Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

## **Supporting Information**

# Matrix-isolated trifluoromethylthiyl radical: sulfur atom transfer, isomerization and oxidation reactions

Bifeng Zhu,<sup>a</sup> Zhuang Wu,<sup>a</sup> Lina Wang,<sup>a</sup> Bo Lu,<sup>a</sup> Tarek Trabelsi,<sup>b</sup> Joseph S. Francisco,<sup>b,\*</sup> and Xiaoqing Zeng<sup>a,\*</sup>

<sup>a</sup>Department of Chemistry, Fudan University, Shanghai 200433 (China)
E-mail: xqzeng@fudan.edu.cn
<sup>b</sup>Department of Earth and Environment Science and Department of Chemistry, University of Pennsylvania, Pennsylvania, 19104-6243 (USA)
E-mail: frjoseph@sas.upenn.edu

# **Table of Contents**

| Experimental and computational detailsS3                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------|
| IR spectra of matrix-isolated $CF_3S(O)SCF_3/Ar$ and the HVFP products (Figure S1)S5                                                |
| IR spectra of matrix-isolated $CF_3S(O)SCF_3/Ne$ and the HVFP products (Figure S2)S6                                                |
| IR spectra of matrix-isolated $CF_3S(O)SCF_3/N_2$ and the HVFP products (Figure S3)                                                 |
| IR spectra showing the changes of the HVFP products of $CF_3S(O)SCF_3/Ar$ by annealing (Figure S4)S8                                |
| IR spectra showing the changes of the HVFP products of $CF_3S(O)SCF_3/N_2$ by annealing (Figure S5)S9                               |
| IR difference spectra showing the photochemistry (266 nm) of $CF_3S\bullet$ in $N_2$ -matrix (Figure S6)S10                         |
| IR difference spectra showing the photochemistry (193 nm) of $CF_3S\bullet$ in $N_2$ -matrix (Figure S7)S11                         |
| IR difference spectra showing the photochemistry (193 nm) of $CF_3S\bullet$ in Ar-matrix (Figure S8)S12                             |
| IR difference spectra showing the photochemistry (365 nm) of $CF_3S\bullet$ in CO-matrix (Figure S9)S13                             |
| IR spectra of matrix-isolated HVFP products of CF <sub>3</sub> S(O)SCF <sub>3</sub> /O <sub>2</sub> /N <sub>2</sub> (Figure S10)S14 |
| IR spectra of matrix-isolated HVFP products of CF <sub>3</sub> S(O)SCF <sub>3</sub> /O <sub>2</sub> /Ne (Figure S11)                |
| Calculated IR data of $CF_3SSO\bullet$ and its isomers (Table S1)                                                                   |
| Calculated IR data of $CF_3S$ • and $\bullet CF_2SF$ (Table S2)S17                                                                  |
| Calculated vertical transitions of $CF_3S\bullet$ (Table S3)S17                                                                     |
| Experimental IR data of •CF <sub>2</sub> SF (Table S4)S17                                                                           |
| Experimental IR data of CF <sub>3</sub> SOO• (Table S5)S18                                                                          |
| Calculated vertical transitions for CF <sub>3</sub> SOO• (Table S6)S18                                                              |
| Calculated IR data of $CF_3SOO \bullet$ and its isomers (Table S7)S19                                                               |
| Calculated vertical transitions of •CF <sub>2</sub> SF (Table S8)S20                                                                |
| Calculated atomic coordinates and energies for all optimized structures                                                             |
| References                                                                                                                          |

#### **Experimental and computational details**

### Sample preparation

Bis(trifluoromethyl)disulfane oxide, CF<sub>3</sub>S(O)SCF<sub>3</sub>, was synthesized by the reaction of CF<sub>3</sub>S(O)Cl (95%, Macklin) with AgSCF<sub>3</sub> (>95%, TCl). Briefly, commercial trifluomethylsulfinyl chloride (1 mmol, 0.15g) was condensed into a reaction vessel containing silver trifluoromethanethiolate (1.5mmol, 0.31g) and propylene carbonate (1 mL). The mixture was stirred at -50 °C for 72 h. The volatile products were separated by passing through three successive cold U-traps (-64, -86, -196 °C). Pure CF<sub>3</sub>S(O)SCF<sub>3</sub> was retained in the middle trap. The purity of the substance was checked by gas phase IR (INSA OPTICS FOLI10-R, v = 1224, 1181, 1112, 763 cm<sup>-1</sup>) and NMR spectroscopy (Bruker Avance III HD 500 spectrometer). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  = 124.7 (q, -S(O)CF<sub>3</sub>), 128.5 (q, -SCF<sub>3</sub>) ppm. <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>):  $\delta$  = -33.8 (s, -S(O)CF<sub>3</sub>).

Gases Ar ( $\geq$  99.999%, Linde), N<sub>2</sub> ( $\geq$  99.999%, Linde), Ne ( $\geq$  99.999%, Messer), and O<sub>2</sub> ( $\geq$  99.999%, Linde) were used without further purification. For the isotope labeling experiments, <sup>15</sup>N<sub>2</sub> (98 atom %, Aldrich) and <sup>18</sup>O<sub>2</sub> (97 atom %, Aldrich) were used.

### Matrix-isolation IR spectroscopy

Matrix IR spectra were recorded on a FT-IR spectrometer (Bruker 70V) in a reflectance mode using a transfer optic. A KBr beam splitter and MCT detector were used in the mid-IR region (5000–400 cm<sup>-1</sup>). Typically, 200 scans at a resolution of 0.5 cm<sup>-1</sup> were co-added for each spectrum. Gaseous CF<sub>3</sub>S(O)SCF<sub>3</sub> was mixed by Ar, Ne or N<sub>2</sub> (1:1000). As for the oxidation experiment, CF<sub>3</sub>S(O)SCF<sub>3</sub> was mixed by oxygen and Ar, Ne or N<sub>2</sub> (1:1000) at room temperature. Then the mixture (sample:O<sub>2</sub>:dilution gas=1:50:1000, estimated) was passed through an aluminum oxide furnace (o.d 2.0 mm, i.d. 1.0 mm), which can be heated over a length of ca. 25 mm by tantalum wire (o.d. 2.0 mm, resistance 0.4  $\Omega$ ) and immediately deposited (2 mmol h<sup>-1</sup>) in a high vacuum (~10<sup>-6</sup> pa) onto the Au-plated Cu block matrix support (10 K for N<sub>2</sub> and Ar matrix, 3 K for Ne matrix) using a closed-cycle helium cryostat (Sumitomo Heavy Industries, SRDK-408D2-F50H) inside the vacuum chamber. Temperatures at the second stage of the cold head were controlled and monitored using an East Changing TC 290 digital cryogenic temperature controller a Silicon Diode (DT-670). The voltage and current used in the pyrolysis experiments were 5.50 V and 3.12 A, respectively. Photolysis experiments were performed using ArF excimer laser (Gamlaser EX5/250, 3 Hz, 193 nm), Nd<sup>3+</sup>: YAG laser (266 nm, MPL-F-266, 10 mW), UV lamp (365 nm, 24 W) and blue-light LED (440 nm).

