Supporting Information

Red circularly polarized luminescence from intramolecular excimers restricted by chiral aromatic oligoamide foldamers

Dan Zheng, Shengzhu Guo, Lu Zheng, Qi Xu, Ying Wang*, Hua Jiang*

Table of contents

General Procedures and Materials 3
Synthesis 3
Synthesis of helicities of $S / R-1 \mathrm{a} \sim 1 \mathrm{~b}$. 3
Synthesis of helicities of $S / R-\mathrm{PCQ}_{2}-\mathrm{b}$. 11
Synthesis of helicities of S-2a and S-2b 14
Chiroptical Properties: 19

General Procedures and Materials.

Anhydrous dichloromethane, tetrafuran and dimethyl formamide were gained from PureSolv MD 5 (Inert solvent purification system). Anhydrous chlorobenzene and triethylamine were distilled over calcium hydride $\left(\mathrm{CaH}_{2}\right)$ under Ar atmosphere. $\boldsymbol{S} / \boldsymbol{R}-\mathbf{C Q}_{\mathbf{n}} \mathbf{- b}(\mathbf{n}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$ were prepared according to our previous work. ${ }^{1}$ Column chromatography was carried out on flash grade silica gel, using 0-20 psig pressure. Analytical TLC was carried out using tapered silica plates with a preadsorbent zone. NMR spectra were obtained with a Bruker spectrometer (400 MHz) and JEOL Delta (400 MHz and 600 MHz$)$ using chloroform-d $\left(\mathrm{CDCl}_{3}\right)$ as solvents. The chemical shift references were as follows: $\left({ }^{1} \mathrm{H}\right)$ chloroform$\mathrm{d}, 7.26 \mathrm{ppm}$; $\left({ }^{13} \mathrm{C}\right)$ chloroform-d, 77.00 ppm (chloroform-d), (1H) dichloromethane-d2, 5.32 ppm . Mass spectra (ESI, MALDI) were acquired on GCT and FT-ICR spectrometer (Bruker Daltonics Inc. APEXII, BIFLEX III), respectively. CD spectra were recorded on a Chirascan TM Circular Dichroism spectrometer (Applied Photophysics Ltd, Surrey, United Kingdom). CPL spectra were gained with JACSO CPL-300.

Synthesis

Synthesis of helicities of $\boldsymbol{S} / \boldsymbol{R} \mathbf{- 1 a} \sim \mathbf{1 b}$.

Scheme S1 Synthesis of compound $\boldsymbol{S} / \boldsymbol{R} \mathbf{- 1 a} \sim \mathbf{1 b}$. Conditions: i. $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, \mathbf{C u I}$, anhydrous THF and anhydrous $\mathrm{Et}_{3} \mathrm{~N}$, aromatic acetylene, room temperature; ii. $\mathrm{NaOH}, \mathrm{THF} / \mathrm{MeOH}, 40^{\circ} \mathrm{C}$; iii. HATU, DIEA, anhydrous DMF, S - or R-chiral amines; iv. Iron powder, $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{MeOH}$, reflux; v. $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2}$, dry DCM, room temperature; DIEA, anhydrous DCM, room temperature.

General procedure for compound 6a~6b: The general Sonogashira coupling procedure described above was used to prepare this compound. 500 mg of 4-bromo-8-nitro-2-quinoline carboxylate (compound 5) ($1.61 \mathrm{mmol}, 1.0$ equiv.), aromatic acetylene ($1.93 \mathrm{mmol}, 1.2 \mathrm{eq}$.), 56 mg of $\mathbf{P d}(\mathbf{P P h})_{3} \mathbf{C l}_{\mathbf{2}}$ ($0.08 \mathrm{mmol}, 0.05 \mathrm{eq}$.), and 0.1 equivalents of $\mathbf{C u I}(31$ $\mathrm{mg}, 0.16 \mathrm{mmol}$) were combined in a Schlenk flask with 5 mL dry THF and 5 mL dry $\mathrm{Et}_{3} \mathrm{~N}$. Once dissolved, the solution
turned into black immediately. Then the solution was stirred at room temperature for overnight. Once done, the solvent was removed at vacuum and the product was soluted in DCM then washed by $\mathrm{NH}_{4} \mathrm{Cl}$ saturared solution and NaCl solution for three times. The organic layer was dried by MgSO_{4} and then purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Hexane} / \mathrm{DCM}\right.$ stepwise elution, $15: 1$ to $3: 1$).

General procedures for compound $\mathbf{7 a} \sim \mathbf{7 b}: 1.0 \mathrm{mmol}$ compound $\mathbf{6 a \sim} \sim \mathbf{b b}$ was dissolved in 5 mL THF and 1 mL MeOH , and 100 mg sodium hydroxide ($2.5 \mathrm{mmol}, 2.5$ equiv.) was dissolved in 1 mL water which was then added to above solution dropwise. The solution was then stirred at $40^{\circ} \mathrm{C}$ for about 40 min until TLC monitored that compound $6 \mathrm{a} \sim 6 \mathrm{f}$ completely disappeared. After the solution was cooled into room temperature, dilute hydrochloric acid was added to make the solution pH around $1 \sim 4$. After that, wash the solution with dichloromethane and the organic layer was dried by sodium sulfate powders. Compound 7a~7f was gained after solvent removed.

General procedures for compound $S / R-8 \mathbf{a} \sim \mathbf{8 b}: 0.5 \mathrm{mmol}$ compound $7 \mathbf{a} \sim 7 \mathrm{~b}$ and 0.5 mmol compound chiral amine, 0.52 mmol (1.2 equiv.) 2-(7-Azabenzotriazol-1-yl)-N,N,N', \mathbf{N}^{\prime}-tetramethyluronium hexafluorophosphate (HATU) was dissolved in 3 mL anhydrous DMF, and then 1.0 mmol (2.0 equiv.) \mathbf{N}, \mathbf{N}-Diisopropylethylamine was added. The mixture was stirred at room temperature for overnight. Then the solution was dissolved in 20 mL DCM , and was washed by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After the organic layer was dried and solute was removed, the crude was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, Hexane/DCM stepwise elution, $10: 1$ to $\left.5: 1\right)$.

General procedures for compound $\boldsymbol{S} / \boldsymbol{R} \mathbf{- 9} \mathbf{9} \sim \mathbf{9 b}$: 0.5 mmol compound $\boldsymbol{S} / \boldsymbol{R} \mathbf{- 8 a} \mathbf{\sim 8 b}$ was dissolved in 20 ml methyl alcohol in a 100 mL round flask and 3 ml glacial acetic acid was added. This heterogeneous mixture turned to homogeneous as the temperature increased. After the temperature of solution increased to $75^{\circ} \mathrm{C}, 2.0 \mathrm{mmol}$ (4.0 equiv.) Fe powder was added to the solution with stirring in three portions within 30 minutes, poured over the mixture of ice and water, and then extracted with DCM. The organic phase was washed three times with saturated aqueous NaHCO_{3} and brine respectively, dried over sodium sulfate and concentrated in vacuo to give brown red residue which was then purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, Hexane/DCM stepwise elution, $10: 1$ to $5: 1$).

