Supporting Information

Electrochemical radical Csp²-H/N-H cyclization of arylhydrazones to 1*H*-indazoles with H₂ evolution

Hao Wan¹, Dongting Li¹, Huadan Xia¹, Liwen Yang¹, Hesham Alhumade⁴, Hong Yi^{* 2} and Aiwen Lei^{1, 2, 3*}

¹National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China. E-mail: aiwenlei@whu.edu.cn.

²College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. E-mail: <u>yihong1024@163.com</u>.

³King Abdulaziz University, Jeddah 21589, Saudi Arabia.

⁴Department of Chemical and Materials Engineering, Faculty of Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Table of contents

General information	
Experimental procedure	S4-S6
Extra optimization tables	S7-S9
Procedure for cyclic voltammetry	
Detail descriptions for products	
References	

General information

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China). The anodic electrode was graphite rod (ϕ 6 mm) and cathodic electrode was platinum plate (15 mm×15 mm×0.3 mm). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 300-400 mesh silica gel in petroleum (boiling point is between 60-90 °C). Gradient flash chromatography was conducted eluting with a continuous gradient from petroleum to the indicated solvent. NMR spectra were recorded on a Bruker spectrometer at 400 MHz (1H NMR), 101 MHz (13C NMR), 376 MHz (19F NMR). All chemical shifts were reported relative to tetramethylsilane and solvent peaks. And all ¹H, ¹³C and ¹⁹F NMR data spectra were reported in delta (δ) units, parts per million (ppm) downfield from the internal standard. Coupling constants are reported in Hertz (Hz).

Experimental procedure

General Procedure A for the Preparation of Hydrazone Substrates A^{1,2}:

To a solution of ketone (3.0 mmol, 1.0 equiv.) in 5.0 mL of EtOH, a few drops of AcOH were added to the mixture and stirred for 10-15 min. Then phenyl hydrazine (3.6 mmol, 1.2 equiv.) was added in, and the reaction mixture was heated to reflux until TLC indicated the most disappearance of starting material. Then the solvent was removed under the reduced pressure, and the resulting residue was purified through silica gel column chromatography to provide the hydrazone substrate.

In some cases, the reaction mixture solidified in several hours from a clear solution. The reaction was cooled to 0 °C for 30 min, then filtered and washed with cooled MeOH to give the pure product.

In some other cases, some products were easy to be decomposed especially those products which were liquid, so it should be taken to reaction in a few hours, such as **3e**.

General Procedure A for the Preparation of Hydrazone Substrates B^{1,2}:

To a solution of ketone (3.0 mmol, 1.0 equiv.) in 5.0 mL of EtOH, NaOAc (3.9 mmol, 1.3 equiv.) was added to the mixture and hydrazine hydrochloride (3.6 mmol, 1.2 equiv.). The reaction mixture was stirred for 10-15 min and then heated to reflux. After the TLC indicated the most disappearance of starting material, the solvent was removed under the reduced pressure, and the resulting residue was purified through silica gel column chromatography to provide the hydrazone substrate .

In some other cases, some products were easy to be decomposed especially those products which were liquid, so it should be taken to reaction in a few hours, such as **2c**, **2d**.

General Procedure A for the Preparation of other substrates:

The synthesis methods of other substrates are derived from references

General Procedure B for the Synthesis of 1H-Indazoles:

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, hydrazone substrate 1 (0.30 mmol), $^{n}Bu_{4}NBF_{4}$ (65.8 mg, 0.20 mmol) and HFIP/CH₂Cl₂ (6 mL/4 mL) were combined and added. The bottle was equipped with platinum plates (15 mm× 15 mm× 0.3 mm) as the anode and the cathode and then charged with nitrogen. The solvent was removed with a rotary evaporator. The pure product was obtained by flash chromatography on silica gel using petroleum ether: DCM or petroleum ether: ethyl acetate as the eluent.