### Matrix-isolation UV-vis spectroscopy

Matrix UV-vis spectra were recorded on a Perkin Elmer Lambda 850+ spectrometer (spectral range of 190– 800 nm with a scanning speed of 1 nm s<sup>-1</sup>). The high-vacuum flash pyrolysis products using the similar furnace (o.d 2.0 mm, i.d. 1.0 mm) were deposited onto the CaF<sub>2</sub> matrix support using a closed-cycle helium cryostat (Sumitomo Heavy Industries, SRDK-408D2-F50H) inside the vacuum chamber. Temperatures at the second stage of the cold head were controlled and monitored using a Lake Shore 335 digital cryogenic temperature controller a Silicon Diode (DT-670). The voltage and current used in the pyrolysis experiments were 5.50 V and 3.12 A, respectively. Photolysis experiments were performed using Ar Fexcimer laser (Gamlaser EX5/250, 3 Hz, 193 nm), Nd<sup>3+</sup>: YAG laser (266 nm, MPL-F-266, 10 mW), UV lamp (365 nm, 24 W) and blue-light LED (440 nm).

#### Quantum chemical calculation methods

Structures and IR frequencies of stationary points were calculated using the DFT B3LYP<sup>[1]</sup>, BP86<sup>[2]</sup> and MPW1PW91<sup>[3]</sup> methods with the 6-311+G(3df) basis set. Accurate relative energies of the species were further calculated using the complete basis set (CBS-QB3).<sup>[4]</sup> Local minima were confirmed by vibrational frequency analysis, and transition states were further confirmed by intrinsic reaction coordinate (IRC) calculations.<sup>[5]</sup> The time-dependent TD-B3LYP/6-311+G(3df)<sup>[6]</sup> and EOM-CCSD/aug-cc-pV(T+d)Z<sup>[7]</sup> methods were performed for the prediction of vertical excitations. These computations were performed using the Gaussian 09 software package.<sup>[8]</sup> To provide detailed insight into the lowest excited states of CF<sub>3</sub>S•, •CF<sub>2</sub>SF and CF<sub>3</sub>SOO•, calculations with the complete active space self-consistent field (CASSCF),<sup>[9]</sup> followed by the internally contracted multireference configuration interaction including the Davidson correction MRCI+Q<sup>[10]</sup> were used. These calculations were done using the optimized equilibrium geometries at the CCSD(T)/aug-cc-pv(T+d)z level. All these ab initio calculations were performed with MOLPRO 2019 program.<sup>[11]</sup>



**Figure S1.** (A) IR spectrum of a 1:1000 mixture of  $CF_3S(O)SCF_3/Ar$  at 10 K. (B) IR spectrum of the matrixisolated high-vacuum flash pyrolysis (HVFP, 400 °C) products of a 1:1000 mixture of  $CF_3S(O)SCF_3/Ar$  at 10 K.



**Figure S2.** (A) IR spectrum of a 1:1000 mixture of  $CF_3S(O)SCF_3/Ne$  at 3 K. (B) IR spectrum of the matrixisolated high-vacuum flash pyrolysis (HVFP, 400 °C) products of a 1:1000 mixture of  $CF_3S(O)SCF_3/Ne$  at 3 K.



**Figure S3.** (A) IR spectrum of a 1:1000 mixture of  $CF_3S(O)SCF_3/N_2$  at 10 K. (B) IR spectrum of the matrixisolated high-vacuum flash pyrolysis (HVFP, 400 °C) products of a 1:1000 mixture of  $CF_3S(O)SCF_3/N_2$  at 10 K.



**Figure S4.** IR spectra in the region of  $1190-1100 \text{ cm}^{-1}$  obtained: A) 1 h of sample deposition of high-vacuum flash pyrolysis products of CF<sub>3</sub>S(O)SCF<sub>3</sub>/Ar at 10 K, B) after annealing the matrix to 25 K for 1 min, C) after annealing the matrix to 25 K for 5 min, D) after keeping the matrix at 25 K.



**Figure S5.** IR spectra in the region of  $1190-1100 \text{ cm}^{-1}$  obtained: A) 1 h of sample deposition of high-vacuum flash pyrolysis products of CF<sub>3</sub>S(O)SCF<sub>3</sub>/N<sub>2</sub> at 10 K, B) after annealing the matrix to 25 K for 30 s, C) after annealing the matrix to 25 K for 5 min, D) after keeping the matrix at 25 K.



**Figure S6.** (A) IR difference spectrum showing the changes of the HVFP products of a 1:1000 mixture of  $CF_3S(O)SCF_3/N_2$  upon UV-light irradiation (365 nm, 40 min) in a solid  $N_2$ -matrix at 10 K. (B) IR difference spectrum showing the changes of the matrix upon further UV-laser irradiation (266 nm, 15 min) at 10 K.



**Figure S7.** (A) IR difference spectrum showing the changes of the HVFP products of a 1:1000 mixture of  $CF_3S(O)SCF_3/N_2$  upon an ArF excimer laser irradiation (193 nm, 30 min) in a solid N<sub>2</sub>-matrix at 10 K. (B) IR difference spectrum showing the changes of the matrix upon further UV-light irradiation (365 nm, 5 min) at 10 K.



