Supporting Information

Dioxygenation of unprotected mesoionic

N-heterocyclic olefins

Qiuming Liang,^a Kasumi Hayashi,^a Longfei Li^b and Datong Song^{*a}

^a Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6

E-mail: <u>d.song@utoronto.ca</u>

^b College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China

1.	Experimental section	S2
2.	NMR spectra	
3.	IR spectra	S23
4.	HRMS	
5.	X-ray crystallography	
6.	Computation	S31
7.	References	

1. Experimental section

All reactions were carried out in a dinitrogen-filled glovebox or using the standard Schlenk techniques under dinitrogen. Glassware was dried in a 180 °C oven overnight. Diethyl ether, hexanes and *n*-pentane solvent were dried by refluxing and distilling over sodium under dinitrogen. THF and toluene solvent were dried by refluxing and distilling over sodium benzophenone ketyl under dinitrogen. C₆D₆, toluene*d*₈ and CDCl₃ were degassed through three consecutive freeze–pump–thaw cycles. All solvents were stored over 3 Å molecular sieves prior to use. Unless otherwise noted, all NMR spectra were recorded at 25 °C on an Agilent DD2 600 MHz spectrometer or an Agilent DD2 500 MHz spectrometer with ¹³Csensitive cryogenically cooled probe. Chemical shifts are referenced to the solvent signals. The NMR signal assignments were made based on ¹H-COSY, ¹H-¹³C-HSQC, and ¹H-¹³C-HMBC NMR spectroscopy. IR spectra were recorded on a Bruker ALPHA spectrometer equipped with a diamond ATR sampling unit. Elemental analyses were carried out at the ANALEST at the University of Toronto. High-resolution mass spectrograms were recorded at the AIMS Mass Spectrometry Laboratory at the University of Toronto. Unless otherwise noted, all chemicals were purchased from commercial sources and used as received.

Benzalacetophenone¹ (10.4 g, 50 mmol), mesityl azide² (16.1 g, 100 mmol) and piperidine (1.0 mL, 10 mmol, 20 mol %) were dissolved in 50 mL of DMSO. The reaction mixture was stirred at 80 °C for 72 h. After cooling to room temperature, the mixture was partitioned with diethyl ether (100 mL) and water (100 mL). The aqueous layer was extracted with diethyl ether (2×100 mL). The combined ether fractions were washed with brine, dried over MgSO4, filtered, and concentrated to dryness under reduced pressure.

The residue was recrystallized from dichloromethane / hexanes to afford (1-mesityl-5-phenyl-1,2,3-triazol-4-yl)(phenyl)methanone as a white solid. Yield: 10.6 g, 58%. ¹H NMR (500 MHz, 25 °C, CDCl₃) δ 8.34 – 8.28 (m, 2H, Ph-*H*), 7.65 – 7.57 (m, 1H, Ph-*H*), 7.54 – 7.47 (m, 2H, Ph-*H*), 7.37 – 7.32 (m, 1H, Ph-*H*), 7.33 – 7.24 (m, 4H, Ph-*H*), 6.94 – 6.90 (m, 2H, Mes-*H*), 2.31 (s, 3H, Mes-CH₃), 1.95 (s, 6H, Mes-CH₃). ¹³C NMR (126 MHz, 25 °C, CDCl₃) δ 187.13 (*C*=O), 142.93, 142.54, 140.48 (Mes-*C*), 137.50 (Ph-*C*), 135.42 (Mes-*C*), 133.21 (Ph-*C*), 131.85 (Mes-*C*), 130.89 (Ph-*C*), 129.97 (Ph-*C*), 129.51 (Ph-*C*), 129.42 (Mes-*C*), 128.43 (Ph-*C*), 128.40 (Ph-*C*), 125.92 , 21.30 (Mes-CH₃), 17.87 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₂₄H₂₁N₃ONa [M+Na]⁺ 390.1577, found 390.1572.

$$Mes \xrightarrow{N=N}_{Ph} \xrightarrow{Ph} (1) NH_2 NH_2, 100 °C Mes \xrightarrow{N=N}_{Ph} Ph$$

A mixture of (1-mesityl-5-phenyl-1,2,3-triazol-4-yl)(phenyl)methanone (7.4 g, 20 mmol), 85% hydrazine hydrate (10 ml) and diethylene glycol (100 ml) was heated at 100 °C for 1 h. To the reaction mixture was then added of KOH pellets (10 g) and the resulting mixture was heated to 200 °C for 4 h. After cooling to room temperature, the mixture was partitioned with diethyl ether (100 mL) and water (100 mL). The aqueous layer was extracted with diethyl ether (2 × 100 mL). The combined ether fractions were washed with brine, dried over MgSO4, filtered and concentrated to dryness under reduced pressure. The residue was purified by flash chromatography eluted with ethyl acetate (0–10% gradient by volume) in hexanes. The product 4-benzyl-1-mesityl-5-phenyl-1,2,3-triazole was isolated as a colorless oil. Yield: 5.2 g, 74%. ¹H NMR (500 MHz, 25 °C, CDCl₃) δ 7.32 – 7.21 (m, 7H, overlapping, Ph-*H*), 7.22 – 7.18 (m, 1H, Ph-*H*), 7.04 – 7.00 (m, 2H, Ph-*H*), 6.89 (s, 2H, Mes-*H*), 4.20 (s, 2H, CH₂), 2.29 (s, 3H, Mes-CH₃), 1.90 (s, 6H, Mes-CH₃). ¹³C NMR (126 MHz, 25 °C, CDCl₃) δ 143.53 (triazole-C), 139.84 (Mes-C), 139.75, 135.80, 135.53 (Mes-C), 132.84 (Mes-C), 129.22 (Mes-C), 128.98, 128.76, 128.67, 128.66, 128.57, 127.17,

126.37 (Ph-C), 31.61 (CH₂), 21.26 (Mes-CH₃), 17.78 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₂₄H₂₄N₃ [M+H]⁺ 354.1965, found 354.1969.

Trimethyloxonium tetrafluoroborate (1.1 g, 7.5 mmol, 1.3 equiv.) was added as solid to a stirring solution of 4-benzyl-1-mesityl-5-phenyl-1,2,3-triazole (2.1 g, 5.9 mmol) in DCM (20 mL). The mixture was stirred at room temperature overnight. It was then filtered, concentrated under vacuum to ~5 mL and dropwise added into rapid stirring diethyl ether (20 mL). The white precipitate was collected by filtration, washed with diethyl ether (3×5 mL) and *n*-pentane (3×5 mL), and dried under vacuum. Yield: 2.4 g, 89%. X-ray quality crystals were obtained by vapor diffusion of *n*-pentane into its concentrated DCM solution at room temperature. ¹H NMR (500 MHz, 25 °C, CDCl₃) δ 7.49 – 7.42 (m, 1H, Ph-*H*), 7.41 – 7.34 (m, 2H, Ph-*H*), 7.36 – 7.24 (m, 5H, Ph-*H*), 7.08 – 7.03 (m, 2H, Ph-*H*), 6.96 (q, *J* = 0.8 Hz, 2H, Mes-*H*), 4.55 (s, 2H, C*H*₂), 4.27 (s, 3H, N-C*H*₃), 2.32 (s, 3H, Mes-C*H*₃), 2.03 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, 25 °C, CDCl₃) δ 142.47 (Mes-*C*), 142.08 (Ph-*C*), 141.56 (triazolium-*C*), 135.21 (Mes-*C*), 134.02 (Ph-*C*), 122.39, 39.08 (N-CH₃), 29.08 (CH₂), 21.33 (Mes-CH₃), 17.59 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₂₅H₂₆N₃ [M–BF4]⁺ 368.2121, found 368.2121.