Procedure for gram scale synthesis of 2q: In an oven-dried beaker (250 mL) equipped with a stir bar, **1q** (1.994 g, 6 mmol), "Bu₄NBF₄ (1.312 g, 4.0 mmol) and HFIP/CH₂Cl₂ (120 mL/80 mL) were combined and added. The bottle was equipped with two platinum plates (15 mm× 15 mm× 0.3 mm) as the anode and two platinum plates (15 mm× 15 mm× 0.3 mm) as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under air atmosphere at room temperature for 20 h. When the reaction finished, the beaker was washed with CH₂Cl₂ (30 mL x 3) and concentrated. The pure product was obtained by flash column chromatography on silica gel (hexane: ethyl acetate = 80:1). White solid was obtained in 60% isolated yield (1.3 g). Because the solvent is easy to volatilize, the solvent can be replenished in an appropriate proportion (DCM/HFIP 2:3) to keep it at about 180 mL.

Procedure for gram scale synthesis of 2w: In an oven-dried beaker (250 mL) equipped with a stir bar, **1w** (1.890 g, 8 mmol), ${}^{n}Bu_{4}NBF_{4}$ (1.312 g, 4.0 mmol) and HFIP/CH₂Cl₂ (120 mL/80 mL) were combined and added. The bottle was equipped with two platinum plates (15

 $mm \times 15 mm \times 0.3 mm$) as the anode and two platinum plates (15 mm × 15 mm × 0.3 mm) as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 12 mA under air atmosphere at room temperature for 22.5 h. When the reaction finished, the beaker was washed with CH_2Cl_2 (25 mL x 3) and concentrated. The pure product was obtained by flash column chromatography on silica gel (hexane: ethyl acetate = 80:1). Yellow oil was obtained in 52% isolated yield (0.9840 g). Because the solvent is easy to volatilize, the solvent can be replenished in an appropriate proportion (DCM/HFIP 2:3) to keep it at about 180 mL.

Extra optimization tables

Table 1. Optimization of different alcohols

	Pt (+) Pt (-) ⁿ Bu ₄ NBF ₄ 0.2 mmol 10 mA, 2 h CH ₂ Cl ₂ : HFIP N_2 , 25 °C	
Entry	Variation	Yield ^b
1	DCM 4 mL 6 mL MeOH	n.d.
2	DCM 4 mL 6 mL Ethylene glycol	n.d.
3	DCM 4 mL 6 mL isopropanol	n.d.

Table 4. Optimization of different fluorinated species

	Pt (+) Pt (-) ⁿ Bu₄NBF₄ 0.2 mmol 10 mA, 2 h CH ₂ Cl ₂ : HFIP N ₂ , 25 °C	
Entry	Variation	Yield ^b
1	DCM 9 mL 1 mL TFA	18 %
2	DCM 9 mL 1 mL HFIP	43 %
3	DCM 4 mL 6 mL HFIP	77 %
4	DCM 4 mL 6 mL TFE	75 %

^[b] Yields of 2a were determined by gas chromatography (GC) analysis by using biphenyl as the

internal standard

Table 5. Optimization of the amount of HFIP

Entry	Variation	Yield ^b
1	DCM 10 mL 3.0 equiv HFIP	12 %
2	DCM 9 mL 1 mL HFIP	43 %
3	DCM 8 mL 2 mL HFIP	64 %
4	DCM 7 mL 3 mL HFIP	70 %
5	DCM 6 mL 4 mL HFIP	74 %
6	DCM 5 mL 5 mL HFIP	74%
7	DCM 4 mL 6 mL HFIP	76 %

^[b] Yields of 2a were determined by gas chromatography (GC) analysis by using biphenyl as the

internal standard

Procedure for cyclic voltammetry (CV)

Cyclic voltammetry was performed in a three-electrode cell connected to a Schlenk line under nitrogen at room temperature. The working electrode was a steady glassy carbon disk electrode while the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. The scan rate was 0.10 V/s, ranging from 0.0 V to 3.0 V.

