# Catalytic Enantioselective Synthesis of Chiral Spirocyclic 1,3-Diketones via Organo-Cation Catalysis

Xiao-Yan Zhang,<sup>a</sup> Ya-Ping Shao,<sup>a</sup> Bao-Kuan Guo,<sup>a</sup> Kun Zhang,<sup>b</sup> Fu-Min Zhang,<sup>a</sup> Xiao-Ming Zhang,<sup>\*a</sup> and Yong-Qiang Tu<sup>\*a</sup>

<sup>a</sup>State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

<sup>b</sup>School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China

\*E-mail: tuyq@lzu.edu.cn, zhangxiaom@lzu.edu.cn

# **Table of Contents**

| 1. GENERAL INFORMATION                                    | 3  |
|-----------------------------------------------------------|----|
| 2. SYNTHESIS OF CHIRAL SPA-TRIAZOLIUM BROMIDE CATALYSTS   | 4  |
| 3. GENERAL PROCEDURE FOR THE PREPARATION OF ENOL LACTONES | 7  |
| 4. OPTIMIZATION OF REACTION CONDITIONS                    | 9  |
| 5. GENERAL PROCEDURE                                      | 10 |
| 6. CHARACTERIZATION DATA                                  | 11 |
| 7. X-RAY CRYSTALLOGRAPHIC INFORMATION                     |    |
| 8. NMR SPECTROSCOPIC DATA AND UPC <sup>2</sup> DATA       | 19 |
| 9. REFERENCES                                             | 96 |

# 1. General information

In addition to commercially available extra dry solvents, all solvents were purified by standard operating method. Toluene, tetrahydrofuran (THF), diethyl ether (Et<sub>2</sub>O) and methyl tert-butyl ether (MTBE) were distilled from sodium; Dichloromethane (DCM) and 1,2-dichloroethane (DCE) were distilled from calcium hydride; Acetonitrile was distilled from phosphorus pentoxide; *N*,*N*-dimethylformamide (DMF) was distilled from K<sub>2</sub>CO<sub>3</sub> under reduced pressure. All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on gel F254 plates. Silica gel (200-300 mesh), petroleum ether (b.p. 60-90 °C), ethyl acetate were used for product purification by flash column chromatography. <sup>1</sup>H NMR spectra were acquired on a Bruker 400 or 600 MHz; <sup>13</sup>C NMR spectra were acquired at 101 or 151 MHz and <sup>19</sup>F NMR spectra were acquired at 376 MHz. Chemical shifts ( $\delta$ ) were reported in ppm relative to residual solvent signals (CDCl<sub>3</sub>: 7.26 ppm for <sup>1</sup>H NMR; 77.0 ppm for <sup>13</sup>C NMR.) The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; dd, double of doublets; td, triplet of doublets; m, multiplet. High-resolution mass spectral analysis (HRMS) data were determined on an APEXII 47e FT-ICR spectrometer by means of the ESI technique. IR spectra were recorded on a fourier transform infrared spectrometer. Enantioselectivities were recorded on a melting point apparatus and uncorrected. X-ray diffraction data were collected on Agilent SuperNova Eos diffractometer.

# 2. Synthesis of chiral SPA-triazolium bromide catalysts

General procedure for the preparation of catalysts



(S)-cat. 1 and (S)-3 were prepared according to our previous work.<sup>1</sup>

# Preparation of chiral alkyne

Compound S1- S4 were prepared according to our previous work.1

# **Preparation of azides**



Azides S5 and S6 were prepared following the procedure of literature.<sup>2</sup>

#### Synthesis of triazoles

# (S)-6-(1-([1,1'-biphenyl]-4-yl)-1H-1,2,3-triazol-4-yl)-1-azaspiro[4.4]non-6-en-2-one



To a stired solution of alkyne (3.0 mmol, 1.0 equiv) and 4-azido-1,1-biphenyl (3.6 mmol, 1.2 equiv) in a mixed solvent of water (14 mL) and EtOH (14 mL) was added CuSO<sub>4</sub>·5H<sub>2</sub>O (0.3 mmol, 0.1 equiv) and sodium ascorbate (0.9 mmol, 0.3 equiv) under argon atmosphere. The resulting mixture was refluxed at 90 °C until consumption of substrate. The reaction mixture was cooled to room temperature, filtered through celite and concentrated under vacuum. The crude residue was purified by flash silica gel chromatography.<sup>1</sup>

#### (S)-6-(1-(5-fluoro-[1,1'-biphenyl]-2-yl)-1H-1,2,3-triazol-4-yl)-1-azaspiro[4.4]non-6-en-2-one



To a stired solution of alkyne (3.0 mmol, 1.0 equiv) and 4-azido-5-fluoro-1,1-biphenyl (3.6 mmol, 1.2 equiv) in a mixed solvent of water (14 mL) and EtOH (14 mL) was added CuSO<sub>4</sub>·5H<sub>2</sub>O (0.3 mmol, 0.1 equiv) and sodium ascorbate (0.9 mmol, 0.3 equiv) under argon atmosphere. The resulting mixture was refluxed at 90 °C until consumption of substrate. The reaction mixture was cooled to room temperature, filtered through celite and concentrated under vacuum. The crude residue was purified by flash silica gel chromatography.<sup>1</sup>

## Synthesis of triazoliums catalyst<sup>1</sup>

(S)-6-(1-([1,1'-biphenyl]-4-yl)-3-benzyl-1H-1,2,3l4-triazol-4-yl)-1-azaspiro[4.4]non-6-en-2-one

Ph

Brown solid (433 mg, 82% yield, m.p. = 139-141 °C).