General procedures for compound $\boldsymbol{S} / \boldsymbol{R} \mathbf{- 1 a} \sim \mathbf{1 b}: 0.1 \mathrm{mmol}$ (1.0 equiv.) compound $\mathbf{1 0}$ was suspended in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) under argon. 0.5 mmol (5 equiv.) oxalyl chloride were added carefully to the mixture because of gas evolution. The reaction slowly turned to a yellow homogeneous solution over 2 h . The solution was concentrated in vacuo to give the acid chloride as an yellow solid, which was pumped dry for 2 h .0 .2 mmol (2.0 equiv.) compound $\boldsymbol{S} / \boldsymbol{R}-\mathbf{9 a} \sim \mathbf{9 b}$ and 0.5 mmol (5.0 equiv.) \mathbf{N}, \mathbf{N}-diisopropylethylamine were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ under argon with stirring. The acid chloride was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2} 5 \mathrm{~mL}$), then were added into amine liquor immediately. After stirring for overnight, TLC analysis indicated completion of the reaction. The mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resultant crude material was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, Hexane/DCM stepwise elution, 10:1 to 2:1) to give compounds Cod-68 as a light-yellow solid.

6a

Compound 6a: 491 mg compound $\mathbf{6 a}$ was gained as a brown solid, yield 92%. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=1.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.49(\mathrm{~m}$, $3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,149.6,149.0,139.2,132.2,132.03,130.2,129.3,128.8,127.7$,
$125.1,125.1,121.4,101.7,83.9,77.3,77.1,76.9,53.5,50.9,50.8 . \operatorname{MS}(E S I)$ calcd $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ for $[\mathrm{M}+\mathrm{Na}]^{+}: 355.0689$, found 355.0689 .

7a

Compound of 7a: 400 mg compound $\mathbf{6 a}$ was put into reaction, and 350 mg light-yellow solid was gained as product, yield: $92 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.84(\mathrm{br}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=0.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=0.8,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.0(\mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9,147.8,147.5,137.6$, 134.1, 132.4, 131.0, 130.6, 130.1, 128.9, 128.3, 126.4, 123.3, 121.1, 103.4, 83.7, 77.3, 77.1, 76.9. MS(ESI) calcd $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 319.0713$, found 319.0716 .

R-8a

Compound $\boldsymbol{R}-8 \mathbf{8 a}: 150 \mathrm{mg}$ compound $\mathbf{6 a}$ was put into reaction, and 230 mg yellow solid was gained as product, yield: $88 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.52(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=0.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00$ (dd, $J=1.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.9$ (d, $J=0.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.65$ (m, 3H), 7.55 (td, $J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 3 \mathrm{H})$, 7.27 (s, 1H), 7.10-7.20 (m, 4H), 5.91 (dd, $J=6.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (dd, $J=9.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (dd, $J=6.7,8.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,162.8,152.6,148.5,143.2,139.3,138.2,132.4,132.2,132.0,130.2,130.0,129.7$, $129.2,128.8,128.4,127.2,126.9,126.5,125.0,123.8,123.4,121.6,120.8,115.3,101.3,84.2,77.4,77.1,76.9,74.0$, 69.8, 60.5. MS(ESI) calcd $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 537.1568$, found 537.1569 .

Compound \boldsymbol{S}-8a: 170 mg compound $\mathbf{7 a}$ was put into reaction, and 250 mg yellow solid was gained as product, yield: $87 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.52(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=0.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00$ (dd, $J=1.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.9(\mathrm{~d}, J=0.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{td}, J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 3 \mathrm{H})$,
$7.27(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.91(\mathrm{dd}, J=6.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=9.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=6.7,8.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,162.9,152.6,148.5,143.1,139.2,138.3,132.5,132.2,132.0,130.2,130.0,129.7$, $129.3,128.8,128.4,127.2,126.9,126.5,125.0,123.8,123.4,121.6,120.8,115.4,101.3,84.3,77.3,77.1,76.9,74.0$, 69.7. $\mathrm{MS}(\mathrm{ESI})$ calcd $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 539.1713$, found 539.1719.

Compound $\boldsymbol{R}-9$ a: 230 mg compound \boldsymbol{R}-8a was put into reaction, and 140 mg yellow solid was gained as product, yield: $65 \% .^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.57(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 9 \mathrm{H}), 7.260(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (dd, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2$, $163.7,146.6,145.4,142.4,139.7,136.2,133.0,132.3,130.2,130.2,129.3,129.1,128.1,126.6,125.6,123.0,122.6$, $120.8,114.4,113.1,110.3,96.9,87.8,77.4,77.1,76.8,73.7,70.8,32.0,29.8,22.8,14.2$. MS(ESI) calcd $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 509.1978$, found 509.1974.

Compound \boldsymbol{S}-9a: 250 mg compound \boldsymbol{S}-8a was put into reaction, and 160 mg yellow solid was gained as product, yield: $67 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.57(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 9 \mathrm{H}), 7.260(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (dd, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6$, $163.8,163.7,144.5,144.2,142.4,139.4,136.3,132.8,132.7,132.1,131.1,130.1,130.1,129.8,129.5,129.4,129.1$, $128.9,128.6,128.5,127.8,127.4,126.6,126.0,125.8,123.2,123.1,122.7,122.6,121.2,120.8,114.6,113.8,113.4$, $108.0,107.8,99.2,77.4,77.3,77.1,76.8,75.8,73.8,73.2,69.8,69.6,54.1$. MS(ESI) calcd $\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}$: 507.1827, found 507.1826.

Compound \boldsymbol{R}-1a: 50 mg compound $\boldsymbol{S} \mathbf{- 9}$ a was put into reaction, and 105 mg yellow solid was gained as product, yield: $61 \% .^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.01(\mathrm{~s}, 1 \mathrm{H}), 12.90(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}$, $1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (s, 1H), $7.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.329(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91,6.90,6.89(\mathrm{~d}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{dd}, J=6.9,5.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9$, $162.3,162.1,161.7,150.9,147.3,144.5,141.3,139.0,137.1,134.8,132.3,132.1,130.4,129.5,129.1,128.4,128.2$, $127.7,127.2,126.0,122.3,122.0,121.8,121.3,120.4,119.8,118.4,114.1,100.6,99.2,85.2,77.3,77.1,76.9,75.6,72.2$, 69.3, 29.8, 28.3, 19.4, 19.3, 14.3. MS(ESI) calcd $\mathrm{C}_{88} \mathrm{H}_{69} \mathrm{~N}_{10} \mathrm{O}_{8} \mathrm{~F}_{6}$ for $[\mathrm{M}+\mathrm{H}]^{+}$: 1393.5294, found 1393.5289.