Figure S1. Cyclic voltammograms of related compounds (10 mM) in corresponding solvent containing 0.1 mmol ^{*n*}Bu₄NBF₄. a : background, DCM; b : **1a** (10 mM), DCM; c : background, HFIP; d : **1a** (10 mM), HFIP; e : background, DCM / HFIP (4 : 6); f : **1a** (10 mM), DCM / HFIP (4 : 6);.

Figure S2. Cyclic voltammograms of related compounds (10 mM) in mixture solvent containing 0.1 mmol $^{n}Bu_{4}NBF_{4}$. a : background, DCM / MeOH (4 : 6); b : **1a** (10 mM), DCM / MeOH (4 : 6); c : background, DMSO / HFIP (4 : 6); d : **1a** (10 mM), DMSO / HFIP (4 : 6); e : background, DCM / HFIP (4 : 6); f : **1a** (10 mM), DCM / HFIP (4 : 6).

Figure S3. Cyclic voltammograms of related compounds (10 mM) in single solvent containing 0.1 mmol *ⁿ*Bu₄NBF₄. a : background, DMSO; b : **1a** (10 mM), DMSO; c : background, MeOH; d : **1a** (10 mM), MeOH.

Detail descriptions for products

1,3-Diphenyl-1*H*-indazole (2a).²

White solid was obtained in 78% isolated yield, 63.3 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.09–8.07 (m, 1H), 8.05–8.03 (m, 2H), 7.81–7.76 (m, 3H), 7.56–7.51 (m, 4H), 7.46–7.41 (m, 2H), 7.38–7.34 (m, 1H), 7.30–7.26 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.2, 140.5, 140.3, 133.4, 129.6, 129.0, 128.4, 127.9, 127.2, 126.8, 123.3, 123.1, 122.1, 121.7, 110.8.

3-Phenyl-1-(p-tolyl)-1H-indazole (2b).²

White solid was obtained in 77% isolated yield, 65.7 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.07–8.03 (m, 3H), 7.72 (d, J = 8.4 Hz, 1H), 7.66–7.64 (m, 2H), 7.53–7.50 (m, 2H), 7.43–7.40 (m, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.25 (t, J = 7.6 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.8, 140.4, 137.7, 136.7, 133.4, 130.1, 128.9, 128.3, 127.9, 127.1, 123.1, 123.0, 121.9, 121.6, 110.8, 21.2.

1-(4-Isopropylphenyl)-3-phenyl-1*H*-indazole (2c).²

White solid was obtained in 56% isolated yield, 55.2 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.08–8.03 (m, 3H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.70–7.68 (m, 2H), 7.55–7.49 (m, 4H), 7.43–7.39 (m, 2H), 7.25 (t, *J* = 8.0 Hz, 1H), 1.37 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 149.9, 145.8, 140.4, 137.6, 133.4, 128.9, 128.3, 127.8, 127.0, 126.5, 123.0, 122.8, 121.9, 121.6, 110.8, 34.8, 31.5.

HRMS (ESI) m/z calculated for C₂₃H₂₂N₂ [M+H]+: 327.1856, found: 327.1860.

1-(4-Methoxyphenyl)-3-phenyl-1*H*-indazole (2d).²

After the condensation of diphenyl ketone (0.5 mmol) and hydrazine salt (0.75 mmol), prepared according to General Procedure **B** was complete, the reaction mixture was concentrated and the resulting crude hydrazone (1d) was directly subjected to the General Procedure **C** and the time delayed to 3.5 h. White solid was obtained in 59% isolated yield, 88.7 mg, 0.5 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.09–8.07 (m, 1H), 8.05–8.03 (m, 2H), 7.70–7.66 (m, 3H), 7.55–7.51(m, 2H), 7.46–7.41 (m, 2H), 7.30–7.26 (m, 1H, overlapped with the peak of chloroform), 7.09–7.06 (m, 2H), 3.89 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.6, 145.7, 140.7, 133.4, 133.3, 129.0, 128.3, 127.9, 127.1, 125.0, 122.8, 121.8, 121.6, 114.7, 110.6, 55.8.

