 nm   | f_0.0995 |
|---------------------|-----|-------------|-----------|-----------|----------|---------------------|------|---------------------|-----------|-------------|----------|
| 219 -> 242          |     | -0.10824    |           |           |          | <s**2>=0.000</s**2> | 40.  | SiligierAu          | 0.2445 60 | 170.33 1111 | 1-0.0005 |
| 231 -> 242          |     | -0.17614    |           |           |          | 214 -> 242          |      | 0.22044             |           |             |          |
| 239 -> 244          |     | -0.13921    |           |           |          | 215 -> 242          |      | 0.34210             |           |             |          |
| 240 -> 248          |     | 0.37634     |           |           |          | 235 -> 244          |      | 0.13265             |           |             |          |
| 240 -> 249          |     | -0.10359    |           |           |          | 239 -> 244          |      | 0.48205             |           |             |          |
| 241 -> 254          |     | 0.17141     |           |           |          |                     |      |                     |           |             |          |
| 241 -> 255          |     | 0.14975     |           |           |          | Excited State       | 49:  | Singlet-AG          | 6.2688 eV | 197.78 nm   | f=0.0000 |
| 241 -> 256          |     | 0.23098     |           |           |          | <s**2>=0.000</s**2> |      |                     |           |             |          |
| 241 -> 258          |     | -0.23228    |           |           |          | 235 -> 243          |      | -0.10484            |           |             |          |
| 241 -> 277          |     | 0.10192     |           |           |          | 239 -> 243          |      | -0.11219            |           |             |          |
| Evolted State       | 41. | Cinglet All | (0(40 a)) | 201.12    | £ 0.000/ | 241 -> 252          |      | 0.20319             |           |             |          |
| Exciled State       | 41: | Singlet-AU  | 6.0648 eV | 204.43 nm | T=0.0006 | 241 -> 253          |      | 0.53499             |           |             |          |
| <5 2>=0.000         |     | 0 1/009     |           |           |          | 241 -> 257          |      | 0.20818             |           |             |          |
| 210 -> 242          |     | -0.14996    |           |           |          | 241 -> 239          |      | -0.22053            |           |             |          |
| 217 -> 242          |     | -0.35070    |           |           |          | 241 -> 201          |      | -0.22033            |           |             |          |
| 220 > 242           |     | -0 10678    |           |           |          | Excited State       | 50·  | Singlet-AU          | 6.2842 eV | 197.29 nm   | f=0 0011 |
| 240 -> 248          |     | 0.12588     |           |           |          | <s**2>=0.000</s**2> |      |                     |           |             |          |
|                     |     |             |           |           |          | 214 -> 242          |      | 0.38113             |           |             |          |
| Excited State       | 42: | Singlet-AG  | 6.0783 eV | 203.98 nm | f=0.0000 | 215 -> 242          |      | -0.25749            |           |             |          |
| <s**2>=0.000</s**2> |     | 5           |           |           |          | 218 -> 243          |      | -0.14367            |           |             |          |
| 217 -> 242          |     | -0.14309    |           |           |          | 227 -> 243          |      | -0.13825            |           |             |          |
| 218 -> 242          |     | 0.50696     |           |           |          | 228 -> 243          |      | -0.19207            |           |             |          |
| 221 -> 242          |     | -0.23340    |           |           |          | 231 -> 242          |      | 0.12092             |           |             |          |
| 223 -> 242          |     | -0.22244    |           |           |          | 240 -> 248          |      | -0.15705            |           |             |          |
| 227 -> 242          |     | -0.15482    |           |           |          | 241 -> 254          |      | 0.15860             |           |             |          |
| 230 -> 242          |     | 0.14232     |           |           |          | 241 -> 262          |      | 0.12347             |           |             |          |
| 241 -> 252          |     | 0.10786     |           |           |          |                     |      |                     |           |             |          |
|                     |     |             |           |           |          | Excited State       | 51:  | Singlet-AG          | 6.3593 eV | 194.96 nm   | f=0.0000 |
| Excited State       | 43: | Singlet-AG  | 6.1331 eV | 202.16 nm | t=0.0000 | <s**2>=0.000</s**2> |      |                     |           |             |          |
| <\$**2>=0.000       |     | 0.004.44    |           |           |          | 240 -> 251          |      | -0.14062            |           |             |          |
| 216 -> 242          |     | 0.28144     |           |           |          | 241 -> 252          |      | 0.22696             |           |             |          |
| 217 -> 242          |     | 0.20227     |           |           |          | 241 -> 253          |      | -0.3/301            |           |             |          |
| 219 -> 243          |     | 0.11198     |           |           |          | 241 -> 257          |      | 0.38157             |           |             |          |
| 220 -> 243          |     | 0.23331     |           |           |          | 241 -> 239          |      | 0.17062             |           |             |          |
| 221 -> 242          |     | 0.12097     |           |           |          | 241 -> 201          |      | -0.11947            |           |             |          |
| 224 -> 243          |     | -0 12075    |           |           |          | 241-2203            |      | 0.13472             |           |             |          |
| 220 -> 231          |     | -0.12073    |           |           |          | Excited State       | 52.  | Singlet-ALL         | 6 4024 eV | 103.65 nm   | f=0.0253 |
| 227 -> 243          |     | -0.10735    |           |           |          | <\$**2>=0.000       | JZ.  | Singici-Au          | 0.4024 CV | 175.05 1111 | 1-0.0233 |
| 232 > 243           |     | 0.18758     |           |           |          | 241 -> 254          |      | 0.60067             |           |             |          |
| 235 -> 243          |     | 0.11900     |           |           |          | 241 -> 255          |      | -0.16767            |           |             |          |
| 241 -> 252          |     | 0.18733     |           |           |          | 241 -> 256          |      | -0.15970            |           |             |          |
|                     |     |             |           |           |          |                     |      |                     |           |             |          |
| Excited State       | 44: | Singlet-AG  | 6.1928 eV | 200.21 nm | f=0.0000 | Excited State       | 53:  | Singlet-AG          | 6.4244 eV | 192.99 nm   | f=0.0000 |
| <s**2>=0.000</s**2> |     | -           |           |           |          | <s**2>=0.000</s**2> |      | -                   |           |             |          |
| 216 -> 242          |     | 0.56970     |           |           |          | 213 -> 242          |      | 0.46720             |           |             |          |
| 217 -> 242          |     | -0.29728    |           |           |          | 239 -> 245          |      | 0.32069             |           |             |          |
| 221 -> 242          |     | 0.14871     |           |           |          | 240 -> 250          |      | 0.10689             |           |             |          |
|                     |     |             |           |           |          | 240 -> 251          |      | -0.19465            |           |             |          |
| Excited State       | 45: | Singlet-AU  | 6.1965 eV | 200.09 nm | f=0.0027 | 241 -> 252          |      | 0.11084             |           |             |          |
| <s**2>=0.000</s**2> |     | 0.400.40    |           |           |          | 241 -> 253          |      | 0.10003             |           |             |          |
| 210 -> 242          |     | -0.12042    |           |           |          | 241 -> 259          |      | 0.10140             |           |             |          |
| 214 -> 242          |     | 0.36758     |           |           |          | 241 -> 261          |      | 0.15245             |           |             |          |
| 210 -> 242          |     | -0.10213    |           |           |          | Evolted State       | E 4. | Singlet AC          | 6 42E2 oV | 102.07 pm   | f 0.0000 |
| 210 -> 243          |     | 0.10507     |           |           |          | Exciled State       | 54.  | Siligiet-AG         | 0.4232 61 | 172.77 1111 | 1-0.0000 |
| 227 -> 243          |     | 0.10303     |           |           |          | 213 -> 242          |      | 0.45211             |           |             |          |
| 220 > 243           |     | 0.15776     |           |           |          | 239 -> 245          |      | -0 33911            |           |             |          |
| 240 -> 248          |     | 0.34593     |           |           |          | 240 -> 250          |      | -0.12353            |           |             |          |
