Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Photocatalytic, Site-Selective Oxidation of Carbohydrates

Daniel J. Gorelik, Victoria Dimakos, Timur Adrianov and Mark S. Taylor*

Department of Chemistry, University of Toronto 80 St George Street, Toronto ON, Canada, M5S 3H6

Table of Contents

General Information	S5
Materials	S5
Instrumentation	S5
Substrate Synthesis	S6
Methyl 6-O-(tert-butyldimethylsilyl)-α-D-glucopyranoside (1a)	S6
Methyl 6-O-(trityl)-α-D-glucopyranoside (1b)	S6
Methyl 4,6-O-isopropylidene-α-D-glucopyranoside (1c)	S6
Methyl 2-deoxy-α-D-glucopyranoside (1d)	S7
Methyl 4,6-O-isopropylidene-β-D-glucopyranoside (1f)	S7
Octyl α-D-glucopyranoside (1h)	S7
4,6:4',6'-di-O-isopropylidene-α,α'-trehalose (1i)	S8
6,1',6'-tri-O-tertbutyldiphenylsilyl sucrose (1j)	S8
Cyclohexyl α-L-rhamnopyranoside (1I)	S9
1,2:3,4-di-O-isopropylidene-6-O- α -L-rhamnopyranosyl- α -D-galactopyranose (1m).	S9
Methyl-6-(tert-butyldimethylsilyloxy)-α-D-mannopyranoside (1n)	S10
Reaction Optimization	S11
Methyl 6-O-(tert-butyldimethylsilyl)-α-D-glucopyranoside	S11
Photocatalyst Screen	S11
Oxidant Screen	S11
Additive Screen	S12
Hydrogen Bond Acceptor Screen	S12
Time Screen	S13
Methyl α-D-glucopyranoside	S13
Solvent Screen	S13
Hydrogen Bond Acceptor Screen:	S14
Methyl α-L-rhamnopyranoside	S14
Additive Screen	S14
Diol Activator Screen	S15
Photocatalyst Screen	S16
Boron-Quinuclidine Loading Screen	S16
Methyl α-L-rhamnopyranoside (C2 Oxidation)	S17
HAT Catalyst Screen	S17

TBADT Loading		
Boronic Acid Loadir	ng	S18
Concentration Scre	en	
Time Screen		
Control Experiments		
Methyl 6-O-(tert-butyle	dimethylsilyl)-α-D-glucopyranoside	
Methyl α-L-rhamnopy	ranoside	
Product Characterization	n	
(6-O-tert-butyldimethy	/lsilyl)-methyl-α-D-ribo-hexapyranoside-3-u	lose (2a) S23
(6-O-trityl)-methyl-α-D)-ribo-hexapyranoside-3-ulose (2b)	
(4aR,6S,7S,8aR)-7-hy one (2c)	ydroxy-6-methoxy-2,2-dimethyltetrahydrop	yrano[3,2-d][1,3]dioxin-8(4H)-
Methyl-2-deoxy-α-D-e	erythro-hexopyranosid-3-ulose (2d)	S25
Methyl α-D-xylo-hexo	pyranosid-3-ulose (2e)	
(4aR,6R,7S,8aR)-7-h	ydroxy-6-methoxy-2,2-dimethyltetrahydrop	yrano[3,2-d][1,3]dioxin-8(4H)-
(2R,3R,5S,6S)-2-(ace	etoxymethyl)-6-methoxy-4-oxotetrahydro-2	H-pyran-3,5-diyl diacetate (2g) S26
(2R,3R,5S,6S)-2-(ace	etoxymethyl)-6-octyloxy-4-oxotetrahydro-2	I-pyran-3,5-diyl diacetate (2h) S27
(6R,7S)-7-hydroxy-6-(d][1,3]dioxin-6-yl)oxy)	(((4aR,6R,7S,8aR)-7-hydroxy-2,2-dimethyl -2,2-dimethyltetrahydropyrano[3,2-d][1,3]d	-8-oxohexahydropyrano[3,2- ioxin-8(4H)-one (2i) S28
(2R,3S,5R,6R)-2-(((2 dihydroxytetrahydrofu dihydroxytetrahydro-4	S,3S,4S,5R)-2,5-bis(((tert-butyldiphenylsily ıran-2-yl)oxy)-6-(((tert-butyldiphenylsilyl)oxy iH-pyran-4-one (2j)	l)oxy)methyl)-3,4- y)methyl)-3,5- S28
(2R,3R,5S,6S)-3,5-dił	hydroxy-2-methoxy-6-methyltetrahydro-4H	-pyran-4-one (2k) S29
(2R,3R,5S,6S)-2-(cyc	lohexyloxy)-3,5-dihydroxy-6-methyltetrahy	dro-4H-pyran-4-one (2I) S30
(2S,3S,5R,6R)-3,5-dil tetramethyltetrahydro- pyran-4-one (2m)	hydroxy-2-methyl-6-(((3aR,5R,5aS,8aS,8bl -5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-y	R)-2,2,7,7- /l)methoxy)tetrahydro-4H- S30
(6-O-tert-butyldimethy	/lsilyl)-methyl-α-D-ribo-hexapyranoside-3-u	lose (2n) from 1n S31
Substrate Limitations		
α-Galactopyranosides	5:	
β-Galactopyranosides	3:	S33
N-Acetylglucosamine:	·	S33
Glucopyranose:		
Sucrose:		

References	
NMR Files	

General Information

Materials

Stainless steel needles and syringes were used to transfer air and moisture-sensitive liquids. Schlenk flasks were dried at 140 °C for at least 24 hours prior to use. Acetonitrile was HPLC grade and purified using a solvent purification system equipped with columns of activated alumina under nitrogen (Innovative Technology, Inc.). 4 Å molecular sieves were stored for at least 24 hours at 140 °C prior to use. Other reagents and solvents were used without further purification. Flash column chromatography was carried out using neutral silica gel (60 Å, 230–400 mesh, Silicycle). Analytical thin layer chromatography was carried out using aluminum-backed silica gel 60 F254 plates (EMD), and compounds were visualized using UV light and aqueous basic KMnO₄ stain.

Instrumentation

¹H and ¹³C NMR and 2D NMR spectra were recorded using a Varian Mercury 400 MHz, Bruker Avance III 400 MHz, Agilent DD2 600 (600 MHz), or Agilent DD2-500 (500 MHz) spectrometer equipped with a XSens cryoprobe. ¹H NMR are reported in parts per million (ppm) relative to tetramethylsilane and referenced to residual protium in the solvent. Spectral features are tabulated in the following order: chemical shift (δ , ppm); multiplicity (s-singlet, d-doublet, t-triplet, q-quartet, m-complex multiplet); coupling constant(s) (J, Hz); number of protons; assignment. Assignments were made on the basis of coupling constants and 2D NMR spectra. Highresolution mass spectra (HRMS) were obtained on a JEOL AccuTOF JMS- T1000LC mass spectrometer equipped with a DART (direct analysis in real time) ion source. Infrared (IR) spectra were obtained on a Perkin-Elmer Spectrum 100 instrument equipped with a singlebounce diamond/ZnSe ATR accessory as neat samples, or as thin film from CH₂Cl₂ as indicated. Spectral features are tabulated as follows: wavenumber (cm⁻¹); intensity (br-broad, sstrong, m-medium, w-weak). Specific rotations were measured with a Rudolph Autopol IV digital polarimeter equipped with a sodium lamp source (589 nm) and concentration (c) is reported in g/100 mL. Oxidation reactions were all run in 1 or 2 dram vials and placed approximately 4 inches from a Kessil® LED lamp (either: A160WE Tuna Blue (40 W), H150-Blue (32 W) or PR160L-390nm (52 W)

