A multi-responsive Indium-viologen hybrid with ultrafast-response photochromism and electrochromism

Qiu-Yue Pan, ${ }^{a}$ Meng-En Sun, ${ }^{\text {a }}$ Chong Zhang, ${ }^{a}$ Lin-Ke Li, ${ }^{a}$ Hua-Li Liu, ${ }^{a}$ Kai-Jie Li, ${ }^{a}$ Hai-Yang Li*a and Shuang-Quan Zang*a
${ }^{a}$ Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

E-mail: zangsqzg@zzu.edu.cn; lihaiyang@zzu.edu.cn

Experimental section

Materials and reagents.

All reagents and solvents, including $\mathrm{InCl}_{3}, 4,4$ '-dipyridine, S -3-chloro-1,2-propanediol, HCl aqueous solution $(37 \%, 0.5 \mathrm{~mL})$, acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, Ethanol (EtOH) and acetone were commercially available and used without further purification.

Characterization.

Single-crystal X-ray diffraction (SCXRD) data were collected on a Bruker APEX- II CCD diffractometer with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ at 300 K . The structure was assessed with direct methods (SHELXS) and refined by full-matrix least squares in F2 using OLEX2, which utilizes the SHELXL-2015 module. The crystal structure was visualized in DIAMOND 3.2. Powder X-ray Diffraction (PXRD) patterns of the samples were recorded on a D/MAX-3D diffractometer $(\mathrm{Cu} \mathrm{K} \alpha, \lambda=1.5418 \AA$). Simulated powder patterns were obtained with Mercury software and crystallographic information file (CIF) from a singlecrystal X-ray experiment. The Fourier transform infrared (FT-IR) spectra were performed on ALPHA II spectrometer with KBr pellets. TGA were performed on a TA Q50 thermal analyzer from RT to $800^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ under a nitrogen atmosphere (flow rate $=60 \mathrm{~mL} / \mathrm{min}$). Elemental analyses (EA) for C, H and N were collected on a Perkin-Elmer 240 elemental analyzer. A high-speed camera operating at 1000 frames per second was used to capture the color transitions process. Solid-state UV-vis diffuse reflectance spectra were recorded using a Hitachi UH4150 UV-vis spectrophotometer. ESR for solid state were recorded on Bruker A300. Cyclic voltammetry was carried out on an electrochemical working station CHI 660E (Shanghai) in 0.5 M acetonitrile solution. Electronic absorption spectra measurements were performed on America PINE spectroelectrochemical. A typical threeelectrode system was employed, using compound $\mathbf{1}$ in ITO glass as working electrode, a platinum sheet as counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ electrode as reference electrode.

Synthesis of \{1-(S-2,3-dihydroxypropyl)-4,4'-bipyridinium chloride\}.

1-(S-2,3-dihydroxy-propyl)-4,4'-bipyridinium chloride was synthesized according to previously reported procedure in the literature. ${ }^{1}$

Synthesis of compound 1.

InCl_{3} ($22.1 \mathrm{mg}, 0.1 \mathrm{mmol}$), 1-(S-2,3-dihydroxypropyl)-4,4'- bipyridinium chloride (26.7 $\mathrm{mg}, 0.1 \mathrm{mmol}$), HCl aqueous solution $(37 \%, 0.5 \mathrm{~mL})$ were dissolved in $3 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ and 3 $\mathrm{mL} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ at room temperature. The resulted clear solution was allowed to evaporate at room temperature for several days, then the light yellow bulk crystals were obtained in a yield of 52% based on InCl_{3}. Elemental analysis, calcd (\%) for $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2} \mathrm{InCl}_{6} \cdot \mathrm{Cl}(\mathbf{1}): \mathrm{C}, 37.71$; N, 6.77; H, 3.86. Found C, 37.28; N, 6.43; H, 3.81.

The preparation of compound 1 working electrode

Clean and dry the ITO glass with water, ethanol and acetone in turn. 20 mg compound crystal, 0.5 mL methanol and $20 \mu \mathrm{~L} 5 \%$ Nafion were added to the bottle and the mixture was ultrasonic for 30 min . The solution was dispersed to ITO glass by Pipetting gun and let it dry overnight at room temperature to obtain the compound working electrode.

The preparation of compound 1 suspension.