4-benzyl-1-mesityl-5-phenyl-1,2,3-triazole (1.8 g, 5.1 mmol), diphenyliodonium triflate³ 430.179 (3.3 g, 7.7 mmol, 1.5 equiv.), Cu(OTf)₂ (368.9 mg, 1.02 mmol) and toluene (20 mL) were mixed in a Schlenk tube. The tube was sealed and the mixture was stirred at 140 °C overnight. All volatiles were removed under vacuum. The residue was purified by chromatography eluted with dichloromethane to afford a pale brown sticky foam. Yield: 1.9 g, 64%. ¹H NMR (500 MHz, 25 °C, CDCl₃) δ 7.77 (dd, *J* = 7.2, 1.6 Hz, 2H, Ph-*H*), 7.65 – 7.58 (m, 1H, Ph-*H*), 7.57 – 7.54 (m, 2H, Ph-*H*), 7.49 – 7.41 (m, 3H, Ph-*H*), 7.41 – 7.35 (m, 2H, Ph-*H*), 7.12 – 7.05 (m, 3H, Ph-*H*), 6.96 (s, 2H, Mes-*H*), 6.67 (dd, *J* = 7.2, 2.2 Hz, 2H, Ph-*H*), 4.50 (s, 2H, CH₂), 2.31 (s, 3H, Mes-CH₃), 2.11 (s, 6H, Mes-CH₃). ¹³C NMR (126 MHz, 25 °C, CDCl₃) δ 143.01, 142.60 (Mes-*C*), 142.05, 135.03 (Mes-*C*), 134.30, 133.87, 132.33 (Ph-*C*), 131.69 (Ph-*C*), 130.16 (Ph-*C*), 129.95 (Mes-*C*), 129.88 (Mes-*C*), 129.61 (Ph-*C*), 129.57 (Ph-*C*), 129.02 (Ph-*C*), 128.21 (Ph-*C*), 127.52 (Ph-*C*), 126.35 (Ph-*C*), 124.79, 120.97 (q, *J* = 320.7 Hz, CF₃SO₃⁻), 29.95 (CH₂), 21.28 (Mes-CH₃), 17.70 (Mes-CH₃). HRMS (ESI): *m/z* calcd for C₃₀H₂₈N₃ [M–OTf]⁺ 430.2278, found 430.2280.

Syntheses of mNHOs:

mNHO $1a^4$, $1b^5$ and $1c^5$ were synthesized according to literatures.

To a mixture of triazolium salt (2 mmol) and KHMDS (399.0 mg, 2 mmol) was added diethyl ether (10 mL). The reaction mixture instantaneously turned dark color. The reaction mixture was stirred for 1 h at room temperature and then filtered through Celite. All volatiles were removed under reduced pressure to afford a crystalline solid of **1d**,**e** The solid was washed with *n*-pentane (3×5 mL) and dried under vacuum.

Dark green crystalline solid. Yield: 550.3 mg, 75%. Crystals suitable for X-ray crystallography were obtained by cooling a concentrated diethyl ether solution to −35 °C.
¹⁴^H NMR (500 MHz, 25 °C, C₆D₆) δ 7.15 – 7.08 (m, 2H, Ph-*H*), 7.02 (dt, *J* = 6.1, 1.4 Hz, 2H, Ph-*H*), 6.92 (dd, *J* = 8.3, 1.3 Hz, 2H, Ph-*H*), 6.88 – 6.83 (m, 2H, Ph-*H*), 6.83 – 6.74 (m, 2H, Ph-*H*), 6.45 (s, 2H, Mes-*H*), 4.67 (s, 1H, C*H*), 3.12 (s, 3H, N-C*H*₃), 1.90 (s, 3H, Mes-C*H*₃), 1.84 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, 25 °C, C₆D₆) δ 141.00 (Ph-*C*), 140.63 (triazole-*C*), 140.27 (Mes-*C*), 135.42 (Mes-*C*), 133.21 (Mes-*C*), 129.41 (Mes-*C*), 127.85 (Ph-*C*), 127.77 (Ph-*C*), 127.66 (Ph-*C*), 127.29 (Ph-*C*), 126.89 (Ph-*C*), 123.97 (Ph-*C*), 121.11 (triazole-*C*), 117.80 (Ph-*C*), 66.11 (*C*H), 34.39 (N-CH₃), 20.94 (Mes-CH₃), 17.11 (Mes-CH₃). Anal. Calcd for C₂₅H₂₅N₃: C, 81.71; H, 6.86; N, 11.43. Found: C, 81.44; H, 7.23; N, 11.53.

Dark green crystalline solid. Yield: 608.8 mg, 71%. Crystals suitable for X-ray crystallography were obtained by cooling a concentrated diethyl ether solution to $-35 \,^{\circ}$ C. ¹H NMR (500 MHz, 25 $^{\circ}$ C, C₆D₆) δ 7.80 (s, 2H, Ph-*H*), 7.11 – 6.99 (m, 5H, Ph-*H*), 6.96 – 6.80 (m, 7H, Ph-*H*), 6.76 (t, *J* = 7.2 Hz, 1H, Ph-*H*), 6.45 (s, 2H, Mes-*H*), 5.68 (s, 1H, C*H*), 1.95 (s, 6H, Mes-C*H*₃), 1.88 (s, 3H, Mes-C*H*₃). ¹³C NMR (126 MHz, 25 $^{\circ}$ C, C₆D₆) δ 140.22 (Mes-*C*), 140.04 (Ph-*C*), 138.81, 135.24 (Mes-*C*), 133.01 (Mes-*C*), 129.40 (Mes-*C*), 127.54 (Ph-*C*), 124.74 (Ph-*C*), 20.93 (Mes-CH₃), 17.28 (Mes-CH₃). Although the X-ray structure shows the Z isomer, the toluene solution of compound **1e** contains a dynamic mixture of *E* and *Z* isomers. The ratio of two isomers is ~1:1.1 at 10 °C and has negligible change by cooling to $-35 \,^{\circ}$ C; at 25 °C the signals of the two isomers coalesce into one broad set (see Figure S23). Anal. Calcd for C₃₀H₂₇N₃: C, 83.88; H, 6.34; N, 9.78. Found: C, 83.24; H, 6.55; N, 9.58.

Reaction of mNHOs with O₂:

A solution of $1a^4$ (145.7 mg, 0.50 mmol) in 5 mL of toluene under nitrogen was subjected to a freeze-pump-thaw cycle before 1 atm of O₂ was introduced into the flask. The mixture was kept under O₂ for 15 min at room temperature. Top-layering the mixture with 5 mL of *n*-pentane and cooling to -35 °C afforded crystals of 2 that are suitable for X-ray crystallography. The supernatant was decanted off and the crystals were washed with *n*-pentane $(3 \times 5 \text{ mL})$ and dried under vacuum (134.5 mg, 83%). ¹H NMR (600 MHz, 25 °C, CDCl₃): δ 11.47 and 11.46 (s and d, *J* = 1.4 Hz, 1H, triazolium-*H*), 9.30 and 9.28 (s and d, J = 1.4 Hz, 1H, triazolium-H), 7.97 - 7.93 (m, 2H, Ph-H), 7.30 - 7.19 (m, 3H, Ph-H), 6.94 (s, 2H, Mes-H), 4.69 (s, 3H, N-CH₃), 2.31 (s, 3H, Mes-CH₃), 1.93 (s, 6H, Mes-CH₃). ¹³C NMR (151 MHz, 25 °C, CDCl₃) δ 172.70 (Ph-CO₂⁻), 142.43 (Mes-C), 139.86 (Ph-C), 135.87 (triazolium-C), 134.21 (Mes-C), 133.53 (triazolium-C), 131.41 (Mes-C), 129.90 (Mes-C), 129.27 (Ph-C), 128.99 (Ph-C), 127.32 (Ph-C), 40.63 (N-CH₃), 21.28 (Mes-CH₃), 17.27 (Mes-CH₃). IR (neat solid) for 2-¹⁶O₂: v (C¹⁶O₂⁻) 1558 and 1357 cm⁻¹. IR (neat solid) for 2-¹⁸O₂: v (C¹⁸O₂⁻) 1592 and 1338 cm⁻¹. HRMS (ESI) for 2-¹⁶O₂: m/z calcd for C7H5¹⁶O2 [M-C12H16N3]⁻ 121.0295, found 121.0295. HRMS (ESI) for 2-¹⁸O2: m/z calcd for C7H5¹⁸O2 [M-C₁₂H₁₆N₃]⁻ 125.0380, found 125.0381. Anal. Calcd for C₁₉H₂₁N₃O₂: C, 70.57; H, 6.55; N, 12.99. Found: C, 70.35; H, 6.45; N, 12.95.