Substrate Synthesis

Methyl 6-O-(tert-butyldimethylsilyl)-α-D-glucopyranoside (1a)

Prepared according to previous literature.¹

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) = δ 4.72 (d, J = 3.8 Hz, 1H), 4.11 (d, J = 3.5 Hz, 1H), 3.90 - 3.82 (m, 2H), 3.80 (dd, J = 11.0, 5.4 Hz, 1H), 3.75 (m, 1H), 3.56 (ddd, J = 9.3, 5.2, 3.8 Hz, 1H), 3.50 (m, 1H), 3.43 (dd, J = 9.3, 2.9 Hz, 1H), 3.40 (s, 3H), 0.89 (s, 9H), 0.08 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) = δ 99.4, 74.5, 72.2, 71.5, 71.5, 63.7, 55.2, 26.0, 18.5, - 5.2.

Prepared according to previous literature.²

¹**H NMR** (400 MHz, CD₃OD): δ (ppm) = 7.54 – 7.46 (m, 6H), 7.34 – 7.27 (m, 6H), 7.27 – 7.21 (m, 3H), 4.77 (d, J = 3.8 Hz, 1H), 3.78 (ddd, J = 9.9, 6.7, 1.8 Hz, 1H), 3.67 – 3.58 (m, 1H), 3.54 (s, 3H), 3.50 – 3.39 (m, 2H), 3.28 (ddd, J = 12.2, 10.0, 7.8 Hz, 2H).

¹³**C NMR** (100 MHz, CD₃OD): δ (ppm) = 145.6, 129.9, 128.7, 128.0, 101.1, 87.7, 75.4, 73.6, 72.5, 72.3, 64.9, 55.4,

Methyl 4,6-O-isopropylidene-α-D-glucopyranoside (1c)

Prepared according to previous literature.³

¹**H NMR** (400 MHz, CDCl₃): δ (ppm) = 4.74 (d, J = 3.9 Hz, 1H), 3.85 (dd, J = 10.5, 5.2 Hz, 1H), 3.80 - 3.66 (m, 2H), 3.67 - 3.53 (m, 2H), 3.53 - 3.47 (m, 1H), 3.40 (s, 3H), 1.49 (s, 3H), 1.42 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ (ppm) = 99.9, 99.9, 73.6, 73.1, 72.1, 63.4, 62.4, 55.5, 29.2, 19.2.

Methyl 2-deoxy-α-D-glucopyranoside (1d)

Prepared according to previous literature.⁴

¹**H NMR** (500 MHz, CD₃OD): δ (ppm) = 4.79 (d, J = 3.1 Hz, 1H), 3.86 - 3.78 (m, 2H), 3.71 (dd, J = 11.8, 5.6 Hz, 1H), 3.52 - 3.47 (m, 1H), 3.34 (s, 3H), 3.27 - 3.22 (m, 1H), 2.06 (ddd, J = 13.0, 5.1, 1.0 Hz, 1H), 1.61 (ddd, J = 13.0, 11.8, 3.6 Hz, 1H).

¹³**C NMR** (126 MHz, CD₃OD): δ (ppm) = 99.8, 73.8, 73.3, 69.9, 62.8, 54.9, 38.8.

Methyl 4,6-O-isopropylidene-β-D-glucopyranoside (1f)

Prepared according to previous literature.³

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) = δ 4.26 (d, J = 7.7 Hz, 1H), 3.92 (dd, J = 10.8, 5.4 Hz, 1H), 3.81 – 3.74 (m, 1H), 3.69 - 3.61 (m, 1H), 3.58 - 3.52 (m, 4H), 3.45 - 3.38 (m, 1H), 3.38 - 3.33 (m, 1H), 3.30 - 3.22 (m, 2H), 1.50 (s, 3H), 1.43 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) = δ 104.3, 100.0, 74.7, 73.6, 73.3, 67.3, 62.2, 57.5, 29.1, 19.2.

Octyl α-D-glucopyranoside (1h)

Prepared according to previous literature.⁵

¹**H NMR** (500 MHz, CD₃OD): δ (ppm) = 4.79 (d, J = 3.8 Hz, 1H), 3.81 (dd, J = 11.8, 2.4 Hz, 1H), 3.78 – 3.72 (m, 1H), 3.72 - 3.62 (m, 2H), 3.59 (ddd, J = 9.9, 5.5, 2.4 Hz, 1H), 3.49 - 3.43 (m, 1H), 3.40 (dd, J = 9.7, 3.8 Hz, 1H), 3.35 - 3.27 (m, 1H), 1.73 - 1.56 (m, 2H), 1.47 - 1.23 (m, 10H), 0.96 - 0.88 (m, 3H).

¹³**C NMR** (126 MHz, CD₃OD): δ (ppm) = 100.1, 75.1, 73.6, 73.6, 71.8, 69.1, 62.7, 33.0, 30.6, 30.6, 30.4, 27.3, 23.7, 14.4.

Prepared according to previous literature.⁶

¹**H NMR** (400 MHz, CD₃CN): δ (ppm) = 5.01 (d, J = 3.8 Hz, 2H), 3.81 – 3.65 (m, 8H), 3.65 – 3.54 (m, 4H), 3.53 – 3.45 (m, 4H), 1.46 (s, 6H), 1.35 (s, 6H).

¹³**C NMR** (100 MHz, CD₃CN): δ (ppm) = 100.3, 95.5, 74.7, 73.6, 71.7, 64.8, 63.0, 29.6, 19.5.

6,1',6'-tri-O-tertbutyldiphenylsilyl sucrose (1j)

Prepared according to previous literature.⁷

¹**H NMR** (500 MHz, CD₃Cl₃): δ (ppm) = 7.74 - 7.64 (m, 12H), 7.42 - 7.30 (m, 18H), 5.66 (d, J = 4.1 Hz, 1H), 4.27 - 4.15 (m, 2H), 3.92 (ddd, J = 11.3, 6.8, 2.9 Hz, 2H), 3.88 - 3.80 (m, 2H), 3.77 - 3.67 (m, 4H), 3.66 - 3.58 (m, 1H), 3.40 - 3.33 (m, 2H), 1.15 - 0.99 (m, 27H).

¹³**C NMR** (126 MHz, CD₃Cl₃): δ (ppm) = 135.8, 135.8, 135.8, 135.7, 135.7, 135.6, 133.3, 133.1, 132.9, 132.9, 132.8, 130.0, 130.0, 130.0, 129.9, 128.0, 128.0, 127.9, 127.9, 127.9, 104.8, 91.0, 80.4, 78.3, 74.9, 74.4, 72.3, 71.5, 71.1, 65.8, 64.7, 63.3, 27.0, 27.0, 26.9, 19.4, 19.3, 19.3.

