Electronic Supplementary Information

Discovery of an Olivine-type Lithium Manganese Thiophosphate, LiMnPS₄, via Building Block Approach

Srikanth Balijapelly,^a Kartik Ghosh,^b Aleksandr V. Chernatynskiy,^c Amitava Choudhury^{a, *}

^aDepartment of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA. E-mail: choudhurya@mst.edu

^bDepartment of Physics, Astronomy and Materials Sci, Missouri State University, 901 S. National Ave., Springfield, MO 65897, USA

^cDepartment of Physics, Missouri University of Science and Technology, Rolla, MO 65409, USA

SI NO	Content	
1	Experimental Section (Synthesis, X-ray crystallography, UV-DRS measurements, Magnetic measurements, Theoretical calculations)	S-3-S-6
Table S1	Atomic coordinates and isotopic thermal displacement parameters	S - 7
Table S2	Selected bond lengths	S - 8
Table S3	Anisotropic thermal displacement parameters	S - 9
Figure S1	As-synthesized DMF washed crystals of LiMnPS ₄	S - 10
Figure S2	PXRD of LiMnPS ₄	S - 11
Figure S3	PXRD of Li ₃ PS ₄	S - 12
Figure S4	PXRD of air exposed LiMnPS ₄	S - 13
Figure S5	EDS spectra and elemental mapping	S -14
Figure S6	Diffuse reflectance plot for Li ₃ PS ₄	S - 15
Figure S7	Total density of states and brillouin zone of primitive orthorhombic lattice	S - 16
Figure S8	$\chi_m T$ versus T plot	S - 17
	References	S-18

Experimental Section:

Synthesis

LiMnPS₄ has been synthesized from solid-state metathesis route using y-Li₃PS₄ and MnCl₂. First Li₃PS₄ was synthesized from stoichiometric mixture of Li₂S (4.5 mmol) and P₂S₅ (1.5 mmol) $(1.5Li_2S + 0.5P_2S_5 = Li_3PS_4)$. Li₂S and P₂S₅ were ground together inside argon-filled glove box $(O_2 < 0.1 \text{ppm})$ and loaded into a carbon coated quartz ampule. The flame sealed quartz ampule was heated to 700 °C at a rate of 30 °C /h, dwelled for 12 h and subsequently cooled to room temperature at a cooling rate of 35 °C /h. White crystalline powder sample was obtained after breaking the ampoule inside argon filled glove box. Phase pure Li₃PS₄ (1 mmol) and MnCl₂ (1 mmol) were ground together in 1:1 ratio in an agate mortar and loaded in carbon coated quartz ampoule. The quartz tube was flame sealed and heated to 500 °C for 48 h, the heating and cooling rates were 25 and 30 $^{\circ}$ C /h, respectively. A schematic of the reaction is shown in scheme 1. Shiny single chunk containing pale yellow color crystals were obtained after breaking the ampoule inside an argon-filled glove box. To remove the salt (LiCl) byproduct ($Li_3PS_4 + MnCl_2 = LiMnPS_4 +$ 2LiCl), the as synthesized single chunk was sonicated in N,N dimethylformamide (DMF). The crystals were found to be stable in air for several days. Appropriate crystal was chosen for single crystal X-ray diffraction and the as synthesized crystals/hand ground powder was used for further characterization. A digital photograph showing the as-synthesized LiMnPS₄ was provided in ESI (Figure S1).

Scheme 1: A schematic showing how the reactions are carried out in sealed ampoules.

X-Ray crystallography

Good quality crystal was chosen for single-crystal X-Ray diffraction on a Bruker smart apex equipped with a sealed tube X-ray source with Mo–K α radiation ($\lambda = 0.71073$ Å). Room temperature diffraction data sets were collected using SMART¹ software with a step of 0.3° in the ω scan and 10 s/ frame exposure time. Program SAINT² was used for data integration and SADABS² was used for the absorption correction, respectively. SHELXS-97 and difference Fourier syntheses were used to solve the structure.³ Full-matrix least-square refinement against |F²| was carried out using the SHELXTL-PLUS suite of programs.² The compound crystallizes in orthorhombic crystal system with *Pnma* (No.62) space group. The asymmetric unit consists of three sulfur, one manganese, one phosphorous and one lithium which can be easily located from the difference Fourier map. Absence of unaccounted e-density and reasonably good thermal displacement parameters with low weighted *R* factor *wR*₂, the charge balanced formula LiMnPS₄ was derived based on the 100% occupancies of the atoms. Final refinements including the refinement of anisotropic thermal parameters were performed using SHELX-2018 embedded in ShelXLe.⁴ Selected bond lengths, atomic coordinates along with their isotropic thermal parameters are given in the ESI (Tables S1-S3)