Compound \boldsymbol{S}-1a: 50 mg compound \boldsymbol{S}-9a was put into reaction, and 115 mg yellow solid was gained as product, yield: $69 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.01(\mathrm{~s}, 1 \mathrm{H}), 12.90(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}$, $1 \mathrm{H}), 7.96$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (s, 1H), 7.44 (d, $J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.329(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91,6.90,6.89(\mathrm{~d}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{dd}, J=6.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,162.2,162.1,161.7,150.9,147.3,144.5,141.3$, $139.0,137.1,134.8,132.2,132.1,131.0,130.4,129.5,129.1,128.9,128.4,128.3,128.2,127.7,127.1,126.0,122.3$, $122.0,121.8,121.3,120.4,119.8,118.4,114.1,100.6,99.2,85.2,77.3,77.1,76.9,75.6,72.2,69.3,65.6,30.7,28.3,19.4$, 19.3, 19.3, 13.8. MS(ESI) calcd $\mathrm{C}_{88} \mathrm{H}_{69} \mathrm{~N}_{10} \mathrm{O}_{8} \mathrm{~F}_{6}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 1393.5294$, found 1393.5282.

6b

Compound 6b: 350 mg compound $\mathbf{5}$ was put into reaction, and 276 mg orange solid was gained as product, yield: 81%. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19-8.24(\mathrm{~m}, 3 \mathrm{H}), 8.10-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.2,149.6,149.0,139.2,132.7,132.1,131.2,130.9,130.3,130.2,129.5,129.4,129.2,127.7,127.2,126.7$, $126.4,125.1,125.0,125.0,124.7,124.5,115.4,101.2,89.5,77.4,77.1,76.8,53.5$. MS(ESI) calcd $\mathrm{C}_{28} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}$ for [M$\left.\mathrm{CH}_{3}\right]$: 441.0880 , found 441.0883 .

7b

Compound 7b: 270 mg compound $\mathbf{6 b}$ was put into reaction, and 230 mg black solid was gained as product, yield: 88%. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 13.97(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H})$, $8.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52-8.49(\mathrm{~m}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.31(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.07(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI})$ calcd $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 443.1026$, found 443.1021.

Compound \boldsymbol{R}-8b: 100 mg compound $\mathbf{7 b}$ was put into reaction, and 120 mg orange solid was gained as product, yield: $79 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.53(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.27(\mathrm{~m}, 3 \mathrm{H}), 8.13(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97-8.05(\mathrm{~m}, 6 \mathrm{H}), 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,162.8,152.1,148.2,143.3,139.3,137.9,132.4,131.6$, $130.9,130.7,130.3,129.9,129.8,129.2,129.1,128.6,127.4,127.0,126.7,126.5,126.3,126.2,125.0,124.7,124.6$, $124.2,123.8,123.3,120.7,115.6,115.2,100.6,89.7,77.4,77.1,76.8,74.1,69.9,36.5,31.5 . \mathrm{MS}\left(\right.$ ESI) calcd $\mathrm{C}_{43} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 663.2027$, found 663.2027 .

Compound $\boldsymbol{S - 8 b}: \quad 100 \mathrm{mg}$ compound $\mathbf{7 b}$ was put into reaction, and 114 mg orange solid was gained as product, yield: $75 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.53(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.27(\mathrm{~m}, 3 \mathrm{H}), 8.13(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97-8.05(\mathrm{~m}, 6 \mathrm{H}), 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.16$ (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,162.9,152.4,148.4,143.2,139.3,138.2,132.6,132.6$, $132.5,132.0,131.1,130.9,130.3,130.1,129.8,129.4,129.3,129.0,128.5,127.3,127.1,126.8,126.6,126.3,125.1$,
124.9, 124.7, 124.4, 124.1, 123.6, 123.4, 120.8, 115.6, 115.4, 100.8, 89.8, 77.3, 77.1, 76.9, 74.1, 69.8. MS(ESI) calcd $\mathrm{C}_{43} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 663.2027$, found 663.2029.

Compound $\boldsymbol{R}-\mathbf{9 b}$: 100 mg compound $\boldsymbol{R} \mathbf{- 8 b}$ was put into reaction, and 65 mg orange solid was gained as product, yield: $68 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.59(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~d}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.4 \mathrm{HZ}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.31$ (d, $J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 8.22-8.27(\mathrm{~m}, 3 \mathrm{H}), 8.17(\mathrm{~d}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=9.2 \mathrm{HZ}, 1 \mathrm{H}), 8.03-8.08(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6 \mathrm{HZ}$, $1 \mathrm{H}), 7.64(\mathrm{t}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 7.34-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=6.1 \mathrm{HZ}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=8.4 \mathrm{HZ}, 1 \mathrm{H})$, 4.78 (d, $J=8.4 \mathrm{HZ}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,163.9,146.6,145.4,142.5,139.8$, $136.4,133.0,132.4,132.1,131.3,131.1,130.2,130.1,130.1,129.5,129.1,129.0,128.8,128.1,127.3,126.6,126.5$, $126.1,126.0,125.4,124.7,124.6,124.3,122.9,122.4,120.7,116.7,114.4,113.5,110.3,98.4,91.5,77.3,77.1,76.9$, 73.8, 70.8. MS(ESI) calcd $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 633.2278$, found 633.2285 .

Compound $\boldsymbol{S} \mathbf{- 9 b}$: 120 mg compound $\boldsymbol{S} \mathbf{- 8 b}$ was put into reaction, and 89 mg orange solid was gained as product, yield: $78 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.59(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~d}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.4 \mathrm{HZ}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}$, $J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 8.22-8.27(\mathrm{~m}, 3 \mathrm{H}), 8.17(\mathrm{~d}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=9.2 \mathrm{HZ}, 1 \mathrm{H}), 8.03-8.08(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6 \mathrm{HZ}$, $1 \mathrm{H}), 7.64(\mathrm{t}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 7.34-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=6.1 \mathrm{HZ}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=8.4 \mathrm{HZ}, 1 \mathrm{H})$, $4.78(\mathrm{~d}, J=8.4 \mathrm{HZ}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=7.6 \mathrm{HZ}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,163.8,146.6,145.4,142.5,139.8$, $136.3,133.4,133.0,133.0,132.4,131.0,130.9,130.1,123.0,129.5,129.1,128.9,128.4,128.4,128.1,127.9,127.3$, $126.9,126.6,122.9,122.3,120.7,119.7,114.4,113.4,110.3,99.4,86.2,77.3,77.1,76.9,73.7,70.8,65.6,53.5,30.7$, 19.3, 13.82. $\mathrm{MS}(\mathrm{ESI})$ calcd $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 633.2278$, found 633.2277 .