Cyclohexyl α-L-rhamnopyranoside (11)

Prepared according to previous literature.⁸

¹**H NMR** (400 MHz, CD₃OD): δ (ppm) = 4.82 (d, J = 1.7 Hz, 1H), 3.75 (dd, J = 3.3, 1.7 Hz, 1H), 3.70 – 3.63 (m, 2H), 3.63 - 3.54 (m, 1H), 3.39 - 3.33 (m, 1H), 1.94 - 1.79 (m, 2H), 1.79 - 1.65 (m, 2H), 1.59 - 1.47 (m, 1H), 1.46 - 1.17 (m, 8H).

¹³**C NMR** (100 MHz, CD₃OD): δ (ppm) = 99.6, 76.1, 74.1, 72.8, 72.4, 69.8, 34.5, 32.5, 26.8, 25.1, 24.8, 17.9.

1,2:3,4-di-O-isopropylidene-6-O- α -L-rhamnopyranosyl- α -D-galactopyranose (1m)

Prepared according to previous literature.⁸

¹**H NMR** (400 MHz, CD₃OD): δ (ppm) = 4.66 (dd, J = 7.9, 2.4 Hz, 1H), 4.39 (dd, J = 5.0, 2.4 Hz, 1H), 4.30 (dd, J = 7.9, 1.9 Hz, 1H), 4.05 – 3.97 (m, 1H), 3.90 - 3.81 (m, 2H), 3.75 - 3.61 (m, 2H), 3.54 (dd, J = 10.2, 6.9 Hz, 1H), 1.53 (s, 3H), 1.44 (s, 3H), 1.40 – 1.33 (m, 6H), 1.29 (d, J = 6.2 Hz, 3H).

¹³**C NMR** (100 MHz, CD₃OD): δ (ppm) = 110.4, 109.9, 101.9, 97.7, 73.9, 72.4, 72.2, 72.0, 72.0, 69.9, 68.5, 67.0, 26.4, 26.4, 25.2, 24.6, 18.0.

Methyl-6-(tert-butyldimethylsilyloxy)-α-D-mannopyranoside (1n)

Prepared according to previous literature.9

¹**H NMR** (400 MHz, CD₃OD): δ (ppm) = 4.64 (d, J = 1.6 Hz, 1H), 4.01 (dd, J = 11.1, 1.9 Hz, 1H), 3.84 - 3.76 (m, 2H), 3.67 (dd, J = 8.9, 3.5 Hz, 1H), 3.60 - 3.48 (m, 2H), 3.39 (s, 3H), 0.95 (s, 9H), 0.13 (s, 3H), 0.13 (s, 3H).

¹³**C NMR** (100 MHz, CD₃OD): δ (ppm) = 102.6, 74.9, 72.8, 72.0, 68.8, 64.6, 55.0, 26.4, 19.2, -5.1.

Reaction Optimization

Methyl 6-O-(tert-butyldimethylsilyl)-α-D-glucopyranoside

Photocatalyst Screen

Photocatalyst	Loading	%2a	%1a
(Ir[dF(CF ₃)ppy] ₂ (dtbpy))PF ₆	2.5 mol%	63	13
4-CzIPN	5.0 mol%	51	0
MeO Nt BF4 OMe	5.0 mol%	65	22

Oxidant Screen

Oxidant	%2a	%1a	Notes:
None	38	39	
O ₂ balloon (instead of air)	27	64	
Selectfluor (1.0 equiv.)	9	90	
DMSO (10:1 MeCN:DMSO)	-	-	over-oxidation
K ₂ S ₂ O (1.0 equiv.)	-	-	over-oxidation

Additive Screen

<5

91

Hydrogen Bond Acceptor Screen

KI (0.2 equiv)

Photocatalyst Loading	Acceptor (Y mol%)	4Å MS?	%2a	%1a
	None		38	39
10 mol%	Bu ₄ NH ₂ PO ₄ (25 mol%)	No	30	41
	Bu₄NOBz (25 mol%)		27	40
5 mol9/	None	Voo	65	22
5 1101%	Bu ₄ NOPO(OBu) ₂ (25 mol%)	res	62	15

Solvent Screen

Solvent	%2g	%1g
MeCN	16	58
DMSO	30	52
MeCN:DMSO (10:1)	33	48
MeCN:DMSO (4:1)	40	30
MeCN:DMSO (1:1)	32	47
MeCN:H ₂ O (10:1)	11	51
MeCN:MeOH (10:1)	20	64
MeCN:TFE (10:1)	21	60

Hydrogen Bond Acceptor Screen:

H-Bond Acceptor (X mol%)	%2g	% 1g
None	14	62
4-ClOBzBu4N (25 mol%)	18	51
Bu4NH2PO4 (25 mol%)	33	48
Bu₄NOPO(OPh)₂ (25 mol%)	45	20
Bu₄NOPO(OBu)₂ (25 mol%)	56	<5
NaOPO(OBu)2 (25 mol%)	44	<5
KOPO(OBu) ₂ (25 mol%)	53	<5

Methyl α-L-rhamnopyranoside

Additive Screen

Additive	%2k	%1k
None	22	22
4Å MS (powder, 25 mg)	28	28

Additive	%2k	% 1k
None	28	28
Phthalimide (20 mol%)	22	35
(CH ₃) ₃ CCO ₂ H (1.0 equiv.)	36	25
TsOH●H2O (1.0 equiv.)	11	86
Bu₃PO (30 mol%)	18	24
Pyridine-N-oxide (30 mol%)	11	16

Diol Activator Screen

Additive	%2k
PhB(OH)2 (10 mol%)	22
Ph ₂ SnCl ₂ (10 mol%) + 1.5 equiv. KHCO ₃	31
(Ph ₂ B) ₂ O (5 mol%)	10
2-CPBA•2H ₂ O (10 mol%)	52

Photocatalyst Screen

Photocatalyst (X mol%)	%2k	%1k
(Ir[dF(CF3)ppy]2(dtbpy))PF6 (2.0 mol%)	27	27
4-CzIPN (5 mol%)	32	15
$MeO \xrightarrow{N} BF_{4}^{-} OMe$ (5 mol%)	52	11
OMe Mes OMe MeO MeO MeO OMe (5 mol%)	53	7

Boron-Quinuclidine Loading Screen

		2-CPBA•2H ₂ O (mol%)		
		10	20	
Quinuclidine (mol%)	20	21		
	30	53	48	
	40	57	48	

Methyl α-L-rhamnopyranoside (C2 Oxidation)

HAT Catalyst Screen

HO HO HO	OMe Mes OMe MeO (5 mol%) OMe C-CPBA+2H ₂ O (10 mo HAT Catalyst (30 mol 4A MS (25 mg) MeCN air balloon Blue LED, rt, 24 hr	° ° ° %) № HO	le O O 2k	ОМе 2 он + Ме но н	OMe 10 0 3k
	HAT Catalyst	% 2k	%3k	%1k	
	ZN-	51	0	11	
	CN_OH	0	8	81	
	OAc	35	4	22	
	OSO ₂ Ph	17	0	60	
	OSO ₂ Me	13	0	51	
	O=S=O H O H	0	0	95	
	O S N CF ₃ CF ₃ CF ₃	0	0	76	
	O S N O H O H	0	0	83	
	P ^O SH	0	0	85	

