Electronic Supplementary Materials (ESI)

Ferroelectric properties, narrow band gap and ultra-large reversible entropy change in a novel nonlinear ionic chromium (VI) compound

Ding-Chong Han, Zhi-Xiang Gong, Ning Song, Yu-Hui Tan,* Yu-Kong Li, Yun-Zhi

Tang,* Peng-Kang Du and Hao Zhang

*Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology,

Ganzhou 341000, Jiangxi Province, P. R. China

Experimental section

Synthesis

All chemicals and reagents were purchased directly from the chemical reagent company and used directly without further purification. The synthesis of compound **1** is mainly carried out in two steps: the first step is the synthesis of precursor: measured 50 mL of triethylamine and poured into a round-necked flask, then measured 100 mL of dichloromethane as the solvent and the reactant to pour into the flask, heated and stirred in a water bath at a constant temperature of 70 °C for 72 hours, filtered and left the clear liquid to volatilize into a white solid, and finally dried it to become the precursor chloromethyl-triethylammonium chloride; in the second step, weighed the precursor (0.186 g, 1 mmol) and dissolved it in 15 mL of deionized water, then weighed chromium trioxide (0.099 g, 1 mmol) and poured into the solution, stirred for 45 min, filtered to obtain an orange-yellow solution, and finally volatilized at room temperature for about 2 weeks to obtain an orange-yellow block crystals (yield 36 %). The purity of compound **1** was well confirmed by the infrared spectrum (IR) (**Fig. S1**) and powder X-ray diffraction (PXRD) pattern (**Fig. S2**). Elemental analysis calcd. for compound **1**: 3740 (w), 3410 (w), 2987 (w), 2360 (w), 1639 (w), 1469 (m), 1153 (m), 943 (s), 803 (m), 426 (m).

Differential Scanning Calorimetry (DSC)

DSC tests were performed on a Perkin-Elmer Diamond DSC Instrument. The compound **1** (7.2 mg) using powder samples were placed in aluminum crucibles, and were tested in a temperature range of 315 K-370 K under a nitrogen atmosphere at a heating/cooling rate of 10 K/min.

Thermogravimetric Analysis (TGA)

TGA measurements of compound **1** (2 mg) were carried out on a TA-Instrument STD2960 system at a heating rate of 10 K/min under a nitrogen atmosphere in the temperature range of 310 K-1050 K. During the heating process, the peak of the DTA pattern at 340.5 K was an endothermic peak, while the exothermic decomposition peak was around 443 K. The arrow marked in the figure is the direction of heat release.

X-Ray Single-Crystal Crystallography

The X-ray single crystal diffraction data of compound **1** was collected on a Rigaku Oxford Diffraction with Mo K α radiation ($\lambda = 0.71073$ Å) at the room temperature. The data was corrected for L_p and absorption effects. The structure was solved by direct methods and refined by the full-matrix methods based on F² by using the SHELXLTL software package. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were generated geometrically and refined by using a "riding" model with $U_{iso} = 1.2 U_{eq}$ (C). The occupancy rate of the disordered part was refined with free variables. The crystallographic data and structural refinement details of compound **1** are shown in **Table S1**. The CCDC (Cambridge Crystallographic Data Centre) of compound **1** is No.: 2091371. **Powder X-Ray Diffraction (PXRD) and Elemental Analysis**

Variable-Temperature PXRD measurements of compound **1** on a PANalytical X' Pert PRO X-ray diffractometer were carried out in the temperature range of 300 K-370 K and the diffraction patterns were collected in the range of 2 θ = 5°-50° with a step size of 0.02°. Elemental analysis (C, H, N) of compound **1** was performed by elementar vario EL cube organic element analyzer, Germany.

Dielectric Constant Measurements

For dielectric experiments, the pressed powder pellets (0.2 mm thick and 3 mm² in area) of compound **1** were sandwiched between two parallel copper electrodes with silver-conducting glue to be used for dielectric measurements. The temperature-dependent dielectric constants tests were carried out using the sample on a TH2828A instrument between 303 K-355 K over the frequency range of 500 Hz to 1 MHz, with an applied electric field of 1 V, controlling heating and cooling rate of 10 K/min.

Second Harmonic Generation (SHG) Measurements

The SHG signal tests of powder samples of compound **1**, using an unexpanded laser beam with low divergence (pulsed Nd: YAG at a wavelength of 1064 nm, 5 ns pulse duration, 1.6 MW peak power, 10 Hz repetition rate) were carried out on the Ins1210058, INSTEC Instruments at the room temperature.

Solid-State Circular Dichroism (CD) Spectra

The CD spectra for compound **1** were recorded on a Jasco-1500 CD spectropolarimeter at the room temperature in the wavelength range 200 nm-700 nm. The CD spectra were obtained on the resulting complexes as crystals (ca. 0.4 mg) in 100 mg of oven-dried KBr made into disks of 0.3 mm thickness.