Compound \boldsymbol{R}-1b: 30 mg compound $\mathbf{1 0}$ was put into reaction, and 35 mg orange solid was gained as product, yield: 30%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.11(\mathrm{~s}, 1 \mathrm{H}), 12.88(\mathrm{~s}, 1 \mathrm{H}), 9.0(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H})$, $8.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.68$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.5(\mathrm{dd}, J=2.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=1.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (dd, $J=1.83,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{dd}, J=1.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=4.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 1.26$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9,162.3,162.2,161.8,151.0,147.3,144.6,141.4,139.1,137.4$, $135.0,132.4,131.5,131.1,130.8,130.5,130.3,129.6,129.5,128.4,128.3,128.1,128.0,127.8,127.2,126.2,126.0$, $125.6,125.4,124.7,123.5,123.2,122.0,122.0,121.8,121.0,120.5,120.0,118.5,115.9,114.2,100.7,99.3,90.9,77.3$, 77.1, 76.9, 75.6, 72.2, 69.4, 29.8, 28.3, 19.4, 19.4. MS(ESI) calcd $\mathrm{C}_{108} \mathrm{H}_{77} \mathrm{~N}_{8} \mathrm{O}_{10}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 1641.5920$, found 1641.5918.

Compound \boldsymbol{S}-1b: : 30 mg compound $\mathbf{1 0}$ was put into reaction, and 58 mg orange solid was gained as product, yield: $50 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.11(\mathrm{~s}, 1 \mathrm{H}), 12.88(\mathrm{~s}, 1 \mathrm{H}), 9.0(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}$, $1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.78(\mathrm{~m}, 4 \mathrm{H})$, 7.68 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.5(\mathrm{dd}, J=2.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.23$ (dd, $J=1.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{dd}, J=1.83,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{dd}, J=1.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=4.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ $(\mathrm{m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9,162.3,162.1,161.8,151.0,147.3,144.6$, $141.4,139.0,137.4,135.0,132.4,131.5,131.1,130.8,130.5,130.3,129.6,129.6,128.4,128.3,128.2,128.0,127.8$, $127.2,126.3,126.0,125.6,125.4,124.7,123.6,123.2,122.0,121.9,121.8,121.0,120.5,120.1,118.5,115.9,114.2$, $100.7,99.3,90.9,77.3,77.1,76.9,75.6,72.2,69.4,30.7,29.8,29.4,28.3,22.8,19.4,19.4,19.3,14.2,13.8 . \mathrm{MS}(\mathrm{ESI})$ calcd $\mathrm{C}_{108} \mathrm{H}_{77} \mathrm{~N}_{8} \mathrm{O}_{10}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 1641.5920$, found 1641.5911.

Synthesis of helicities of $\boldsymbol{S} / \boldsymbol{R}-\mathrm{PCQ}_{2}-\mathrm{b}$.

Scheme S2 Synthesis of compound $\boldsymbol{S} / \boldsymbol{R}-\mathbf{P C Q}_{\mathbf{2}}$-b. Conditions: i. HATU, DIEA, anhydrous DMF, S - or R - chiral amines; ii. Iron powder, $\mathrm{CH}_{3} \mathrm{COOH}$, MeOH , reflux ; iii. $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2}$, dry DCM, room temperature; iv. DIEA, anhydrous DCM, room temperature.

General procedures for Compound $\boldsymbol{S} / \boldsymbol{R}-\mathbf{C Q}_{1} \mathbf{- b}: 0.2 \mathrm{mmol}$ compound CQ_{1} acid and 0.2 mmol compound chiral amine, 0.24 mmol (1.2 equiv.) 2-(7-Azabenzotriazol-1-yl)-N,N, $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethyluronium hexafluorophosphate (HATU) was dissolved in 3 mL anhydrous DMF, and then 0.4 mmol (2.0 equiv.) N, N-Diisopropylethylamine was added. The mixture was stirred at room temperature for overnight. Then the solution was dissolved in 20 mL DCM, and was washed by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After the organic layer was dried and solute was removed, the crude was purified by column chromatography (SiO_{2}, Hexane/DCM stepwise elution, 10:1 to 5:1).

General procedures for compound $\boldsymbol{S} / \boldsymbol{R}-\mathbf{C Q}_{\mathbf{1}} \mathbf{- b}-\mathbf{N H}_{2}: 0.15 \mathrm{mmol}$ compound $\boldsymbol{S} / \boldsymbol{R}-\mathbf{C Q}_{1} \mathbf{- b}$ was dissolved in 5 mL ethyl acetate with $80 \mathrm{mg} \mathbf{1 0 \%} \boldsymbol{w t}$. Palladium on activated carbon. The solution was stirred at hydrogen atmosphere at room temperature for overnight. After the catalyst was filtered with silica and solvent removed at vacuum, the target product was gained without further purification.

General procedures for compound $\boldsymbol{S} / \boldsymbol{R}-\mathbf{P C Q}_{2} \mathbf{- b}: 0.1 \mathrm{mmol}$ (1.0 equiv.) compound $\mathbf{1 0}$ was suspended in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ under argon. 0.5 mmol (5 equiv.) oxalyl chloride were added carefully to the mixture because of gas evolution. The reaction slowly turned to a yellow homogeneous solution over 2 h . The solution was concentrated in vacuo to give the acid chloride as an yellow solid, which was pumped dry for 2 h .0 .2 mmol (2.0 equiv.) compound $\boldsymbol{S} / \boldsymbol{R}-\mathbf{C Q}_{1^{-}}$ $\mathbf{b}-\mathbf{N H}_{2}$ and 0.5 mmol (5.0 equiv.) \mathbf{N}, \mathbf{N}-diisopropylethylamine were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ under argon with stirring. The acid chloride was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, then were added into amine liquor immediately. After stirring for overnight, TLC analysis indicated completion of the reaction. The mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resultant crude material was purified by column chromatography (SiO_{2}, Hexane/DCM stepwise elution, 10:1 to 2:1) to give compounds Cod-68 as a light-yellow solid.

Compound $\boldsymbol{R}-\mathbf{C Q}_{\mathbf{1}} \mathbf{- b}$: 85 mg compound $\boldsymbol{R}-\mathbf{C Q}_{1} \mathbf{- b}$ was gained as pale white solid, yield $84 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.49(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J$ $=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}$, $3 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=8.1,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23-4.06(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{dd}, J=6.7,0.8 \mathrm{~Hz}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9$, 163.6, 163.1, 154.6, 148.1, 143.2, 139.3, 132.4, 129.8, 128.4, 127.1, 126.6, 126.4, 125.3, 124.9, 123.4, 123.3, 120.8, $115.5,100.6,77.3,77.2,77.1,77.0,76.9,75.7,74.0,69.7,28.2,19.3$. MS(ESI) calcd $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{5}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 511.1975$, found 511.1979.