Powder X-Ray diffraction:

Hand ground powder sample in an argon filled glove box was used to collect the laboratory powder X-ray diffraction (PXRD) pattern from a PANalytical X'Pert Pro diffractometer equipped with a Cu K α anode and a linear array PIXcel detector over a 2 θ range of 5–90° with an average scanning rate of 0.0472° s⁻¹. Air-tight cell holder with Kapton film window was used to minimize the air exposure. The PXRD patterns of the as-synthesized and air exposed LiMnPS₄ are provided in Figures S2 and S4. The PXRD of the as-synthesized γ –Li₃PS₄ is provided in Figure S3. The PXRD of the LiMnPS₄ after air exposure didn't show any change indicating good air and moisture stability.

EDS analysis

Elemental analysis is studied by Scanning electron microscope (SEM) using an TESCAN-ASCAT system equipped with Bruker energy dispersive spectroscopy (EDX). The elemental mapping (Figure S5) shows uniform distribution of Mn, P, and S with ratio's 1.04:1.02:4 which is in very good agreement with the crystallographically-derived composition.

Optical Band Gap Measurements

Optical band gap measurements were performed on a Varian Cary 5000 UV–vis–NIR spectrophotometer equipped with a praying mantis set up. BaSO₄ powder (Fisher, 99.2%) was used as an ~100% reflectance standard, and the Kubelka-Munk⁵ function was employed to transform the reflectance into absorption data to find out the band gap. Tauc plot $\alpha hv = A(hv - E_g)^m$

was employed to estimate the nature of optical band gap, where α is absorption coefficient (Kubelka-Munk function), *hv* is the photon energy, and m = 2 or ¹/₂ depending on whether the transition is direct or indirect. LiMnPS₄ exhibit linearity in *hv vs* $(\alpha hv)^{1/2}$ plot, suggesting that the sample possess indirect band gap of 2.36 eV. Diffuse reflectance spectra of γ -Li₃PS₄ shows an indirect band gap of 3.8 eV (Figure S6).

Theoretical calculations

Spin polarized band structure calculations were performed on experimentally determined structure using density functional theory as implemented in Vienna *Ab-intio* Simulations Package (VASP).⁶⁻ ⁹ Hybrid functional (HSE06) calculations were employed to describe accurate band structure and estimate the band gap.¹⁰ Kinetic energy cut off was set to 520 eV and Γ centered *k*-point grid size of 2×3×4 was used for Brillouin zone integration. Relaxed atomic structure by the standard DFT with convergence threshold of 10⁻⁶ eV for total energy and 10⁻³ eV/Å for the maximum force was used for the hybrid functional calculations. All the calculations were performed in ferromagnetic (FM) configuration. The density of states is calculated using gaussian smearing of 0.05 eV.

Magnetic Measurements

The DC magnetic susceptibility was measured at 1 Tesla (1 Tesla = 10000 Oe) magnetic field after zero-field cooling over the temperature range 3.2-300 K in a Quantum Design SQUID magnetometer. Isothermal magnetization at 5 and 300 K was measured in an applied field range of 0 – 5 Tesla. Zero field cooled (ZFC) and field cooled (FC) magnetization data were collected from 3 – 50 K at an applied field of 100 Oe. Variable field magnetization was measured at 5K under ZFC condition in an applied field range of +5 to -5 Tesla. A χ_m T versus T plot is given Figure S8.