1 mg crystals were dispersed in $0.5 \mathrm{M} \mathrm{LiClO}_{4}$ aqueous solution and dispersed uniformly in the solution by ball mill.

Supporting Figures

Figure S1. View of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ (green dashed line) and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ (orange dashed line) hydrogen bonding interactions between an individual $\left[\mathrm{InCl}_{6}\right]^{3-}$ and $[\mathrm{HL}]^{2+}$ at RT.

Figure S2. View of $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ (blue dashed line) hydrogen bonding interactions between the free Cl^{-} ion and the neighboring $[\mathrm{HL}]^{2+}$ at RT .

Figure S3. PXRD patterns of compound 1.

Figure S4. TGA plot of compound 1.

Figure S5. Powder X-ray diffraction (PXRD) patterns of compound 1 before irradiation (blue), after irradiation (magenta) and decolored (olive).

Figure S6. FT-IR spectra of compound $\mathbf{1}$ at different conditions.

Figure S7. In 3d (a), C 1s (b), and O 1s (c) XPS core-level spectra of $\mathbf{1}$ before and after UV irradiation.

Figure S8. (a) X-ray ($\mathrm{Cu}-\mathrm{K} \alpha, \lambda=1.5418 \AA$; irradiation time: 5 min)-induced photochromic process of the single-crystal 1. (b) The X-ray-induced color change was captured using an X-ray photoelectron spectrometer (Al-K $\alpha, \lambda=8.357 \AA$; powered at 120 W) after illumination.

Figure S9. Powder X-ray diffraction (PXRD) spectra of compound $\mathbf{1}$ before electrochromic (blue) and decolored (magenta).

Supporting Tables

Table S1. Photoresponsive time of some viologen-based photochromic hybrids.

Compound	Photoresponsive time	Ref.
$[\mathrm{PV}]\left[\mathrm{Zn}_{3}(\mathrm{~m}-\mathrm{BDC})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	1 s	$[38]$
$(\mathrm{BzV})_{5}\left[\mathrm{Bi}_{3} \mathrm{Cl}_{14}\right]_{2} \cdot\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$	10 s	$[35]$
$(\mathrm{BzV})_{2}\left[\mathrm{Bi}_{2} \mathrm{Cl}_{10}\right]$	30 s	$[35]$
$\mathrm{Zn}(\mathrm{CPBPY})(\mathrm{HBTC}) \cdot \mathrm{H}_{2} \mathrm{O}$	2 min	$[40]$
$\left\{\left[\mathrm{Eu}\left(\mu_{2}-\mathrm{OH}\right)(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$	3 min	$[39]$
$(\mathrm{BuV})_{2}\left[\mathrm{Bi}_{2} \mathrm{Cl}_{10}\right]$	15 min	$[33]$
$\mathrm{Cd}-\mathrm{MOF}$	20 min	$[41]$
$\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2} \mathrm{InCl}_{6} \cdot \mathrm{Cl}$	0.1 s	this work

Table S2. Crystal data and structure refinement for compound 1

Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{7} \mathrm{InN}_{4} \mathrm{O}_{4}$
Formula weight	827.52
Temperature $/ \mathrm{K}$	300.0
Crystal system	monoclinic
Space group	$P 2_{1} / c$
a / \AA	$11.4085(4)$
b / \AA	$14.0475(6)$
c / \AA	$10.6955(4)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$102.008(2)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1676.56(11)$
Z	2
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.639
μ / mm^{-1}	1.301
$\mathrm{~F}(000)$	832.0
Radiation	$\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073)$

2θ range for data collection $/{ }^{\circ} \quad 4.662$ to 55
Index ranges
$-14 \leqslant \mathrm{~h} \leqslant 14,-18 \leqslant \mathrm{k} \leqslant 18,-13 \leqslant 1 \leqslant 13$
Reflections collected
75367
Independent reflections
$3838\left[\mathrm{R}_{\text {int }}=0.0413, \mathrm{R}_{\text {sigma }}=0.0126\right]$
Data / restraints / parameters 3838/0/208
Goodness-of-fit on F^{2}
1.308

Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0720, \mathrm{wR}_{2}=0.1887$
Final R indexes [all data]
$\mathrm{R}_{1}=0.0757, \mathrm{wR}_{2}=0.1901$
Largest diff. peak/hole / e $\AA^{-3} \quad 1.30 /-1.09$
CCDC number 2108103
$R_{1}=\sum| | F \mathrm{ol}-|F \mathrm{c}| \sum / \| F \mathrm{ol} . w R_{2}=\left[\sum w\left(F_{\mathrm{o}}{ }^{2}-F \mathrm{c}^{2}\right)^{2} / \sum w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]$

Table S3. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for compound 1

Bond length (\AA)		Bond angles (${ }^{\circ}$)	
In 1-Cl1	2.5048 (18)	Cl1-In1-Cl1 ${ }^{1}$	180.0
In1-Cl1 ${ }^{1}$	2.5048 (18)	Cl1 ${ }^{1}-\mathrm{In} 1-\mathrm{Cl} 2^{1}$	92.09 (6)
In 1-Cl2 ${ }^{1}$	2.556 (2)	Cl1 ${ }^{1}-\mathrm{In} 1-\mathrm{Cl} 2$	87.91 (6)
In 1-Cl2	2.556 (2)	C11-In1-Cl2 ${ }^{1}$	87.91 (6)
In 1-Cl3 ${ }^{1}$	2.504 (2)	C11-In1-Cl2	92.09 (6)
In 1-Cl3	2.503 (2)	Cl2-In1-Cl2 ${ }^{1}$	180.0
		$\mathrm{Cl} 3{ }^{1}-\mathrm{In} 1-\mathrm{Cl} 1^{1}$	89.22 (7)
		C13-In1-Cl1	89.22 (7)
		Cl3-In1-Cl1 ${ }^{1}$	90.78 (7)
		Cl3 ${ }^{1}$ - $n 1-\mathrm{Cl} 1$	90.78 (7)
		$\mathrm{Cl} 3{ }^{1}-\mathrm{In} 1-\mathrm{Cl} 2^{1}$	89.52 (8)
		$\mathrm{Cl} 3^{1}-\mathrm{In} 1-\mathrm{Cl} 2$	90.47 (8)
		C13-In1-Cl2	89.52 (8)
		Cl3-In1-Cl2 ${ }^{1}$	90.48 (8)
		Cl3-In1-Cl3 ${ }^{1}$	180.0

Table S4. Parameters of the hydrogen bonds in compound 1

D-H	$\mathbf{d}(\mathbf{D}-\mathbf{H})$	$\mathbf{d}(\mathbf{H} . . A)$	$<$ DHA	$\mathbf{d}(\mathbf{D} . \mathbf{A})$	\mathbf{A}
N1-H1	0.860	2.438	154.67	3.236	Cl 2
C8-H8	0.930	2.630	148.22	3.456	$\mathrm{Cl1}$
C2-H2	0.930	2.865	155.04	3.729	Cl 2
C10-H10	0.930	2.554	150.75	3.396	O 2
C4-H4	0.930	2.815	128.68	3.473	$\mathrm{Cl4a}$
C12-H12a	0.980	2.988	112.84	3.487	$\mathrm{Cl4a}$
C11-H11B	0.970	2.926	160.96	3.856	Cl 2
C9-H9	0.930	2.785	154.55	3.647	$\mathrm{Cl4a}$
C5-H5	0.930	2.648	135.10	3.371	$\mathrm{Cl3}$
C1-H1A	0.930	2.545	164.91	3.451	$\mathrm{Cl1}$
O1Ba-H1Ba	0.820	2.186	166.47	2.989	$\mathrm{Cl4a}$
O2-H2A	0.820	2.394	145.71	3.106	$\mathrm{Cl4a}$

Symmetry codes: ${ }^{1} x, y+1, z ;^{2}-x+2, y+1 / 2,-z+1 / 2 ;{ }^{3}-x+1, y+1 / 2,-z+3 / 2 ;{ }^{4}-x+1, y+1 / 2,-z+3 / 2$;
${ }^{5} x,-y+1 / 2, z-1 / 2 ;{ }^{6}-x+2,-y,-z+1 ;{ }^{7} x, y+1, z ;{ }^{8}-x+2, y+1 / 2,-z+1 / 2 ;{ }^{9} x,-y+1 / 2, z-1 / 2$.

Supplementary Reference.

1. T. Fu, Y. L. Wei, C. Zhang, L. K. Li, X. F. Liu, H. Y. Li and S. Q. Zang, Chem. Comтип., 2020, 56, 13093-13096.