Compound $\boldsymbol{S} \mathbf{- C Q} \mathbf{1}_{\mathbf{1}} \mathbf{- b}:{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 13.49(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{dd}, J=8.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.45$ (dd, J $=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.28$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=10.0,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{dt}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9,163.6,163.1,143.2,139.3,132.4,129.8,128.4,127.2,126.6,126.4,125.3,124.9$, $123.4,123.3,120.8,115.5,100.6,77.4,77.1,76.8,75.7,74.0,69.7,28.2,19.3 . \operatorname{MS}(E S I)$ calcd $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{5}$ for $[\mathrm{M}+\mathrm{H}]^{+}$: 511.1975, found 511.1980.

Compound \boldsymbol{R} - $\mathbf{C Q}_{\mathbf{1}} \mathbf{- b}-\mathbf{N H}_{\mathbf{2}}: 80 \mathrm{mg}$ compound \boldsymbol{R} - $\mathbf{C Q}_{\mathbf{1}} \mathbf{- b}$ was gained as pale white solid, yield $79 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 13.50(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}$, $1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.55(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=10.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=10.2,8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{dt}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.1,164.6,163.1,148.7,144.7,142.5,139.8,137.4,132.9,130.1,129.4$, 129.1, 129.0, 128.0, 126.6, 122.8, 120.6, 118.6, 115.2, 114.5, 110.5, 109.6, 98.8, 77.5, 77.2, 76.8, 75.0, 73.7, 70.8, 29.8, 28.3, 19.3. $\mathrm{MS}(\mathrm{ESI})$ calcd $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 481.2234$, found 481.2230.

Compound \boldsymbol{S} - $\mathbf{C Q}_{\mathbf{1}}-\mathbf{b}-\mathbf{N H}_{\mathbf{2}}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.60(\mathrm{~s}, 1 \mathrm{H}), 9.11(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=7.9$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.18$ $(\mathrm{m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=2.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=10.2$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=10.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{dt}, J=$ $13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,164.6,163.1,148.7,144.7,142.5$, $139.9,137.4,132.9,130.1,129.4,129.1,128.8,128.0,126.6,122.9,122.8,120.6,115.2,114.5,110.4,109.5,98.8,77.5$, $77.2,76.8,75.0,73.7,70.8,28.3,19.4 . \mathrm{MS}(\mathrm{ESI})$ calcd $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 481.2234$, found 481.2229.

Compound $\boldsymbol{R}-\mathbf{P C Q}_{2}-\mathbf{b}:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.97(\mathrm{~s}, 1 \mathrm{H}), 12.93(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.79$ (dd, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.05$ (dd, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.53(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=8.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=8.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (dd, $J=8.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=8.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=9.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}$,
$J=9.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dt}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{dd}, J=11.4,6.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.14$ (dd, $J=10.6,6.7 \mathrm{~Hz}, 7 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,163.0,162.8,162.0,161.9,161.5,151.0,149.4,144.5$, $141.4,139.1,138.4,134.4,132.4,132.2,131.0,128.9,128.4,128.2,127.4,127.1,126.0,121.8,121.8,121.7,121.1$, $120.3,118.2,115.4,114.1,100.4,98.3,77.3,77.1,76.9,75.5,75.0,72.1,69.3,65.6,30.7,28.3,28.2,19.4,19.4,19.3$, 19.3, 19.3, 13.8. MS(ESI) calcd $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 310.9662$, found 310.9667 .

Compound \boldsymbol{S}-PCQ $\mathbf{P C}_{\mathbf{2}}$ b: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.97(\mathrm{~s}, 1 \mathrm{H}), 12.93(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=86.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 4.07$ (dd, $J=8.0$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=8.0,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.834-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.67(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{dd}, J=6.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15$ (dd, $J=10.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0,162.8,161.9,161.5,151.00,149.3,144.4,141.4,139.1$, $138.4,134.4,132.1,128.3,128.2,127.4,127.1,126.0,121.8,121.0,120.3,118.2,115.4,114.1,100.4,98.3,77.4,77.1$, $76.8,75.5,75.0,72.1,69.3,28.3,28.2,19.5,19.4,19.3$. $\mathrm{MS}(\mathrm{ESI})$ calcd $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 310.9662$, found 310.9659 .

Synthesis of helicities of S-2a and S-2b.

Scheme S3 Synthesis of compound $\boldsymbol{S} / \boldsymbol{R} \mathbf{- 1 a} \sim \mathbf{1 b}$. Conditions: i. Iron powder, $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{MeOH}$, reflux; ii. (BOC) $)_{2} \mathrm{O}, 1,2-$ dioxane, $100{ }^{\circ} \mathrm{C}$; iii. $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{2} \mathbf{C l}_{2}, \mathbf{C u I}$, anhydrous THF and anhydrous $\mathrm{Et}_{3} \mathrm{~N}$, aromatic acetylene, room temperature; iv. $\mathrm{NaOH}, \mathrm{THF} / \mathrm{MeOH}, 40^{\circ} \mathrm{C}$; v. $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2}$, dry DCM, room temperature; DIEA, anhydrous DCM, Q3- NH_{2}-b- NH_{2}, room temperature; vi. $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{DCM}$, room temperature; vii. $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2}$, dry DCM, room temperature; DIEA, anhydrous DCM, room temperature.

11

Compound 11: a dark red solid. Yield: $78 \%{ }^{1}{ }^{1} \mathrm{H}$ NRR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.99,145.67$, $143.98,137.66,134.75,131.28,129.75,125.33,114.31,111.09,77.42,77.10,76.78,53.02$. MS(ESI) calcd $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 310.9662$, found 310.9659 .

Compound 12: 190 mg (yield: 78\%) compound 12 was gained as light-yellow solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.99$ $(\mathrm{s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,152.7,144.9,137.9,136.7,135.4,131.1,129.0,125.5,118.9,116.0,81.2,77.3$, 77.1, 76.9, 53.2, 28.4. $\mathrm{MS}(\mathrm{ESI})$ calcd $\mathrm{C}_{80} \mathrm{H}_{77} \mathrm{~N}_{10} \mathrm{O}_{10}$ for $[\mathrm{M}+\mathrm{H}]^{+}$: 1337.5819, found 1337.5801.

Compound 13b: 185 mg compound 13a was gained, yield: 86%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 10 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,152.8,145.0,137.7,136.7,132.1,131.4,130.4,129.7,128.9,128.7,124.1,122.0$, $118.1,115.6,100.0,85.0,81.0,77.3,77.1,76.9,53.1,28.5$. MS(ESI) calcd $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 403.1652$, found 403.1646 .