3k

TBADT (X mol%)	%3k	%1k
5	17	0
4.5	21	17
3.5	34	20
2.5	30	26

Boronic Acid Loading

1k

3k

2-CPBA 2H ₂ O (X mol%)	%3k	%1k
5	27	28
10	30	26
20	20	29

Concentration Screen

1k

MeCN (X mL)	%3k	%1k
0.4	20	22
0.8	30	26

1.6 28	29
--------	----

Time Screen

1k

3k

Time (h)	%3k	%1k
2	15	66
6	17	55
13	24	40
24	30	26
30	29	21
48	28	7

Control Experiments

Methyl 6-O-(tert-butyldimethylsilyl)-α-D-glucopyranoside

Changes to Above Conditions:	%2a
None	65
No Photocatalyst	<5
No Quinuclidine	<5
No MS	40
No Blue Light	<5

Methyl α-L-rhamnopyranoside

Changes to Above Conditions:	%2k
None	57
No Photocatalyst	<5
No 2-CPBA 2H ₂ O	<5
No Quinuclidine	<5
No MS	26
No Blue Light	<5

Product Characterization

General Procedure A:

Carbohydrate (0.2 mmol, 1.0 equiv.), acridinium photocatalyst (0.01 mmol, 0.05 equiv.), quinuclidine (4.4 mg, 0.04 mmol, 0.2 equiv.), 4Å molecular sieves (powder, 25 mg) and a small, magnetic stir bar were transferred to a 2-dram vial. The vial was sealed with a rubber septum and an air balloon was inserted into it. 1.6 mL of anhydrous acetonitrile was transferred into the vial and the solution was sonicated for 5 seconds. Subsequently, the vial was placed 4 inches from a blue LED Kessil lamp and stirred at 1050 rpm (the temperature under the light was monitored and remained at ~25 °C throughout the course of the reaction) for 24 – 48 hours. After 16 hours, a needle was inserted into the septum and the vial was flushed with air from the balloon for 10 seconds. The needle was then removed. After 24 – 48 hours, the crude mixture was diluted with acetonitrile, filtered through a small celite plug and the filtrate was concentrated under reduced pressure. Following ¹H NMR analysis, the crude material was subjected to flash chromatography on silica gel.

General Procedure B:

Carbohydrate (0.2 mmol, 1.0 equiv.), acridinium photocatalyst (0.01 mmol, 0.05 equiv.), NBu₄OPO(OBu)₂ (22.6 mg, 0.05 mmol, 0.25 equiv.), quinuclidine (4.4 mg, 0.04 mmol, 0.2 equiv.), 4Å molecular sieves (powder, 25 mg) and a small, magnetic stir bar were transferred to a 2-dram vial. The vial was sealed with a rubber septum and an air balloon was inserted into it. 1.6 mL of anhydrous acetonitrile was transferred into the vial and the solution was sonicated for 5 seconds. Subsequently, the vial was placed 4 inches from a blue LED Kessil lamp and stirred at 1050 rpm (the temperature under the light was monitored and remained at ~25 °C throughout the course of the reaction) for 24 – 48 hours. After 16 hours, a needle was inserted into the septum and the vial was flushed with air from the balloon for 10 seconds. The needle was then removed. After 24 – 48 hours, the crude mixture was diluted with acetonitrile, filtered through a small celite plug and the filtrate was concentrated under reduced pressure. Following ¹H NMR analysis, the crude material was subjected to flash chromatography on silica gel.

General Procedure C:

Carbohydrate (0.2 mmol, 1.0 equiv.), acridinium photocatalyst (0.01 mmol, 0.05 equiv.), NBu₄OPO(OBu)₂ (22.6 mg, 0.05 mmol, 0.25 equiv.), quinuclidine (4.4 mg, 0.04 mmol, 0.2 equiv.), 4Å molecular sieves (powder, 25 mg) and a small, magnetic stir bar were transferred to a 2-dram vial. The vial was sealed with a rubber septum and an air balloon was inserted into it. 1.6 mL of anhydrous acetonitrile and 0.16 mL of anhydrous dimethyl sulfoxide were transferred into the vial and the solution was sonicated for 5 seconds. Subsequently, the vial was placed 4 inches from a blue LED Kessil lamp and stirred at 1050 rpm (the temperature under the light was monitored and remained at ~25 °C throughout the course of the reaction) for 24 – 48 hours. After 16 hours, a needle was inserted into the septum and the vial was flushed with air from the balloon for 10 seconds. The needle was then removed. After 24 – 48 hours, the crude mixture was diluted with acetonitrile, filtered through a small celite plug and the filtrate was concentrated under reduced pressure. Following ¹H NMR analysis, the crude material was peracylated using acetic anhydride (2.5 equiv./hydroxyl group) and pyridine (3 mL). After quenching the reaction mixture with methanol and azeotropic removal of pyridine using toluene, the crude material was subjected to flash chromatography on silica gel.

General Procedure D:

Carbohydrate (0.2 mmol, 1.0 equiv.), acridinium photocatalyst (0.01 mmol, 0.05 equiv.), 2carboxyphenylboronic acid dihydrate (4.0 mg, 0.02 mmol, 0.1 equiv.), quinuclidine (8.8 mg, 0.08 mmol, 0.4 equiv.), 4Å molecular sieves (powder, 25 mg) and a small, magnetic stir bar were transferred to a 2-dram vial. The vial was sealed with a rubber septum and an air balloon was inserted into it. 1.6 mL of anhydrous acetonitrile was transferred into the vial and the solution was sonicated for 5 seconds. Subsequently, the vial was placed 4 inches from a blue LED Kessil lamp and stirred at 1050 rpm (the temperature under the light was monitored and remained at ~25 °C throughout the course of the reaction) for 24 hours. After 16 hours, a needle was inserted into the septum and the vial was flushed with air from the balloon for 10 seconds. The needle was then removed. After 24 hours, the crude mixture was diluted with acetonitrile, filtered through a small celite plug and the filtrate was concentrated under reduced pressure. Following ¹H NMR analysis, the crude material was subjected to flash chromatography on silica gel.

(6-O-tert-butyldimethylsilyl)-methyl-α-D-ribo-hexapyranoside-3-ulose (2a)

Prepared according to **General Procedure A** (24 hours) from **1a** (61.6 mg, 0.2 mmol, 1 equiv.). **2a** was obtained as a white solid (39.2 mg, 64%) after flash chromatography on silica gel (25% to 55% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CD₃CN): δ (ppm) = 5.03 (d, J = 4.3 Hz, 1H, H1), 4.34 (ddd, J = 8.4, 4.3, 1.6 Hz, 1H, H2), 4.23 (ddd, J = 9.7, 5.3, 1.6 Hz, 1H, H4), 3.97 – 3.82 (m, 2H, H6_a, H6_b), 3.65 (d, J = 5.3 Hz, 1H, OH), 3.56 – 3.49 (m, 2H, H5, OH), 3.34 (s, 3H, OCH₃), 0.91 (s, 9H, CH₃), 0.10 (s, 6H, CH₃).

¹³**C NMR** (126 MHz, CD₃CN): δ (ppm) = 207.3 (C3), 103.3 (C1), 76.7 (C5), 75.8 (C2), 72.9 (C4), 63.4 (C6), 55.7 (OCH₃), 26.2 (CH₃), 19.0 (C(CH₃)₃), -5.0 (CH₃), -5.2 (CH₃).