| 210 / 210           |     | 0.01070     |           |           |          | 240 -> 251          |      | 0.25772             |           |             |          |
| Excited State       | 46: | Singlet-AU  | 6.2194 eV | 199.35 nm | f=0.0543 | 241 -> 257          |      | 0.11423             |           |             |          |
| <s**2>=0.000</s**2> |     | 5           |           |           |          |                     |      |                     |           |             |          |
| 212 -> 242          |     | -0.10484    |           |           |          | Excited State       | 55:  | Singlet-AU          | 6.4294 eV | 192.84 nm   | f=0.0040 |
| 214 -> 242          |     | 0.22781     |           |           |          | <s**2>=0.000</s**2> |      | -                   |           |             |          |
| 215 -> 242          |     | 0.42452     |           |           |          | 212 -> 242          |      | 0.66889             |           |             |          |
| 219 -> 242          |     | 0.14839     |           |           |          | 214 -> 242          |      | 0.10287             |           |             |          |
| 232 -> 242          |     | -0.12365    |           |           |          |                     |      |                     |           |             |          |
| 235 -> 244          |     | -0.14506    |           |           |          | Excited State       | 56:  | Singlet-AU          | 6.4909 eV | 191.01 nm   | f=0.5873 |
| 239 -> 244          |     | -0.36560    |           |           |          | <s**2>=0.000</s**2> |      |                     |           |             |          |
|                     |     | <b>a</b>    |           |           |          | 234 -> 244          |      | -0.18053            |           |             |          |
| Excited State       | 47: | Singlet-AG  | 6.2270 eV | 199.11 nm | f=0.0000 | 235 -> 244          |      | 0.51583             |           |             |          |
| <s**2>=0.000</s**2> |     | 0.45045     |           |           |          | 237 -> 244          |      | 0.27100             |           |             |          |
| 232 -> 243          |     | -0.15815    |           |           |          | 239 -> 244          |      | -0.20438            |           |             |          |
| 234 -> 243          |     | -0.12160    |           |           |          | E. 1. 1. C. 1       |      | o                   |           | 100.01      | 6 0 0    |
| 235 -> 243          |     | 0.21//6     |           |           |          | Excited State       | 57:  | Singlet-AG          | 6.4968 eV | 190.84 nm   | t=0.0000 |
| 239 -> 243          |     | 0.53860     |           |           |          | <5 2>=0.000         |      | 0 10020             |           |             |          |
| 240 -> 246          |     | -U. 10930   |           |           |          | 213 -> 242          |      | -U. 1983U           |           |             |          |
| 240 -> 250          |     | 0.11000     |           |           |          | 235 -> 243          |      | U.12489<br>_0.11910 |           |             |          |
| 241->203            |     | 0.11070     |           |           |          | 200-2240            |      | -0.11010            |           |             |          |

| 238 -> 244<br>240 -> 251<br>241 -> 252 | 0      | ).13840<br>).21444 |           |             |          | Excited State       | 61: | Singlet-AU  | 6.5799 eV | 188.43 nm   | f=0.0068 |
|----------------------------------------|--------|--------------------|-----------|-------------|----------|---------------------|-----|-------------|-----------|-------------|----------|
| 241 -> 232                             |        | 0.23000            |           |             |          | <3 2>=0.000         |     | 0 46670     |           |             |          |
| 241 -> 237                             |        | 24700              |           |             |          | 241 -> 255          |     | 0.40070     |           |             |          |
| 241 -> 201                             |        | 1.34770            |           |             |          | 241 -> 250          |     | -0.33170    |           |             |          |
| 241-2200                               | L.     | .10015             |           |             |          | 241 -> 230          |     | -0.12107    |           |             |          |
| Excited State                          | 58.    | Singlet-AG         | 65378 oV  | 180.64 nm   | f-0.0000 | 241 -> 200          |     | -0.20203    |           |             |          |
| <s**2>=0.000</s**2>                    | 50.    | Siligici-AG        | 0.3370 CV | 107.04 1111 | 1-0.0000 | 241 -> 203          |     | 0.12005     |           |             |          |
| 27=0.000                               | 0      | 20070              |           |             |          | 241 -> 200          |     | -0.12703    |           |             |          |
| 211 -> 242                             | 0      | 127070             |           |             |          | 241-2207            |     | -0.10721    |           |             |          |
| 235 -> 245                             | -0     | 28458              |           |             |          | Excited State       | 62. | Singlet-AG  | 6.6131 oV | 187.47 nm   | f-0.0000 |
| 233 -> 245                             | -0     | 10397              |           |             |          | <s**2>=0.000</s**2> | 02. | Jiligici-AO | 0.0134 CV | 107.47 1111 | 1-0.0000 |
| 237 > 245                              | ſ      | 1 26967            |           |             |          | 237 -> 243          |     | -0 12314    |           |             |          |
| 240 -> 247                             | ſ      | 10368              |           |             |          | 238 -> 244          |     | 0.57621     |           |             |          |
| 240 -> 250                             | -0     | 11180              |           |             |          | 241 -> 259          |     | -0 19648    |           |             |          |
| 240 -> 251                             | c<br>C | 1.23526            |           |             |          | 241 -> 264          |     | 0.14006     |           |             |          |
| 241 -> 257                             |        | ) 14140            |           |             |          |                     |     |             |           |             |          |
| 241 -> 259                             | -0     | .14317             |           |             |          | Excited State       | 63: | Singlet-AU  | 6.6220 eV | 187.23 nm   | f=0.0075 |
| 241 -> 261                             | -0     | .16878             |           |             |          | <s**2>=0.000</s**2> |     |             |           |             |          |
|                                        |        |                    |           |             |          | 235 -> 244          |     | 0.11683     |           |             |          |
| Excited State                          | 59:    | Singlet-AU         | 6.5543 eV | 189.16 nm   | f=0.0085 | 237 -> 244          |     | -0.32953    |           |             |          |
| <s**2>=0.000</s**2>                    |        | 5                  |           |             |          | 238 -> 243          |     | 0.11206     |           |             |          |
| 228 -> 243                             | C      | 0.10336            |           |             |          | 241 -> 255          |     | 0.17857     |           |             |          |
| 235 -> 244                             | -0     | .11023             |           |             |          | 241 -> 256          |     | -0.19705    |           |             |          |
| 236 -> 245                             | -0     | .13304             |           |             |          | 241 -> 260          |     | 0.18518     |           |             |          |
| 238 -> 245                             | -0     | .20551             |           |             |          | 241 -> 268          |     | 0.38835     |           |             |          |
| 241 -> 254                             | -0     | .10600             |           |             |          |                     |     |             |           |             |          |
| 241 -> 258                             | -0     | .17203             |           |             |          | Excited State       | 64: | Singlet-AU  | 6.6512 eV | 186.41 nm   | f=0.0293 |
| 241 -> 262                             | C      | ).46113            |           |             |          | <s**2>=0.000</s**2> |     |             |           |             |          |
| 241 -> 269                             | C      | ).13327            |           |             |          | 235 -> 244          |     | -0.22195    |           |             |          |
|                                        |        |                    |           |             |          | 237 -> 244          |     | 0.43283     |           |             |          |
| Excited State                          | 60:    | Singlet-AG         | 6.5685 eV | 188.75 nm   | f=0.0000 | 238 -> 243          |     | -0.16889    |           |             |          |
| <s**2>=0.000</s**2>                    |        |                    |           |             |          | 241 -> 255          |     | 0.12503     |           |             |          |