1-(4-Fluorophenyl)-3-phenyl-1H-indazole (2e).²

White solid was obtained in 76% isolated yield, 67.1 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃)) δ 8.08–8.06 (m, 1H), 8.03–8.01 (m, 2H), 7.76–7.71 (m, 2H), 7.69–7.67 (m, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.47–7.41 (m, 2H), 7.30-7.26 (m, 1H), 7.25–7.21 (m, 2H, overlapped with the peak of chloroform).

¹³C NMR (101 MHz, CDCl₃) δ 161.3 (d, $J_{C-F} = 247.5$ Hz), 146.3, 140.5, 136.3 (d, $J_{C-F} = 3.0$ Hz), 133.2, 129.0, 128.5, 127.9, 127.4, 124.9 (d, $J_{C-F} = 9.1$ Hz), 123.1, 122.1, 121.8, 116.4 (d, $J_{C-F} = 23.2$ Hz), 110.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.90.

1-(4-Chlorophenyl)-3-phenyl-1*H*-indazole (2f).²

White solid was obtained in 78% isolated yield, 71.0 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.08–8.06 (m, 1H), 8.02–8.00 (m, 2H), 7.75–7.71 (m, 3H), 7.55–7.42 (m, 6H), 7.31–7.26 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 146.6, 140.3, 138.8, 133.0, 132.1, 129.7, 129.0, 128.6, 127.9, 127.5, 124.0, 123.4, 122.3, 121.9, 110.6.

1-(4-Bromophenyl)-3-phenyl-1*H*-indazole (2g).²

White solid was obtained in 85% isolated yield, 88.7 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.08–8.06 (m, 1H), 8.03–8.01 (m, 2H), 7.74–7.64 (m, 5H), 7.55–7.51 (m, 2H), 7.48–7.42 (m, 2H), 7.31–7.27 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 146.7, 140.2, 139.3, 133.0, 132.6, 129.0, 128.6, 127.9, 127.5, 124.3, 123.4, 122.3, 121.9, 119.9, 110.6.

4-(3-Phenyl-1*H*-indazol-1-yl)benzonitrile (2h).²

White solid was obtained in 86% isolated yield, 76.2 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 8.02–7.94 (m, 4H), 7.83–7.78 (m, 3H), 7.56–7.45 (m, 4H), 7.34 (t, J = 7.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.9, 143.8, 140.0, 133.6, 132.5, 129.1, 129.0, 128.1, 127.9, 124.1, 123.0, 122.2, 122.0, 118.7, 110.8, 109.1.

3-Phenyl-1-(4-(trifluoromethyl)phenyl)-1*H*-indazole (2i).²

White solid was obtained in 66% isolated yield,66.7 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.10–8.08 (m, 1H), 8.04– 8.02 (m, 2H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.81 (t,

J = 8.0 Hz, 3H), 7.56–7.44 (m, 4H), 7.34–7.30 (m, 1H).

 $^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) δ 147.3, 143.1, 140.2, 132.8, 129.1, 128.8, 128.2 (q, $J_{\mathrm{C-F}}$ = 32.3 Hz),

128.0, 127.8, 126.8 (q, $J_{C-F} = 4.0 \text{ Hz}$), 124.1 (q, $J_{C-F} = 273.7 \text{ Hz}$), 123.8, 122.6, 122.3, 122.0, 110.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.12.

1-(4-Nitrophenyl)-3-phenyl-1*H*-indazole (2j).²

yellow solid was obtained in 50% isolated yield, 47.3 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.41–8.38 (m, 2H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.04–8.01 (m, 4H), 7.88 (d,

J = 8.4 Hz, 1H), 7.57–7.53 (m, 3H), 7.50–7.46 (m, 1H), 7.36 (t, *J* = 7.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 148.4, 145.4, 144.9, 140.1, 132.4, 129.1, 128.3, 128.0, 125.4, 124.4, 123.2, 122.3, 121.5, 110.9.