IR (thin film, cm⁻¹): 3493 (w), 3401 (w), 2953 (w), 2931 (w), 2856 (w), 1738 (s), 1478 (w), 1461 (w), 1393 (w), 1249 (m), 1129 (m), 1113 (m), 1055 (s), 997 (m), 829 (s), 785 (s).

HRMS (DART⁺, m/z): calculated for C₁₃H₂₇O₆Si [M+H]⁺: 307.1571, found 307.1567.

1.0 mmol scale reaction with 4-CzIPN:

Due to unforeseen shortages in the commercial supply of acridinium photocatalysts, 4-CzIPN was used as the photocatalyst for large scale reactions. Yields are expected to be 5% to 10% higher with the acridinium photocatalysts.

1a (308.4 mg, 1.0 mmol, 1.0 equiv.), 4-CzIPN (39.4 mg, 0.05 mmol, 0.05 equiv.), quinuclidine (22.2 mg, 0.2 mmol, 0.2 equiv.), 4Å molecular sieves (powder, 50 mg) and a magnetic stir bar were transferred to a 10-dram vial. The vial was sealed with a rubber septum and an air balloon was inserted into it. 8.0 mL of anhydrous acetonitrile was transferred into the vial and the solution was sonicated for 5 seconds. Subsequently, the vial was placed 4 inches from two blue LED Kessil lamp and stirred at 1050 rpm (the temperature under the light was monitored and remained at ~25 °C throughout the course of the reaction) for 36 hours. After 16 hours, a needle was inserted into the septum and the vial was flushed with air from the balloon for 20 seconds. The needle was then removed. After 36 hours, the crude mixture was diluted with acetonitrile, filtered through a celite plug and the filtrate was concentrated under reduced pressure. After flash chromatography on silica gel (25% to 55% ethyl acetate in hexanes), **2a** was obtained as a pale-yellow solid (159.5 mg, 52%).

(6-O-trityl)-methyl-α-D-ribo-hexapyranoside-3-ulose (2b)

Prepared according to **General Procedure A** (24 hours) from **1b** (87.2 mg, 0.2 mmol, 1 equiv.). **2b** was obtained as a white solid (47.6 mg, 55%) after flash chromatography on silica gel (25% to 55% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CD₃CN): δ (ppm) = 7.55 – 7.45 (m, 6H, H_{Ar}), 7.38 – 7.31 (m, 6H, H_{Ar}), 7.31 – 7.25 (m, 3H, H_{Ar}), 5.12 (d, J = 4.7 Hz, 1H, H1), 4.45 (ddd, J = 8.1, 4.3, 1.4 Hz, 1H, H2), 4.29 (ddd, J = 9.8, 5.2, 1.5 Hz, 1H, H4), 3.78 – 3.71 (m, 1H, H5), 3.62 (d, J = 5.4 Hz, 1H, OH), 3.57 (d, J = 8.4 Hz, 1H, OH), 3.42 (s, 3H, OCH₃), 3.37 (dd, J = 10.2, 1.9 Hz, 1H, H6_a), 3.32 (dd, J = 10.2, 5.6 Hz, 1H, H6_b).

¹³**C NMR** (126 MHz, CD₃CN): δ (ppm) = 206.9 (C3), 145.0 (C_{Ar}), 129.6 (C_{Ar}), 128.9 (C_{Ar}), 128.2 (C_{Ar}), 103.2 (C1), 87.4 (C(Ph)₃), 75.9 (C2), 75.3 (C5), 73.6 (C4), 64.4 (C6), 55.8 (OCH₃).

IR (thin film, cm⁻¹): 3435 (w, br), 2927 (w), 1732 (s), 1491 (m), 1447 (s), 1220 (w), 1186 (w), 1118 (s), 1045 (s), 900 (w), 873 (w), 764 (s), 701 (s), 631 (s).

HRMS (DART⁺, m/z): calculated for C₂₆H₂₆NaO₆ [M+Na]⁺: 457.1622, found 457.1625.

(4aR,6S,7S,8aR)-7-hydroxy-6-methoxy-2,2-dimethyltetrahydropyrano[3,2-d][1,3]dioxin-8(4H)-one (2c)

Prepared according to **General Procedure B** (48 hours) from **1c** (46.8 mg, 0.2 mmol, 1 equiv.). **2c** was obtained as a white solid (27.6 mg, 60%) after flash chromatography on silica gel (60% to 80% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) = 5.11 (d, J = 4.4 Hz, 1H, H1), 4.42 – 4.27 (m, 2H, H2, H4), 4.00 – 3.91 (m, 2H, H6_a, H6_b), 3.88 – 3.82 (m, 1H, H5), 3.40 (s, 3H, OCH₃), 1.50 (s, 3H, CH₃), 1.48 (s, 3H, CH₃).

¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) = 199.6 (C3), 103.5 (C1), 100.5 (\underline{C} (CH₃)₂), 75.7 (C4), 75.0 (C2), 66.8 (C5), 62.9 (C6), 55.8 (OCH₃), 28.9 (CH₃), 18.9 (CH₃).

IR (thin film, cm⁻¹): 3439 (w, br), 2939 (w), 1743 (s), 1458 (w), 1379 (w), 1354 (w), 1261 (w), 1190 (m), 1162 (m), 1120 (m), 1040 (s), 966 (s), 956 (s), 882 (m), 829 (m), 730 (w), 646 (w).

HRMS (DART⁺, m/z): calculated for C₁₀H₁₇O₆ [M+H]⁺: 233.1019, found 233.1017.

Methyl-2-deoxy-α-D-erythro-hexopyranosid-3-ulose (2d)

Prepared according to **General Procedure B** (48 hours) from **1d** (35.6 mg, 0.2 mmol, 1 equiv.). **2d** was obtained as a white solid (19.6 mg, 56%) after flash chromatography on silica gel (60% to 90% ethyl acetate in hexanes). Spectral features match with previous literature.¹⁰

¹**H NMR** (500 MHz, CD₃OD): δ (ppm) = 5.22 (d, J = 4.2 Hz, 1H), 4.26 (dd, J = 9.9, 1.0 Hz, 1H), 3.92 (m, 2H), 3.80 – 3.72 (m, 1H), 3.42 (s, 3H), 2.97 (ddd, J = 14.1, 4.5, 1.3 Hz, 1H), 2.57 (dd, J = 14.1, 1.1 Hz, 1H).

¹³**C NMR** (126 MHz, CD₃OD): δ (ppm) = 207.5, 101.1, 76.3, 74.1, 62.6, 55.0, 46.6.

Methyl α-D-xylo-hexopyranosid-3-ulose (2e)

Prepared according to **General Procedure B** (48 hours) from **1e** (32.8 mg, 0.2 mmol, 1 equiv.). **2e** was obtained as a white solid (19.4 mg, 60%) after flash chromatography on silica gel (60% to 90% ethyl acetate in hexanes). Spectral features match with previous literature.¹¹

¹**H NMR** (500 MHz, CD₃CN): δ (ppm) = 5.00 (d, J = 4.2 Hz, 1H), 4.40 – 4.28 (m, 2H), 4.03 (dd, J = 10.4, 8.0 Hz, 1H), 3.64 (d, J = 5.0 Hz, 1H), 3.54 (d, J = 8.4 Hz, 1H), 3.50 – 3.43 (m, 1H), 3.34 (s, 3H).