Ultraviolet-Visible (UV-vis) Spectrometry

The UV-vis absorption spectrum was obtained at room temperature in the wavelength range of 200 nm-700 nm by using a Shimadzu (Tokyo, Japan) UV-2550 spectrophotometer by measuring the powder of compound **1**. Determining the band gap with the variation of Tauc equation:¹

$[hv \cdot F(R_{\infty})]^{1/n} = A(hv - E_g)$

where *h* is the Planck's constant, *v* represents the frequency of vibration, *A* is the proportional constant, E_g is the band gap and $F(R_{\infty})$ is Kubelka-Munk equation: $F(R_{\infty}) = (1-R_{\infty})^2/2R_{\infty}^2$.

Ferroelectric Property

The ferroelectric property of single crystal samples of compound **1** were measured by using a standard RT 6000 ferroelectric tester (Radiant Technologies, Albuquerque, USA) at different temperatures after the samples were immersed in insulating oil and dried at the room temperature. And the polarization-electric hysteresis loops were observed by virtual ground mode (the measurement used alternating current and the frequency was 10-60 Hz).

Fig. S1 Infrared (IR) spectra of solid compound 1 at room temperature.

Fig. S2 PXRD (powder x-ray diffraction) measurement comparison with single crystal simulation of compound 1 at room temperature.

Fig. S3 Temperature dependence of the real parts (ϵ') of the dielectric constants for compound **1** at selected frequencies (5 kHz, 10 kHz, 100 kHz and 1 MHz).

Fig. S4 Lebail refinement of PXRD data of compound **1** at 344 K, revealing a unit cell of a = 7.89479 Å, b = 7.89479 Å, c = 12.7266 Å, $\alpha = 90^\circ$, $\theta = 90^\circ$ and $\gamma = 120^\circ$.

Fig. S5 Variable-Temperature PXRD for compound 1 in the temperature range of 300 K-370 K.

Fig. S6 The temperature-dependence of dielectric constant at 1MHz during heating and cooling runs for compound 1.

Fig. S7 The comparison of KDP, SHG response of compound 1 under the same condition.

Fig. S8 The calculation diagram band structures of compound 1.

Table S1. The crystallographic data and structure refin	ements for compound 1 at the room terr	perature.
---	--	-----------

[(CH ₃ CH ₂) ₃ N(CH ₂ Cl)] [CrO ₃ Cl]			
298 К			
Formula weight	286.11	Z	4
Crystal system	monoclinic	Density (g/cm ³)	1.539
Space group	С2	m (mm⁻¹)	1.342
<i>a</i> (Å)	11.8344(6)	F (000)	592.0
b (Å)	7.8851(3)	Data/restraints/parameters	2527/3/173
<i>c</i> (Å)	14.4218(12)	GOF	1.097
α (°)	00	$R_1, wR_2[l \ge 2\sigma(l)]$	$R_1 = 0.0346$
	90		$wR_2 = 0.1007$
β (°) 113.414(5)	112 414(5)	<i>R1, wR2</i> (all data)	$R_1 = 0.0369$
	113.414(5)		$wR_2 = 0.1026$
γ (°)	90	$ riangle ho_{\textit{max}} / riangle ho_{\textit{min}}$ (eÅ-3)	0.31/-0.49
V (ų)	1234.96(14)		

Calculation of ΔS and N

In the heating cycle mode

$$\Delta S_{1} = R \ln N_{1}$$

$$\Delta S_{2} = R \ln N_{2}$$

$$\Delta S_{1} = \int_{T_{2}}^{T_{1}} \frac{Q}{T} dT$$

$$\approx \frac{\Delta H}{T_{c}}$$

$$= \frac{75.65g^{-1}J \times 286.11moI^{-1}g}{340.9K}$$

$$= 63.49J \cdot moI^{-1} \cdot K^{-1}$$

$$N_{I} = \exp(\frac{\Delta S_{1}}{R}) = \exp(\frac{63.49J \cdot moI^{-1} \cdot K^{-1}}{8.314J \cdot moI^{-1} \cdot K^{-1}})$$

$$R_{2} = \exp(\frac{\Delta S_{1}}{R}) = \exp(\frac{63.49J \cdot moI^{-1} \cdot K^{-1}}{8.314J \cdot moI^{-1} \cdot K^{-1}})$$

$$R_{2} = \exp(\frac{\Delta S_{1}}{R}) = \exp(\frac{63.49J \cdot moI^{-1} \cdot K^{-1}}{8.314J \cdot moI^{-1} \cdot K^{-1}})$$

$$R_{2} = \exp(\frac{\Delta S_{1}}{R}) = \exp(\frac{63.49J \cdot moI^{-1} \cdot K^{-1}}{8.314J \cdot moI^{-1} \cdot K^{-1}})$$

Notes and references

- 1 J. Tauc, Mater. Res. Bull., 1970, **5**, 721-729.
- 2 W. J. Wei, C. Li, L. S. Li, Y. Z. Tang, X. X. Jiang and Z. S Lin, J. Mater. Chem. C, 2019, 7, 11964-11971.