1-(2-Chlorophenyl)-3-phenyl-1*H*-indazole (2k).²

colorless oil was obtained in 73% isolated yield, 66.8 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 1H), 8.05–8.04 (m, 2H), 7.60–7.55 (m, 2H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.42–7.39 (m, 4H), 7.29–7.24 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 146.5, 141.9, 137.1, 133.2, 131.6, 130.8, 129.9, 129.8, 128.9, 128.4, 127.84, 127.82, 127.0, 122.2, 121.9, 121.5, 110.9.

1-(3-Chlorophenyl)-3-phenyl-1*H*-indazole (2l).²

colorless oil was obtained in 80% isolated yield, 73.0 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.07–8.05 (m, 1H), 8.03–8.01 (m, 2H), 7.83 (t, *J* = 2.0 Hz, 1H), 7.77–7.75 (m, 1H), 7.70–7.67 (m, 1H), 7.54–7.51 (m, 2H), 7.48–7.42 (m, 3H), 7.32–7.26 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 141.3, 140.2, 135.2, 132.9, 130.5, 129.0, 128.6, 127.9, 127.6, 126.6, 123.5, 123.0, 122.4, 121.9, 120.6, 110.6.

1-(2,4-Dichlorophenyl)-3-phenyl-1*H*-indazole (2m).²

colorless oil was obtained in 86% isolated yield, 87.5 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.09–8.07 (m, 1H), 8.03–8.01 (m, 2H), 7.62 (d, J = 2.4 Hz, 1H), 7.53–7.49 (m, 3H), 7.44–7.39 (m, 3H), 7.30–7.26 (m, 1H), 7.25–7.22 (m, 1H, overlapped with the peak of chloroform).

¹³C NMR (101 MHz, CDCl₃) δ 146.9, 141.8, 135.9, 135.1, 133.0, 132.4, 130.6, 130.5, 129.0, 128.6, 128.2, 127.9, 127.3, 122.3, 122.1, 121.6, 110.8.

1-(2,5-Dichlorophenyl)-3-phenyl-1*H*-indazole (2n).²

White solid was obtained in 92% isolated yield, 93.5 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.10–8.07 (m, 1H), 8.04–8.02 (m, 2H), 7.61–7.60 (m, 1H), 7.55–7.51

(m, 3H), 7.46–7.38 (m, 3H), 7.31–7.26 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 147.2, 141.7, 138.0, 133.3, 132.9, 131.6, 129.9, 129.8, 129.7, 129.0, 128.7, 127.9, 127.3, 122.4, 122.2, 121.6, 111.0.

3-Phenyl-1-(2,4,6-trichlorophenyl)-1*H*-indazole (20).²

colorless oil was obtained in 60% isolated yield, 67.3 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.13–8.11 (m, 1H), 8.05–8.03 (m, 2H), 7.56–7.51 (m, 4H), 7.47–7.42

(m, 2H), 7.34–7.30 (m, 1H), 7.12–7.10 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.3, 141.9, 136.5, 136.2, 133.7, 133.0, 129.0, 128.9, 128.7, 127.9, 127.6, 122.2, 122.1, 121.7, 109.9.

6-Methyl-1-phenyl-3-(p-tolyl)-1*H*-indazole (2p).²

White solid was obtained in 80% isolated yield, 71.6 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8 Hz, 3H), 7.78–7.76 (m, 2H), 7.55–7.51 (m, 3H), 7.36–7.31 (m, 3H), 7.09 (d, J = 7.2 Hz, 1H), 2.49 (s, 3H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.1, 141.0, 140.3, 138.2, 137.6, 130.5, 129.6, 129.5, 127.7, 126.6, 124.1, 123.1, 121.4, 121.3, 110.2, 22.2, 21.5.