¹³**C NMR** (126 MHz, CD₃CN): δ (ppm) = δ 206.9, 104.0, 76.1, 72.9, 65.2, 55.8.

(4aR,6R,7S,8aR)-7-hydroxy-6-methoxy-2,2-dimethyltetrahydropyrano[3,2-d][1,3]dioxin-8(4H)-one (2f)

Prepared according to **General Procedure B** (48 hours) from **1f** (46.8 mg, 0.2 mmol, 1 equiv.). A 5:1 mixture of C3 (**2f**):C2 regioisomers were obtained as a colorless oil (22.0 mg, 47%) after flash chromatography on silica gel (60% to 80% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) = 4.42 (dd, *J* = 10.2, 2.0 Hz, 1H, H4), 4.34 (d, *J* = 7.5 Hz, 1H, H1), 4.13 – 4.10 (m, 1H, H2), 4.07 (dd, *J* = 11.0, 5.4 Hz, 1H, H6_a), 3.95 (d, *J* = 10.0 Hz, 1H, H6_b), 3.60 (s, 3H, OCH₃), 3.40 (ddd, *J* = 10.1, 5.3 Hz, 1H, H5), 1.51 (s, 3H, CH₃), 1.49 (s, 3H, CH₃).

¹³**C** NMR (126 MHz, CDCl₃): δ (ppm) = 199.7 (C3), 107.1 (C1), 100.6 (<u>C</u>(CH₃)₂), 77.3 (C2), 75.3 C4), 67.8 (C5), 62.5 (C6), 57.9 (OCH₃), 28.8 (CH₃), 18.8 (CH₃).

IR (thin film, cm⁻¹): 3405 (w, br), 2939 (w), 1743 (m), 1455 (w), 1380 (m), 1199 (m), 1124 (m), 1085 (s), 1013 (s), 849 (m), 728 (w).

HRMS (DART⁺, m/z): calculated for C₁₀H₁₇O₆ [M+H]⁺: 233.1019, found 233.1021.

(2R,3R,5S,6S)-2-(acetoxymethyl)-6-methoxy-4-oxotetrahydro-2H-pyran-3,5-diyl diacetate (2g)

Prepared according to **General Procedure C** (24 hours) from **1g** (38.8 mg, 0.2 mmol, 1 equiv.). **2g** was obtained as a pale-yellow oil (35.6 mg, 56%) after flash chromatography on silica gel (20% to 50% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) = 5.41 (dd, J = 4.1, 1.1 Hz, 1H, H2), 5.30 (dd, J = 10.3, 1.1 Hz, 1H, H4), 5.16 (d, J = 4.1 Hz, 1H, H1), 4.33 – 4.28 (m, 2H, H6), 4.20 – 4.14 (m, 1H, H5), 3.43 (s, 3H, OCH₃), 2.17 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 2.10 (s, 3H, CH₃).

¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) = 193.0 (C3), 170.6 (Ac C=O), 169.4 (Ac C=O), 168.9 (Ac C=O), 99.9 (C1), 74.7 (C2), 72.2 (C4), 69.7 (C5), 62.2 (C6), 55.8 (OCH₃), 20.8 (CH₃), 20.5 (CH₃), 20.3 (CH₃).

IR (thin film, cm⁻¹): 2942 (w), 1740 (s), 1440 (w), 1371 (m), 1218 (s), 1115 (m), 1090 (s), 915 (m), 731 (w), 639 (w).

HRMS (DART⁺, m/z): calculated for C₁₃H₁₉O₉ [M+H]⁺: 319.1024, found 319.1025.

(2R,3R,5S,6S)-2-(acetoxymethyl)-6-octyloxy-4-oxotetrahydro-2H-pyran-3,5-diyl diacetate (2h)

Prepared according to **General Procedure C** (36 hours) from **1h** (58.4 mg, 0.2 mmol, 1 equiv.). **2h** was obtained as a pale-yellow oil (48.8 mg, 54%) after flash chromatography on silica gel (20% to 50% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) = 5.40 (dd, J = 4.2, 1.1 Hz, 1H, H2), 5.29 (dd, J = 10.3, 1.1 Hz, 1H, H4), 5.25 (d, J = 4.1 Hz, 1H, H1), 4.30 (d, J = 3.2 Hz, 2H, H6), 4.23 – 4.18 (m, 1H, H5), 3.72 – 3.65 (m, 1H, CH_a), 3.52 – 3.46 (m, 1H, CH_b), 2.17 (s, 3H, CH₃), 2.15 (s, 3H, CH₃), 2.10 (s, 3H, CH₃), 1.61 – 1.54 (m, 2H, CH₂), 1.30 – 1.22 (m, 10H, CH₂), 0.88 – 0.84 (m, 3H, CH₃).

¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) = 193.2 (C3), 170.6 (Ac C=O), 169.6 (Ac C=O), 169.0 (Ac C=O), 98.8 (C1), 74.8 (C2), 72.3 (C4), 69.7 (C5), 69.2 (CH₂), 62.3 (C6), 31.9 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 26.0 (CH₂), 22.7 (CH₂), 20.8 (CH₃), 20.5 (CH₃), 20.4 (CH₃), 14.2 (CH₃).

IR (thin film, cm⁻¹): 2927 (w), 2857 (w), 1745 (s), 1444 (w), 1370 (m), 1220 (s), 1159 (w), 1113 (w), 1066 (s), 1028 (s), 639 (w).

HRMS (DART⁺, m/z): calculated for C₂₀H₃₂NaO₉ [M+Na]⁺: 439.1939, found 439.1947.

(6R,7S)-7-hydroxy-6-(((4aR,6R,7S,8aR)-7-hydroxy-2,2-dimethyl-8oxohexahydropyrano[3,2-d][1,3]dioxin-6-yl)oxy)-2,2-dimethyltetrahydropyrano[3,2d][1,3]dioxin-8(4H)-one (2i)

Prepared according to **General Procedure B** (0.1 mmol scale, 48 hours) from **1i** (42.2 mg, 0.1 mmol, 1 equiv.). **2i** was obtained as a colorless solid (14.6 mg, 35%) after flash chromatography on silica gel (70% to 90% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) = 5.50 (d, J = 4.7 Hz, 2H, H1), 4.45 – 4.34 (m, 4H, H2, H4), 4.14 – 4.07 (m, 2H, H5), 3.99 (dd, J = 10.6, 5.1 Hz, 2H, H6_a), 3.90 (t, J = 10.4 Hz, 2H, H6_b), 3.54 (d, J = 6.7 Hz, 2H, OH), 1.51 (s, 6H, CH₃), 1.50 (s, 6H, CH₃).

¹³**C** NMR (126 MHz, CDCl₃): δ (ppm) = 199.0 (C3), 100.7 (<u>C</u>(CH₃)₂), 98.3 (C1), 75.5 (C4), 74.1 (C2), 67.7 (C5), 62.7 (C6), 28.7 (CH₃), 19.0 (CH₃).