Compound 14a: 110 mg brown solid was gained as product. Yiled:95 \%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.48-$ $7.42(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$. MS(ESI) calcd $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ for [M-H]:: 387.1350, found 387.1352.

Compound \boldsymbol{S}-15a: 220 mg Yellow solid was gained. Yield: 65%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.11(\mathrm{~s}, 1 \mathrm{H}), 12.33$ (s, $1 \mathrm{H}), 11.69(\mathrm{~s}, 1 \mathrm{H}), 11.67(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H})$, $8.10(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 4.44-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.84(\mathrm{~m}$, $4 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.12(\mathrm{~m}, 70 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,163.3,163.2,162.7,162.7,162.2,160.9,160.5,151.7,150.5,149.6,149.4,147.7$, $141.2,139.0,138.4,137.9,135.9,135.0,134.5,133.8,133.45,132.4,132.3,131.8,129.7,129.5,129.1,128.7,128.5$, 128.2 , 127.4, 127.1, 127.0, 125.8, 123.0, 122.6, 122.5, 122.4, 121.9, 121.5, 120.4, 118.6, 117.3, 116.8, 116.3, 115.8, $114.7,114.2,99.9,99.7,98.7,97.8,85.8,80.8,77.3,77.1,76.9,75.6,75.5,75.2,72.3,69.2,32.0,29.8,29.4,28.4,28.3$, 28.3, 27.9, 22.8, 19.6, 19.5, 19.5, 19.4, 19.4, 14.2. MS(ESI) calcd $\mathrm{C}_{80} \mathrm{H}_{75} \mathrm{~N}_{10} \mathrm{O}_{10}$ for [M-H]: 1335.5662, found 1335.5654.

Compound \boldsymbol{S}-16a: 220 mg compound cod-137(S) (0.165 mmol , lequiv.). Yield: 70%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $13.05(\mathrm{~s}, 1 \mathrm{H}), 12.29(\mathrm{~s}, 1 \mathrm{H}), 11.67(\mathrm{~s}, 1 \mathrm{H}), 11.55(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.97(\mathrm{~m}, 3 \mathrm{H}), 7.94(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}), 7.67(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=11.2,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=11.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ ($\mathrm{s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.81(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.13(\mathrm{~m}, 32 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.5,163.3,163.2,162.8,162.7,160.9,160.8,150.3,150.1,149.4,146.6,144.0,141.1,138.7,138.4$, $137.9,135.3,134.8,133.8,133.7,132.3,131.8,131.2,129.8,129.6,129.3,128.8,128.6,128.2,127.4,127.1,125.8$, $122.9,122.5,122.3,121.9,121.6,120.4,117.5,116.8,116.7,116.1,116.0,115.6,114.2,114.0,109.4,99.7,98.9,98.7$, $98.2,86.2,77.3,77.1,76.9,75.6,75.5,75.2,72.3,69.3,32.0,29.8,29.4,28.4,28.3,22.8,19.6,19.5,19.4,19.3,14.2$. MS(ESI) calcd $\mathrm{C}_{75} \mathrm{H}_{66} \mathrm{~N}_{10} \mathrm{O}_{8}$ for [M-H]: 1257.4957, found 1257.4958.

Compound \boldsymbol{S}-2a: Yellow solid was gained. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 12.03(\mathrm{~s}, 1 \mathrm{H}), 11.01(\mathrm{~s}, 1 \mathrm{H})$, $10.94(\mathrm{~s}, 1 \mathrm{H}), 10.71(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=3.5,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.54$ $(\mathrm{m}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$
(t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.88 \mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=5.8$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.30(\mathrm{~m}, 33 \mathrm{H}), 1.19(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8,162.8,162.6,162.2$, $161.9,161.6,160.4,159.8,159.6,159.1,148.8,148.6,147.5,146.1,142.5,141.0,138.6,137.9,137.7,136.6,135.7$, $133.7,133.5,133.2,133.0,132.4,131.2,131.0,130.4,129.2,128.9,128.4,127.9,127.7,127.3,126.8,126.5,125.6$, $123.0,122.3,121.6,121.4,120.8,120.1,119.8,119.6,119.1,117.2,116.8,116.7,116.6,116.5,116.1,115.2,113.7,99.7$, $98.8,98.5,98.1,97.7,85.7,77.4,77.3,77.1,76.8,75.3,75.1,74.8,71.9,68.8,68.2,65.6,38.8,32.0,30.7,30.4,29.8$, 29.4, 29.0, 28.3, 28.2, 28.1, 23.8, 23.1, 22.8, 19.8, 19.7, 19.6, 19.5, 19.4, 19.3, 19.3, 14.2, 14.1, 13.8, 11.0. MS(ESI) calcd $\mathrm{C}_{172} \mathrm{H}_{152} \mathrm{~N}_{22} \mathrm{O}_{20}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 2848.1693$, found 2848.1702.

Compound 13b: Yield: $81 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~m}, 3 \mathrm{H}), 8.17-8.10(\mathrm{~m}, 3 \mathrm{H}), 8.09-8.02(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,152.8,145.0,137.7,136.7,132.4,132.3$, 131.6, $131.2,131.0,130.5,130.2,129.2,129.0,128.8,128.5,127.3,126.5,126.2,126.2,125.2,124.7,124.5,124.2,124.1$, $118.2,116.2,115.6,99.5,90.6,81.0,77.3,77.1,76.9,53.1,28.5$. MS(ESI) calcd $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 527.1965$, found 527.1959.

14b

Compound 14b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=8.6,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.10(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 13 \mathrm{H})$. Yield: 89% MS(ESI) calcd $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ for [M-H]:: 511.1654, found 511.1660.

Compound 15b: 220 mg Yellow solid was gained. Yield: $30 \% .{ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.13(\mathrm{~s}, 1 \mathrm{H}), 12.34(\mathrm{~s}$, $1 \mathrm{H}), 11.70(\mathrm{~s}, 1 \mathrm{H}), 11.69(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28-8.23(\mathrm{~m}, 3 \mathrm{H}), 8.20(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{t}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.04(\mathrm{~m}, 3 \mathrm{H}), 8.01(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.45-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{td}, J$ $=8.3,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}$, $1 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 13 \mathrm{H}), 1.28-1.18(\mathrm{~m}, 37 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6,163.3,163.2,162.7$, $162.7,162.3,160.9,160.5,151.7,150.5,149.6,149.5,147.7,141.2,139.0,138.4,137.9,136.0,135.1,134.5,133.8$, $133.5,132.7,132.5,132.3,131.8,131.3,131.2,130.5,129.7,129.1129 .0,128.9,128.6,128.2,128.2,127.4,127.1,127.0$, $126.5,126.2,126.1,125.8,125.6,124.7,124.6,124.4,123.0122 .5,121.9,121.6,120.4,118.7,117.4,117.3,116.9,116.3$, $115.9,115.8,114.8,114.2,99.8,99.3,98.7,97.9,91.5,80.8,77.3,77.1,76.9,75.6,75.2,72.3,69.2,29.8,28.4,28.3$, 28.3, 28.0, 22.7, 19.6, 19.5, 19.5, 19.4, 19.4. MS(ESI) calcd $\mathrm{C}_{90} \mathrm{H}_{79} \mathrm{~N}_{10} \mathrm{O}_{10}$ for $[\mathrm{M}+\mathrm{H}]^{+}: 1459.5975$, found 1459.5944.