**Figure S8.** (A) IR difference spectrum showing the changes of the HVFP products of a 1:1000 mixture of  $CF_3S(O)SCF_3/Ar$  upon an ArF excimer laser irradiation (193 nm, 35 min) in a solid Ar-matrix at 10 K. (B) IR difference spectrum showing the changes of the matrix upon further UV-light irradiation (365 nm, 10 min) at 10 K.



**Figure S9.** IR difference spectrum showing the changes of the HVFP products of a 1:600 mixture of  $CF_3S(O)SCF_3/CO$  upon UV-light irradiation (365 nm, 5 min) at 16 K.



**Figure S10.** (A) IR spectrum of the HVFP products of a 1:50:1000 mixture of  $CF_3S(O)SCF_3/O_2/N_2$  at 10 K. (B) IR spectrum of the HVFP products of a 1:25:25:1000 mixture of  $CF_3S(O)SCF_3/O_2/N_2$  at 10 K.



**Figure S11.** (A) IR spectrum of the HVFP products of a 1:50:1000 mixture of  $CF_3S(O)SCF_3/O_2/Ne$  at 3 K. (B) IR difference spectrum showing the change of the matrix upon blue-light LED irradiation (440 nm, 70 min) at 3 K.

| CF₃SSO●      |              | CF₃SOS●      |              | CF₃S(O)S•    |              | CF₃OSS●      |              |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| B3LYP        | MPW1PW91     | B3LYP        | MPW1PW91     | B3LYP        | MPW1PW91     | B3LYP        | MPW1PW91     |
| 1160.5 (222) | 1207.9 (218) | 1161.3 (220) | 1208.6 (222) | 1220.7 (283) | 1265.9 (285) | 1225.1 (486) | 1270.9 (446) |
| 1148.0 (234) | 1196.1 (232) | 1150.6 (238) | 1195.9 (240) | 1207.8 (253) | 1250.9 (254) | 1168.9 (610) | 1210.2 (341) |
| 1106.6 (92)  | 1138.0 (101) | 1104.0 (417) | 1138.9 (407) | 1155.9 (43)  | 1198.3 (48)  | 1157.6 (342) | 1205.3 (629) |
| 1074.0 (423) | 1106.4 (416) | 759.0 (14)   | 798.5 (46)   | 1063.9 (411) | 1101.3 (400) | 912.1 (32)   | 940.5 (42)   |
| 753.9 (23)   | 774.0 (26)   | 756.2 (30)   | 779.5 (14)   | 743.4(27)    | 766.0 (23)   | 705.8 (57)   | 738.4 (75)   |
| 550.7 (1)    | 562.5 (2)    | 610.4 (9)    | 658.1 (11)   | 572.6 (20)   | 612.1 (26)   | 650.8 (52)   | 676.9 (41)   |
| 536.4 (0.7)  | 547.3 (1)    | 551.3 (1)    | 564.6 (1)    | 540.8 (1)    | 555.7 (0.8)  | 646.8 (1)    | 660.9 (2)    |
| 442.7 (26)   | 471.4 (41)   | 532.7 (0.8)  | 543.4 (1)    | 537.2 (1)    | 548.8 (2)    | 609.9 (1)    | 623.1 (2)    |
| 436.9 (18)   | 452.4 (4)    | 460.3 (8)    | 474.2 (9)    | 405.2 (12)   | 423.5 (14)   | 510.7 (49)   | 532.0 (43)   |
| 350.0 (4)    | 358.9 (4)    | 363.5 (0.8)  | 372.3 (0.8)  | 362.6 (2)    | 372.9 (2)    | 440.4 (0.9)  | 450.3 (0.9)  |
| 312.6 (3)    | 318.7 (2)    | 317.3 (0.4)  | 324.8 (0.4)  | 310.4 (0.2)  | 321.0 (0.2)  | 371.2 (42)   | 386.7 (30)   |
| 253.4 (0.9)  | 263.9 (0.6)  | 259.3 (0.3)  | 263.0 (0.2)  | 254.5 (2)    | 265.1 (2)    | 231.5 (4)    | 241.9 (3)    |
| 126.1 (0.6)  | 128.4 (0.6)  | 171.9 (2)    | 175.9 (2)    | 194.0 (3)    | 197.3 (3)    | 181.7 (1)    | 184.8 (1)    |
| 57.7 (2)     | 58.2 (2)     | 52.4 (< 0.1) | 53.2 (< 0.1) | 139.7 (0.2)  | 142.9 (0.2)  | 58.4 (< 0.1) | 60.6 (< 0.1) |
| 35.8 (0.7)   | 35.1 (0.7)   | 41.2 (< 0.1) | 48.6 (< 0.1) | 46.5 (0.3)   | 48.1 (0.3)   | 32.3 (0.1)   | 33.9 (0.1)   |

**Table S1.** Calculated IR frequencies (cm<sup>-1</sup>) and intensity (km mol<sup>-1</sup>, in parentheses) of CF<sub>3</sub>SSO• and its isomers at the MPW1PW91 and B3LYP methods using 6-311+G(3df) basis set.

| CF₃S●        |              |               | •CF <sub>2</sub> SF |              |              |
|--------------|--------------|---------------|---------------------|--------------|--------------|
| MPW1PW91     | B3LYP        | BP86          | MPW1PW91            | B3LYP        | BP86         |
| 1181.2 (255) | 1134.1 (253) | 1071.9 (243)  | 1339.9 (300)        | 1304.4 (314) | 1271.1 (326) |
| 1172.0 (282) | 1123.7 (284) | 1055.9 (329)  | 1278.6 (246)        | 1232.9 (244) | 1173.6 (232) |
| 1136.4 (370) | 1102.5 (359) | 1040.4 (276)  | 734.9 (4)           | 721.3 (4)    | 714.9 (7)    |
| 778.5 (11)   | 758.2 (10)   | 727.9 (8)     | 592.8 (159)         | 522.3 (155)  | 478.9 (88)   |
| 545.3 (2)    | 535.0 (1)    | 512.4 (1)     | 500.0 (16)          | 489.8 (13)   | 466.8 (58)   |
| 543.8 (0.5)  | 532.6 (0.3)  | 509.2 (< 0.1) | 392.2 (4)           | 391.7 (8)    | 413.1 (13)   |
| 459.1 (3)    | 445.8 (3)    | 431.8 (2)     | 373.9 (0.3)         | 367.1 (0.2)  | 353.4 (1)    |
| 293.3 (0.3)  | 288.8 (0.3)  | 270.4 (0.3)   | 183.1 (3)           | 177.6 (3)    | 157.7 (2)    |
| 207.9 (0.5)  | 201.7 (0.6)  | 198.4 (0.7)   | 105.0 (1)           | 115.8 (1)    | 131.8 (2)    |

**Table S2.** Calculated IR frequencies  $(cm^{-1})$  and intensity (km mol<sup>-1</sup>, in parentheses) of  $CF_3S$ • at the MPW1PW91, B3LYP and BP86 methods using 6-311+G(3df) basis set.