Atom	Wyckoff	Occupancy	x/a	y/b	z/c	$U(Å^2)$
Mn(1)	4b	1	0	0	0.5	0.025(1)
P(1)	4c	1	0.0911(1)	0.25	0.1064(2)	0.013(1)
S(1)	8d	1	0.1649(1)	0.0357(1)	0.2428(1)	0.018(1)
S(2)	4c	1	-0.0625(1)	0.25	0.2409(2)	0.016(1)
S(3)	4c	1	0.0947(1)	0.25	-0.2420(1)	0.017(1)
Li(1)	4c	1	-0.2281(7)	0.25	-0.0109(12)	0.030(2)

Table S1. Final atomic coordinates and equivalent isotropic displacement parameters for LiMnPS₄. U(eq) is defined as $1/3^{rd}$ of the trace of the orthogonalized U^{ij} tensor.

Bonds	Distance (Å)	Bonds	Distance (Å)
Mn1 S2	2 5612(7)	D1 S2	2.0222(12)
MIII - 52	2.3013(7)	F1 - 3 5	2.0555(15)
$Mn1-S2^{\#1}$	2.5613(7)	$P1 - S1^{\#4}$	2.0451(10)
$Mn1 - S1^{\#1}$	2.5696(8)	P1 – S1	2.0451(10)
Mn1 - S1	2.5696(8)	P1 - S2	2.0791(14)
$Mn1 - S3^{\#2}$	2.7087(7)		
$Mn1 - S3^{\#3}$	2.7087(7)		

Table S2. Selected bond lengths for LiMnPS₄

Symmetry transformations used to generate equivalent atoms: #1 -x, -y, -z + 1 #2 -x, -y, -z #3 x, y, z+1 #4 x, -y+1/2, z

Atoms	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Mn(1)	30(1)	24(1)	21(1)	8(1)	7(1)	1(1)
P(1)	17(1)	16(1)	7(1)	0	0(1)	0
S (1)	21(1)	21(1)	13(1)	1(1)	1(1)	5(1)
S(2)	15(1)	20(1)	13(1)	0	1(1)	0
S(3)	23(1)	21(1)	7(1)	0	1(1)	0
Li(1)	30(4)	36(4)	25(4)	0	-6(3)	0

Table S3. Anisotropic displacement parameters (Å²x 10³) for LiMnPS4. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

Figure S1: (a) As-synthesized DMF washed crystals of $LiMnPS_4$ synthesized from metathesis route ($Li_3PS_4 + MnCl_2$).

Figure S2: Comparison of simulated and experimental powder X-ray diffraction pattern for LiMnPS₄ synthesized from metathesis route ($Li_3PS_4 + MnCl_2$).

Figure S3: PXRD patterns showing the comparison of experimental Li_3PS_4 with the simulated patterns of $\gamma - Li_3PS_4$.

Figure S4: PXRD patterns showing the comparison of air exposed LiMnPS₄ with the simulated pattern of LiMnPS₄.

Figure S5: EDS analysis of the as synthesized LiMnPS₄. The table indicates the atomic percentage of the elements at different spots. A small percentage of oxygen is not avoidable as sulfides are known to undergo some surface oxidation.

Figure S6: Diffuse reflectance plot for γ -Li₃PS₄.

Figure S7: (a) Total density of states calculated using HSE06 hybrid functionals; (b) Brillouin zone of primitive orthorhombic lattice with high symmetry points.

Figure S8: $\chi_m T$ versus T plot indicating the antiferromagnetic behavior of LiMnPS₄ phase at low temperatures.

References:

- 1. Bruker- SMART, Bruker AXS Inc., Madison, Wisconsin, USA, 2002.
- Bruker-SAINT and SADABS, and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA, 2008.
- 3. G. M. Sheldrick Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112 122
- 4. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, *J. Appl. Crystallogr.*, 2011, **44**, 1281 1284.
- 5. P. Kubelka and F. Z. Munk, *Tech. Phys.*, 1931, **12**, 593 601.
- 6. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, 47, 558-561.
- 7. G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15 50.
- 8. G. Kresse and J. Furthmüller, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1996, **54**, 11169 11186.
- 9. D. Joubert Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 1758 1775.
- A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria, J. Chem. Phys., 2006, 125, 224106.