To CH<sub>3</sub>CN (8 mL) and BnBr (4 mL) in a 100 mL sealed tube was added corresponding triazoles (1.0 mmol) and then the sealed tube was filled with argon. The reaction mixture was stirred at 90  $^{\circ}$ C for about 3 days. The mixture was cooled to room temperature and concentrated under vacuum and the crude residue was purified by column chromatography to give (*S*)-cat. 2.

 $[\alpha]_{D}^{21} = 108 (c = 1.0, CHCl_3).$ 

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.09 (s, 1H), 8.25 (s, 1H), 8.17 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 7.0 Hz, 2H), 7.46-7.31 (m, 8H), 6.61-6.59 (m, 1H), 6.21 (d, *J* = 15.3 Hz, 1H), 5.99 (d, *J* = 15.4 Hz, 1H), 2.65-2.58 (m, 1H), 2.51-2.42 (m, 1H), 2.17-2.10 (m, 4H), 1.89-1.80 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.1, 144.2, 138.4, 138.1, 133.5, 132.0, 129.2, 129.1, 128.9, 128.5, 128.3, 128.1, 127.3, 126.9, 121.7, 72.6, 56.0, 38.4, 31.4, 30.4, 30.0. HRMS (ESI) m/z calculated for C<sub>29</sub>H<sub>27</sub>N<sub>4</sub>O [M-Br]<sup>+</sup> 447.2179, found 447.2183.

# (*S*)-6-(3-benzyl-1-(5-fluoro-[1,1'-biphenyl]-2-yl)-1H-1,2,3l4-triazol-4-yl)-1-azaspiro[4.4]non-6-en-2-one



Brown solid (396 mg, 85% yield, m.p. = 193-194 °C).

To CH<sub>3</sub>CN (8 mL) and BnBr (4 mL) in a 100 mL sealed tube was added corresponding triazoles (1.0 mmol) and then the sealed tube was filled with argon. The reaction mixture was stirred at 90  $^{\circ}$ C for about 3 days. The mixture was cooled to room temperature and concentrated under vacuum and the crude residue was purified by column chromatography to give (*S*)-cat. 4.

 $[\alpha]_{D}^{22} = 71$  (c = 1.0, CHCl<sub>3</sub>).

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  9.23 (s, 1H), 8.10-8.08 (m, 1H), 7.85 (s, 1H), 7.39-7.15 (m, 10H), 6.89 (d, *J* = 7.5 Hz, 2H), 6.62 (s, 1H), 6.04 (d, *J* = 15.3 Hz, 1H), 5.78 (d, *J* = 15.3 Hz, 1H), 2.64-2.59 (m, 1H), 2.47-2.41 (m, 1H), 2.13-2.07 (m, 3H), 1.92-1.88 (m, 1H), 1.71-1.67 (m, 1H), 1.39-1.33 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  176.5, 164.6, 162.9, 144.3, 140.9 (d, *J* = 9.06 Hz), 137.1, 134.9, 131.8, 131.4, 129.8 (d, *J* = 10.75 Hz), 129.1, 129.1, 129.0, 128.8 (d, *J* = 3.02 Hz), 128.7,

128.1, 128.0, 127.7, 118.0 (d, J = 24.16 Hz), 116.1 (d, J = 22.65 Hz), 72.3, 55.9, 38.4, 31.3, 30.2 (d, J = 78.52 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -106.1. HRMS (ESI) m/z calculated for C<sub>29</sub>H<sub>26</sub>FN<sub>4</sub>O [M-Br]<sup>+</sup> 465.2085, found 465.2090.

(S)-6-(3-benzyl-1-(5-fluoro-[1,1'-biphenyl]-2-yl)-1H-1,2,3l4-triazol-4-yl)-1-azaspiro[4.4]non-6-en-2-one

Yellow solid (2684 mg, 95% yield, m.p. = 111-113 °C).

(*S*)-cat. 4 (5 mmol, 1.0 equiv) was dissolved in DCM (10 mL) and AgClO<sub>4</sub> (7.5 mmol, 1.5 equiv) was added. The mixture was stirred at room temperature until yellow precipitate was observed. Then filtration would give yellow solid (*S*)-cat. 5.