Table S3. Calculated vertical transitions (nm) for  $CF_3S\bullet$ .

| EOM <sup>[a]</sup> | CASSCF <sup>[b]</sup> | MRCI+Q | TD-B3LYP <sup>[c]</sup> |
|--------------------|-----------------------|--------|-------------------------|
| 19410 (0)          | 17854.0               | 22960  | 11092.1 (0)             |
| 322.4 (0.0029)     | 287.3                 | 324.9  | 370.9 (0.0006)          |
| 211.3 (0)          | 164.7                 | 178.3  | 236.8 (0.0006)          |
| 181.2 (0.0012)     |                       |        | 225.5 (0)               |
|                    |                       |        | 212.7 (0.0001)          |
|                    |                       |        | 209.6 (0.0094)          |
|                    |                       |        | 193.9 (0.0001)          |

[a] At the EOM-CCSD/aug-cc-pV(T+d)Z level of theory. The oscillator strengths are given in parentheses. [b] The CASSCF/aug-cc-pv(T+d)z active space is (21,15) and all CI configurations with weight greater than 0.01 were considered. Calculation were done in  $C_s$  symmetry at the optimized equilibrium geometry at CCSD(T)/aug-cc-pv(T+d)z. [c] At the 6-311+G(3df) basis set.

| Table 4. Comput | ed and observed in data         | IOF • $CF_2SF$ . |                                                    |
|-----------------|---------------------------------|------------------|----------------------------------------------------|
| $v_{cal}^{[a]}$ | V <sub>obs</sub> <sup>[b]</sup> |                  | Mode <sup>[c]</sup>                                |
| CCSD(T)         | N <sub>2</sub> -matrix          | Ar-matrix        | •CF <sub>2</sub> SF                                |
| 1315.3          | 1301.9                          | 1299.1           | v <sub>1</sub> , v <sub>s</sub> (CF <sub>2</sub> ) |
| 1265.5          | 1237.2                          | 1232.6           | $v_2$ , $v_{as}(CF_2)$                             |
| 712.4           | 713.2                           | 710.7            | ν <sub>3</sub> , ν(CS)                             |
| 623.3           | 578.1                           | 583.4            | v <sub>4</sub> , v(SF)                             |
| 494.4           | 491.4                           | 490.3            | ν <sub>5</sub> , δ(CF <sub>2</sub> )               |

Table 4. Computed and observed IR data for •CF<sub>2</sub>SF.

[a] Harmonic IR frequencies calculated harmonic frequencies at the aug-cc-pV(T+d)Z basis set. [b] Observed band positions for the most intense matrix sites. [c] Tentative assignment of the vibration modes based on the computed vibrational displacement vectors for  $\bullet$ CF<sub>2</sub>SF.

| $v_{cal}^{[a]}$ | V <sub>obs</sub> <sup>[b]</sup> |                     | $\Delta v (O/^{18}O)^{[c]}$ |      | Mode <sup>[d]</sup>                                 |
|-----------------|---------------------------------|---------------------|-----------------------------|------|-----------------------------------------------------|
| CCSD(T)         | N <sub>2</sub> -matrix          | Ne-matrix           | obs                         | cal  |                                                     |
| 1172.9          | 1185.1                          | 1189.5              | < 0.5                       | 0.2  | $v_1, v_{as}(CF_3)$                                 |
| 1169.2          | 1176.1                          | 1183.8              | < 0.5                       | -0.1 | v <sub>2</sub> , v <sub>as</sub> (CF <sub>3</sub> ) |
| 1118.9          | 1124.1                          | 1126.9              | < 0.5                       | 0.4  | v <sub>3</sub> , v <sub>s</sub> (CF <sub>3</sub> )  |
| 1013.7          | 1017.6                          | 1016.6              | 55.5                        | 56.2 | v <sub>4</sub> , v(OO)                              |
| 741.0           | 764.4                           | 765.1               | 0.5                         | -0.1 | ν <sub>5</sub> , δ(CF <sub>3</sub> )                |
| 584.4           | 558.6                           | 559.0               | 18.8                        | 28.6 | v <sub>6</sub> , v(SO)                              |
| 539.6           | n.o. <sup>[e]</sup>             | n.o. <sup>[e]</sup> | n.o.                        | 0.1  | ν <sub>7</sub> , δ(CF <sub>3</sub> )                |
| 520.2           | 540.0                           | 539.7               | < 0.5                       | 0.3  | ν <sub>8</sub> , δ(CF <sub>3</sub> )                |
| 461.0           | 463.3                           | 465.1               | < 0.5                       | 5.6  | v <sub>9</sub> , v(CS)                              |

Table S5. Computed and observed IR data for CF<sub>3</sub>SOO•.

[a] Harmonic IR frequencies (> 400 cm<sup>-1</sup>) calculated at the aug-cc-pV(D+d)Z basis set. Full list of the calculated IR frequencies is given in Table S7. [b] Observed band positions for the most intense matrix sites. [c] Observed and calculated <sup>18</sup>O-isotopic shifts. [d] Tentative assignment of the vibration modes based on the computed vibrational displacement vectors. [e] Not observed due to low intensity.