Compound \boldsymbol{S}-16b: 140 mg compound S-16b was gained. Yield: 70%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.02$ (s, 1H), $12.13(\mathrm{~s}, 1 \mathrm{H}), 11.62(\mathrm{~s}, 1 \mathrm{H}), 11.50(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.51$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}$, $1 \mathrm{H}), 8.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}$, $1 \mathrm{H}), 7.76(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.2-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.94$ $(\mathrm{s}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94-4.04(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{br}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.38(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.31(\mathrm{~m}, 47 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6,163.2$, $162.7,161.0,160.9,149.5,146.7,144.1,141.1,138.8,138.4,137.9,135.5,134.8,133.8,132.6,132.2,131.8,131.4$, $131.2,130.4,129.8,129.6,129.0,128.8,128.2,127.4,127.1,126.5,126.1,126.0,125.8,125.7,124.7,124.4,122.9$, $122.5,122.0,121.7,120.4,117.6,117.2,116.8,116.8,116.2,116.1,115.7,114.2,109.5,99.7,98.8,98.4,92.0,77.3$, $77.1,76.9,75.6,75.5,75.2,72.3,69.3,28.4,28.3,19.6,19.49,19.4,19.4 . \mathrm{MS}(\mathrm{ESI})$ calcd $\mathrm{C}_{85} \mathrm{H}_{71} \mathrm{~N}_{10} \mathrm{O}_{8}$ for $[\mathrm{M}+\mathrm{H}]^{+}$: 1359.5451, found 1359.5425 .

Compound \boldsymbol{S}-2b: compounds \boldsymbol{S}-2b as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.39(\mathrm{~s}, 1 \mathrm{H}), 12.08(\mathrm{~s}, 1 \mathrm{H}), 11.07$ $(\mathrm{s}, 1 \mathrm{H}), 10.99(\mathrm{~s}, 1 \mathrm{H}), 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.03(\mathrm{~m}, 4 \mathrm{H}), 7.99(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}$, $1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}), 7.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}$, $1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 6 \mathrm{H}), 3.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.07$ $(\mathrm{m}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 33 \mathrm{H}), 1.15$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.82(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,162.6,162.2$, $161.9,161.6,160.4,159.9,159.8,159.2,148.8,148.7,147.6,146.2,142.7,140.9,138.6,138.0,137.8,136.8,136.0$, $133.8,133.2,133.0,131.8,131.2,130.8,130.7,130.6,129.7,129.2,128.7,128.1,127.9,127.8,127.3,126.8,126.7$, $126.6,125.9,125.5,125.2,123.8,123.6,122.3,121.7,121.5,121.2,120.9,120.3,119.9,119.2,117.3,117.0,116.8$, $116.6,116.1,115.3,113.7,99.8,98.8,98.5,98.1,97.8,91.6,77.3,77.1,76.9,75.4,75.1,74.8,71.9,68.8,29.8,29.4$, 28.4, 28.3, 28.22, 28.1, 19.8, 19.7, 19.6, 19.4, 19.4, 19.4. MS(ESI) calcd $\mathrm{C}_{192} \mathrm{H}_{160} \mathrm{~N}_{22} \mathrm{O}_{20} \mathrm{Na}$ for $[\mathrm{M}+\mathrm{Na}]^{+}: 3118.2139$, found 3118.2124 .

Chiroptical Properties:

Figure S1 Uv-vis absorption and normalized emission spectra of $\boldsymbol{S} / \boldsymbol{R} \mathbf{- 1} \mathbf{a} / \mathbf{1 b}$ and $\boldsymbol{S} / \boldsymbol{R}-\mathbf{P C Q} \mathbf{2} \mathbf{- b}\left(1.0 \times 10^{-5} \mathrm{M}, \mathrm{DCM}\right.$ at 298 $K, \lambda_{\mathrm{ex}}=360 \mathrm{~nm}$).

Figure S2 Uv-vis absorption and normalized emission spectra of $\boldsymbol{S} \mathbf{- 1 a} / \mathbf{1 b}$ and $\boldsymbol{S} \mathbf{- 2 a} / \mathbf{2 b}\left(1.0 \times 10^{-5} \mathbf{M}, \mathrm{DCM}\right.$ at 298 K , $\left.\lambda_{\mathrm{ex}}=360 \mathrm{~nm}\right)$.

Figure S4 Uv-vis absorption and normalized emission spectra of $\mathbf{1 3 b}\left(1.0 \times 10^{-5} \mathrm{M}, \mathrm{DCM}\right.$ at $298 \mathrm{~K}, \lambda_{\mathrm{ex}}=430 \mathrm{~nm}$, $\lambda_{\mathrm{em}}=500 \mathrm{~nm}$). The quantum yield was determined to be 0.2 by using a calibrated integrating sphere

Figure S5 Emission lifetime of $\mathbf{1 3 b}$ ($\tau=1.44 \mathrm{~ns}, 1.0 \times 10^{-5} \mathrm{M}, \mathrm{DCM}$ at 298 K).

Table S1 Optical properties of $\boldsymbol{S} / \boldsymbol{R} \mathbf{- 1 a} \sim \mathbf{1 b}, \boldsymbol{S} \mathbf{- 2 a}$ and $\boldsymbol{S} \mathbf{- 2 b}$.

