Supporting Information

[Ag₇₁(S-tBu)₃₁(Dppm)](SbF₆)₂: an intermediate sized metalloid silver nanocluster containing a building block of Ag₆₄

Manman Zhou,[†] Yizheng Bao,[†] Shan Jin,* Shuaishuai Wen, Shuang Chen, Manzhou Zhu*

Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R.

1.1 Chemicals Materials

Silver nitrate (AgNO₃, 99.0%, Sigma-Aldrich), Sodium borohydride (NaBH₄, 98%, Sigma-Aldrich), Sodium borodeuteride (NaBD₄, 98%, Sigma-Aldrich) bis-(diphenylphosphino)methane (Dppm, 98%), t-butyl mercaptan (97%, Sigma-Aldrich), Tetraphenylboron sodium (NaBPh₄, 98%), Sodium hexafluoroantimonate (NaSbF₆, 99%, Energy Chemical) methanol (CH₃OH, HPLC, Aldrich), Toluene (Tol, HPLC grade, Aldrich), n-hexane (Hex, HPLC grade, Aldrich), dichloromethane (CH₂Cl₂, HPLC grade, Aldrich). All reagents were used as received without further purification.

1.2 The Synthesis of Ag₇₁(SR)₃₁(Dppm)(SbF₆)₂

For the synthesis of nanocluster, 60 mg AgNO₃ was dissolved in 1 mL of H₂O, then added into 14 mL toluene. After this solution stirred for 10 min, 50 mg bis-(diphenylphosphino)methane and 50 ul t-butyl mercaptan were added together to the solution under vigorous stirring. The clear and transparent solution gradually turned milky white. 15 minutes later, a freshly prepared solution of 20 mg NaBH₄ (1 mL H₂O) was added. After 3-5 min, the color of the reaction solution turned to red. The reaction sustained for 5 h at room temperature. The crude product was spied dry then dissolved in 1 mL CH₂Cl₂. 30 mg NaSbF₆ in 3 mL CH₃OH was added to replace the anion of the cluster for easy crystallization. The precipitate washed several times with CH₃OH and H₂O. Red crystals were crystallized for CH₂Cl₂/hexane 2-3 days later. The yield is about 30% based on the Ag element for Ag₇₁(SR)₃₁(Dppm)(SbF₆)₂.

 $Ag_{71}(SR)_{31}(Dppm)(BPh_4)_2$ was crystalized by adding NaBPh₄ to replace the anion of the cluster, which was further used for NMR measure.

1.3 Characterization

All UV/Vis absorption spectra of nanoclusters were recorded using an Agilent 8453. Thermo gravimetric analysis (TGA) was carried out on a thermo gravimetric analyzer (DTG-60H, Shimadzu Instruments, Inc.) with 5 mg of the nanocluster in a SiO₂ pan at a heating rate of 10 K min⁻¹ from 323 K to 973 K. X-ray photoelectron spectroscopy (XPS) measurements were performed on a Thermo ESCALAB 250 configured with a mono chromated AlK α (1486.8 eV) 150W X-ray source, 0.5 mm circular spot size, a flood gun to counter charging effects, and the analysis chamber base pressure lower than 1 x 10⁻⁹ mbar, data were collected with FAT= 20 eV. Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) measurement was performed by MicrOTOF-QIII high-resolution mass spectrometer. The sample was directly infused into the chamber at 5µL/min. Nuclear magnetic resonance (NMR) analysis was performed on a Bruker Avance spectrometer operating at 400 MHz for NMR. CD₂Cl₂ was used as the solvent

to dissolve \sim 50 mg [Ag₇₁(SR)₃₁(Dppm)][BPh₄]₂ clusters; the residual solvent peak (i.e.,1H at 5.32 ppm) was used as reference.

1.4 Electrochemical measurements

Electrochemical measurements were performed with an electrochemical workstation (CHI700E) using a Pt working electrode (diameter 0.4 mm), a Pt wire counter electrode, and a Ag wire quasireference electrode in 0.1 MBu₄NPF₆-CH₂Cl₂. Prior to use, the working electrode was polished with 0.05 μ m Al₂O₃ slurries and then cleaned by sonication in dilute CH₃CH₂OH and nanopure water successively. The electrolyte solution was deaerated with ultra-highpurity nitrogen for 30 min and blanketed under nitrogen atmosphere throughout the experimental procedure.