| 211 -> 242                             | 0      | 0.60663            |           |             |          | 241 -> 258          |     | 0.10873     |           |             |          |
| 235 -> 245                             | C      | 0.10552            |           |             |          | 241 -> 260          |     | 0.22639     |           |             |          |
| 239 -> 245                             | -0     | .13609             |           |             |          | 241 -> 268          |     | 0.26698     |           |             |          |
| 241 -> 261                             | C      | 0.15102            |           |             |          |                     |     |             |           |             |          |

## Table S10. Transition Energy, Wavelength, and Oscillator Strengths of the Electronic Transition of $\mathbf{5}_{c}$

(The 241<sup>th</sup> orbital is highest occupied orbital shown in Figure S26) [tdTN117bb1]

| Excited State       | 1:       | Singlet-B                 | 2.8807 eV           | 430.39 nm      | f=0.1121 | 236 -> 242          |     | 0.19983   |           |           |          |
|---------------------|----------|---------------------------|---------------------|----------------|----------|---------------------|-----|-----------|-----------|-----------|----------|
| <s**2>=0.000</s**2> |          |                           |                     |                |          | 238 -> 242          |     | 0.26328   |           |           |          |
| 240 -> 244          |          | 0.11038                   |                     |                |          | 239 -> 242          |     | -0.11046  |           |           |          |
| 241 -> 242          |          | 0.68779                   |                     |                |          | 240 -> 243          |     | 0.40438   |           |           |          |
| This state for opt  | imizatio | on and/or second-orde     | r correction.       |                |          | 240 -> 245          |     | -0.18803  |           |           |          |
| Total Energy, E(T   | D-HF/    | FD-KS) = -4973.361        | 22781               |                |          | 241 -> 245          |     | 0.20342   |           |           |          |
| Copying the excit   | ed stat  | te density for this state | as the 1-particle F | RhoCI density. |          |                     |     |           |           |           |          |
|                     |          |                           |                     |                |          | Excited State       | 8:  | Singlet-A | 4.6600 eV | 266.06 nm | f=0.0022 |
| Excited State       | 2:       | Singlet-B                 | 3.0836 eV           | 402.08 nm      | f=0.0154 | <s**2>=0.000</s**2> |     |           |           |           |          |
| <s**2>=0.000</s**2> |          |                           |                     |                |          | 232 -> 242          |     | 0.12124   |           |           |          |
| 240 -> 242          |          | 0.68349                   |                     |                |          | 236 -> 242          |     | 0.22133   |           |           |          |
|                     |          |                           |                     |                |          | 238 -> 242          |     | 0.11880   |           |           |          |
| Excited State       | 3:       | Singlet-A                 | 3.6377 eV           | 340.83 nm      | f=0.0051 | 239 -> 242          |     | 0.41889   |           |           |          |
| <s**2>=0.000</s**2> |          |                           |                     |                |          | 240 -> 243          |     | 0.14957   |           |           |          |
| 241 -> 243          |          | 0.68177                   |                     |                |          | 241 -> 245          |     | -0.39424  |           |           |          |
|                     |          |                           |                     |                |          | 241 -> 247          |     | 0.16781   |           |           |          |
| Excited State       | 4:       | Singlet-B                 | 3.9458 eV           | 314.22 nm      | f=0.0239 |                     |     |           |           |           |          |
| <s**2>=0.000</s**2> |          |                           |                     |                |          | Excited State       | 9:  | Singlet-A | 4.7530 eV | 260.85 nm | f=0.0003 |
| 241 -> 244          |          | 0.68675                   |                     |                |          | <s**2>=0.000</s**2> |     |           |           |           |          |
|                     |          |                           |                     |                |          | 230 -> 242          |     | 0.12674   |           |           |          |
| Excited State       | 5:       | Singlet-A                 | 4.4118 eV           | 281.03 nm      | f=0.0064 | 235 -> 242          |     | -0.14607  |           |           |          |
| <s**2>=0.000</s**2> |          |                           |                     |                |          | 236 -> 242          |     | -0.20533  |           |           |          |
| 232 -> 242          |          | 0.10939                   |                     |                |          | 238 -> 242          |     | -0.20735  |           |           |          |
| 235 -> 242          |          | -0.10778                  |                     |                |          | 240 -> 243          |     | 0.50789   |           |           |          |
| 236 -> 242          |          | 0.14713                   |                     |                |          | 241 -> 247          |     | -0.10472  |           |           |          |
| 239 -> 242          |          | 0.37873                   |                     |                |          | 241 -> 248          |     | 0.18969   |           |           |          |
| 240 -> 243          |          | -0.12879                  |                     |                |          |                     |     |           |           |           |          |
| 241 -> 245          |          | 0.50112                   |                     |                |          | Excited State       | 10: | Singlet-A | 4.9405 eV | 250.95 nm | f=0.0033 |
|                     |          |                           |                     |                |          | <s**2>=0.000</s**2> |     |           |           |           |          |
| Excited State       | 6:       | Singlet-B                 | 4.4502 eV           | 278.61 nm      | f=0.0031 | 236 -> 242          |     | 0.16771   |           |           |          |
| <s**2>=0.000</s**2> |          |                           |                     |                |          | 238 -> 242          |     | 0.12912   |           |           |          |
| 240 -> 244          |          | -0.11076                  |                     |                |          | 240 -> 243          |     | -0.11207  |           |           |          |
| 241 -> 246          |          | 0.68716                   |                     |                |          | 240 -> 245          |     | -0.22795  |           |           |          |
|                     |          |                           |                     |                |          | 241 -> 247          |     | -0.20701  |           |           |          |
| Excited State       | 7:       | Singlet-A                 | 4.4545 eV           | 278.33 nm      | f=0.0005 | 241 -> 248          |     | 0.51714   |           |           |          |
| <s**2>=0.000</s**2> |          |                           |                     |                |          |                     |     |           |           |           |          |
| 230 -> 242          |          | -0.15400                  |                     |                |          | Excited State       | 11: | Singlet-B | 5.0316 eV | 246.41 nm | f=0.0800 |
| 235 -> 242          |          | 0.24366                   |                     |                |          | <s**2>=0.000</s**2> |     |           |           |           |          |

| 220 -> 242                           |     | -0.15552            |            |             |           | <s**2>=0.000</s**2>       |                 |                      |           |             |          |
|--------------------------------------|-----|---------------------|------------|-------------|-----------|---------------------------|-----------------|----------------------|-----------|-------------|----------|
| 233 -> 242                           |     | -0.13708            |            |             |           | 214 -> 242                |                 | -0.10602             |           |             |          |
| 234 -> 242                           |     | -0.17730            |            |             |           | 230 -> 242                |                 | 0.31700              |           |             |          |
| 240 -> 244                           |     | 0.50759             |            |             |           | 235 -> 242                |                 | 0.52325              |           |             |          |
| 240 -> 246                           |     | -0.16854            |            |             |           | 239 -> 242                |                 | 0.12570              |           |             |          |