Compd.	$\lambda_{\text {Abs }} / \mathrm{nm}$	$\varepsilon_{m}\left(\times 10^{4}\right)$	$\varepsilon_{360 \mathrm{~nm}}\left(\times 10^{4}\right)$	$\Phi^{a / \%}$	$\begin{gathered} g_{\text {lum }} / 10^{-} \\ { }_{3}(\mathbf{n m}) \end{gathered}$	$\begin{gathered} \boldsymbol{B}^{b} / \mathbf{M}^{-1} \\ =\mathbf{c m}^{-1} \end{gathered}$
S-1a	327	5.8	2.5	56.1	1.4 (490)	9.9

${ }^{a} \Phi$ is measured using a calibrated integrating sphere, excited at $360 \mathrm{~nm} .{ }^{b} \mathrm{~B}_{\mathrm{CPL}}$ refers to the resulting brightness which is calculated by $B_{C P L}=\varepsilon_{e x} \cdot \Phi \cdot \frac{\left|g_{\text {tum }}\right|}{2}$, while ε_{λ} is the extinction coefficient at the excitation wavelength. ${ }^{2}$

NMR \& MS Spectra:

(b)

$$
\begin{array}{llllllllllllllllllllllllll}
\hline 13.5 & 13.3 & 13.1 & 12.9 & 12.7 & 12.5 & 12.3 & 12.1 & 11.9 & 11.7 & 11.5 & 11.3 & 11.1 & 10.9 & 10.7 & 10.5 & 10.3 \\
\delta / \mathrm{ppm} & & & \\
\hline
\end{array}
$$

Figure S6 Parts of ${ }^{1} \mathrm{H}$ NMR of (a) $\boldsymbol{S} \mathbf{- P C Q} \mathbf{P}_{\mathbf{2}} \mathbf{- b}$, (b) $\boldsymbol{S} \mathbf{- 1 a}$, (c) $\boldsymbol{S} \mathbf{- 1 b},(\mathrm{d}) \boldsymbol{S} \mathbf{- 2 a}$ and (e) $\boldsymbol{S} \mathbf{- 2 b}$ in CDCl_{3} at 298 K .

Figure $\mathrm{S} 7{ }^{1} \mathrm{H}$ NMR of $\boldsymbol{S}-\mathbf{P C Q}_{\mathbf{2}} \mathbf{- b}\left(\mathrm{CDCl}_{3}\right)$

Figure $\mathrm{S} 8{ }^{13} \mathrm{CNMR}^{2}$ of $\boldsymbol{S}-\mathrm{PCQ}_{\mathbf{2}} \mathbf{- b}\left(\mathrm{CDCl}_{3}\right)$

116S \#23 RT: 0.39 AV: 1 NL: 1.03E3
T: FTMS $\{1,1\}+p$ ESI Full $m s$ [200.00-2000.00]
1337.58008
$z=1$
$\mathrm{C}_{80} \mathrm{H}_{77} \mathrm{O}_{10} \mathrm{~N}_{10}=1337.58186$

Figure S9 ESI-MS of $\boldsymbol{S}-\mathbf{P C Q}_{\mathbf{2}} \mathbf{- b}\left(\mathrm{CDCl}_{3}\right)$

Figure $\mathrm{S} 10{ }^{1} \mathrm{H}$ NMR of $\boldsymbol{R}-\mathbf{P C Q}_{\mathbf{2}} \mathbf{- b}\left(\mathrm{CDCl}_{3}\right)$

Figure $\mathrm{S} 11{ }^{13} \mathrm{C}$ NMR of $\boldsymbol{R}-\mathbf{P C Q}_{\mathbf{2}} \mathbf{- b}\left(\mathrm{CDCl}_{3}\right)$

Figure $\mathrm{S} 12{ }^{1} \mathrm{H}$ NMR of $\boldsymbol{S} \mathbf{- 1} \mathbf{a}\left(\mathrm{CDCl}_{3}\right)$

Figure S13 ${ }^{13} \mathrm{C}$ NMR of $\boldsymbol{S} \mathbf{- 1 a}\left(\mathrm{CDCl}_{3}\right)$

Figure S14 ESI-MS of $\boldsymbol{S} \mathbf{- 1 a}$

Figure $\mathrm{S} 15{ }^{1} \mathrm{H}$ NMR of $\boldsymbol{R} \mathbf{- 1 a}\left(\mathrm{CDCl}_{3}\right)$

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
								pp								

Figure $\mathrm{S} 16{ }^{13} \mathrm{C}$ NMR of $\boldsymbol{R} \mathbf{- 1 a}\left(\mathrm{CDCl}_{3}\right)$

COD-94R \#31 RT: 0.46 AV: 1 NL: 1.76E5
T: FTMS $\{1,1\}+p$ ESI Full ms [200.00-2000.00

Figure S17 ESI-MS of $\boldsymbol{R} \mathbf{- 1 a}$

Figure S18 ${ }^{1} \mathrm{H}$ NMR of $\boldsymbol{S} \mathbf{- 1 b}\left(\mathrm{CDCl}_{3}\right)$

Figure S19 ${ }^{13} \mathrm{C}$ NMR of $\boldsymbol{S} \mathbf{- 1 b}\left(\mathrm{CDCl}_{3}\right)$

COD-98S \#53 RT: 0.86 AV: 1 NL: 2.01E4
T: FTMS $\{1,1\}+p$ ESI Full ms [200.00-2000.00]

Figure S20 ESI-MS of $\boldsymbol{S} \mathbf{- 1 b}$

Figure S21 ${ }^{1} \mathrm{H}$ NMR of $\boldsymbol{R} \mathbf{- 1 b}\left(\mathrm{CDCl}_{3}\right)$

Figure S22 ${ }^{13} \mathrm{C}$ NMR of $\boldsymbol{R} \mathbf{- 1 b}\left(\mathrm{CDCl}_{3}\right)$

COD-98R \#55 RT: 0.86 AV: 1 NL: 4.84E4
T: FTMS $\{1,1\}+p$ ESI Full ms [200.00-2000.00]

Figure S23 ESI-MS of $\boldsymbol{R} \mathbf{- 1 b}$

Figure S24 ${ }^{1} \mathrm{H}$ NMR of $\boldsymbol{S}-\mathbf{2 a}\left(\mathrm{CDCl}_{3}\right)$

Figure S25 ${ }^{13} \mathrm{C}$ NMR of $\boldsymbol{S} \mathbf{- 2} \mathbf{a}\left(\mathrm{CDCl}_{3}\right)$

Figure S26 ESI-MS of $\boldsymbol{S} \mathbf{- 2 a}$

Figure $\mathrm{S} 27{ }^{1} \mathrm{H}$ NMR of $\boldsymbol{S} \mathbf{- 2 b}\left(\mathrm{CDCl}_{3}\right)$

Figure $\mathrm{S} 28{ }^{13} \mathrm{C}$ NMR of $\boldsymbol{S} \mathbf{- 2 b}\left(\mathrm{CDCl}_{3}\right)$

Figure S29 ESI-MS of $\boldsymbol{S} \mathbf{- 2 b}$

Reference:

1 (a)D. Zheng, C. Yu, L. Zheng, Y. Zhan and H. Jiang, Chin. Chem. Lett., 2020, 31, 673-676; (b)D. Zheng, L. Zheng, C. Y. Yu, Y. L. Zhan, Y. Wang and H. Jiang, Org. Lett., 2019, 21, 2555-2559.

2 (a)T. Mori, Circularly Polarized Luminescence of Isolated Small Organic Molecules, Springer Nature Singapore Pte Ltd., Singapore, 2020; (b) L. Arrico, L.Di Bari, and F. Zinna, Chem. Eur. J. 2021, 27, 2920 - 2934.