A solution of $1b^5$ (183.8 mg, 0.50 mmol) in 5 mL of toluene under nitrogen was subjected to a freeze–pump–thaw cycle before 1 atm of O₂ was introduced into the flask. The mixture was stirred for 15 min at room temperature. All volatiles were removed under vacuum. The residue was purified by flash chromatography eluted with dichloromethane. Compound **3** was isolated as a white solid. Yield: 95.4 mg, 82%. Crystals suitable for X-ray crystallography were obtained by slow evaporation of an acetone solution to at room temperature. ¹H NMR (500 MHz, 25 °C, CDCl₃) δ 6.97 (q, *J* = 0.7 Hz, 2H, Mes-*H*), 6.62 (s, 1H, triazole-*H*), 3.78 (s, 3H, N-CH₃), 2.33 (s, 3H, Mes-CH₃), 2.06 (s, 6H, Mes-CH₃). ¹³C NMR (126 MHz, 25 °C, CDCl₃) δ 158.60 (triazole-*C*), 140.96 (Mes-*C*), 134.60 (Mes-*C*), 133.65 (Mes-*C*), 129.38 (Mes-*C*), 108.55 (triazole-*C*), 31.39 (N-CH₃), 21.24 (Mes-CH₃), 16.91 (Mes-CH₃). Anal. Calcd for C₁₂H₁₅N₃O₂: C, 66.34; H, 6.96; N, 19.34. Found: C, 66.70; H, 6.95; N, 18.87.

A solution of $1c^5$ (176.7 mg, 0.50 mmol) in 5 mL of toluene under nitrogen was subjected to a freeze–pump–thaw cycle before 1 atm of O₂ was introduced into the flask. The mixture was kept under O₂ for 15 min at room temperature. Top-layering the mixture with 5 mL of *n*-pentane and cooling to -35 °C afforded crystals of **4** that are suitable for X-ray crystallography. The supernatant was decanted off and the crystals were washed with *n*-pentane (3 × 5 mL) and dried under vacuum (171.2 mg, 89%). ¹H NMR (500 MHz, 25 °C, CDCl₃) δ 11.68 and 11.67 (s and d, *J* = 1.6 Hz, 1H, triazolium-*H*), 9.51 and 9.49 (s and d, *J* = 1.5 Hz, 1H, triazolium-*H*), 8.27 – 8.22 (m, 2H, Ph-*H*), 8.06 – 8.02 (m, 2H, Ph-*H*), 7.59 – 7.55

(m, 3H, Ph-*H*), 7.30 – 7.24 (m, 3H, Ph-*H*), 7.01 (s, 2H, Mes-*H*), 2.35 (s, 3H, Mes-CH₃), 2.05 (s, 6H, Mes-CH₃). ¹³C NMR (126 MHz, 25 °C, CDCl₃) δ 172.93 (Ph-CO₂⁻), 142.70 and 142.69 (Mes-*C*), 139.81 (Ph-*C*), 135.68 and 135.61 (triazolium-*C*), 135.12 and 135.08 (Ph-*C*), 134.27 (Mes-*C*), 133.02 and 132.94 (triazolium-*C*), 132.04 (Ph-*C*), 131.49 and 131.46 (Mes-*C*), 130.65 (Ph-*C*), 130.03 (Mes-*C*), 129.45 (Ph-*C*), 129.07 (Ph-*C*), 127.35 (Ph-*C*), 121.28 (Ph-*C*), 21.33 (Mes-CH₃), 17.44 (Mes-CH₃). Anal. Calcd for C₂₄H₂₃N₃O₂: C, 74.78; H, 6.01; N, 10.90. Found: C, 75.01; H, 6.05; N, 10.72.

A solution of 1d (183.8 mg, 0.50 mmol) in 5 mL of toluene under nitrogen was subjected to a freeze–pump–thaw cycle before 1 atm of O₂ was introduced into the flask. The mixture was kept under O₂ for 15 min at room temperature. Top-layering the mixture with 5 mL of *n*-pentane and cooling to -35 °C afforded crystals of 5 that are suitable for X-ray crystallography. The supernatant was decanted off and the crystals were washed with *n*-pentane (3 × 5 mL) and dried under vacuum (152.7 mg, 76%). ¹H NMR (600 MHz, 25 °C, CDCl₃) δ 11.86 (s, 1H, triazolium-*H*), 8.19 – 8.15 (m, 2H), 7.44 – 7.38 (m, 1H), 7.40 – 7.35 (m, 2H), 7.36 – 7.30 (m, 5H), 7.06 (s, 2H), 4.79 (s, 3H, N-CH₃), 2.39 (s, 3H, Mes-CH₃), 1.90 (s, 6H, Mes-CH₃). ¹³C NMR (151 MHz, 25 °C, CDCl₃) δ 173.14 (Ph-CO₂⁻), 143.59 (triazolium-*C*), 142.91 (Mes-*C*), 120.71 (Mes-*C*), 129.12 (Ph-*C*), 127.70 (Ph-*C*), 130.67 (Mes-*C*), 130.34 (Mes-*C*), 129.79 (Ph-*C*), 129.52 (Ph-*C*), 129.12 (Ph-*C*), 127.70 (Ph-*C*), 127.47 (Ph-*C*), 122.57 (Ph-*C*), 41.01 (N-CH₃), 21.42 (Mes-CH₃), 17.48 (Mes-CH₃). Anal. Calcd for C₂₅H₂₅N₃O₂: C, 75.16; H, 6.31; N, 10.52. Found: C, 75.56; H, 6.64; N, 10.56.

A solution of 1e (214.8 mg, 0.50 mmol) in 5 mL of toluene under nitrogen was subjected to a freeze–pump–thaw cycle before 1 atm of O₂ was introduced into the flask. The mixture was stirred for 15 min at room temperature. All volatiles were removed under vacuum. The residue was purified by flash chromatography eluted with dichloromethane. Compound **6** was isolated as a white solid. Yield: 137.8 mg, 78%. Crystals suitable for X-ray crystallography were obtained by slow evaporation of an acetone solution to at room temperature. ¹H NMR (500 MHz, 25 °C, CDCl₃) δ 8.26 – 8.17 (m, 2H, Ph-*H*), 7.56 – 7.46 (m, 4H, Ph-*H*), 7.41 – 7.35 (m, 1H, Ph-*H*), 7.29 – 7.21 (m, 2H, Ph-*H*), 7.22 – 7.17 (m, 1H, Ph-*H*), 7.03 (q, *J* = 0.8 Hz, 2H, Mes-*H*), 2.39 (s, 3H, Mes-C*H*₃), 2.06 (s, 6H, Mes-C*H*₃). ¹³C NMR (126 MHz, 25 °C, CDCl₃) δ 155.59 (triazole-*C*), 141.18 (Mes-*C*), 136.31 (Ph-*C*), 134.86 (Mes-*C*), 133.64 (Mes-*C*), 129.78 (Mes-*C*), 129.21 (Ph-*C*), 128.64 (Ph-*C*), 127.97 (Ph-*C*), 127.68 (Ph-*C*), 127.24, 125.35 (Ph-*C*), 121.32 (Ph-*C*), 118.94, 21.36 (Mes-*C*H₃), 17.36 (Mes-*C*H₃). Anal. Calcd for C₂₃H₂₁N₃O: C, 77.72; H, 5.96; N, 11.82. Found: C, 77.53; H, 6.17; N, 11.62.

2. NMR spectra

Figure S1. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of (1-mesityl-5-phenyl-1,2,3-triazol-4-yl)(phenyl)-methanone.

Figure S2. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of (1-mesityl-5-phenyl-1,2,3-triazol-4-yl)(phenyl)-methanone.

Figure S3. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of 4-benzyl-1-mesityl-5-phenyl-1,2,3-triazole.

Figure S4. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of 4-benzyl-1-mesityl-5-phenyl-1,2,3-triazole.

Figure S5. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of 4-benzyl-1-mesityl-3-methyl-5-phenyl-1,2,3-triazolium tetrafluoroborate.

Figure S6. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of 4-benzyl-1-mesityl-3-methyl-5-phenyl-1,2,3-triazolium tetrafluoroborate.