| 241 -> 249                           |     | -0.23084            |            |             |           | 240 -> 247                |                 | -0.14223             |           |             |          |
| Excited State                        | 12: | Singlet-A           | 5.0345 eV  | 246.27 nm   | f=0.0000  | Excited State             | 22:             | Singlet-A            | 5.6766 eV | 218.41 nm   | f=0.0010 |
| 235 -> 242                           |     | 0.10882             |            |             |           | 222-0.0000                |                 | -0.24592             |           |             |          |
| 236 -> 242                           |     | 0.13622             |            |             |           | 227 -> 242                |                 | 0.30682              |           |             |          |
| 238 -> 242                           |     | 0.17092             |            |             |           | 229 -> 242                |                 | 0.15718              |           |             |          |
| 239 -> 242                           |     | -0.15252            |            |             |           | 230 -> 244                |                 | -0.13721             |           |             |          |
| 240 -> 245                           |     | 0.59365             |            |             |           | 231 -> 242                |                 | -0.24365             |           |             |          |
| 241 -> 248                           |     | 0.15557             |            |             |           | 232 -> 242                |                 | 0.19878              |           |             |          |
|                                      |     |                     |            |             |           | 235 -> 244                |                 | 0.11550              |           |             |          |
| Excited State<br><s**2>=0.000</s**2> | 13: | Singlet-B           | 5.1029 eV  | 242.97 nm   | f=0.0830  | 240 -> 248<br>241 -> 247  |                 | -0.24179<br>-0.10671 |           |             |          |
| 220 -> 242                           |     | 0.20965             |            |             |           |                           |                 |                      |           |             |          |
| 228 -> 242                           |     | 0.13064             |            |             |           | Excited State             | 23:             | Singlet-B            | 5.7749 eV | 214.70 nm   | f=0.0022 |
| 233 -> 242                           |     | 0.16677             |            |             |           | <s**2>=0.000</s**2>       |                 |                      |           |             |          |
| 240 -> 244                           |     | 0.36343             |            |             |           | 218 -> 242                |                 | 0.14634              |           |             |          |
| 240 -> 246                           |     | 0.21087             |            |             |           | 225 -> 242                |                 | -0.13/44             |           |             |          |
| 241->249                             |     | 0.28153             |            |             |           | 230 -> 243                |                 | -0.16220             |           |             |          |
| 241 -> 232                           |     | 0.15055             |            |             |           | 239 -> 243                |                 | -0.20114             |           |             |          |
| Excited State                        | 14. | Singlet-A           | 5 1506 eV  | 240.72 nm   | f=0.0340  | 240 -> 247                |                 | 0.44743              |           |             |          |
| <s**2>=0.000</s**2>                  | 14. | Singici-A           | 3.1300 CV  | 240.72 1111 | 1-0.0340  | 240 -> 232                |                 | 0.21727              |           |             |          |
| 230 -> 242                           |     | 0.23169             |            |             |           | Excited State             | 24:             | Singlet-A            | 5.7930 eV | 214.03 nm   | f=0.0050 |
| 235 -> 242                           |     | -0.17731            |            |             |           | <s**2>=0.000</s**2>       |                 |                      |           |             |          |
| 236 -> 242                           |     | 0.19175             |            |             |           | 230 -> 242                |                 | 0.21025              |           |             |          |
| 239 -> 242                           |     | -0.26696            |            |             |           | 240 -> 247                |                 | 0.58135              |           |             |          |
| 241 -> 247                           |     | 0.40820             |            |             |           | 240 -> 251                |                 | 0.24741              |           |             |          |
| 241->231                             |     | 0.10323             |            |             |           | Excited State             | 25:             | Singlet-B            | 5.9399 eV | 208.73 nm   | f=0.0215 |
| Excited State                        | 15: | Singlet-A           | 5.2160 eV  | 237.70 nm   | f=0.0286  | <s**2>=0.000</s**2>       |                 | 9                    |           |             |          |
| <s**2>=0.000</s**2>                  |     | J                   |            |             |           | 218 -> 242                |                 | 0.10455              |           |             |          |
| 230 -> 242                           |     | -0.20667            |            |             |           | 225 -> 242                |                 | -0.13500             |           |             |          |
| 235 -> 242                           |     | 0.17139             |            |             |           | 228 -> 242                |                 | -0.21012             |           |             |          |
| 236 -> 242                           |     | -0.29717            |            |             |           | 233 -> 242                |                 | 0.43844              |           |             |          |
| 241 -> 245                           |     | 0.10026             |            |             |           | 234 -> 242                |                 | -0.11304             |           |             |          |
| 241 -> 247                           |     | 0.35842             |            |             |           | 239 -> 243                |                 | 0.25358              |           |             |          |
| 241 -> 248                           |     | 0.24745             |            |             |           | 241 -> 250                |                 | 0.14646              |           |             |          |
| 241 -> 251                           |     | 0.23554             |            |             |           | 241 -> 252                |                 | -0.12144             |           |             |          |
| Excited State                        | 16. | Singlet-B           | 5.2824 eV  | 234 71 nm   | f=0.0596  | 241 -> 258                |                 | 0.11400              |           |             |          |
| <s**2>=0.000</s**2>                  | 10. | Singlet B           | 5.2024 64  | 201.71 1111 | 1-0.0070  | Excited State             | 26 <sup>.</sup> | Singlet-B            | 5.9629 eV | 207 93 nm   | f=0.0551 |
| 220 -> 242                           |     | -0.24135            |            |             |           | <s**2>=0.000</s**2>       | 20.             | onigiot b            | 017027 01 | 207770 1111 | 1 0.0001 |
| 223 -> 242                           |     | -0.11962            |            |             |           | 218 -> 242                |                 | -0.21465             |           |             |          |
| 228 -> 242                           |     | -0.10305            |            |             |           | 219 -> 242                |                 | -0.10846             |           |             |          |
| 233 -> 242                           |     | -0.23519            |            |             |           | 223 -> 242                |                 | -0.10302             |           |             |          |
| 237 -> 242                           |     | 0.14784             |            |             |           | 225 -> 242                |                 | 0.23621              |           |             |          |
| 240 -> 246                           |     | 0.13548             |            |             |           | 226 -> 242                |                 | 0.10844              |           |             |          |
| 241 -> 249                           |     | 0.44825             |            |             |           | 228 -> 242                |                 | 0.22567              |           |             |          |
| 241 -> 252                           |     | 0.15671             |            |             |           | 240 -> 244                |                 | -0.10055             |           |             |          |
| E 11 1 01 1                          | 47  | <u> </u>            | 5 4004 14  | 000.40      | 6 0 0001  | 240 -> 249                |                 | 0.30333              |           |             |          |