1.5 X-Ray Crystallography

The data collection for single crystal X-ray diffraction was carried out on Stoe Stadivari diffractometer under liquid nitrogen flow at 173 K, using graphite-monochromatized Cu K α radiation ($\lambda = 1.54186$ Å). Data reductions and absorption corrections were performed using the SAINT and SADABS programs, respectively.

Figure S1. Differential pulse voltammogram of $[Ag_{71}(SR)_{31}(Dppm)](SbF_6)_2$ in CH₂Cl₂ in the low temperature environment formed by dry ice in acetonitrile.

Figure S2. the UV-vis of [Ag₇₁(SR)₃₁(Dppm)](SbF₆)₂ stored in solid states for 0, 3 and 6 months.

Figure S3. ¹HNMR spectra of the $[Ag_{71}(SR)_{31}(Dppm)][BPh_4]_2$ clusters dissolved in CD₂Cl₂. The residual solvent peak (i.e., ¹H at 5.32 ppm) was used as reference.

Figure S4. ³¹PNMR spectra of the A) free Dppm and B) 50mg [Ag₇₁(SR)₃₁(Dppm)][BPh₄]₂ clusters dissolved in CD₂Cl₂.

Figure S5. Comparison of the calculated and the experimental isotopic distributions of $[Ag_{71}(S-tBu)^{31}(Dppm)Na^+-H^+]^{2+}$

Figure S6. A) the UV-vis spectrum of [Ag₇₁(SR)₃₁(Dppm)][BPh₄]₂ synthesized via NaBH₄ and NaBD₄. B) the comparison of ESI-MS spectra between the products from NaBH₄ and NaBD₄; C)
²HNMR spectra of the [Ag₇₁(SR)₃₁(Dppm)][BPh₄]₂ clusters dissolved in CH₂Cl₂ and the purified CH₂Cl₂. The result indicated there was no additional signal in spectra, meaning that no D atom was incorporated into Ag₇₁-D, ruling out the existence of hydrides (H⁻) in the structure.

Figure S7. X-ray photoelectron spectroscopy (XPS) data of [Ag₇₁(SR)₃₁(Dppm)](SbF₆)₂.

Figure S8. The structure of $[Ag_{71}(SR)_{31}(Dppm)](SbF_6)_2$ Color Labels: light blue = Ag; red = S; pink = P; purple=Sb; yellow-green = F; gray = C, .

Figure S9. The packing model of $[Ag_{71}(SR)_{31}(Dppm)](SbF_6)_2$ from different views. Color Labels: light blue = Ag; red = S; pink = P; gray = C.

Figure S10. The arrangement of thiol ligands in the $[Ag_{71}(SR)_{31}(Dppm)]^{2+}$. Five thiol ligands in each layer could form a pentagon. There are five twisted pentagons and one sole thiol ligand. The arrangement was rarely observed in the reported nanoclusters.

Figure S11. the comparison of A) Ag_{58} core structure of the $Ag_{78}(iPrPhS)_{30}(dppm)_{10}Cl_{10}]^{4+}$ and B) Ag_{64} core structure of $[Ag_{71}(SR)_{31}(Dppm)]^{2+}$.

Figure S12. the structural analysis of Ag_{141} via Ag_{64} unit assembled, which the Ag_{64} structure could be observed in $Ag_{71}(S-{}^{t}Bu)_{31}(Dppm)](SbF_6)_{2.}$

Empirical formula	$C_{149}H_{301}Ag_{71}F_{12}P_2S_{31}Sb_2$
Formula weight	11278.95
Temperature/K	173(2)
Crystal system	triclinic
Space group	P-1
a/Å	24.7024(15)
b/Å	33.182(2)
c/Å	38.8512(18)
α/°	102.791(3)
β/°	103.733(2)
γ/°	90.602(3)
Volume/Å ³	30100(3)

Table 1. Crystal data and structure refinement for Ag71.

Z	4
Radiation	$CuK\alpha (\lambda = 1.54186)$
2\overline range for data collection/°	2.736 to 135
Index ranges	$-29 \le h \le 29, -39 \le k \le 38, -43 \le l \le 46$
Reflections collected	363852
Independent reflections	108067 [$R_{int} = 0.0721, R_{sigma} = 0.1060$]
Data/restraints/parameters	108067/19/4940
Goodness-of-fit on F ²	1.079
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0458, wR_2 = 0.0805$
Final R indexes [all data]	$R_1 = 0.0676, wR_2 = 0.0941$
Largest diff. peak/hole / e Å ⁻³	4.18/-4.65