Figure S7. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of 4-benzyl-1-mesityl-3,5-diphenyl-1,2,3-triazolium triflate.

Figure S8. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of 4-benzyl-1-mesityl-3,5-diphenyl-1,2,3-triazolium triflate.

Figure S9. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of 1d.

Figure S10. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of 1d.

Figure S11. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of 1e.

Figure S12. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of 1e.

Figure S13. ¹H NMR (600 MHz, 25 °C, CDCl₃) spectrum of 2.

Figure S14. ¹³C NMR (151 MHz, 25 °C, CDCl₃) spectrum of 2.

Figure S15. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of **3**.

Figure S16. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of 3.

Figure S17. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of 4.

Figure S18. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of 4.

Figure S19. ¹H NMR (600 MHz, 25 °C, CDCl₃) spectrum of 5.

Figure S20. ¹³C NMR (151 MHz, 25 °C, CDCl₃) spectrum of 5.

Figure S21. ¹H NMR (500 MHz, 25 °C, CDCl₃) spectrum of 6.

Figure S22. ¹³C NMR (126 MHz, 25 °C, CDCl₃) spectrum of 6.

Figure S23. The ¹H NMR spectra (600 MHz, toluene-*d*₈) of compound **1e** at 298, 283, 268, 253 and 238 K.

3. IR spectra

Figure S24. IR spectrum of 2-¹⁶O₂.

Figure S25. IR spectrum of 2-¹⁸O₂.

4. HRMS

Figure S26. HRMS result of 2-¹⁶O₂.

Target Ion Species

Ion Species	m/z	Ionic Formula
M-	125.0381	С7 Н5 [180]2

MFG Calculator Results

Target m/z	Ionic Formula	Calc m/z	+/- (mDa)	+/- (ppm)	DBE	MFG Score
125.0381	С7 Н5 [180]2	125.0380	0.1	0.8	5.5	87.81
125.0381	С10 Н5	125.0397	-1.6	-12.8	8.5	69.82
125.0381	C5 H5 N2 O2	125.0357	2.4	19.2	4.5	59.95
125.0381	C4 H3 N4 [180]	125.0355	2.6	20.8	5.5	54.81

Figure S27. HRMS result of 2-¹⁸O₂.

5. X-ray crystallography

The X-ray diffraction data were collected on a Bruker Kappa Apex II / Photon II diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 150 K controlled by an Oxford Cryostream 700 series low-temperature system and processed with the Bruker Apex 3 software package.⁶ The structures were solved by direct methods and refined using SHELX-2016 software package.^{7,8} All non-hydrogen atoms were refined anisotropically except for some of the atoms of the disordered BF₄⁻ in C₂₅H₂₆N₃BF₄. Selected crystallographic data are summarized in Tables S1–S2.

Figure S28. X-ray structure of $C_{24}H_{21}N_3O$. Thermal ellipsoids are shown at 50% probability. All hydrogen atoms are omitted for clarity.

Figure S29. X-ray structure of $C_{25}H_{26}N_3BF_4$. Thermal ellipsoids are shown at 50% probability. All hydrogen atoms are omitted for clarity.

Figure S30. X-ray structure of **1d**. Thermal ellipsoids are shown at 50% probability. All hydrogen atoms are omitted for clarity.

Figure S31. X-ray structure of **1e**. Thermal ellipsoids are shown at 50% probability. All hydrogen atoms are omitted for clarity.

	2	3	4•CH ₂ Cl ₂	5	6
Empirical formula	$C_{19}H_{21}N_3O_2$	C12H15N3O	$C_{25}H_{25}N_3O_2Cl_2$	C25H25N3O2	C23H21N3O
FW (g·mol ⁻¹)	323.39	217.27	470.38	399.48	355.43
Crystal system	Triclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space Group	P-1	$P2_1/n$	P-1	$P2_1/n$	C2/c
Ζ	2	12	2	4	8
<i>a</i> (Å)	7.554(5)	10.765(4)	11.279(3)	16.149(5)	21.598(6)
<i>b</i> (Å)	7.800(5)	8.899(3)	11.539(4)	6.597(2)	10.343(3)
<i>c</i> (Å)	15.305(10)	37.044(15)	11.879(4)	21.350(7)	18.170(5)
α (deg)	96.293(19)	90	93.664(11)	90	90
β (deg)	90.202(18)	94.947(13)	116.197(9)	104.183(10)	109.301(7)
$\gamma(\text{deg})$	99.553(18)	90	115.492(9)	90	90
$V(Å^3)$	883.7(10)	3536(2)	1189.0(7)	2205.3(12)	3830.7(17)
$D_{\text{calcd}}, (g \cdot \text{cm}^{-3})$	1.215	1.225	1.314	1.203	1.233
μ (mm ⁻¹)	0.080	0.081	0.300	0.077	0.077
<i>F</i> (000)	344	1392	492	848	1504
no. of obsd reflns	2090	6287	4429	3396	3377
no. of params refnd	232	446	292	275	248
goodness of fit	1.006	1.027	1.048	1.031	1.032
R ₁ (I>2σ)	0.0607	0.0582	0.0428	0.0599	0.0418
wR_2	0.1583	0.1529	0.1239	0.1734	0.1155

Table S1. Selected crystallographic data for compounds $2, 3, 4 \cdot CH_2Cl_2, 5$, and 6.

	C24H21N3O	C25H26N3BF4	1d	1e
Empirical formula	C24H21N3O	C25H26N3BF4	C25H25N3	C30H27N3
FW (g·mol ⁻¹)	367.44	455.30	367.48	429.54
Crystal system	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic
Space Group	Pbca	$P2_1/n$	Fdd2	$P2_1/c$
Ζ	8	4	16	4
<i>a</i> (Å)	19.077(7)	11.045(6)	25.226(9)	8.500(2)
<i>b</i> (Å)	8.652(3)	13.979(6)	45.845(16)	24.610(8)
<i>c</i> (Å)	23.320(8)	14.811(6)	7.020(3)	12.044(3)
α (deg)	90	90	90	90
β (deg)	90	93.520(13)	90	110.619(15)
$\gamma(\text{deg})$	90	90	90	90
$V(Å^3)$	3849(2)	2282.4(18)	8119(5)	2358.1(12)
$D_{\text{calcd}}, (g \cdot \text{cm}^{-3})$	1.268	1.325	1.203	1.210
μ (mm ⁻¹)	0.079	0.101	0.071	0.071
<i>F</i> (000)	1552	952	3136	912
no. of obsd reflns	3104	2849	3419	3265
no. of params refnd	257	301	262	306
goodness of fit	1.049	1.022	1.045	1.032
R_1 (I>2 σ)	0.0610	0.0670	0.0447	0.0552
wR ₂	0.1456	0.1823	0.0988	0.1372

 $Table \ S2. \ Selected \ crystallographic \ data \ for \ compounds \ C_{24}H_{21}N_3O, \ C_{25}H_{26}N_3BF_4, \ 1d, \ and \ 1e.$

6. Computation

All calculations were performed using Gaussian 16, Revision $B.01^9$ with M11L¹⁰ functionals. The TZVP¹¹ basis set was used for all elements. Structures were optimized with PCM solvent correction (solvent = toluene). Frequency analysis was then performed to confirm that the structure is a ground state or a transition state as appropriate and to obtain the thermodynamic data.