| EXCILED STATE                        | 17: | Singlet-A           | 5.4026 eV  | 229.49 nm   | T=0.003 I | 241 -> 250                |                 | 0.10250              |           |             |          |
| <3 2>=0.000                          |     | 0 12597             |            |             |           | 241 -> 252                |                 | -0.16316             |           |             |          |
| 230 -> 242                           |     | -0 15429            |            |             |           | 241-2230                  |                 | 0.13247              |           |             |          |
| 236 -> 242                           |     | -0.36545            |            |             |           | Excited State             | 27:             | Singlet-A            | 5.9746 eV | 207.52 nm   | f=0.0022 |
| 238 -> 242                           |     | 0.54506             |            |             |           | <s**2>=0.000</s**2>       |                 |                      |           |             |          |
|                                      |     |                     |            |             |           | 222 -> 242                |                 | 0.10547              |           |             |          |
| Excited State                        | 18: | Singlet-B           | 5.4068 eV  | 229.31 nm   | f=0.0167  | 227 -> 242                |                 | -0.13856             |           |             |          |
| <s**2>=0.000</s**2>                  |     |                     |            |             |           | 232 -> 242                |                 | 0.53176              |           |             |          |
| 234 -> 242                           |     | 0.13139             |            |             |           | 236 -> 242                |                 | -0.11242             |           |             |          |
| 237 -> 242                           |     | 0.66565             |            |             |           | 238 -> 242                |                 | -0.10446             |           |             |          |
|                                      |     |                     |            |             |           | 239 -> 242                |                 | -0.11306             |           |             |          |
| Excited State                        | 19: | Singlet-B           | 5.4541 eV  | 227.32 nm   | t=0.4391  | 241 -> 247                |                 | -0.13316             |           |             |          |
| <5-2>=0.000                          |     | 0 10122             |            |             |           | 241 -> 251                |                 | 0.26522              |           |             |          |
| 234 -> 242                           |     | -0.18123            |            |             |           | Evolted State             | 20.             | Cinalat A            | E 0057 aV | 207 12      | f 0.0010 |
| 24U -> 246<br>241 -> 246             |     | 0.07970<br>-0.25283 |            |             |           | EXCILEU STATE             | 28:             | Singlet-A            | 0.905/ eV | 207.13 NM   | 1=0.0019 |
| 241->249                             |     | -0.23203            |            |             |           | <3 27=0.000<br>222 -< 242 |                 | -0 28106             |           |             |          |
| Excited State                        | 20· | Singlet-B           | 5.5190 eV  | 224.65 nm   | f=0.1602  | 232 -> 242<br>241 -> 247  |                 | -0.23187             |           |             |          |
| <s**2>=0.000</s**2>                  |     | onigiot D           | 5.01.70 64 |             |           | 241 -> 248                |                 | -0.20597             |           |             |          |
| 234 -> 242                           |     | 0.58873             |            |             |           | 241 -> 251                |                 | 0.48972              |           |             |          |
| 237 -> 242                           |     | -0.11400            |            |             |           | 241 -> 259                |                 | 0.11130              |           |             |          |
| 240 -> 244                           |     | 0.18455             |            |             |           |                           |                 |                      |           |             |          |
| 240 -> 246                           |     | 0.19538             |            |             |           | Excited State             | 29:             | Singlet-B            | 5.9979 eV | 206.71 nm   | f=0.0290 |
|                                      |     |                     |            |             |           | <s**2>=0.000</s**2>       |                 |                      |           |             |          |
| Excited State                        | 21: | Singlet-A           | 5.5699 eV  | 222.60 nm   | f=0.0003  | 218 -> 242                |                 | -0.12107             |           |             |          |

| 220 -> 242             | -0.18204    |            |             |           | 227 -> 244          |     | -0.15810  |           |             |           |
|------------------------|-------------|------------|-------------|-----------|---------------------|-----|-----------|-----------|-------------|-----------|
| 223 -> 242             | -0.11341    |            |             |           | 230 -> 242          |     | -0.12657  |           |             |           |
| 225 -> 242             | 0 12373     |            |             |           | 236 -> 244          |     | 0.12234   |           |             |           |
| 223 -> 242             | 0.12373     |            |             |           | 230 -> 244          |     | 0.12234   |           |             |           |
| 220 -> 242             | 0.10030     |            |             |           | 239 -> 244          |     | 0.31272   |           |             |           |
| 233 -> 242             | 0.40144     |            |             |           | 239 -> 246          |     | -0.11686  |           |             |           |
| 236 -> 243             | -0.13141    |            |             |           | 240 -> 248          |     | -0.17429  |           |             |           |
| 239 -> 243             | -0.30270    |            |             |           | 241 -> 253          |     | 0.18241   |           |             |           |
| 240 -> 249             | -0.13356    |            |             |           | 241 -> 254          |     | 0.15612   |           |             |           |
| 241 -> 250             | -0.18662    |            |             |           | 241 -> 257          |     | -0.14961  |           |             |           |
|                        |             |            |             |           | 241 -> 259          |     | 0.26609   |           |             |           |
| Excited State 30:      | Singlet-B   | 6.0244 eV  | 205.80 nm   | f=0.0705  |                     |     |           |           |             |           |
| -C**2: 0.000           | Singlet B   | 0.0244 64  | 200.00 1111 | 1-0.0705  | Evolted State       | 20. | Singlet A | 4 2042 AV | 104 01 nm   | f 0.0001  |
| 22-0.000               | 0 12070     |            |             |           | C**2. 0.000         | 50. | Singlet-A | 0.2703 60 | 170.71 1111 | 1-0.0001  |
| 220 -> 242             | -0.13070    |            |             |           | <5 2>=0.000         |     |           |           |             |           |
| 235 -> 243             | -0.12127    |            |             |           | 222 -> 244          |     | -0.11/43  |           |             |           |
| 239 -> 243             | 0.30861     |            |             |           | 227 -> 244          |     | 0.12281   |           |             |           |
| 240 -> 249             | 0.24686     |            |             |           | 236 -> 244          |     | -0.17527  |           |             |           |
| 241 -> 249             | -0.16546    |            |             |           | 238 -> 244          |     | -0.11199  |           |             |           |
| 241 -> 250             | -0 17730    |            |             |           | 239 -> 244          |     | -0 23323  |           |             |           |
| 2/1 -> 252             | 0.27870     |            |             |           | 241 -> 253          |     | 0.48383   |           |             |           |
| 241 -> 232             | 0.27077     |            |             |           | 241 -> 233          |     | 0.40303   |           |             |           |
| 241 -> 200             | -0.19730    |            |             |           | 241 -> 234          |     | 0.10770   |           |             |           |
|                        |             |            |             |           | 241 -> 259          |     | 0.13889   |           |             |           |
| Excited State 31:      | Singlet-B   | 6.0802 eV  | 203.91 nm   | f=0.0064  | 241 -> 260          |     | -0.10550  |           |             |           |
| <s**2>=0.000</s**2>    |             |            |             |           |                     |     |           |           |             |           |
| 241 -> 250             | 0.57953     |            |             |           | Excited State       | 39: | Singlet-B | 6.3533 eV | 195.15 nm   | f=0.0106  |
| 241 -> 252             | 0.29203     |            |             |           | <s**2>=0.000</s**2> |     | -         |           |             |           |