6-Methoxy-3-(4-methoxyphenyl)-1-phenyl-1*H*-indazole (2q).²

White solid was obtained in 67% isolated yield, 66.3 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 7.94–7.92 (m, 2H), 7.86 (d, *J* = 8.8 Hz, 1H), 7.76–7.74 (m, 2H), 7.54–7.50 (m, 2H), 7.35–7.31 (m, 1H), 7.07 (d, *J* = 2.4 Hz, 1H), 7.03–7.01 (m, 2H), 6.88 (dd, *J* = 9.2, 2.4 Hz, 1H), 3.83-3.82 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 159.9, 159.8, 145.9, 141.6, 140.2, 129.5, 128.9, 126.6, 125.8, 123.0, 122.4, 117.7, 114.3, 113.4, 91.9, 55.6, 55.4.

6-Fluoro-3-(4-fluorophenyl)-1-phenyl-1*H*-indazole (2r).²

White solid was obtained in 48% isolated yield, 44.0 mg, 0.3 mmol scale

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.19 (dd, *J* = 8.8, 5.2 Hz, 1H), 8.11 – 8.06 (m, 2H), 7.86–7.83 (m, 2H), 7.69 (dd, *J* = 10, 2.4 Hz, 1H), 7.65–7.61 (m, 2H), 7.49–7.39 (m, 3H), 7.26 (td, *J* = 9.2, 2.4 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 163.6 (d, $J_{C-F} = 25.3$ Hz), 161.1 (d, $J_{C-F} = 24.2$ Hz), 144.5, 140.1 (d, $J_{C-F} = 12.1$ Hz), 139.2, 129.9, 129.6 (d, $J_{C-F} = 8.1$ Hz), 128.6 (d, $J_{C-F} = 3.0$ Hz), 127.2, 123.5 (d, $J_{C-F} = 12.1$ Hz), 122.5, 119.3, 116.2 (d, $J_{C-F} = 22.2$ Hz), 112.1 (d, $J_{C-F} = 26.3$ Hz), 97.0 (d, $J_{C-F} = 27.3$ Hz). ¹⁹F NMR (376 MHz, DMSO) δ -112.80, -113.01.

6-Bromo-3-(4-bromophenyl)-1-phenyl-1*H*-indazole (2t).²

White solid was obtained in 45% isolated yield, 57.8 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 1.2 Hz, 1H), 7.88–7.86 (m, 3H), 7.74–7.72 (m, 2H),

7.66-7.64 (m, 2H), 7.60-7.56 (m, 2H), 7.44-7.38 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 145.2, 141.2, 139.5, 132.2, 131.7, 129.8, 129.2, 127.5, 125.8, 123.3, 122.8, 122.6, 121.9, 121.7, 113.8.

6-Methoxy-1,3-diphenyl-1*H*-indazole (2u).²

White solid was obtained in 47% isolated yield, 42.3 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.02–8.00 (m, 2H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.78–7.76 (m, 2H), 7.57–7.49 (m, 4H), 7.43–7.35 (m, 2H), 7.10 (d, *J* = 2.0 Hz, 1H), 6.93 (dd, *J* = 9.2, 2.4 Hz, 1H), 3.86 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.0, 146.2, 141.7, 140.2, 133.3, 129.6, 128.9, 128.4, 127.8, 126.8, 123.2, 122.5, 117.8, 113.7, 91.9, 55.7.