Opt	timized x,y,z-co	ordinates for (D ₂ reaction	Н	1.663499000	-2.394148000	-2.734551000
1a +	02			Н	0.161744000	1.124073000	0.456055000
M11	L/TZVP (solvent =	toluene)		Н	-1.192882000	-0.749113000	2.355492000
G =	-1050.961241 Harti	ree		Н	-6.079646000	2.463110000	1.280092000
Ν	-0.815354000	-1.493231000	-1.112512000	Н	-1.278493000	1.653714000	-2.219677000
Ν	0.492410000	-1.590993000	-1.231438000	Н	3.528572000	3.680128000	1.028073000
С	4.808964000	0.265205000	-0.142004000	0	2.067737000	-2.591621000	1.449178000
С	3.426707000	0.506349000	-0.190350000	0	0.875062000	-2.565434000	1.636660000
Ν	-0.968643000	-0.395375000	-0.446718000				
С	1.203571000	-0.560574000	-0.663877000	Int 1			
С	-2.278948000	0.060508000	-0.146774000	M11	L/TZVP (solvent =	toluene)	
С	-4.798102000	0.974225000	0.434500000	G = -	1050.964938 Hartı	ee	
С	2.577882000	-0.517015000	-0.684122000	Ν	-4.632529000	1.759696000	-2.771780000
С	0.171870000	0.220506000	-0.130408000	Ν	-3.828441000	2.322501000	-3.647950000
С	-4.119538000	0.161447000	1.323675000	Ν	-4.584349000	3.261723000	-4.169217000
С	-4.184934000	1.309847000	-0.758629000	С	-2.818023000	-2.418075000	0.555198000
С	-2.917183000	0.864256000	-1.075377000	Н	-2.174977000	-2.052974000	1.362231000
С	3.004078000	1.770949000	0.243295000	Н	-2.271043000	-3.184461000	-0.002071000
С	5.251773000	2.438060000	0.757831000	Н	-3.674671000	-2.912934000	1.030141000
С	-2.849555000	-0.311844000	1.057688000	С	-3.266073000	-1.312846000	-0.328966000
С	5.694973000	1.202902000	0.320049000	С	-3.525505000	-0.057374000	0.189933000
С	-6.148082000	1.496440000	0.765006000	Н	-3.367503000	0.127415000	1.253352000
С	3.899617000	2.707015000	0.705119000	С	-3.973067000	0.981215000	-0.601235000
С	1.043047000	-2.715594000	-1.888701000	С	-4.151801000	0.713958000	-1.949738000
С	-2.134861000	-1.193388000	2.012218000	С	-5.840253000	2.325571000	-2.719136000
С	-2.272294000	1.213546000	-2.364990000	Н	-6.625033000	2.058916000	-2.027098000
Н	-4.712336000	1.941467000	-1.474796000	С	-5.808147000	3.324159000	-3.646270000
Н	3.076246000	-1.387343000	-1.104117000	С	-6.911148000	4.261788000	-4.001033000
Н	6.759005000	0.966991000	0.343747000	Н	-6.519571000	5.300215000	-3.890895000
Н	0.223173000	-3.338951000	-2.247109000	С	-7.393392000	4.059991000	-5.410529000
Н	5.174395000	-0.706515000	-0.477927000	С	-7.743378000	2.797909000	-5.857676000
Н	-4.596252000	-0.120672000	2.263486000	Н	-7.649303000	1.946868000	-5.181121000
Н	1.669746000	-3.291410000	-1.195325000	С	-8.224390000	2.620264000	-7.136094000
Н	5.952960000	3.182972000	1.127940000	Н	-8.504269000	1.625102000	-7.478983000
Н	-2.754045000	-1.394857000	2.889746000	С	-8.352778000	3.703197000	-7.982232000
Н	-2.133269000	0.326898000	-2.995318000	Н	-8.730914000	3.562326000	-8.993782000
Н	-2.881497000	1.929438000	-2.922127000	С	-3.456578000	-1.523750000	-1.681781000
Н	1.955408000	2.050499000	0.181211000	Н	-3.255363000	-2.509017000	-2.104732000
Н	-1.868996000	-2.153047000	1.553332000	С	-3.904126000	-0.522104000	-2.520378000
Н	-6.691667000	0.817698000	1.429266000	С	-4.225451000	2.330628000	-0.037575000
Н	-6.750842000	1.655659000	-0.134408000	Н	-3.706703000	3.110876000	-0.607560000

Н	-3.880696000	2.383105000	0.998095000	С	-5.149823000	3.092
Н	-5.289003000	2.602261000	-0.049250000	Н	-6.088377000	2.9599
С	-7.531902000	5.139628000	-6.260840000	Н	-4.330428000	2.5458
Н	-7.268109000	6.135553000	-5.901802000	С	-6.030722000	-0.6868
С	-8.006841000	4.963595000	-7.543535000	Н	-6.748077000	-0.0377
Н	-8.113979000	5.820964000	-8.206389000	Н	-6.256029000	-1.7163
С	-4.035114000	4.094086000	-5.190468000	Н	-6.229338000	-0.583
Н	-2.968184000	3.881962000	-5.262462000	Ο	-6.934916000	4.9188
Η	-4.188640000	5.144723000	-4.928145000	0	-5.602202000	5.4061
Η	-4.525292000	3.888490000	-6.147514000	Н	-6.034408000	2.6408
С	-4.109571000	-0.765503000	-3.969043000	Int 2		
Η	-5.048303000	-0.327143000	-4.328275000	M11L	/TZVP (solvent =	toluene)
Η	-4.132618000	-1.837694000	-4.180454000	G = -1	050.963013 Harti	ree
Η	-3.306503000	-0.322276000	-4.569691000	Ν	-4.769319000	1.5613
0	-7.914703000	4.029447000	-3.111083000	Ν	-4.349389000	1.973
0	-7.305478000	4.281707000	-1.843483000	Ν	-5.282184000	2.8314
				С	-1.567346000	-2.0492
TS1				Н	-0.776700000	-2.4649
\ / 1 1 T	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	4 · 1		TT	2 1 400 4 (000	2 0012

M11I	L/TZVP (solvent =	= toluene)		Н	-2.148946000	-2.891381000	1.104150000
G = -	1050.956399 Har	tree		Н	-1.067403000	-1.561842000	1.561075000
Imag	inary Frequency	-1362.0147		С	-2.420132000	-1.096149000	-0.037813000
Ν	-4.767714000	1.642491000	-2.441104000	С	-1.978745000	0.188572000	-0.301448000
Ν	-4.506147000	1.679018000	-3.733407000	Н	-1.006564000	0.509209000	0.077264000
Ν	-5.299041000	2.605452000	-4.202220000	С	-2.735730000	1.088652000	-1.022073000
С	-1.765136000	-1.746768000	0.926719000	С	-3.976763000	0.665554000	-1.481710000
Н	-1.008011000	-1.195518000	1.492864000	С	-5.943885000	2.081705000	-1.880056000
Н	-1.233535000	-2.498662000	0.329669000	Н	-7.579210000	5.471360000	-0.899638000
Н	-2.398572000	-2.289375000	1.635022000	С	-6.303679000	2.901530000	-2.895100000
С	-2.562255000	-0.845302000	0.057203000	С	-7.411104000	3.859086000	-3.049825000
С	-2.000287000	0.301447000	-0.473500000	Н	-6.972190000	4.840986000	-3.337790000
Н	-0.969834000	0.558912000	-0.224014000	С	-8.435109000	3.480200000	-4.082672000
С	-2.708074000	1.139880000	-1.311143000	С	-8.773377000	2.158525000	-4.298626000
С	-4.017994000	0.791483000	-1.598591000	Н	-8.255861000	1.377223000	-3.740403000
С	-5.712189000	2.513672000	-2.091697000	С	-9.748535000	1.833972000	-5.216417000
Н	-5.173090000	4.458194000	-5.203113000	Н	-10.009795000	0.790374000	-5.384831000
С	-6.064417000	3.166397000	-3.232132000	С	-10.387423000	2.828599000	-5.926063000
С	-7.086800000	4.241823000	-3.423874000	Н	-11.152789000	2.570543000	-6.656551000
Н	-8.081052000	3.764387000	-3.530354000	С	-3.659649000	-1.475244000	-0.513596000
С	-7.145881000	5.130900000	-2.209915000	Н	-4.020412000	-2.487298000	-0.322389000
С	-5.999670000	5.704077000	-1.685997000	С	-4.454474000	-0.615111000	-1.247754000
Н	-5.039558000	5.485646000	-2.152264000	С	-2.249708000	2.466273000	-1.275360000
С	-6.084119000	6.562340000	-0.611967000	Н	-1.928852000	2.594628000	-2.315162000
Н	-5.180269000	7.020118000	-0.211980000	Н	-1.403153000	2.701866000	-0.624354000
С	-7.309182000	6.846092000	-0.042926000	Н	-3.037098000	3.209823000	-1.104344000
Н	-7.371207000	7.521389000	0.809367000	С	-9.080001000	4.473246000	-4.795841000
С	-3.873391000	-1.148459000	-0.259492000	Н	-8.803359000	5.515301000	-4.628133000
Н	-4.329251000	-2.050617000	0.150899000	С	-10.051672000	4.150321000	-5.716163000
С	-4.626566000	-0.344100000	-1.091318000	Н	-10.550312000	4.936904000	-6.280303000
С	-2.094216000	2.365327000	-1.877257000	С	-5.179061000	3.570641000	-4.920077000
Н	-1.849803000	2.236722000	-2.938209000	Н	-6.123616000	3.855969000	-5.366633000
Н	-1.171368000	2.616729000	-1.348310000	Н	-4.347819000	3.304133000	-5.560319000
Н	-2.768941000	3.228043000	-1.816890000	С	-5.769956000	-1.060623000	-1.773231000
С	-8.368694000	5.423003000	-1.637498000	Н	-6.605832000	-0.703912000	-1.157497000
Н	-9.273058000	4.976766000	-2.054914000	Н	-5.826974000	-2.152721000	-1.790508000
С	-8.453295000	6.273873000	-0.555790000	Н	-5.946194000	-0.690547000	-2.789872000
Н	-9.422228000	6.492780000	-0.109367000	0	-8.136240000	3.988074000	-1.857132000