|                        |             |            |             |           | 218 -> 242          |     | 0 14107   |           |             |           |
| Excited State 22       | Cinglet A   | 6 12E0 oV  | 202.42 pm   | f 0.0710  | 210 2 242           |     | 0.14107   |           |             |           |
| EXCILEU SIDIE 52.      | Singlet-A   | 0.1200 80  | 202.42 1111 | 1=0.0716  | 219->242            |     | 0.22930   |           |             |           |
| <s 2="">=0.000</s>     |             |            |             |           | 220 -> 242          |     | -0.11/11  |           |             |           |
| 227 -> 242             | 0.15211     |            |             |           | 223 -> 242          |     | -0.17694  |           |             |           |
| 229 -> 242             | 0.14016     |            |             |           | 225 -> 242          |     | -0.22705  |           |             |           |
| 231 -> 242             | -0.24188    |            |             |           | 226 -> 242          |     | 0.11683   |           |             |           |
| 239 -> 244             | 0 15439     |            |             |           | 228 -> 242          |     | 0 46878   |           |             |           |
| 240 - 240              | 0.45150     |            |             |           | 241 252             |     | 0.10010   |           |             |           |
| 240 -> 240             | 0.40100     |            |             |           | 241 -> 232          |     | -0.10010  |           |             |           |
| 240 -> 251             | 0.11586     |            |             |           |                     |     |           |           |             |           |
| 241 -> 257             | -0.11601    |            |             |           | Excited State       | 40: | Singlet-A | 6.3574 eV | 195.02 nm   | f=0.0282  |
| 241 -> 259             | 0.14530     |            |             |           | <s**2>=0.000</s**2> |     |           |           |             |           |
|                        |             |            |             |           | 222 -> 244          |     | 0.11124   |           |             |           |
| Excited State 33:      | Singlet-A   | 6.1557 eV  | 201.41 nm   | f=0.0084  | 227 -> 244          |     | -0.12293  |           |             |           |
| <\$**2>-0.000          |             |            |             |           | 238 -> 244          |     | 0 10508   |           |             |           |
| 27 - 0.000             | 0 10701     |            |             |           | 230 > 244           |     | 0.10570   |           |             |           |
| 227 -> 244             | 0.10791     |            |             |           | 240 -> 240          |     | 0.19394   |           |             |           |
| 230 -> 242             | 0.19191     |            |             |           | 241 -> 253          |     | 0.38363   |           |             |           |
| 231 -> 244             | -0.12642    |            |             |           | 241 -> 254          |     | -0.20592  |           |             |           |
| 232 -> 244             | 0.16159     |            |             |           | 241 -> 257          |     | 0.20031   |           |             |           |
| 236 -> 244             | 0.20397     |            |             |           | 241 -> 259          |     | -0.22364  |           |             |           |
| 238 -> 244             | 0 10803     |            |             |           | 2/1 -> 260          |     | -0.10166  |           |             |           |
| 230 -> 244             | 0.10005     |            |             |           | 241-2200            |     | -0.10100  |           |             |           |
| 239 -> 244             | 0.32308     |            |             |           |                     |     |           |           |             |           |
| 240 -> 248             | -0.20623    |            |             |           | Excited State       | 41: | Singlet-A | 6.3930 eV | 193.94 nm   | t=0.0028  |
| 241 -> 251             | 0.16082     |            |             |           | <s**2>=0.000</s**2> |     |           |           |             |           |
| 241 -> 259             | -0.12785    |            |             |           | 217 -> 242          |     | 0.13096   |           |             |           |
|                        |             |            |             |           | 224 -> 242          |     | 0.26177   |           |             |           |
| Excited State 34       | Singlet-A   | 6.1894 eV  | 200.32 nm   | f=0.0057  | 227 -> 242          |     | -0 11173  |           |             |           |
| <\$**2>_0.000          | Singlet A   | 0.1074 64  | 200.52 1111 | 1-0.0037  | 227 > 242           |     | 0.54406   |           |             |           |
| 022-0.000              | 0.05157     |            |             |           | 227 -> 242          |     | 0.04400   |           |             |           |
| 222 -> 242             | -0.25156    |            |             |           | 231 -> 242          |     | 0.25428   |           |             |           |
| 227 -> 242             | 0.25477     |            |             |           |                     |     |           |           |             |           |
| 229 -> 242             | -0.20912    |            |             |           | Excited State       | 42: | Singlet-B | 6.4063 eV | 193.54 nm   | f=0.0127  |
| 231 -> 242             | 0.50354     |            |             |           | <s**2>=0.000</s**2> |     |           |           |             |           |
| 232 -> 242             | 0.11570     |            |             |           | 236 -> 243          |     | -0.23238  |           |             |           |
|                        |             |            |             |           | 238 -> 243          |     | 0 21292   |           |             |           |
| Excited State 25:      | Singlet P   | 6 2262 01  | 100.01 nm   | f_0 4957  | 2/1 > 2/0           |     | 0 11092   |           |             |           |
| C**2>_0 000            | Singlet-D   | 0.2303 CV  | 170.01 1111 | 1-0.1037  | 241 -> 247          |     | 0.11703   |           |             |           |
| S Z>=0.000<br>005 0.00 | 0.10520     |            |             |           | 241-> 250           |     | -0.10320  |           |             |           |
| 235 -> 243             | 0.19539     |            |             |           | 241 -> 252          |     | 0.25476   |           |             |           |
| 236 -> 243             | 0.36067     |            |             |           | 241 -> 255          |     | 0.23456   |           |             |           |
| 238 -> 243             | 0.43114     |            |             |           | 241 -> 256          |     | -0.22711  |           |             |           |
| 239 -> 243             | -0.20915    |            |             |           | 241 -> 258          |     | 0.25523   |           |             |           |
| 241 -> 252             | 0 10600     |            |             |           | 241 -> 262          |     | 0 18188   |           |             |           |
| 271 7 202              | 0.10000     |            |             |           | 241 -> 202          |     | 0.12/25   |           |             |           |
| Evolted State 24       | Cinglet D   | ( )(00 a)/ | 100.02      | £ 0.0041  | 241 -> 203          |     | 0.12423   |           |             |           |
| ENCIRCU SIDIE 30       | Singiet-B   | 0.2008 eV  | 170.03 1111 | 1-0.004 I | Frank of t          | 40  | Charles D | / 4140 11 | 102.00      | 6 0 005 - |
| <5 2>=0.000            |             |            |             |           | Excited State       | 43: | Singlet-B | 6.4148 eV | 193.28 nm   | t=0.0051  |
| 218 -> 244             | -0.20244    |            |             |           | <s**2>=0.000</s**2> |     |           |           |             |           |
| 220 -> 242             | 0.15796     |            |             |           | 219 -> 242          |     | -0.22667  |           |             |           |
| 222 -> 248             | 0.12876     |            |             |           | 223 -> 242          |     | 0.13274   |           |             |           |
| 225 -> 244             | 0.19314     |            |             |           | 225 -> 242          |     | -0.32942  |           |             |           |
| 220 2 211              | -0 14076    |            |             |           | 220 - 242           |     | 0 52224   |           |             |           |
| 221 -2 240             | -0.14070    |            |             |           | 220 -> 242          |     | 0.0004    |           |             |           |
| 228 -> 242             | 0.26209     |            |             |           |                     |     | a         | ,         | 405         |           |
| 228 -> 244             | 0.13556     |            |             |           | Excited State       | 44: | Singlet-A | 6.4503 eV | 192.22 nm   | f=0.0012  |
| 231 -> 248             | 0.10146     |            |             |           | <s**2>=0.000</s**2> |     |           |           |             |           |
| 234 -> 244             | -0.20909    |            |             |           | 237 -> 243          |     | 0.62383   |           |             |           |
| 241 -> 252             | 0.23452     |            |             |           | 237 -> 245          |     | 0.12165   |           |             |           |