S19

6-Methyl-1,3-diphenyl-1H-indazole (2t and 1-phenyl-3-(p-tolyl)-1H-indazole (2t').³

White solid was obtained in 76% isolated yield, 64.6 mg 2t:2t' = 78:22 by ¹H NMR, 0.3 mmol scale ¹H NMR (400 MHz, CDCl₃) δ 8.08–8.02 (m, 1.80H), 7.96–7.92 (m, 1.19H), 7.79–7.75 (m, 2.19H), 7.56–7.50 (m, 4.40H), 7.45–7.33 (m, 2.49H), 7.29–7.25 (m, 1.19H), 7.11 (d, J = 8.4 Hz, 0.76H), 2.51 (s, 2.33H), 2.43 (s, 0.65H);

¹³C NMR (101 MHz, CDCl₃) :

2t: δ 146.0, 141.0, 140.3, 137.6, 133.4, 129.5, 128.9, 128.3, 127.8, 126.7, 124.2, 123.2, 121.4, 121.3, 110.3, 22.2;

2t': δ 146.3, 140.4, 140.3, 138.3, 130.4, 129.7, 129. 6, 127.8, 127.2, 126.7, 123.3, 123.1, 121.91, 121. 8, 110.7, 21.5.

3-methyl-1,5-diphenyl-1*H*-pyrazole (2v).⁴

Yellow solid was obtained in 62% isolated yield, 43.7 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 7.32–7.20 (m, 10H), 6.31 (s, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 149.5, 143.8, 140.2, 130.8, 128.9, 128.7, 128.5, 128.2, 127.2, 125.2, 107.8, 13.7.

1-phenyl-3-(pyridin-4-yl)-1H-indazole (2z).¹

White solid was obtained in 25 % isolated yield, 42.3 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 5.2 Hz, 2H), 8.13–8.11 (m, 1H) , 8.00–7.98 (m, 2H), 7.82–7.78 (m, 3H), 7.61–7.57 (m, 2H), 7.52–7.48 (m, 1H), 7.45–7.41 (m, 1H), 7.38–7.34 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 150.4, 143.1, 141.0, 140.7, 139.8, 129.7, 127.6, 127.5, 123.4, 123.0, 122.9, 121.9, 121.1, 111.2.

Methyl 1-phenyl-1H-indazole-3-carboxylate (3a).8

White solid was obtained in 12 % isolated yield, 9.2 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 8.35–8.33 (m, 1H), 7.76–7.73 (m, 3H), 7.59–7.55 (m, 2H), 7.52–7.44

(m, 2H), 7.42–7.38 (m, 1H), 4.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.3, 140.5, 139.3, 136.9, 129.7, 128.2, 127.8, 124.7, 124.1, 123.9, 122.6, 111.0, 52.4.

6-Methoxy-1,3-diphenyl-1H-indazole (3b).9

White solid was obtained in 18 % isolated yield, 16.0 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 7.94-7.92 (m, 2H), 7.45-7.41 (m, 2H), 7.38-7.26 (m, 11H), 6.82 (s,

1H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 144.5, 140.2, 133.1, 130.7, 129.0, 128.8, 128.8, 128.6, 128.4, 128.1, 127.5, 125.9, 125.4, 105.3.

6-Methoxy-1,3-diphenyl-1*H*-indazole (3c).9

White solid was obtained in 7 % isolated yield, 6.5 mg, 0.3 mmol scale

¹H NMR (400 MHz, CDCl₃) δ 7.94–7.92 (m, 2H), 7.45–7.42 (m, 2H), 7.39–7.27 (m, 11H), 6.83 (s,

1H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 144.5, 140.2, 133.1, 130.7, 129.1, 128.9, 128.8, 128.6, 128.4, 128.1, 127.6, 125.9, 125.4, 105.3.

References:

- [1] J. Hu, H. Xu, P. Nie, X. Xie, Z. Nie, Y. Rao, Chem. Eur. J. 2014, 20, 3932-3938.
- [2] W. Wei, Z. Wang, X. Yang, W. Yu, J. Chang, Adv. Synth. Catal. 2017, 359, 3378-3387.
- [3] J. Yu, J. W. Lim, S. Y. Kim, J. Kim, J. N. Kim, Tetrahedron Lett. 2015, 56, 1432-1436.
- [4] D. Liang, Q. Zhu, Asian J. Org. Chem., 2015, 4, 42-45.
- [5] C. Liu, H. Yang, C. Zhu, H. Fu, RSC Advances 2019, 9, 8369-8372.
- [6] K. Miyata, A. Narita, R. Fujisawa, M. Roppongi, S. Ito, T. Shingo, T. Oba, *Tetrahedron Lett.* 2020,61.
- [7] Q. Wang, L. He, K. K. Li, G. C. Tsui, Org. Lett. 2017, 19, 658-661.
- [8] A. Park, K. S. Jeong, H. Lee, H. Kim, ACS Omega 2021, 6, 6498-6508.
- [9] X. Li, L. He, H. Chen, W. Wu, H. Jiang, J Org Chem 2013, 78, 3636-3646.

Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra

^{20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2}

¹³C NMR (101 MHz, CDCl₃) spectrum of 2e

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2e

¹H NMR (400 MHz, CDCl₃) spectrum of 2f

¹³C NMR (101 MHz, CDCl₃) spectrum of 2f

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

¹H NMR (400 MHz, CDCl₃) spectrum of 2g

¹³C NMR (101 MHz, CDCl₃) spectrum of 2g

146.67 140.20 133.00 133.00 133.00 133.00 133.00 133.00 123.63 122.64 127.89 127.89 127.89 127.81 127.80 122.30 122.50 125.50 12

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

¹H NMR (400 MHz, CDCl₃) spectrum of 2h

¹³C NMR (101 MHz, CDCl₃) spectrum of 2h

147.89 143.76 133.62 133.62 133.46 122.05 122.95 123.95 12

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

¹H NMR (400 MHz, CDCl₃) spectrum of 2i

S32

¹³C NMR(101 MHz, CDCl₃) spectrum of 2i

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2i

50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2.

¹H NMR (400 MHz, CDCl₃) spectrum of 2j

¹³C NMR (101 MHz, CDCl₃) spectrum of 2j

¹H NMR (400 MHz, CDCl₃) spectrum of 2k

¹³C NMR (101 MHz, CDCl₃) spectrum of 2k

¹H NMR (400 MHz, CDCl₃) spectrum of 2l

¹³C NMR (101 MHz, CDCl₃) spectrum of 2l

¹H NMR (400 MHz, CDCl₃) spectrum of 2m

¹³C NMR (101 MHz, CDCl₃) spectrum of 2m

¹H NMR (400 MHz, CDCl₃) spectrum of 2n

¹³C NMR (101 MHz, CDCl₃) spectrum of 2n

¹H NMR (400 MHz, CDCl₃) spectrum of 20

¹³C NMR (101 MHz, CDCl₃) spectrum of 20

¹³C NMR (101 MHz, CDCl₃) spectrum of 2p

¹³C NMR (101 MHz, CDCl₃) spectrum of 2q

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of 2r

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum of 2r

¹H NMR (400 MHz, CDCl₃) spectrum of 2s

¹³C NMR (101 MHz, CDCl₃) spectrum of 2s

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

¹H NMR (400 MHz, CDCl₃) spectrum of 2u

¹³C NMR (101 MHz, CDCl₃) spectrum of 2u

¹³C NMR (101 MHz, CDCl₃) spectrum of 2v

|--|

-13.67

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

¹H NMR (400 MHz, CDCl₃) spectrum of 2z

$ \begin{cases} 8.767 \\ 8.754 \\ 8.131 \\ \int 8.111 \\ 7.995 \end{cases} $	L 7.979	L 7.586	7.448
	L 7.818	L 7.566	7.411
	L 7.777	L 7.523	7.380
	L 7.605	L 7.481	7.339

0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.

¹H NMR (400 MHz, CDCl₃) spectrum of 3b

¹³C NMR (101 MHz, CDCl₃) spectrum of 3b

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

¹H NMR (400 MHz, CDCl₃) spectrum of 3c

¹³C NMR (101 MHz, CDCl₃) spectrum of 3c