IR (thin film, cm⁻¹): 3480 (w, br), 2929 (w), 1746 (s), 1378 (w), 1261 (w), 1175 (w), 1044 (s), 977 (s), 953 (s), 852 (s), 709 (w).

HRMS (DART⁺, m/z): calculated for C₈H₂₇O₁₁ [M+H]⁺: 419.1548, found 419.1548.

(2R,3S,5R,6R)-2-(((2S,3S,4S,5R)-2,5-bis(((tert-butyldiphenylsilyl)oxy)methyl)-3,4dihydroxytetrahydrofuran-2-yl)oxy)-6-(((tert-butyldiphenylsilyl)oxy)methyl)-3,5dihydroxytetrahydro-4H-pyran-4-one (2j)

Prepared according to **General Procedure A** (0.1 mmol scale, 48 hours) from **1j** (105.7 mg, 0.1 mmol, 1 equiv.). **2j** was obtained as a colorless solid (41 mg, 39%) after flash chromatography on silica gel (10% to 50% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CD₃CN): δ (ppm) = 7.77 – 7.64 (m, 12H, H_{Ar}), 7.47 – 7.29 (m, 18H, H_{Ar}), 5.78 (d, J = 4.7 Hz, 1H, Gluc-H1), 4.42 (ddd, J = 9.7, 5.3, 1.5 Hz, 1H, Gluc-H4), 4.34 – 4.25 (m, 1H, Fruc-CH), 4.13 (ddd, J = 8.8, 4.7, 1.6 Hz, 1H, Gluc-H2), 4.02 – 3.93 (m, 2H, Gluc-H5, Fruc-CH), 3.91 – 3.83 (m, 4H, Gluc-H6_a, Gluc-H6_b, Fruc-CH, Fruc-CH_a), 3.79 (dd, J = 11.2, 1.7 Hz, 1H, Fruc-CH_b), 3.72 (d, J = 10.8 Hz, 1H, Fruc-CH_a), 3.67 – 3.60 (m, 2H, OH, Fruc-CH_b), 3.54 (d, J = 8.8 Hz, 1H, OH), 3.39 (d, J = 5.5 Hz, 1H, OH), 3.23 (d, J = 8.8 Hz, 1H, OH), 1.05 (s, 9H, CH₃), 1.04 (s, 9H, CH₃), 1.00 (s, 9H, CH₃).

¹³**C NMR** (126 MHz, CD₃CN): δ (ppm) = 207.3 (Gluc-C3), 136.6 (C_{Ar}), 136.4 (C_{Ar}), 136.4 (C_{Ar}), 136.4 (C_{Ar}), 136.4 (C_{Ar}), 136.4 (C_{Ar}), 134.4 (C_{Ar}), 134.3 (C_{Ar}), 134.2 (C_{Ar}), 134.2 (C_{Ar}), 134.1 (C_{Ar}), 133.8 (C_{Ar}), 130.9 (C_{Ar}), 130.8 (C_{Ar}), 130.8 (C_{Ar}), 130.8 (C_{Ar}), 130.8 (C_{Ar}), 130.8 (C_{Ar}), 128.9 (C_{Ar}), 128.8 (C_{Ar}), 128.8 (C_{Ar}), 128.8 (C_{Ar}), 128.7 (C_{Ar}), 105.7 (Fruc-C), 95.6 (Gluc-C1), 83.2, 77.5 (Fruc-C), 77.3, 75.1, 75.1 (Gluc-H2), 72.7 (Gluc-H4), 65.6, 65.0 (Fruc-CH₂), 64.1, 27.3 (CH₃), 27.2 (CH₃), 27.2 (CH₃), 19.9 (<u>C</u>(CH₃)₃), 19.8 (<u>C</u>(CH₃)₃).

IR (thin film, cm⁻¹): 3450 (w, br), 2911 (w), 1732 (w), 1466 (w), 1427 (m), 1098 (s), 999 (s), 815 (m), 699 (s), 611 (m).

HRMS (DART⁺, m/z): calculated for C₆₀H₇₄NaO₁₁Si₃ [M+Na]⁺: 1077.4431, found 1077.4441.

(2R,3R,5S,6S)-3,5-dihydroxy-2-methoxy-6-methyltetrahydro-4H-pyran-4-one (2k)

Prepared according to **General Procedure D** from **1k** (35.6 mg, 0.2 mmol, 1 equiv.). **2k** was obtained as a colorless solid (17.5 mg, 50%) after flash chromatography on silica gel (60% to 80% ethyl acetate in hexanes). Spectral features match with previous literature.¹¹

¹**H NMR** (500 MHz, CD₃CN): δ (ppm) = 4.98 (d, *J* = 4.4 Hz, 1H), 4.41 - 4.32 (m, 1H), 3.90 - 3.81 (m, 1H), 3.68 - 3.58 (m, 2H), 3.52 (d, *J* = 8.4 Hz, 1H), 3.34 (s, 3H), 1.36 (d, *J* = 6.2 Hz, 3H).

¹³**C NMR** (126 MHz, CD₃CN): δ (ppm) = 206.7, 103.2, 78.5, 75.9, 72.0, 55.7, 18.9.

(2R,3R,5S,6S)-2-(cyclohexyloxy)-3,5-dihydroxy-6-methyltetrahydro-4H-pyran-4-one (2I)

Prepared according to **General Procedure D** from **1I** (49.2 mg, 0.2 mmol, 1 equiv.). **2I** was obtained as a colorless solid (24.4 mg, 50%) after flash chromatography on silica gel (20% to 60% ethyl acetate in hexanes).

¹**H NMR** (400 MHz, CD₃CN): δ (ppm) = 5.22 (d, J = 4.6 Hz, 1H, H1), 4.33 (ddd, J = 9.3, 4.5, 1.5 Hz, 1H, H2), 3.84 (ddd, J = 9.3, 4.9, 1.4 Hz, 1H, H4), 3.80 – 3.67 (m, 1H, H5), 3.65 – 3.51 (m, 2H, CH, OH), 3.39 (d, J = 9.4 Hz, 1H, OH), 1.88 – 1.76 (m, 2H, CH₂), 1.76 – 1.60 (m, 2H, CH₂), 1.55 – 1.43 (m, 1H, CH₂), 1.35 – 1.16 (m, 8H, CH₃, CH₂).

¹³**C NMR** (100 MHz, CD₃CN): δ (ppm) = 207.0 (C3), 100.6 (C1), 78.6 (C4), 77.3 (CH), 75.8 (C2), 72.3 (C5), 34.0 (CH₂), 32.1 (CH₂), 26.3 (CH₂), 24.7 (CH₂), 24.5 (CH₂), 18.9 (CH₃).

IR (thin film, cm⁻¹): 3415 (m, br), 2930 (m), 2857 (m), 1729 (s), 1449 (w), 1424 (w), 1380 (w), 1358 (w), 1343 (w), 1160 (w), 1122 (m), 1102 (m), 1063 (s), 1033 (s), 1004 (s), 967 (m), 933 (m), 878 (m), 853 (m), 678 (w).

HRMS (DART⁺, m/z): calculated for $C_{12}H_{21}O_5$ [M+H]⁺: 245.1383, found 245.1380.