# (S) - 6 - (3 - benzyl - 1 - (5 - fluoro - [1, 1' - biphenyl] - 2 - yl) - 1 H - 1, 2, 3l4 - triazol - 4 - yl) - 1 - azaspiro [4.4] non - 6 - en - 2 - one



White solid (2486 mg, 90% yield, m.p. = 189-191 °C).

(S)-cat. 6 was synthesized from (S)-cat. 4 and AgBF4 following the similar procedure of (S)-cat. 5.

# (*S*)-6-(3-benzyl-1-(5-fluoro-[1,1'-biphenyl]-2-yl)-1H-1,2,3l4-triazol-4-yl)-1-azaspiro[4.4]non-6-en-2-one



Brown solid (2839 mg, 93% yield, m.p. = 125-126 °C).

(S)-cat. 7 was synthesized from (S)-cat. 4 and AgPF<sub>6</sub> following the similar procedure of (S)-cat. 5.

# 3. General procedure for the preparation of enol lactones

Preparation of substrates 1a-1p.

$$R_{\frac{r_{1}}{t_{1}}}^{r_{1}} \xrightarrow{P_{2}O_{5}, Tf_{2}O} \xrightarrow{P_{2}O_{5}, Tf_{2}O} \xrightarrow{P_{2}O_{5}, Tf_{2}O} \xrightarrow{R_{\frac{r_{1}}{t_{1}}}^{r_{1}}} R_{\frac{r_{1}}{t_{1}}}^{r_{1}} \xrightarrow{P_{2}O_{5}, Tf_{2}O} \xrightarrow{R_{\frac{r_{1}}{t_{1}}}} \xrightarrow{P_{2}O_{5}, Tf_{2}O} \xrightarrow{$$

The requisite carboxylic acid dericatices were prepared following the procedure of literature.<sup>2b, 3</sup>

**General Procedures A:** To a solution of carboxylic acid dericatices (2 mmol, 1.0 equiv) in DCM (20 mL) was added  $P_2O_5$  (36 mmol, 18.0 equiv) and Tf<sub>2</sub>O (2 mmol, 1.0 equiv) at 0 °C. When the product was observed, the reaction was quenched immediately with saturated NaHCO<sub>3</sub> (20 mL) and extracted with DCM (20 mL × 3). The combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated under reduced pressure. The resulting crude product was purified by flash silica gel chromatography.

#### 8-chloro-3,4,5,6-tetrahydro-2H-indeno[1,2-b]oxepin-2-one (1a)



white solid (239 mg, 51% yield, m.p. = 136-137 °C).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 -7.30 (m, 2H), 7.28-7.26 (m, 1H), 3.33 (s, 2H), 2.82-2.79 (m, 2H), 2.66 (t, *J* = 7.0 Hz, 2H), 2.16-2.10 (m, 2H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.5, 144.8, 141.6, 138.8, 131.7, 127.1, 124.1, 122.9, 119.0, 39.4, 34.9, 28.8, 20.6. **HRMS** (ESI) m/z calculated for C<sub>13</sub>H<sub>11</sub>ClO<sub>2</sub>H [M+H]<sup>+</sup> 235.0520, found 235.0522.

#### 8-(naphthalen-2-yl)-3,4,5,6-tetrahydro-2H-indeno[1,2-b]oxepin-2-one (1i)

white solid (293 mg, 45% yield, m.p. = 71-73 °C).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (s, 1H), 7.92-7.85 (m, 3H), 7.77-7.68 (m, 3H), 7.54-7.45 (m, 3H), 3.46 (s, 2H), 2.86-2.83 (m, 2H), 2.73-2.70 (m, 2H), 2.20-2.14 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.6, 145.1, 140.4, 139.2, 138.7, 138.5, 133.7, 132.5, 128.3, 128.1, 127.6, 126.2, 126.0, 125.8, 125.6, 122.8, 122.5, 118.2, 39.5, 34.6, 28.5, 20.6. HRMS (ESI) m/z calculated for C<sub>23</sub>H<sub>18</sub>O<sub>2</sub>H [M+H]<sup>+</sup> 327.1380, found 327.1379.

#### 3,4,5,6,7,8-hexahydro-2H-cyclopenta[b]oxepin-2-one (1p)



colourless oil (113 mg, 37% yield).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 2.66-2.63 (m, 2H), 2.50-2.45 (m, 2H), 2.35-2.32 (m, 2H), 2.16-2.11 (m, 2H), 1.96-1.90 (m, 2H), 1.86-1.79 (m, 2H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>) δ 172.2, 144.9, 117.0, 35.3, 34.5, 33.6, 28.3, 20.4, 19.0. **HRMS** (ESI) m/z calculated for C<sub>9</sub>H<sub>12</sub>O<sub>2</sub>H [M+H]<sup>+</sup> 153.0910, found 153.0911.

Preparation of substrates 1q-1t.