-5.510501000

-6.059660000

-5.982183000

-1.428490000

-0.910408000

-1.138597000

-2.501300000

-4.615145000

-4.659305000

-1.067810000

-2.213413000

-3.424915000

-3.808639000

0.717149000

0.079473000

3.092148000

2.959985000

2.545816000

-0.686823000

-0.037798000

-1.716346000

-0.583167000

4.918860000

5.406175000

2.640871000

1.561353000

1.973753000

2.831495000

-2.049263000

-2.464945000

0	-7.266031000	4.564404000	-0.896849000	Ν	-4.390082000	1.779427000	-3.235979000
Н	-6.424710000	1.882544000	-0.932989000	Ν	-4.296702000	2.441342000	-2.116946000
				Ν	-5.200352000	3.360305000	-2.204465000
TS2				С	-1.042581000	-2.637970000	-4.279907000
M11I	L/TZVP (solvent =	toluene)		Н	-0.886553000	-3.256599000	-3.391435000
G = -	1050.935981 Hartı	ree		Н	-0.066411000	-2.333455000	-4.667318000
Imagi	inary Frequency -	1969.6414		Н	-1.505517000	-3.279921000	-5.039642000
N	-4.750541000	1.378354000	-2.059563000	С	-1.904692000	-1.467740000	-3.986368000
Ν	-4.527779000	1.740875000	-3.310233000	С	-2.908465000	-1.553404000	-3.038154000
Ν	-5.541365000	2.514572000	-3.581351000	Н	-3.047216000	-2.483869000	-2.486975000
C	-1.075390000	-2.005456000	0.567870000	C	-3.745150000	-0.492684000	-2.759967000
Ĥ	-0.927245000	-1.688449000	1.607115000	Č	-3.533702000	0.669940000	-3.482088000
Н	-0.090013000	-1.980597000	0.088886000	Ċ	-5.348833000	2.257540000	-4.031340000
Н	-1 417979000	-3 043927000	0 582238000	Č	-5 899234000	3 307334000	-3 356545000
C	-2.041722000	-1 121535000	-0 131803000	Č	-6 891949000	4 355027000	-3 741727000
Č	-1 748516000	0.215771000	-0 336821000	Č	-7 926598000	3 991695000	-4 708653000
Н	-0 797922000	0.617608000	0.017260000	Č	-8 535351000	5 023573000	-5 411791000
C	-2.626637000	1.064294000	-0.977294000	H	-8.201268000	6.045267000	-5.238546000
Č	-3 829203000	0 525979000	-1 410041000	C	-9 529596000	4 742899000	-6 314576000
C	-5 889287000	1 869631000	-1 560649000	н	-9 997385000	5 548328000	-6 876894000
н	-9.081054000	4 023043000	-0.856105000	C	-9 938097000	3 436485000	-6 507059000
C	-6 427089000	2 630967000	-2 554087000	н	-10 731981000	3 216528000	-7 219093000
C	-7 382691000	3 712600000	-2 750158000	C	-1 735117000	-0 276336000	-4 668722000
н	-6 590900000	4 155949000	-3 782581000	н	-0.936067000	-0.188225000	-5 405236000
C	-8 678218000	3 395498000	-3 383309000	C	-2 542631000	0.817824000	-4 437647000
C	-9 698747000	4 339202000	-3 352981000	C	-4 808768000	-0.601491000	-1 731780000
Н	-9 524621000	5 288198000	-2 844389000	н	-4 530472000	-0.080552000	-0.807823000
C	-10 906457000	4 092516000	-3 965729000	н	-4 989553000	-1 648242000	-1 476684000
Н	-11 694975000	4 843408000	-3 921633000	Н	-5 760024000	-0 172157000	-2.068077000
C	-11 118309000	2 910192000	-4 645499000	C	-8 344850000	2.682085000	-4 901830000
Н	-12 071548000	2 718977000	-5 134877000	н	-7 917183000	1 871433000	-4 312964000
C	-3 249994000	-1 610935000	-0 587295000	C	-9 354813000	2 409225000	-5 794281000
Н	-3 489505000	-2.665335000	-0 442847000	н	-9 696566000	1 385721000	-5 932889000
C	-4 167148000	-0.804185000	-1 234280000	C	-5 347105000	4 270047000	-1 101874000
C	-2 299540000	2 493970000	-1 196913000	н	-4 738273000	3 883964000	-0 284344000
н	-2 087897000	2.499570000	-2 253069000	н	-6 397674000	4 320999000	-0.809803000
н	-1 420253000	2.090990000	-0.615767000	н	-5.013181000	5 264500000	-1 402699000
н	-3 128856000	3 152068000	-0.911813000	C	-2 336533000	2 095455000	-5 164194000
C	-8 906002000	2 208875000	-4 065102000	н	-3 125102000	2 285642000	-5 903344000
н	-8 126871000	1 444477000	-4 090141000	н	-1 388327000	2.203042000	-5 706222000
C	-10 107614000	1.973129000	-4 696019000	н	-2 316023000	2.077000000	-4 485631000
н	-10 262354000	1.033248000	-5 225228000	0	-6 766500000	5 444786000	-3 266029000
C	-5 685907000	3 399105000	-4 653776000	н	-5 556996000	1 833623000	-5.004377000
н	-6 399858000	3.018254000	-5 392888000	11	5.550770000	1.055025000	5.00-1577000
н	-4 715495000	3.613472000	-5 108427000	OH- M	MIIL/TZVP (soly	vent = toluene)	
C	-5 456580000	-1 349438000	-3.100+27000 -1.727246000	-75.86	3277 Hartree	(cint – tolucinc)	
ч	-6 300976000	-1.038776000	-1.00033/000	-73.00	_0 788783000	1 55/1898000	2 500607000
н Ц	-0.300970000	-1.038770000	-1.099334000	U Н	-0.788783000	1.045401000	-2.500097000
и П	-5.437000000	-2.442377000	-1.728894000	11	-1.3333331000	1.043401000	-2.301313000
0	-3.080129000	-1.0110/4000	-2.743030000	Int4			
0	-7.439089000	4.304083000	-1.704230000	11114 M111	TTVD (colvent -	taluana)	
U Ц	-0.1/1303000	3.700720000 1.672164000	0.577650000	C = 1	$051\ 000491\ U_{contract}$		
11	-0.200321000	1.0/3104000	-0.34/030000	U – -I N	-5 344726000	2 505500000	-5 203037000
In+2				IN N	-3.5 ++ 230000	2.595509000	-3.203937000
M111	TTTVP (solvert -	toluene)		IN N	_1 016024000	J.+00J∠J000 1 505760000	-5 737247000
G = 1	$275 11/500 U_{outure}$				4 802220000	7858205000	-3.232342000
U – -	7/J.114J90 Hartre			U	-4.003320000	-2.030303000	-3.63002/000