| 271 -> 232             | 0.20702     |            |             |           | 237 -2 243          |     | _0.12103  |           |             |           |
| Evolted Ctot 07        | Class 1 + A | 10/10 1    | 107.04      | £ 0.0100  | 238 -> 244          |     | -0.13001  |           |             |           |
| Excited State 37:      | Singlet-A   | 0.2669 eV  | 197.84 nm   | 1=0.0198  |                     |     | a         | =         |             |           |
| <52>=0.000             |             |            |             |           | Excited State       | 45: | Singlet-B | 6.4607 eV | 191.97 nm   | t=0.0227  |
| 222 -> 244             | 0.15115     |            |             |           | <s**2>=0.000</s**2> |     |           |           |             |           |

| 235 -> 243          | -0.11891  |           |           |          | 228 -> 242          |     | -0.18024  |                     |           |          |
|---------------------|-----------|-----------|-----------|----------|---------------------|-----|-----------|---------------------|-----------|----------|
| 236 -> 243          | -0.35402  |           |           |          | E 11 4 61 4         | 50  | <u>.</u>  | ( ( <b>1</b> 07 ) ( | 407.70    | ( 0.0500 |
| 237 -> 244          | -0.13827  |           |           |          | Excited State       | 53: | Singlet-A | 6.6437 eV           | 186.62 nm | t=0.0538 |
| 238 -> 243          | 0.38769   |           |           |          | <s**2>=0.000</s**2> |     |           |                     |           |          |
| 239 -> 243          | 0.10901   |           |           |          | 234 -> 243          |     | 0.36164   |                     |           |          |
| 241 -> 252          | -0.10980  |           |           |          | 235 -> 246          |     | -0.11344  |                     |           |          |
| 241 -> 255          | -0.17753  |           |           |          | 236 -> 244          |     | 0.22899   |                     |           |          |
| 241 -> 256          | 0.17873   |           |           |          | 236 -> 246          |     | -0.18629  |                     |           |          |
| 241 -> 258          | -0.14410  |           |           |          | 238 -> 244          |     | 0.11296   |                     |           |          |
| 241 -> 262          | -0.13429  |           |           |          | 238 -> 246          |     | -0.18544  |                     |           |          |
|                     |           |           |           |          | 239 -> 244          |     | -0.17592  |                     |           |          |
| Excited State 46:   | Singlet-B | 6.5334 eV | 189.77 nm | f=0.1185 | 239 -> 246          |     | 0.26838   |                     |           |          |
| <s**2>=0.000</s**2> |           |           |           |          | 240 -> 248          |     | -0.10182  |                     |           |          |
| 219 -> 242          | -0.23106  |           |           |          |                     |     |           |                     |           |          |
| 221 -> 242          | -0.12569  |           |           |          | Excited State       | 54: | Singlet-B | 6.6667 eV           | 185.98 nm | f=0.0171 |
| 223 -> 242          | -0.12038  |           |           |          | <s**2>=0.000</s**2> |     |           |                     |           |          |
| 235 -> 243          | 0.27400   |           |           |          | 218 -> 242          |     | 0.27524   |                     |           |          |
| 236 -> 243          | -0.13518  |           |           |          | 220 -> 242          |     | 0.13271   |                     |           |          |
| 236 -> 245          | 0.10536   |           |           |          | 223 -> 242          |     | -0.11196  |                     |           |          |
| 239 -> 245          | 0.38377   |           |           |          | 225 -> 242          |     | 0.10982   |                     |           |          |
| 240 -> 249          | -0.12897  |           |           |          | 226 -> 242          |     | 0.11050   |                     |           |          |
| 241 -> 262          | -0.12000  |           |           |          | 241 -> 256          |     | -0.12100  |                     |           |          |
|                     |           |           |           |          | 241 -> 258          |     | -0.27015  |                     |           |          |
| Excited State 47:   | Singlet-A | 6.5393 eV | 189.60 nm | f=0.0000 | 241 -> 261          |     | -0.19104  |                     |           |          |
| <s**2>=0.000</s**2> |           |           |           |          | 241 -> 262          |     | 0.29479   |                     |           |          |
| 217 -> 242          | -0.16295  |           |           |          | 241 -> 265          |     | 0.18712   |                     |           |          |
| 224 -> 242          | 0.55972   |           |           |          |                     |     |           |                     |           |          |
| 227 -> 242          | -0.23868  |           |           |          | Excited State       | 55: | Singlet-B | 6.7094 eV           | 184.79 nm | f=0.0452 |
| 229 -> 242          | -0.19214  |           |           |          | <s**2>=0.000</s**2> |     |           |                     |           |          |
| 230 -> 242          | 0.10426   |           |           |          | 215 -> 242          |     | 0.10157   |                     |           |          |
| 231 -> 242          | -0.11693  |           |           |          | 218 -> 242          |     | 0.32516   |                     |           |          |
|                     |           |           |           |          | 219 -> 242          |     | -0.23725  |                     |           |          |
| Excited State 48:   | Singlet-B | 6.5823 eV | 188.36 nm | f=0.0023 | 223 -> 242          |     | -0.20508  |                     |           |          |
| <s**2>=0.000</s**2> |           |           |           |          | 225 -> 242          |     | 0.12400   |                     |           |          |
| 219 -> 242          | 0.25194   |           |           |          | 239 -> 245          |     | -0.26847  |                     |           |          |
| 220 -> 242          | -0.10257  |           |           |          | 241 -> 258          |     | 0.21257   |                     |           |          |
| 221 -> 242          | 0.27649   |           |           |          | 241 -> 262          |     | -0.14316  |                     |           |          |
| 223 -> 242          | 0.31988   |           |           |          |                     |     |           |                     |           |          |
| 225 -> 242          | 0.17627   |           |           |          | Excited State       | 56: | Singlet-A | 6.7118 eV           | 184.73 nm | f=0.0410 |
| 226 -> 242          | 0.17458   |           |           |          | <s**2>=0.000</s**2> |     | ě         |                     |           |          |
| 235 -> 243          | 0.33012   |           |           |          | 235 -> 244          |     | -0.12118  |                     |           |          |
| 238 -> 245          | -0.10267  |           |           |          | 236 -> 244          |     | -0.11381  |                     |           |          |
|                     |           |           |           |          | 238 -> 244          |     | -0.23402  |                     |           |          |
| Excited State 49:   | Singlet-B | 6.5909 eV | 188.12 nm | f=0.0212 | 239 -> 244          |     | 0.15138   |                     |           |          |
| <s**2>=0.000</s**2> | J         |           |           |          | 239 -> 246          |     | 0.15544   |                     |           |          |
| 218 -> 242          | -0.15622  |           |           |          | 241 -> 253          |     | 0.11695   |                     |           |          |
| 221 -> 242          | -0.15798  |           |           |          | 241 -> 254          |     | -0.26048  |                     |           |          |
| 223 -> 242          | -0.13603  |           |           |          | 241 -> 257          |     | -0.25178  |                     |           |          |
| 225 -> 242          | -0.25148  |           |           |          | 241 -> 259          |     | -0.12517  |                     |           |          |
| 226 -> 242          | -0.17396  |           |           |          | 241 -> 260          |     | 0.28491   |                     |           |          |
| 235 -> 243          | 0.35801   |           |           |          | 241 -> 268          |     | 0.11867   |                     |           |          |
| 236 -> 245          | -0.15278  |           |           |          | 241 -> 270          |     | 0.10813   |                     |           |          |
| 238 -> 245          | -0.15509  |           |           |          |                     |     |           |                     |           |          |
| 239 -> 243          | 0.10976   |           |           |          | Excited State       | 57: | Singlet-A | 6.7222 eV           | 184.44 nm | f=0.0068 |
| 239 -> 245          | -0.14523  |           |           |          | <s**2>=0.000</s**2> |     | <u>ě</u>  |                     |           |          |