The requisite carboxylic acid dericatices were prepared following the procedure of literature.<sup>4</sup>

**General Procedures A:** To a solution of carboxylic acid dericatices (2 mmol, 1.0 equiv) in DCM (20 mL) was added  $P_{2}O_{5}$  (36 mmol, 18.0 equiv) and  $Tf_{2}O$  (2 mmol, 1.0 equiv) at 0 °C. When the product was observed, the reaction was quenched immediately with saturated NaHCO<sub>3</sub> (20 mL) and extracted with DCM (20 mL × 3). The combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated under reduced pressure. The resulting crude product was purified by flash silica gel chromatography.

2-chloro-11,12-dihydro-6H-benzo[e]indeno[1,2-b]oxepin-6-one (1q)

white solid (237 mg, 42% yield, m.p. = 118-119  $^{\circ}$ C).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, J = 7.6 Hz, 1H), 7.48-7.45 (m, 1H), 7.36-7.32 (m, 3H), 7.28-7.26 (m, 1H), 7.18 (d, J = 7.6 Hz, 1H), 3.75 (s, 2H), 3.43 (s, 2H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 146.7, 142.0, 141.5, 137.1, 133.7, 133.2, 131.5, 129.7, 127.4, 127.2, 127.0, 125.2, 124.4, 118.5, 37.2, 32.1. **HRMS** (ESI) m/z calculated for C<sub>17</sub>H<sub>11</sub>ClO<sub>2</sub>H [M+H]<sup>+</sup> 283.0520, found 283.0521.

# 4.Optimization of reaction conditions

Table S1. Screening of conditions<sup>a</sup>

|                 | CI<br>1a<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI | 2a F                        | (s)-cat. 4              | $H + N^{\dagger} O H$ |                     |
|-----------------|----------------------------------------------------------------------|-----------------------------|-------------------------|-----------------------|---------------------|
| entry           | catalyst                                                             | base (equiv.)               | solvent                 | yield $(\%)^b$        | ee (%) <sup>c</sup> |
| 1               | cat. 8                                                               | $Cs_2CO_3(0.2)$             | DCM                     | 61                    | 60                  |
| 2               | cat. 9                                                               | $Cs_2CO_3(0.2)$             | DCM                     | 58                    | 54                  |
| 3               | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | DCM                     | 80                    | 87                  |
| 4               | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | CHCl <sub>3</sub>       | 51                    | 71                  |
| 5               | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | chlorobenzene           | 45                    | 68                  |
| 6               | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | xylene                  | 50                    | 52                  |
| 7               | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | mesitylene              | trace                 | 2                   |
| 8               | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | THF                     | trace                 | 4                   |
| 9               | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | MTBE                    | trace                 | 11                  |
| 10              | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | 1,4-dioxand             | 49                    | 16                  |
| 11              | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | EtOAc                   | trace                 | 49                  |
| 12              | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | CH <sub>3</sub> CN      | trace                 | 1                   |
| 13              | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | DMF                     | trace                 | 1                   |
| 14              | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | DMSO                    | 48                    | 0                   |
| 15              | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | $DCM+H_2O$ (5 $\mu L$ ) | 43                    | 65                  |
| 16              | (S)-cat. 4                                                           | $Cs_2CO_3(0.2)$             | DCM+DMSO (5 µL)         | 58                    | 31                  |
| 17              | (S)-cat. 4                                                           | $Li_2CO_3(0.2)$             | DCM                     | trace                 | 0                   |
| 18              | (S)-cat. 4                                                           | $Na_2CO_3(0.2)$             | DCM                     | trace                 | 2                   |
| 19              | (S)-cat. 4                                                           | NaOEt (0.2)                 | DCM                     | 57                    | 73                  |
| 20              | (S)-cat. 4                                                           | $K_2HPO_4(0.2)$             | DCM                     | 53                    | 7                   |
| 21              | (S)-cat. 4                                                           | t-BuOK (0.2)                | DCM                     | $NR^d$                | -                   |
| 22              | (S)-cat. 4                                                           | CsOH•H <sub>2</sub> O (0.2) | DCM                     | NR                    | -                   |
| 23              | (S)-cat. 4                                                           | Et <sub>3</sub> N (0.2)     | DCM                     | trace                 | 18                  |
| 24              | (S)-cat. 4                                                           | DBU (0.2)                   | DCM                     | 54                    | 26                  |
| 25              | (S)-cat. 4                                                           | $Cs_2CO_3(0.1)$             | DCM                     | trace                 | 65                  |
| 26              | (S)-cat. 4                                                           | $Cs_2CO_3(0.4)$             | DCM                     | 51                    | 67                  |
| 27              | (S)-cat. 4                                                           | $Cs_2CO_3(0.6)$             | DCM                     | 58                    | 61                  |
| 28              | (S)-cat. 4                                                           | $Cs_2CO_3(0.8)$             | DCM                     | 78                    | 52                  |
| 29              | (S)-cat. 4                                                           | $Cs_2CO_3(1.0)$             | DCM                     | 77                    | 27                  |
| 30              | (S)-cat. 4                                                           | $Cs_2CO_3(1.5)$             | DCM                     | 81                    | 26                  |
| 31              | (S)-cat. 4                                                           | $Cs_2CO_3(2.0)$             | DCM                     | 80                    | 15                  |
| 32 <sup>e</sup> | (S)-cat. 4                                                           | $Cs_2CO_3(2.0)$             | DCM                     | 30                    | 69                  |
| 33 <sup>f</sup> | (S)-cat. 4                                                           | $Cs_2CO_3(2.0)$             | DCM                     | 42                    | 63                  |
| $34^{g}$        | (S)-cat. 4                                                           | $Cs_2CO_3(2.0)$             | DCM                     | 75                    | 66                  |