Η	-4.875632000	-3.506621000	-4.734248000	С	0.014062000	-2.022908000	-0.733474000
Η	-5.556086000	-3.176514000	-3.128089000	С	-0.426867000	-1.773099000	-2.022694000
Η	-3.821730000	-3.040483000	-3.400408000	С	-2.185786000	-0.067531000	-2.426068000
С	-4.962605000	-1.427247000	-4.216657000	С	-2.176692000	1.277663000	-2.702773000
С	-5.407691000	-0.510716000	-3.281340000	С	-3.533858000	2.754882000	-2.450564000
Н	-5.672071000	-0.851461000	-2.279363000	Н	-4.504735000	2.046490000	-1.052134000
С	-5.534789000	0.831048000	-3.578135000	С	-3.743425000	3.098710000	-3.899301000
С	-5.201910000	1.226943000	-4.862937000	С	-4.470978000	2.290440000	-4.754222000
С	-6.287148000	3.154104000	-5.975250000	Н	-4.915107000	1.372735000	-4.370943000
С	-6.008648000	4.489635000	-6.004286000	С	-4.631964000	2.645609000	-6.074524000
С	-6.529488000	5.680169000	-6.851092000	Н	-5.210718000	2.007765000	-6.742137000
Η	-6.795285000	7.435847000	-6.235774000	С	-4.064847000	3.809817000	-6.555251000
С	-7.763111000	5.154535000	-7.604417000	Н	-4.192474000	4.088321000	-7.600527000
С	-7.650915000	4.890377000	-8.953840000	С	0.013661000	-3.996938000	-2.682909000
Η	-6.695541000	5.107716000	-9.431914000	Η	0.024369000	-4.770254000	-3.452310000
С	-8.727539000	4.397041000	-9.662279000	С	-0.440972000	-2.736293000	-3.016879000
Н	-8.634880000	4.199916000	-10.730521000	С	0.027549000	-0.956598000	0.297473000
С	-9.924897000	4.155003000	-9.021003000	Н	0.833676000	-0.235786000	0.115453000
Н	-10.777147000	3.768994000	-9.579359000	Н	0.178694000	-1.381980000	1.292840000
С	-4.646461000	-0.978999000	-5.485499000	Н	-0.907003000	-0.383500000	0.309067000
Н	-4.294889000	-1.690258000	-6.234030000	С	-3.186289000	4.266120000	-4.380850000
С	-4.758636000	0.351057000	-5.839203000	Н	-2.639097000	4.901495000	-3.684407000
С	-6.009780000	1.803345000	-2.563445000	С	-3.343216000	4.620041000	-5.704829000
Н	-5.189810000	2.430114000	-2.193403000	Н	-2.903941000	5.545282000	-6.076956000
Н	-6.444114000	1.283410000	-1.705918000	С	-0.248494000	2.787933000	-2.995575000
Н	-6.768674000	2.483517000	-2.967853000	Н	0.790485000	2.757229000	-2.664901000
С	-8.965140000	4.909632000	-6.965799000	Н	-0.817160000	3.547865000	-2.452217000
Н	-9.057907000	5.138050000	-5.903312000	Н	-0.290379000	3.007558000	-4.067335000
С	-10.043135000	4.414813000	-7.670010000	С	-0.910760000	-2.425271000	-4.389786000
Н	-10.991681000	4.235824000	-7.163330000	Н	-1.998598000	-2.289055000	-4.429341000
С	-4.192343000	5.796041000	-4.946916000	Н	-0.656456000	-3.236315000	-5.076953000
Н	-3.196363000	5.517226000	-4.600743000	Н	-0.465943000	-1.500337000	-4.774325000
Н	-4.721397000	6.367907000	-4.180062000	0	-3.005328000	3.540805000	-1.679214000
Н	-4.167209000	6.373909000	-5.876692000	0	-4.567737000	1.981528000	-2.004838000
С	-4.412695000	0.814882000	-7.205727000	Н	-3.000434000	-0.763073000	-2.277041000
Н	-5.305792000	1.048281000	-7.798699000				
Н	-3.858755000	0.041586000	-7.743831000	Int5			
Н	-3.800077000	1.723380000	-7.190591000	M11I	/TZVP (solvent =	toluene)	
0	-5.597884000	6.148363000	-7.580700000	G = -	1051.117477 Hartı	ee	
0	-6.987632000	6.589605000	-5.832549000	Ν	-5.613948000	1.329117000	-5.237049000
Η	-7.076224000	2.577435000	-6.435916000	Ν	-4.887374000	2.120357000	-5.967825000
				Ν	-5.794205000	2.838595000	-6.590001000
TS3				С	-3.179573000	-2.606501000	-1.999792000
M11L	/TZVP (solvent =	toluene)		Н	-2.096542000	-2.438116000	-1.943064000
G = -2	1051.078473 Harti	ree		Н	-3.324635000	-3.614108000	-2.401896000
Imagi	nary Frequency -	242.1396		Н	-3.561314000	-2.586652000	-0.974441000
Ν	-0.907893000	-0.477132000	-2.331387000	С	-3.834162000	-1.578681000	-2.848368000
Ν	-0.064228000	0.494126000	-2.519943000	С	-4.337175000	-0.418106000	-2.290807000
Ν	-0.854291000	1.519675000	-2.735597000	Н	-4.270247000	-0.267994000	-1.212241000
С	0.908638000	-5.672092000	-1.068285000	С	-4.924210000	0.566307000	-3.061423000
Н	0.089665000	-6.256752000	-0.630199000	С	-4.989307000	0.350209000	-4.427334000
Н	1.719787000	-5.660369000	-0.333483000	С	-6.929404000	1.554960000	-5.404734000
Н	1.253403000	-6.215182000	-1.953334000	С	-7.093322000	2.576745000	-6.317688000
С	0.458656000	-4.298913000	-1.409470000	С	-9.195519000	4.231274000	-8.691661000
С	0.454123000	-3.300646000	-0.452223000	Н	-8.545522000	3.350086000	-7.143247000
Н	0.807913000	-3.521857000	0.555867000	С	-10.436728000	4.755669000	-9.314162000

С	-10.351573000	5.323009000	-10.572926000
Н	-9.377554000	5.362732000	-11.058668000
С	-11.478457000	5.820414000	-11.185603000
Н	-11.409178000	6.266206000	-12.176707000
С	-12.697754000	5.754425000	-10.541855000
Н	-13.590711000	6.148479000	-11.025739000
С	-3.929668000	-1.750609000	-4.217140000
Н	-3.544594000	-2.665186000	-4.670661000
С	-4.502922000	-0.796377000	-5.033670000
С	-5.458913000	1.807485000	-2.448056000
Н	-5.139778000	2.702443000	-2.994202000
Н	-5.122120000	1.901634000	-1.412389000
Н	-6.555910000	1.820186000	-2.441000000
С	-11.661037000	4.690089000	-8.671796000
Η	-11.719661000	4.241368000	-7.682318000
С	-12.787798000	5.189813000	-9.286034000
Н	-13.750936000	5.138580000	-8.780276000
С	-5.318679000	3.860159000	-7.471227000
Н	-6.115719000	4.086990000	-8.182705000
Н	-4.425230000	3.507226000	-7.990764000
Η	-5.067135000	4.761665000	-6.902749000
С	-4.591427000	-0.988040000	-6.501854000
Н	-5.584355000	-0.731771000	-6.890036000
Η	-4.376969000	-2.025590000	-6.770677000
Н	-3.874693000	-0.348970000	-7.031282000
0	-8.127749000	4.297953000	-9.235591000
0	-9.401073000	3.708602000	-7.522159000
Η	-7.650757000	0.955340000	-4.865012000

TS4

G = -1051.118142 Hartree

 	-		 1	0	<u>_1</u>	α	-
122 0 0112 0 127	7 4 10 01	1010 017		~ /		114	•
ппаошагу	/ гтеан	IEIICV	- / 1	α			•
 magman	11090	tono y			•••		~