### **Table S6.** Calculated vertical transitions (nm) for CF<sub>3</sub>SOO•.

| EOM <sup>[a]</sup> | CASSCF <sup>[b]</sup> | TD-B3LYP <sup>[c]</sup> |
|--------------------|-----------------------|-------------------------|
| 1211 (0)           | 1227                  | 1045.2 (0)              |
| 354.4 (0)          | 398.6                 | 437.3 (0.0005)          |
| 302.7 (0.0022)     | 386.2                 | 392.1 (0)               |
| 295.8 (0.0003)     |                       | 342.2 (0.0012)          |
|                    |                       | 303.5 (0.0006)          |
|                    |                       | 283.8 (0.0006)          |
|                    |                       | 252.9 (0.0170)          |
|                    |                       | 229.3 (0.1240)          |
|                    |                       | 217.4 (0.0001)          |
|                    |                       | 207.4 (0.0006)          |

[a] At the EOM-CCSD/aug-cc-pV(T+d)Z level of theory. The oscillator strengths are given in parentheses. [b] CASSCF/aug-cc-pv(D+d)Z with an active space (15,14). [c] At the 6-311+G(3df) basis set.

| CF <sub>3</sub> SOO∙ |              |              | CF <sub>3</sub> OSO● |                  |              | $CF_3SO_2\bullet$ |              |              |
|----------------------|--------------|--------------|----------------------|------------------|--------------|-------------------|--------------|--------------|
| MPW1PW91             | B3LYP        | BP86         | MPW1PW91             | B3LYP            | BP86         | MPW1PW91          | B3LYP        | BP86         |
| 1210.8 (217)         | 1164.6 (219) | 1279.9 (226) | 1281.7 (402)         | 1236.2 (408)     | 1172.3 (371) | 1350.9 (221)      | 1301.3 (217) | 1239.8 (208) |
| 1207.0 (255)         | 1162.0 (256) | 1093.6 (237) | 1243.7 (226)         | 1206.5 (183)     | 1158.2 (121) | 1267.7 (157)      | 1224.4 (263) | 1168.9 (277) |
| 1156.8 (58)          | 1116.0 (117) | 1074.1 (118) | 1217.5 (242)         | 1170.6 (264)     | 1109.7 (267) | 1267.7 (283)      | 1223.4 (177) | 1168.3 (149) |
| 1129.9 (358)         | 1090.6 (307) | 1028.5 (404) | 1175.2 (526)         | 1136.9 (547)     | 1081.6 (587) | 1144.3 (19)       | 1101.7 (12)  | 1046.6 (15)  |
| 780.3 (14)           | 760.3 (14)   | 730.3 (15)   | 948.7 (76)           | 919.7 (67)       | 872.1 (54)   | 1081.4 (352)      | 1043.8 (371) | 989.6 (351)  |
| 623.0 (4)            | 579.0 (8)    | 563.5 (18)   | 761.1 (91)           | 729.1 (88)       | 685.4 (88)   | 758.3 (28)        | 734.7 (33)   | 701.6 (36)   |
| 565.1 (0.9)          | 552.8 (0.5)  | 512.7 (0.3)  | 659.9 (1)            | 646.2 (0.5)      | 617.4 (0.4)  | 564.4 (2)         | 551.1 (1)    | 524.9 (0.5)  |
| 544.6 (1)            | 534.1 (0.9)  | 511.5 (7)    | 626.5 (5)            | 613.4 (4)        | 584.1 (2)    | 551.7 (1)         | 539.5 (0.8)  | 515.3 (0.4)  |
| 469.0 (8)            | 454.6 (7)    | 403.3 (10)   | 544.8 (43)           | 527.3 (48)       | 503.6 (50)   | 499.2 (38)        | 487.8 (36)   | 459.3 (29)   |
| 421.0 (0.1)          | 390.3 (0.6)  | 335.8 (15)   | 473.3 (7)            | 462.0 (7)        | 437.1 (6)    | 450.2 (20)        | 431.9 (19)   | 402.7 (14)   |
| 325.1 (0.4)          | 317.0 (0.5)  | 300.5 (0.1)  | 406.4 (19)           | 397.6 (24)       | 378.5 (22)   | 334.9 (0.3)       | 322.7 (0.2)  | 300.6 (0.2)  |
| 297.3 (0.2)          | 284.7 (0.7)  | 202.4 (16)   | 315.1 (2)            | 304.0 (3)        | 286.6 (4)    | 276.9 (1)         | 256.5 (1)    | 232.8 (1)    |
| 172.8 (1)            | 166.2 (0.9)  | 115.2 (0.2)  | 178.4 (1)            | 175.9 (1)        | 165.0 (1)    | 203.7 (5)         | 198.1 (4)    | 181.4 (3)    |
| 69.4 (0.4)           | 60.3 (0.4)   | 66.2 (< 0.1) | 73.3 (1)             | <b>69.3 (1</b> ) | 60.9 (0.8)   | 171.9 (1)         | 168.8 (1)    | 154.8 (1)    |
| 52.2 (0.3)           | 50.8 (0.4)   | 30.6 (< 0.1) | 37.7 (3)             | 36.1 (3)         | 32.1 (3)     | 50.2 (0.3)        | 47.4 (0.3)   | 42.9 (0.3)   |

**Table S7.** Calculated IR frequencies (cm<sup>-1</sup>) and intensity (km mol<sup>-1</sup>, in parentheses) of CF<sub>3</sub>SOO•, CF<sub>3</sub>OSO• and CF<sub>3</sub>SO<sub>2</sub> at the MPW1PW91, B3LYP and BP86 methods using 6-311+G(3df) basis set.

-

EOM<sup>[a]</sup> CASSCF<sup>[b]</sup> TD-B3LYP<sup>[c]</sup> MRCI+Q 526.4 (0.0011) 612 641.0 592.8 (0.0015) 278.5 (0.0212) 264 281.7 316.3 (0.0219) 241.7 (0.0090) 271.4 (0.0018) 238.0 (0.0075) 267.6 (0.0036) 227.7 (0.0047) 210.3 (0.0337) 202.1 (0.0173) 198.3 (0.0101) 194.0 (0.0142) 190.5 (0.0302)

Table S8. Calculated vertical transitions (nm) for •CF<sub>2</sub>SF.