<sup>a</sup>Reactions were conducted with **1a** (0.05 mmol, 1.0 equiv.), catalyst (20 mol%), and base in solvent (0.5 mL). <sup>b</sup>Isolated yield. <sup>c</sup>Ee determined by UPC<sup>2</sup>. <sup>d</sup>Not detected. <sup>c</sup>The reaction was carried out at 0 °C. <sup>f</sup>The reaction was carried out at -10 °C. <sup>g</sup>The reaction was carried out at 30 °C.

# 5. General Procedure



Enol lactones (0.05 mmol, 1.0 equiv), (*S*)-cat. 4 (0.01 mmol, 0.2 equiv), and  $Cs_2CO_3$  (0.01 mmol, 0.2 equiv) were dissolved in DCM (0.5 mL) at room temperature and the reaction mixture was stirred at the same temperature until consumption of enol lactones detected by TLC. The solution was then quenched with saturated NaHCO<sub>3</sub> (2 mL) and extracted by DCM (3 mL×3). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford spirocyclic 1,3-diketones.

# 6. Characterization Data

# (R)-5'-chlorospiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2a)

Following the above general procedure, **2a** was obtained in 80% yield (9.36 mg) with 87% ee as an white solid (m.p. = 86-88 °C).  $[\alpha]_{D}^{24} = 19$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 1.0 Hz, 1H), 7.38-7.35 (m, 1H), 3.47 (d, *J* = 17.2 Hz, 1H), 2.91 (d, *J* = 17.2 Hz, 1H), 2.63-2.55 (m, 2H), 2.49-2.33 (m, 2H), 2.09-2.01 (m, 2H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  215.3, 202.2, 154.8, 141.8, 133.7, 128.6, 126.5, 125.5, 65.0, 37.8, 37.4, 34.5, 19.5. **HRMS** (ESI) m/z calculated for C<sub>13</sub>H<sub>11</sub>ClO<sub>2</sub>Na [M+Na]<sup>+</sup> 257.0340, found 257.0334. **FT-IR** (cm<sup>-1</sup>): 2960, 2921, 2851, 1740, 1700, 1598, 1578, 1261, 1204, 1070, 1019, 904, 799.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 254.5 nm, t<sub>major</sub> = 0.699 min, t<sub>minor</sub> = 0.789 min).

#### (*R*)-5'-bromospiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2b)

Following the above general procedure, **2b** was obtained in 70% yield (9.73 mg) with 86% ee as an white solid (m.p. = 94-95 °C).  $[\alpha]_{D}^{26} = 18$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, *J* = 1.6 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.52 (dd, *J* = 8.3, 1.5 Hz, 1H), 3.47 (d, *J* = 17.2 Hz, 1H), 2.90 (d, *J* = 17.2 Hz, 1H), 2.62-2.53 (m, 2H), 2.48-2.32 (m, 2H), 2.11-1.99 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  215.1, 202.4, 154.9, 134.0, 131.4, 130.6, 129.5, 125.5, 64.9, 37.7, 37.3, 34.5, 19.4. HRMS (ESI) m/z calculated for C<sub>13</sub>H<sub>11</sub>BrO<sub>2</sub>Na [M+Na]<sup>+</sup> 300.9835, found 300.9833. **FT-IR** (cm<sup>-1</sup>): 2960, 2920, 2851, 1741, 1699, 1594, 1461, 1413, 1261, 1096, 1019, 900, 800.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 258.1 nm, t<sub>major</sub> = 0.786 min, t<sub>minor</sub> = 0.910 min).