| 241 -> 255          | -0.14774  |           |           |          | 235 -> 246          |     | 0.10348   |                     |           |          |
|                     |           |           |           |          | 236 -> 244          |     | 0.10142   |                     |           |          |
| Excited State 50:   | Singlet-A | 6.5910 eV | 188.11 nm | f=0.0014 | 239 -> 246          |     | -0.16442  |                     |           |          |
| <s**2>=0.000</s**2> |           |           |           |          | 240 -> 251          |     | -0.12836  |                     |           |          |
| 222 -> 242          | 0.43342   |           |           |          | 241 -> 254          |     | 0.36545   |                     |           |          |
| 224 -> 242          | 0.19480   |           |           |          | 241 -> 259          |     | -0.20559  |                     |           |          |
| 227 -> 242          | 0.35232   |           |           |          | 241 -> 260          |     | 0.38057   |                     |           |          |
| 234 -> 243          | 0.18685   |           |           |          |                     |     |           |                     |           |          |
| 239 -> 246          | -0.17672  |           |           |          | Excited State       | 58: | Singlet-A | 6.7284 eV           | 184.27 nm | f=0.0332 |
|                     |           |           |           |          | <s**2>=0.000</s**2> |     | <u>ě</u>  |                     |           |          |
| Excited State 51:   | Singlet-A | 6.6125 eV | 187.50 nm | f=0.0105 | 236 -> 244          |     | -0.10515  |                     |           |          |
| <s**2>=0.000</s**2> | 0         |           |           |          | 240 -> 247          |     | -0.23321  |                     |           |          |
| 222 -> 242          | -0.31750  |           |           |          | 240 -> 248          |     | -0.11977  |                     |           |          |
| 227 -> 242          | -0.16636  |           |           |          | 240 -> 251          |     | 0.50425   |                     |           |          |
| 234 -> 243          | 0.41592   |           |           |          | 240 -> 259          |     | 0.10685   |                     |           |          |
| 235 -> 244          | -0.15740  |           |           |          | 241 -> 254          |     | 0.21083   |                     |           |          |
| 238 -> 246          | 0.10956   |           |           |          | 241 -> 257          |     | 0.10302   |                     |           |          |
| 239 -> 246          | -0.24134  |           |           |          | 241 -> 259          |     | -0.13986  |                     |           |          |
| 241 -> 254          | -0.10410  |           |           |          | 2 207               |     |           |                     |           |          |
|                     |           |           |           |          | Excited State       | 59: | Singlet-B | 6.7481 eV           | 183.73 nm | f=0.0068 |
| Excited State 52:   | Singlet-B | 6.6320 eV | 186.95 nm | f=0.0047 | <s**2>=0.000</s**2> |     |           |                     |           |          |
| <s**2>=0.000</s**2> | J         |           |           |          | 218 -> 242          |     | -0.10338  |                     |           |          |
| 218 -> 242          | -0.13852  |           |           |          | 219 -> 242          |     | -0.13533  |                     |           |          |
| 219 -> 242          | 0.36839   |           |           |          | 221 -> 242          |     | 0.49172   |                     |           |          |
| 220 -> 242          | 0.32346   |           |           |          | 223 -> 242          |     | -0.14141  |                     |           |          |
| 223 -> 242          | -0.35970  |           |           |          | 225 -> 242          |     | -0.18242  |                     |           |          |
| 226 -> 242          | 0.19562   |           |           |          | 226 -> 242          |     | -0.12894  |                     |           |          |

| 238 -> 245          | -(  | 0.12120   |           |           |          | <s**2>=0.000</s**2> |     |           |           |           |          |
|---------------------|-----|-----------|-----------|-----------|----------|---------------------|-----|-----------|-----------|-----------|----------|
| 241 -> 255          |     | 0.19509   |           |           |          | 216 -> 242          | 2   | 0.19051   |           |           |          |
| 241 -> 258          | -(  | D.13185   |           |           |          | 217 -> 242          | 2   | -0.20198  |           |           |          |
| 241 -> 261          |     | 0.15142   |           |           |          | 229 -> 242          | 2   | 0.11597   |           |           |          |
|                     |     |           |           |           |          | 236 -> 246          | 5   | 0.14409   |           |           |          |
| Excited State       | 60: | Singlet-A | 6.7517 eV | 183.64 nm | f=0.0135 | 241 -> 257          | 7   | 0.32138   |           |           |          |
| <s**2>=0.000</s**2> |     |           |           |           |          | 241 -> 259          | 9   | 0.21263   |           |           |          |
| 235 -> 244          | -(  | D.10334   |           |           |          | 241 -> 260          | )   | 0.27533   |           |           |          |
| 236 -> 244          | -(  | 0.14352   |           |           |          | 241 -> 263          | 3   | 0.19231   |           |           |          |
| 238 -> 244          | -(  | 0.28992   |           |           |          | 241 -> 264          | 1   | -0.12039  |           |           |          |
| 239 -> 244          |     | 0.16524   |           |           |          |                     |     |           |           |           |          |
| 239 -> 246          |     | 0.23284   |           |           |          | Excited State       | 63: | Singlet-B | 6.7827 eV | 182.79 nm | f=0.0861 |
| 240 -> 251          | -(  | D.18653   |           |           |          | <s**2>=0.000</s**2> |     |           |           |           |          |
| 241 -> 254          |     | 0.29593   |           |           |          | 240 -> 250          | )   | 0.49767   |           |           |          |
| 241 -> 257          |     | 0.16300   |           |           |          | 240 -> 252          | 2   | -0.21626  |           |           |          |
| 241 -> 259          | -(  | D.13087   |           |           |          | 240 -> 255          | 5   | 0.10366   |           |           |          |
| 241 -> 260          | -(  | D.19878   |           |           |          | 240 -> 258          | 3   | 0.22370   |           |           |          |
| 241 -> 268          | -(  | 0.10479   |           |           |          | 241 -> 256          | 5   | 0.10299   |           |           |          |
| Excited State       | 61: | Singlet-B | 6.7584 eV | 183.45 nm | f=0.0065 | Excited State       | 64: | Singlet-A | 6.7945 eV | 182.48 nm | f=0.0191 |
| <s**2>=0.000</s**2> |     |           |           |           |          | <s**2>=0.000</s**2> |     |           |           |           |          |
| 221 -> 242          | -(  | D.23518   |           |           |          | 216 -> 242          | 2   | -0.29769  |           |           |          |
| 225 -> 242          |     | 0.11679   |           |           |          | 217 -> 242          | 2   | 0.42491   |           |           |          |
| 239 -> 245          | -(  | D.17798   |           |           |          | 224 -> 242          | 2   | 0.13779   |           |           |          |
| 241 -> 255          |     | 0.35334   |           |           |          | 227 -> 242          | 2   | 0.10817   |           |           |          |
| 241 -> 258          | -(  | 0.32191   |           |           |          | 229 -> 242          | 2   | -0.15546  |           |           |          |
| 241 -> 261          |     | 0.22636   |           |           |          | 238 -> 246          | 5   | -0.11579  |           |           |          |
| 241 -> 265          | -(  | D.13869   |           |           |          | 241 -> 257          | 7   | 0.18478   |           |           |          |
|                     |     |           |           |           |          | 241 -> 260          | )   | 0.16822   |           |           |          |
| Excited State       | 62: | Singlet-A | 6.7755 eV | 182.99 nm | f=0.0088 |                     |     |           |           |           |          |

#### 6. References

- S1. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176-2179.
- S2. T. Nukazawa, T. Iwamoto, Dalton Trans. 2020, 49, 16728-16735.
- G. M. Sheldrick, SADABS, Empirical Absorption Correction Program; Göttingen, Germany, 1996.
- S4. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- K. Wakita, Yadokari-XG: Software for Crystal Structure Analyses, 2001; Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, C. Kabuto, S. Akine, T. Nemoto, E. Kwon, *J. Crystallogr. Soc. Jpn.*, 2009, **51**, 218-224.
- S6. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- S7. GRRM14; a) S. Maeda, Y. Harabuchi, Y. Osada, T. Taketsugu, K. Morokuma, K. Ohno, see <u>https://iqce.jp/GRRM/</u> (accessed date March 21, 2020); b) S. Maeda, K. Ohno, K. Morokuma, *Phys. Chem. Chem. Phys.*, 2013, 15, 3683-3701.
- NBO 7.0, E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison (2018).