[a] At the EOM-CCSD/aug-cc-pV(T+d)Z level of theory. The oscillator strengths are given in parentheses. [b] The CASSCF/aug-cc-pv(T+d)z active space is (15,13) and all CI configurations with weight greater than 0.02 were considered. Calculation were done in  $C_1$  symmetry using at the optimized equilibrium geometry at CCSD(T)/aug-cc-pv(T+d)z. [c] At the 6-311+G(3df) basis set.

Calculated atomic coordinates (in Angstroms) and energies (in Hartrees) for all optimized structures.

| CF₃S●       |                  |                 |                     |
|-------------|------------------|-----------------|---------------------|
| B3LYP/6-31  | .1+G(3df)        |                 |                     |
| С           | -0.32581400      | -0.02808700     | 0.0000000           |
| F           | -0.80668100      | 1.22351300      | 0.0000000           |
| F           | -0.80668100      | -0.66249000     | 1.07580600          |
| F           | -0.80668100      | -0.66249000     | -1.07580600         |
| S           | 1.48345400       | 0.06760700      | 0.0000000           |
| Zero-point  | correction=      | 0.              | .013949             |
| Thermal co  | prrection to En  | ergv=           | 0.018602            |
| Thermal co  | prrection to En  | thalpv=         | 0.019546            |
| Thermal co  | prrection to Gil | bbs Free Energ  | v= -0.015216        |
| Sum of ele  | ctronic and zer  | ro-point Fnerg  | ies= -735.921357    |
| Sum of ele  | ctronic and the  | ermal Energies  | = -735 916704       |
| Sum of ele  | ctronic and the  | ermal Enthalni  | es= -735 915760     |
| Sum of ele  | ctronic and the  | ermal Eree Ene  | $r_{3} = -735,9500$ |
| Juin of ele |                  |                 | igies755.550522     |
|             | aug-cc-nV/(T+d   | )7              |                     |
| s           |                  |                 | 0 0000000           |
| C<br>2      | 0.00000000       | 0.000000000     | 1 8152/773          |
| с<br>с      | 1 27100872       | 0.00000000      | 2 22185027          |
| г<br>с      | 0.60579519       | 1 07949777      | 2.23103027          |
| r<br>r      | 0.00370510       | 1.07040777      | 2.32241142          |
| Г           | -0.00778508      | -1.00052598     | 2.51740908          |
|             |                  |                 |                     |
|             |                  |                 |                     |
|             | 1.0(2.45)        |                 |                     |
| B3LYP/0-31  | .1+G(30T)        | 0 77424000      | 0 47265200          |
|             | -1.03407600      | -0.77431900     | 0.47265300          |
|             | -0.72133800      | -0.02388600     | -0.11150100         |
| F<br>C      | -1.16084200      | 1.20618300      | -0.24054800         |
| 5           | 0.82815300       | -0.50378300     | -0.41755100         |
| F           | 1.80353800       | 0.4/96/400      | 0.58454100          |
| Zero-point  | correction=      | 0.              | .012127             |
| Thermal co  | prrection to En  | ergy=           | 0.017491            |
| Thermal co  | prrection to En  | thalpy=         | 0.018436            |
| Thermal co  | prrection to Gil | bbs Free Energ  | y= -0.018007        |
| Sum of ele  | ctronic and zei  | ro-point Energi | ies= -735.879753    |
| Sum of ele  | ctronic and the  | ermal Energies  | -735.874389         |
| Sum of ele  | ctronic and the  | ermal Enthalpi  | es= -735.873445     |
| Sum of ele  | ctronic and the  | ermal Free Ene  | rgies= -735.909888  |
|             |                  |                 |                     |
| UCCSD(T)/   | aug-cc-pV(T+d    | )Z ENERGY=-7    | 34.91431399         |
| C -0.04     | 429281150        | -0.156196533    | 7 -0.7198102422     |
| S -0.44     | 185182969        | -0.475654127    | 5 0.8669300206      |
| F 0.42      | 208327208        | 0.6392234865    | 5 1.7537904493      |
| F 1.18      | 88871911         | -0.2068719214   | 4 -1.1822474243     |
| F -0.82     | 257010557        | 0.4690688276    | 5 -1.5794243528     |
|             |                  |                 |                     |
|             |                  |                 |                     |
| cis-CF₃SOO  | )•               |                 |                     |
| B3LYP/6-31  | .1+G(3df)        |                 |                     |
| С           | 0.91428100       | 0.12648600      | -0.00471000         |

| С | 0.91428100  | 0.12648600  | -0.00471000 |
|---|-------------|-------------|-------------|
| S | -0.46963000 | -1.06330800 | -0.10939700 |

S21

| F                                                     | 1.99452400      | -0.53012600    | -0.44624 | 1400        |   |
|-------------------------------------------------------|-----------------|----------------|----------|-------------|---|
| F                                                     | 0.72465800      | 1.20473600     | -0.76204 | 100         |   |
| F                                                     | 1.14214900      | 0.54210300     | 1.24027  | 200         |   |
| 0                                                     | -1.69922100     | 0.01534100     | 0.5418   | 5300        |   |
| 0                                                     | -2.39122500     | 0.64760900     | -0.3555  | 1000        |   |
| Zero-point                                            | correction=     | C              | 0.019784 |             |   |
| Thermal co                                            | prrection to En | ergy=          | 0.027    | 034         |   |
| Thermal co                                            | prrection to En | ithalpy=       | 0.027    | 7978        |   |
| Thermal co                                            | prrection to Gi | bbs Free Ener  | gy= -    | 0.013981    |   |
| Sum of ele                                            | ctronic and ze  | ro-point Energ | gies=    | -886.301457 |   |
| Sum of ele                                            | ctronic and th  | ermal Energie  | s=       | -886.294206 |   |
| Sum of electronic and thermal Enthalpies= -886.293262 |                 |                |          |             |   |
| Sum of ele                                            | ctronic and th  | ermal Free En  | ergies=  | -886.335222 | ) |
|                                                       |                 |                |          |             |   |