#### (*R*)-5'-fluorospiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2c)

Following the above general procedure, **2c** was obtained in 73% yield (7.96 mg) with 66% ee as an white solid (m.p. = 47-49 °C).  $[\alpha]_{D}^{25} = 16$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.71 (dd, J = 8.4, 5.3 Hz, 1H), 7.14 (dd, J = 8.4, 2.1 Hz, 1H), 7.13-7.06 (m, 1H), 3.48 (d, J = 17.2 Hz, 1H), 2.91 (d, J = 17.3 Hz, 1H), 2.63-2.53 (m, 2H), 2.49-2.32 (m, 2H), 2.11-1.98 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 215.4, 201.8, 167.3 (d, J = 257.2 Hz), 156.3 (d, J = 10.3 Hz), 131.5 (d, J = 1.7 Hz), 126.7 (d, J = 10.6 Hz), 116.1 (d, J = 24.0 Hz), 112.9 (d, J = 22.5 Hz), 65.1, 37.8, 37.6 (d, J = 2.3 Hz), 34.5, 19.4. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -102.0. HRMS (ESI) m/z calculated for C<sub>13</sub>H<sub>11</sub>FO<sub>2</sub>Na [M+Na]<sup>+</sup> 241.0635, found 241.0635. FT-IR (cm<sup>-1</sup>): 2963, 2919, 2850, 1708, 1260, 1088, 1019, 864, 799.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 246.2

nm,  $t_{major} = 0.566 \text{ min}$ ,  $t_{minor} = 0.613 \text{ min}$ ).

#### (*R*)-spiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2d)

Following the above general procedure, **2d** was obtained in 65% yield (6.50 mg) with 75% ee as an white solid (m.p. = 53-54 °C).  $[\alpha]_{D}^{23} = 34$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.70 (d, J = 7.8 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.46 (d, J = 7.7 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 3.49 (d, J = 17.0 Hz, 1H), 2.92 (d, J = 17.0 Hz, 1H), 2.62-2.53 (m, 2H), 2.47-2.32 (m, 2H), 2.11-1.98 (m, 2H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>) δ 215.7, 203.7, 153.4, 135.2, 135.0, 127.7, 126.1, 124.4, 64.7, 37.9, 37.8, 34.6, 19.5. HRMS (ESI) m/z calculated for C<sub>13</sub>H<sub>12</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 223.0730, found 223.0728. **FT-IR** (cm<sup>-1</sup>): 2958, 2918, 1739, 1698, 1606, 1463, 1427, 1276, 1151, 992, 902, 767.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 95/5, v = 2.0 mL/min,  $\lambda$ = 241.5 nm, t<sub>major</sub> = 1.528 min, t<sub>minor</sub> = 1.654 min).

## (R)-5'-methoxyspiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2e)



Following the above general procedure, **2e** was obtained in 58% yield (7.96 mg) with 40% ee as an white solid (m.p. = 77-79 °C).  $[\alpha]_{D}^{25} = 15$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.62 (d, J = 9.2 Hz, 1H), 6.91-6.89 (m, 2H), 3.87 (s, 3H), 3.43 (d, J = 17.0 Hz, 1H), 2.86 (d, J = 17.0 Hz, 1H), 2.61-2.50 (m, 2H), 2.47-2.30 (m, 2H), 2.09-1.96 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 216.1, 201.7, 165.6, 156.4, 128.3, 126.0, 115.8, 109.3, 64.9, 55.6, 37.8, 37.7, 34.6, 19.4. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>14</sub>O<sub>3</sub>Na [M+Na]<sup>+</sup> 253.0835, found 253.0834. FT-IR (cm<sup>-1</sup>): 2944, 2882, 2838, 1731, 1682, 1606, 1490, 1338, 1300, 926, 846, 750. The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 267.6 nm, t<sub>major</sub> = 0.864 min, t<sub>minor</sub> = 1.013 min).

## (R)-5'-phenylspiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2f)

Following the above general procedure, **2f** was obtained in 55% yield (7.59 mg) with 78% ee as an white solid (m.p. = 115-117 °C).  $[\alpha]_{D}^{25} = 14$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 1.5 Hz, 1H), 7.63-7.59 (m, 3H), 7.50-7.43 (m, 2H), 7.42-7.39 (m, 1H), 3.55 (d, *J* = 17.0 Hz, 1H), 2.97 (d, *J* = 17.0 Hz, 1H), 2.66-2.55 (m, 2H), 2.52-2.34 (m, 2H), 2.14-1.99 (m, 2H). <sup>13</sup>**C** NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  215.8, 203.3, 154.1, 148.2, 140.0, 134.1, 128.9, 128.4, 127.5, 127.2, 124.8, 124.7, 65.1, 37.9, 37.9, 34.7, 19.5. **HRMS** (ESI) m/z calculated for C<sub>19</sub>H<sub>16</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 299.1043, found 299.1042. **FT-IR** (cm<sup>-1</sup>): 3359, 2920, 2850, 1739, 1694, 1632, 1603, 1466, 1418, 1120, 1074, 1040, 766, 696.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 280.6 nm, t<sub>major</sub> = 1.227 min, t<sub>minor</sub> = 1.624 min).