Ν	-5.559040000	1.460406000	-5.395700000
Ν	-4.726899000	2.188353000	-6.080896000
Ν	-5.531694000	2.986578000	-6.743028000
С	-3.692661000	-2.649722000	-2.003639000
Η	-3.267271000	-2.257793000	-1.074692000
Η	-2.940418000	-3.279206000	-2.488996000
Η	-4.526400000	-3.305973000	-1.723132000
С	-4.153350000	-1.557630000	-2.897856000
С	-4.581805000	-0.351387000	-2.375709000
Η	-4.549460000	-0.191979000	-1.296942000
С	-5.048540000	0.667576000	-3.182114000
С	-5.063809000	0.439513000	-4.547485000
С	-6.838867000	1.797568000	-5.626418000
С	-6.854689000	2.829880000	-6.535371000
С	-10.063946000	3.280125000	-6.761032000
Η	-8.157614000	3.494101000	-7.041061000
С	-11.416409000	3.795823000	-7.119240000
С	-12.528144000	3.176304000	-6.577855000
Η	-12.372400000	2.331693000	-5.907646000
С	-13.792156000	3.625161000	-6.885889000
Η	-14.665601000	3.134222000	-6.458562000
С	-13.952744000	4.699701000	-7.737576000

Н	-14.952833000	5.056347000	-7.981800000
С	-4.186590000	-1.734837000	-4.268657000
Н	-3.846906000	-2.679330000	-4.696128000
С	-4.640218000	-0.747635000	-5.120509000
С	-5.502969000	1.958531000	-2.608643000
Η	-5.048874000	2.814615000	-3.121139000
Н	-5.245354000	2.021200000	-1.548284000
Н	-6.589401000	2.083236000	-2.693173000
С	-11.582139000	4.872015000	-7.973154000
Η	-10.700674000	5.352256000	-8.393838000
С	-12.847315000	5.322703000	-8.279679000
Η	-12.976156000	6.170695000	-8.951167000
С	-4.924899000	3.943787000	-7.613478000
Η	-3.842235000	3.816562000	-7.574173000
Η	-5.191897000	4.954575000	-7.294970000
Η	-5.281016000	3.790618000	-8.635207000
С	-4.664114000	-0.946747000	-6.590213000
Η	-5.619329000	-0.635812000	-7.029740000
Η	-4.500806000	-1.998005000	-6.840850000
Η	-3.883366000	-0.358182000	-7.086809000
0	-9.929293000	2.359290000	-5.995365000
0	-9.104406000	3.909305000	-7.342160000
Н	-7.656667000	1.282842000	-5.139503000

2

M11	1L/TZVP (solvent =	toluene)	
G =	-1051.123235 Hartr	ee	
Ν	1.331686000	7.189524000	12.776067000
Ν	1.075086000	8.161455000	13.613397000
Ν	0.048442000	7.723144000	14.276864000
С	2.140548000	7.269794000	10.513304000
С	3.214269000	7.395721000	9.654759000
С	2.414747000	7.319967000	11.871831000
С	3.692515000	7.468316000	12.386437000
С	4.725620000	7.585657000	11.478530000
С	4.508502000	7.551521000	10.114285000
С	0.491489000	6.151626000	12.883845000
Η	0.477196000	5.241634000	12.239433000
С	5.643160000	7.647655000	9.162291000
Н	5.363552000	8.194168000	8.256070000
Н	5.972009000	6.650514000	8.843491000
Н	6.507272000	8.144649000	9.613072000
С	-0.359168000	6.514686000	13.879620000
Н	-1.206196000	5.981404000	14.287036000
С	0.764687000	7.092790000	9.986985000
Η	0.037361000	7.725236000	10.509196000
Н	0.418278000	6.055157000	10.091879000
Η	0.731203000	7.348278000	8.924824000
С	3.964100000	7.483922000	13.845484000
Η	3.390856000	6.716266000	14.378279000
Η	3.704451000	8.447065000	14.299251000
Н	5.025218000	7.302127000	14.034888000
С	-0.492734000	8.532464000	15.324081000
Н	-0.121699000	9.549568000	15.198344000

Η	-0.180991000	8.142833000	16.297126000
Н	-1.582240000	8.521443000	15.259456000
Н	5.742190000	7.698252000	11.857579000
Н	3.025341000	7.370270000	8.580888000
С	-1.840526000	2.344505000	11.365211000
С	-3.234531000	0.154687000	10.389770000
С	-2.097499000	0.595865000	9.743084000
С	-1.405763000	1.684336000	10.229901000
С	-2.980618000	1.894486000	12.006607000
С	-1.085423000	3.539808000	11.905365000
С	-3.675187000	0.806675000	11.524043000
0	-0.067281000	3.875535000	11.276342000
0	-1.536058000	4.076654000	12.917775000
Н	-3.782233000	-0.706176000	10.006874000
Н	-4.572133000	0.458308000	12.036459000
Н	-0.505124000	2.050057000	9.738065000
Н	-1.748275000	0.080530000	8.848141000
Н	-3.307233000	2.426157000	12.899905000

MECP for the formation of Int1 M11L/TZVP (solvent = toluene) G = -1050.926712 Hartree Ν -1.068074000 0.426648000 0.112292000 Ν -0.476051000 0.602437000 1.257252000 Ν 0.790680000 0.691351000 0.945975000С -6.631689000 -0.511396000 0.040179000 -0.073371000Η -7.198173000 0.416859000 Η -6.965608000 -1.005867000 0.958692000 Η -6.904645000 -1.172566000 -0.791164000 С -0.257133000 0.064493000 -5.169736000 С -4.663783000 0.993523000 -0.234261000 Н -5.350691000 1.804125000 -0.479012000 С -3.306121000 1.250364000 -0.229937000 С -2.468573000 0.199978000 0.092686000 С -0.230212000 0.385749000 -0.922387000

Η	-0.563289000	0.239683000	-1.936992000
С	1.039739000	0.566826000	-0.390219000
С	2.255858000	0.452204000	-1.054366000
Η	2.250224000	0.832707000	-2.073408000
С	3.541360000	0.216745000	-0.450287000
С	3.711550000	-0.776383000	0.513283000
Н	2.854793000	-1.397327000	0.776691000
С	4.945979000	-1.014273000	1.070445000
Η	5.054331000	-1.799935000	1.818343000
С	6.048579000	-0.288065000	0.666335000
Η	7.024822000	-0.482993000	1.106694000
С	-4.285829000	-1.274473000	0.378731000
Η	-4.673398000	-2.265796000	0.616684000
С	-2.920539000	-1.073822000	0.401601000
С	-2.776561000	2.597692000	-0.554055000
Η	-2.065236000	2.950359000	0.201614000
Η	-3.590335000	3.323924000	-0.619915000
Η	-2.247825000	2.608016000	-1.514916000
С	4.671235000	0.909132000	-0.879005000
Η	4.563125000	1.665444000	-1.657551000
С	5.904905000	0.665736000	-0.321257000
Η	6.771305000	1.230158000	-0.664318000
С	1.697439000	1.039120000	1.988561000
Η	1.136723000	1.570980000	2.758831000
Η	2.477826000	1.682322000	1.576547000
Η	2.171140000	0.152555000	2.420597000
С	-1.975212000	-2.161686000	0.749073000
Н	-1.133707000	-2.219131000	0.044133000
Н	-2.486406000	-3.127156000	0.758879000
Н	-1.543615000	-2.003256000	1.745609000
0	1.828605000	-1.530355000	-1.630022000
0	0.591696000	-1.790293000	-1.714850000

7. References

- (1) Kohler, E. P.; Chadwell, H. M. Org. Synth. 1922, 2, 1.
- (2) Brown, D. G.; Sanguantrakun, N.; Schulze, B.; Schubert, U. S.; Berlinguette, C. P. J. Am. Chem. Soc. 2012, 134, 12354.
- (3) Bielawski, M.; Zhu, M.; Olofsson. B. Adv. Synth. Catal. 2007, 349, 2610.
- (4) Liang, Q.; Hayashi, K.; Song, D. Organometallics 2020, 39, 4115.
- (5) CC
- (6) Apex2 Software Package; Bruker AXS Inc.: Madison, WI, 2013.
- (7) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.
- (8) http://shelx.uni-ac.gwdg.de/SHELX/index.php. (accessed on January 30, 2017).
- (9) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- (10) Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2012, 3, 117.

(11) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. **1994**, 100, 5829.