UCCSD(T)/aug-cc-pV(D+d)Z ENERGY=-884.66375315

| 0.1328123766  | -1.1154751219                                                                                                  | -0.4765464492                                                                                                                                                                 |
|---------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0023292982  | 0.1154543298                                                                                                   | 0.8569533791                                                                                                                                                                  |
| -0.5549494095 | -0.0311232565                                                                                                  | -1.7183814540                                                                                                                                                                 |
| 0.4547185389  | -0.4861732350                                                                                                  | 1.9847971132                                                                                                                                                                  |
| -1.2669867673 | 0.5239284347                                                                                                   | 1.0645022702                                                                                                                                                                  |
| 0.7463763539  | 1.2160626207                                                                                                   | 0.6247773523                                                                                                                                                                  |
| 0.3653109474  | 0.6908276336                                                                                                   | -2.3327941121                                                                                                                                                                 |
|               | 0.1328123766<br>0.0023292982<br>-0.5549494095<br>0.4547185389<br>-1.2669867673<br>0.7463763539<br>0.3653109474 | 0.1328123766-1.11547512190.00232929820.1154543298-0.5549494095-0.03112325650.4547185389-0.4861732350-1.26698676730.52392843470.74637635391.21606262070.36531094740.6908276336 |

# trans-CF<sub>3</sub>SOO•

| B3LYP/6-311+G(30f)                                     |                                        |               |          |             |  |
|--------------------------------------------------------|----------------------------------------|---------------|----------|-------------|--|
| С                                                      | 1.00054400                             | -0.08531200   | 0.000074 | 400         |  |
| S                                                      | -0.52902100                            | 0.91122900    | -0.00018 | 800         |  |
| F                                                      | 2.00965800                             | 0.79413800    | 0.000375 | 500         |  |
| F                                                      | 1.10649500                             | -0.86339700   | 1.075424 | 400         |  |
| F                                                      | 1.10694400                             | -0.86320100   | -1.07537 | 500         |  |
| 0                                                      | -1.59797500                            | -0.51006100   | -0.00085 | 5100        |  |
| 0                                                      | -2.84537500                            | -0.19939400   | 0.00069  | 500         |  |
| Zero-poin                                              | t correction=                          | C             | 0.019656 |             |  |
| Thermal c                                              | Thermal correction to Energy= 0.027127 |               |          |             |  |
| Thermal correction to Enthalpy= 0.028071               |                                        |               |          |             |  |
| Thermal correction to Gibbs Free Energy= -0.015684     |                                        |               |          |             |  |
| Sum of electronic and zero-point Energies= -886.300701 |                                        |               |          |             |  |
| Sum of electronic and thermal Energies= -886.293230    |                                        |               |          |             |  |
| Sum of electronic and thermal Enthalpies= -886.292286  |                                        |               |          |             |  |
| Sum of ele                                             | ectronic and th                        | ermal Free En | ergies=  | -886.336041 |  |
|                                                        |                                        |               |          |             |  |

### CF₃OSO•

| B3LYP/6-311+G(3df)                     |             |             |             |  |  |
|----------------------------------------|-------------|-------------|-------------|--|--|
| С                                      | -1.02415300 | -0.03570100 | -0.01897700 |  |  |
| F                                      | -2.04660700 | -0.15836100 | -0.85368500 |  |  |
| F                                      | -0.86119300 | -1.18516300 | 0.64055500  |  |  |
| F                                      | -1.31903200 | 0.90984500  | 0.88467600  |  |  |
| 0                                      | 2.29078400  | -0.77842800 | -0.01087000 |  |  |
| 0                                      | 0.07941800  | 0.29760600  | -0.75453600 |  |  |
| S                                      | 1.57654900  | 0.49774300  | 0.01207500  |  |  |
| Zero-point correction= 0.021942        |             |             |             |  |  |
| Thermal correction to Energy= 0.028730 |             |             |             |  |  |

Thermal correction to Enthalpy=0.029674Thermal correction to Gibbs Free Energy=-0.011648Sum of electronic and zero-point Energies=-886.436063Sum of electronic and thermal Energies=-886.429275Sum of electronic and thermal Enthalpies=-886.428331Sum of electronic and thermal Free Energies=-886.469653

### CF<sub>3</sub>SO<sub>2</sub>●

B3LYP/6-311+G(3df)

| С                                                   | 0.88755500      | -0.00004200    | -0.007467 | 700         |
|-----------------------------------------------------|-----------------|----------------|-----------|-------------|
| 0                                                   | -1.50034900     | -1.27138000    | -0.19502  | 400         |
| F                                                   | 1.40285000      | 1.08456800     | 0.542965  | 00          |
| F                                                   | 1.40338700      | -1.08278500    | 0.545364  | 00          |
| F                                                   | 1.10767700      | -0.00142200    | -1.309687 | '00         |
| S                                                   | -1.03369400     | 0.00001100     | 0.322475  | 00          |
| 0                                                   | -1.50108200     | 1.27098400     | -0.195298 | 800         |
| Zero-point                                          | correction=     | C              | 0.021947  |             |
| Thermal c                                           | orrection to Er | nergy=         | 0.0287    | 59          |
| Thermal c                                           | orrection to Er | nthalpy=       | 0.0297    | 704         |
| Thermal c                                           | orrection to Gi | ibbs Free Ener | gy= -0.   | 010863      |
| Sum of ele                                          | ectronic and ze | ro-point Energ | gies=     | -886.397604 |
| Sum of electronic and thermal Energies= -886.390791 |                 |                |           |             |
| Sum of ele                                          | ectronic and th | ermal Enthalp  | ies=      | -886.389847 |
| Sum of ele                                          | ectronic and th | ermal Free En  | ergies=   | -886.430413 |
|                                                     |                 |                |           |             |

### CF<sub>3</sub>SSO•

| B3LYP/6-311+G(3df)                                        |             |             |          |      |
|-----------------------------------------------------------|-------------|-------------|----------|------|
| С                                                         | 1.21024900  | 0.15000600  | 0.00657  | 600  |
| F                                                         | 0.99818100  | 1.27294400  | -0.68026 | 200  |
| F                                                         | 1.32557400  | 0.48219200  | 1.29644  | 800  |
| F                                                         | 2.36906200  | -0.38124000 | -0.39569 | 000  |
| S                                                         | -0.09279900 | -1.11381900 | -0.28042 | 2700 |
| S                                                         | -1.79414900 | -0.08158300 | 0.46042  | 400  |
| 0                                                         | -2.41320800 | 0.73266900  | -0.6129  | 8500 |
| Zero-point correction= 0.019014                           |             |             |          |      |
| Thermal correction to Energy= 0.026581                    |             |             |          |      |
| Thermal correction to Enthalpy= 0.027525                  |             |             |          |      |
| Thermal correction to Gibbs Free Energy= -0.015918        |             |             |          |      |
| Sum of electronic and zero-point Energies= -1209.406697   |             |             |          |      |
| Sum of electronic and thermal Energies= -1209.399129      |             |             |          |      |
| Sum of electronic and thermal Enthalpies= -1209.398185    |             |             |          |      |
| Sum of electronic and thermal Free Energies= -1209.441628 |             |             |          |      |
|                                                           |             |             |          |      |