#### (R)-5'-(p-tolyl)spiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2g)



Following the above general procedure, **2g** was obtained in 56% yield (8.12 mg) with 62% ee as an white solid (m.p. = 150-152 °C).  $[\alpha]_{D}^{22} = 19$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 8.0 Hz, 1H), 7.63 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 7.9 Hz, 2H), 3.53 (d, *J* = 16.9 Hz, 1H), 2.95 (d, *J* = 16.9 Hz, 1H), 2.64-2.56 (m, 2H), 2.49-2.44 (m, 1H), 2.43-2.35 (m, 4H), 2.11-2.01 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  215.9, 203.2, 154.1, 148.1, 138.4, 137.1, 133.8, 129.6, 127.3, 127.0, 124.8, 124.3, 65.1, 37.9, 37.9, 34.7, 21.1, 19.5. **HRMS** (ESI) m/z calculated for C<sub>20</sub>H<sub>18</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 313.1199, found 313.1198. **FT-IR** (cm<sup>-1</sup>): 2964, 1739, 1694, 1605, 1420, 1401, 1279, 1154, 907, 812.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 290.1 nm, t<sub>major</sub> = 1.272 min, t<sub>minor</sub> = 1.668 min).

#### (*R*)-5'-(4-(trifluoromethyl)phenyl)spiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2h)



Following the above general procedure, **2h** was obtained in 55% yield (9.46 mg) with 81% ee as an white solid (m.p. = 103-105 °C).  $[\alpha]_{D}^{24} = 18$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, *J* = 8.0 Hz, 1H), 7.74 -7.70 (m, 4H), 7.66 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 3.56 (d, *J* = 17.0 Hz, 1H), 2.99 (d, *J* = 17.0 Hz, 1H), 2.67-2.56 (m, 2H), 2.51-2.36 (m, 2H), 2.15 -2.02 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  215.6, 203.1, 154.1, 146.5, 143.5, 134.8, 130.3 (q, *J* = 32.0 Hz), 124.0 (q, *J* = 270 Hz), 127.8, 127.3, 125.8 (q, *J* = 4.0 Hz), 125.0, 65.2, 37.9, 37.8, 34.6, 19.5. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.5. HRMS (ESI) m/z calculated for C<sub>20</sub>H<sub>15</sub>F<sub>3</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 367.0916, found 367.0919. FT-IR (cm<sup>-1</sup>): 2920, 1742, 1700, 1609, 1427, 1400, 1326, 1286, 1214, 1167, 1124, 1070, 1014, 907, 834.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 274.7 nm, t<sub>major</sub> = 0.777 min, t<sub>minor</sub> = 0.969 min).

## (R)-5'-(naphthalen-2-yl)spiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2i)



Following the above general procedure, **2i** was obtained in 61% yield (9.95 mg) with 75% ee as an yellow solid (m.p. = 134-136 °C).  $[\alpha]_{D}^{23} = 35$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (s, 1H), 7.94-7.86 (m, 3H), 7.81-7.71 (m, 4H), 7.53-7.51 (m, 2H), 3.57 (d, *J* = 17.0 Hz, 1H), 2.98 (d, *J* = 17.0 Hz, 1H), 2.67-2.57 (m, 2H), 2.51-2.36 (m, 2H), 2.14-2.02 (m, 2H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  215.9, 203.3, 154.2, 148.1, 137.3, 134.1, 133.5, 133.1, 128.7, 128.4, 127.7, 127.5, 126.7, 126.6, 125.3, 124.9, 124.9, 65.2, 37.9, 37.9, 34.7, 19.6. HRMS (ESI) m/z calculated for C<sub>23</sub>H<sub>18</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 349.1199, found 349.1198. **FT-IR** (cm<sup>-1</sup>): 3055, 2920, 1738, 1694, 1606, 1423, 1271, 1213, 1152, 911, 847, 737.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (CHIRALPAK<sup>®</sup> AD-3, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 272.3 nm, t<sub>major</sub> = 6.249 min, t<sub>minor</sub> = 7.736 min).

#### (R)-5'-(thiophen-2-yl)spiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2j)



Following the above general procedure, **2j** was obtained in 51% yield (7.19 mg) with 63% ee as an yellow solid (m.p. = 130-132 °C).  $[\alpha]_{D}^{23} = 38$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.51-7.47 (m, 2H), 7.43 (dd, J = 8.0, 1.5 Hz, 1H), 7.24 (dd, J = 3.7, 1.2 Hz, 1H), 7.19 (dd, J = 5.1, 1.2 Hz, 1H), 6.92 (dd, J = 5.1, 3.6 Hz, 1H), 3.31 (d, J = 17.0 Hz, 1H), 2.73 (d, J = 17.0 Hz, 1H), 2.44-2.35 (m, 2H), 2.29-2.15 (m, 2H), 1.92 -1.79 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 215.7, 202.8, 154.3, 142.9, 140.9, 134.0, 128.4, 126.9, 125.7, 125.1, 125.0, 122.8, 65.1, 37.9, 37.7, 34.7, 19.5. HRMS (ESI) m/z calculated for C<sub>17</sub>H<sub>14</sub>O<sub>2</sub>SNa [M+Na]<sup>+</sup> 305.0607, found 305.0608. FT-IR (cm<sup>-1</sup>): 2957, 2920, 2849, 1738, 1693, 1604, 1422, 1321, 1210, 990, 827, 716. The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min, λ= 323.5 nm, t<sub>major</sub> = 1.595 min, t<sub>minor</sub> = 2.131 min).