(2S,3S,5R,6R)-3,5-dihydroxy-2-methyl-6-(((3aR,5R,5aS,8aS,8bR)-2,2,7,7tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methoxy)tetrahydro-4H-pyran-4-one (2m)

Prepared according to **General Procedure D** (0.1 mmol scale) from **1m** (40.6 mg, 0.1 mmol, 1 equiv.). **2m** was obtained as a colorless solid (20.5 mg, 51%) after flash chromatography on silica gel (50% to 80% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CD₃CN): δ (ppm) = 5.44 (d, J = 5.0 Hz, 1H, Gal-H1), 5.16 (d, J = 4.4, 1H, Rham-H1), 4.59 (dd, J = 7.9, 2.4 Hz, 1H, Gal-H3), 4.36 (s, 1H, Rham-H2), 4.32 (dd, J = 5.0, 2.4 Hz, 1H, Gal-H2), 4.17 (dd, J = 7.9, 1.9 Hz, 1H, Gal-H4), 3.94 – 3.89 (m, 1H, Gal-H5), 3.88 – 3.82 (m, 1H, Rham-H4), 3.80 – 3.73 (m, 2H, Gal-H6_a, Rham-H5), 3.53 (dd, J = 10.3, 6.6 Hz, 1H, Gal-H6_b), 1.48 (s, 3H, CH₃), 1.37 (s, 3H, CH₃), 1.35 (d, J = 6.1 Hz, 3H, CH₃), 1.30 (s, 3H, CH₃), 1.29 (s, 3H, CH₃).

¹³**C** NMR (126 MHz, CD₃CN): δ (ppm) = 206.7 (Rham-C3), 109.8 (Gal- \underline{C} (CH₃)₂), 109.4 (Gal- \underline{C} (CH₃)₂), 102.2 (Rham-C1), 97.1 (Gal-C1), 78.5 (Rham-C4), 75.8 (Rham-C2), 72.4 (Rham-C5), 71.7 (Gal-C4), 71.5 (Gal-C3), 71.4 (Gal-C2), 67.5 (Gal-C5), 67.2 (Gal-C6), 26.3 (CH₃), 26.3 (CH₃), 25.2 (CH₃), 24.6 (CH₃), 18.9 (CH₃).

IR (thin film, cm⁻¹): 3450 (w, br), 2965 (w), 2931 (w), 1734 (m), 1378 (m), 1254 (m), 1166 (m), 1114 (m), 1058 (s), 999 (s), 918 (m), 889 (m), 860 (m), 805 (m), 763 (w).

HRMS (DART⁺, m/z): calculated for C₁₈H₂₈NO₁₀ [M+NH₄]⁺: 422.2020, found 422.2016.

(6-O-tert-butyldimethylsilyl)-methyl-α-D-ribo-hexapyranoside-3-ulose (2n) from 1n

Prepared according to **General Procedure D** from **1n** (61.6 mg, 0.2 mmol, 1 equiv.). **2n** was obtained as a colorless solid (28.2 mg, 46%) after flash chromatography on silica gel (20% to 40% ethyl acetate in hexanes).

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) = 5.13 (d, J = 4.4 Hz, 1H), 4.44 - 4.36 (m, 1H), 4.35 - 4.26 (m, 1H), 4.01 - 3.89 (m, 2H), 3.60 (ddd, J = 9.4, 4.0, 2.3 Hz, 1H), 3.45 - 3.35 (m, 4H), 3.18 (d, J = 8.2 Hz, 1H), 0.91 (s, 9H), 0.10 (s, 6H).

¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) = 206.5, 102.3, 76.1, 74.8, 72.3, 62.6, 55.6, 26.0, 18.6, -5.1, -5.2.

Substrate Limitations

α-Galactopyranosides:

β-Galactopyranosides:

Glucopyranose:

2) Ac₂O, Pyridine

Sucrose:

2) Ac₂O, Pyridine

References

- 1) Lv, J.; Luo, T.; Zou, D.; Dong, H. European J. Org. Chem. 2019, 2019, 6383.
- 2) Reiß, M.; Brietzke, A.; Eickner, T.; Stein, F.; Villinger, A.; Vogel, C.; Kragl, U.; Jopp, S. *RSC Adv.* 2020, **10**, 14299.
- 3) Kasun, Z. A.; Geary, L. M.; Krische, M. J. Chem. Commun. 2014, 50, 7545.
- 4) Gupta, M. R.; Thakur, K.; Khare, N. K. Carbohydr. Res. 2018, 457, 51.
- 5) Konstantinovic, S.; Predojevic, J.; Mojsilovic, B.; Dimitrijevic, B.; Milosevic, G. Ind. J. Chem. Sect. B 2001, **40B**, 796.
- 6) Ishida, H.; Ogawa, Y.; Imai, Y.; Kiso, M.; Hasegawa, A.; Sakurai, T.; Azuma, I. *Carbohydr. Res.* 1989, **194**, 199.
- 7) Ying, W.; Gaddam, V.; Harmata, M. Org. Lett. 2013, 15, 2723.
- 8) Gorelik, D. J.; Turner, J. A.; Virk, T. S.; Foucher, D. A.; Taylor, M. S. Org. Lett. 2021, 23, 49.
- 9) Lee, D.; Taylor, M. S. J. Am. Chem. Soc. 2011, 133, 3724.
- 10) Jäger, M.; Hartmann, M.; de Vries, J. G.; Minnaard, A. J. *Angew. Chemie Int. Ed.* 2013, **52**, 7809.
- 11) Chung, K.; Waymouth, R. M. ACS Catal. 2016, 6, 4653.

NMR Files
2a – ¹H NMR (500 MHz, CD₃CN)

2a – ¹³C NMR (126 MHz, CD₃CN)

2b – ¹H NMR (500 MHz, CD₃CN)

$2b - {}^{13}C NMR (126 MHz, CD_3CN)$

2b – COSY (500 MHz, CD₃CN)

2c - ¹³C NMR (126 MHz, CDCl₃)

2d – ¹H NMR (500 MHz, CD₃OD)

2d – ¹³C NMR (126 MHz, CD₃OD)

S56

2g - ¹³C NMR (126 MHz, CDCl₃)

2h – ¹H NMR (500 MHz, CDCl₃) OAc 2.17 2.17 2.10 2.10 2.10 2.10 2.10 1.161 1.161 1.155 1.1.58 1.1.58 1.1.29 1.1.29 0.88 0.88 0.88 0 AcO[,] ACO | OC₈H₁₇ Ó 1.04 <u>-</u> 1.02 <u>-</u> 2.76 2.70 2.19 J 11.16H 3.42 -≖ 1.95 1.00 3.5 **).**0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 4.0 0 f1 (ppm)

2h – ¹³C NMR (126 MHz, CDCl₃)

2i – ¹³C NMR (126 MHz, CDCl₃)

2i –COSY (500 MHz, CDCl₃)

2j –¹H NMR (500 MHz, CD₃CN)

2j –¹³C NMR (126 MHz, CD₃CN)

2j – COSY (500 MHz, CD₃CN)

2j – HSQC (500 MHz, CD₃CN)

2I – ¹H NMR (400 MHz, CD₃CN)

2I – COSY (400 MHz, CD₃CN)

2m – ¹H NMR (500 MHz, CD₃CN)

2n – ¹³C NMR (126 MHz, CDCl₃)

3k – Crude ¹H NMR (500 MHz, CD₃CN)