### **CF**<sub>3</sub>SOS●

| B3LYP/6 | 5-311+G(3df) |             |             |
|---------|--------------|-------------|-------------|
| С       | 1.23770100   | -0.17858100 | -0.00905800 |
| F       | 2.33809100   | 0.28677600  | -0.61486600 |
| F       | 0.87366200   | -1.32251000 | -0.59374200 |
| F       | 1.53135500   | -0.45775700 | 1.26075500  |
| S       | -0.01743300  | 1.13336900  | -0.17963500 |
| 0       | -1.27508600  | 0.34790800  | 0.65928500  |

S-2.47716000-0.40026600-0.17594300Zero-point correction=0.018891Thermal correction to Energy=0.026278Thermal correction to Enthalpy=0.027222Thermal correction to Gibbs Free Energy=-0.015747Sum of electronic and zero-point Energies=-1209.352900Sum of electronic and thermal Energies=-1209.345512Sum of electronic and thermal Enthalpies=-1209.344568Sum of electronic and thermal Free Energies=-1209.387537

### CF₃S(O)S●

| - 3-(-/-                                                |                                                           |             |          |      |  |
|---------------------------------------------------------|-----------------------------------------------------------|-------------|----------|------|--|
| B3LYP/6-311+G(3df)                                      |                                                           |             |          |      |  |
| С                                                       | -1.07648000                                               | -0.22174400 | 0.01210  | 0080 |  |
| F                                                       | -1.21913200                                               | -0.41574700 | 1.31307  | 7800 |  |
| F                                                       | -1.18167600                                               | -1.37282900 | -0.63216 | 5800 |  |
| S                                                       | 0.63268400                                                | 0.56802300  | -0.37388 | 3100 |  |
| 0                                                       | 0.59151200                                                | 1.88882500  | 0.26056  | 5900 |  |
| S                                                       | 1.95452800                                                | -0.77106100 | 0.08980  | 0300 |  |
| F                                                       | -2.00681600                                               | 0.61840600  | -0.41557 | 7000 |  |
| Zero-point correction= 0.019947                         |                                                           |             |          |      |  |
| Thermal correction to Energy= 0.027139                  |                                                           |             |          |      |  |
| Thermal correction to Enthalpy= 0.028083                |                                                           |             |          |      |  |
| Thermal correction to Gibbs Free Energy= -0.013724      |                                                           |             |          |      |  |
| Sum of electronic and zero-point Energies= -1209.373889 |                                                           |             |          |      |  |
| Sum of electronic and thermal Energies= -1209.366698    |                                                           |             |          |      |  |
| Sum of electronic and thermal Enthalpies= -1209.365753  |                                                           |             |          |      |  |
| Sum of ele                                              | Sum of electronic and thermal Free Energies= -1209.407560 |             |          |      |  |

### CF<sub>3</sub>OSS●

| B3LYP/6-311+G(3df)                                        |             |             |          |     |  |
|-----------------------------------------------------------|-------------|-------------|----------|-----|--|
| С                                                         | 1.34597000  | -0.10034300 | -0.02158 | 300 |  |
| F                                                         | 2.33693500  | -0.45234200 | -0.83390 | 600 |  |
| F                                                         | 1.05227900  | -1.14147800 | 0.76915  | 200 |  |
| F                                                         | 1.77956500  | 0.89093000  | 0.77389  | 700 |  |
| S                                                         | -2.42714200 | -0.55504900 | 0.00008  | 000 |  |
| 0                                                         | 0.29442400  | 0.28124700  | -0.79238 | 200 |  |
| S                                                         | -1.13224700 | 0.84742900  | 0.00531  | 200 |  |
| Zero-point correction= 0.020284                           |             |             |          |     |  |
| Thermal correction to Energy= 0.027377                    |             |             |          |     |  |
| Thermal correction to Enthalpy= 0.028321                  |             |             |          |     |  |
| Thermal correction to Gibbs Free Energy= -0.014279        |             |             |          |     |  |
| Sum of electronic and zero-point Energies= -1209.424484   |             |             |          |     |  |
| Sum of electronic and thermal Energies= -1209.417392      |             |             |          |     |  |
| Sum of electronic and thermal Enthalpies= -1209.416448    |             |             |          |     |  |
| Sum of electronic and thermal Free Energies= -1209.459047 |             |             |          |     |  |

### References

[1] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.

[2] A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.

[3] C. Adamo, V. Barone, J. Chem. Phys. 1998, 108, 664.

[4] J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532–6542.

[5] a) K. Fukui, Acc. Chem. Res. **1981**, 4, 363–368; b) H. P. Hratchian, H. B. Schlegel, J. Chem. Theory Comput. **2005**, 1, 61–69.

[6] a) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, *J. Chem. Phys.* **1998**, *109*, 8218; b) J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch, *J. Phys. Chem.* **1992**, *96*, 135-149.

[7] T. Korona, H.-J. Werner, J. Chem. Phys. 2003, 118, 3006–3019.

[8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision A.2.

[9] a) P. J. Knowles and H.-J. Werner, *Chem. Phys. Lett.* **1985**, *115*, 259–267; b) H. J. Werner, P. J. Knowles, *J. Chem. Phys.* **1985**, *82*, 5053–5063.

[10] a) H.-J. Werner, P. J. Knowles, *J. Chem. Phys.* **1988**, *89*, 5803–5814; b) P. J. Knowles and H.-J. Werner, *Chem. Phys. Lett.* **1988**, *145*, 514–522.

[11] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* **2012**, *2*, 242–253.