#### (R)-6'-methylspiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2k)



Following the above general procedure, **2k** was obtained in 75% yield (8.03 mg) with 83% ee as an white solid (m.p. = 80-82 °C).  $[\alpha]_{D}^{24} = 42$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (s, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 7.8 Hz, 1H), 3.44 (d, *J* = 16.8 Hz, 1H), 2.87 (d, *J* = 16.8 Hz, 1H), 2.61-2.53 (m, 2H), 2.47-2.33 (m, 5H), 2.09-2.04 (m, 1H), 2.03-1.99 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  215.9, 203.9, 150.9, 137.8, 136.4, 135.5, 125.9, 124.4, 65.2, 38.0, 37.6, 34.7, 21.1, 19.6. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>14</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 237.0886, found 237.0878. **FT-IR** (cm<sup>-1</sup>): 2962, 2919, 2850, 1738, 1695, 1616, 1492, 1261, 1155, 1095, 1019, 800, 761.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (CHIRALPAK<sup>®</sup> AD-3, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 245.0 nm, t<sub>major</sub> = 0.871 min, t<sub>minor</sub> = 1.068 min).

#### (R)-6'-chlorospiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2l)



Following the above general procedure, **2l** was obtained in 64% yield (8.03 mg) with 67% ee as an white solid (m.p. = 103-105 °C).  $[\alpha]_{D}^{24} = 20$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, *J* = 2.0 Hz, 1H), 7.55 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 3.44 (d, *J* = 17.0 Hz, 1H), 2.88 (d, *J* = 17.0 Hz, 1H), 2.61-2.54 (m, 2H), 2.45-2.33 (m, 2H), 2.10-1.99 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  215.1, 202.4, 151.5, 136.7, 135.0, 134.1, 127.4, 124.1, 65.4, 37.8, 37.3, 34.5, 19.5. HRMS (ESI) m/z calculated for C<sub>13</sub>H<sub>11</sub>ClO<sub>2</sub>Na [M+Na]<sup>+</sup> 257.0340, found 257.0339. **FT-IR** (cm<sup>-1</sup>): 2945, 2883, 2827, 1734, 1702, 1466, 1429, 1252, 1147, 886, 847, 831, 746.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 95/05, v = 2.0 mL/min,  $\lambda$ = 240.3 nm, t<sub>major</sub> = 1.553 min, t<sub>minor</sub> = 1.682 min).

# (R)-4'-chlorospiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2m)



Following the above general procedure, **2m** was obtained in 75% yield (8.78 mg) with 70% ee as an white solid (m.p. = 70-73 °C).  $[\alpha]_{D}^{24} = 30$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.62-7.59 (m, 2H), 7.36 (t, *J* = 7.7 Hz, 1H), 3.49 (d, *J* = 17.5 Hz, 1H), 2.90 (d, *J* = 17.5 Hz, 1H), 2.63-2.56 (m, 2H), 2.49-2.37 (m, 2H), 2.14-2.08 (m, 1H), 2.07-2.02 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  215.2, 203.0, 151.1, 137.1, 134.8, 132.5, 129.4, 122.7, 64.8, 37.9, 36.9, 34.7, 19.6. HRMS (ESI) m/z calculated for C<sub>13</sub>H<sub>11</sub>ClO<sub>2</sub>Na [M+Na]<sup>+</sup> 257.0340, found 257.0339. **FT-IR** (cm<sup>-1</sup>): 3358, 2920, 2850, 1743, 1706, 1659, 1633, 1461, 1421, 1331, 1263, 1134, 996, 913, 738.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 246.2 nm, t<sub>major</sub> = 0.672 min, t<sub>minor</sub> = 0.736 min).

#### (R)-4'-bromospiro[cyclopentane-1,2'-indene]-1',2(3'H)-dione (2n)



Following the above general procedure, **2n** was obtained in 70% yield (9.73 mg) with 63% ee as an white solid (m.p. = 69-70 °C).  $[\alpha]_{D}^{26} = 5$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.67 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.32-7.26 (m, 1H), 3.45 (d, *J* = 17.5 Hz, 1H), 2.86 (d, *J* = 17.6 Hz, 1H), 2.64-2.55 (m, 2H), 2.52-2.35 (m, 2H), 2.15-2.02 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  215.0, 203.1, 153.1, 137.8, 137.1, 129.5, 123.3, 121.7, 64.8, 38.9, 37.9, 34.7, 19.5. **HRMS** (ESI) m/z calculated for C<sub>13</sub>H<sub>11</sub>BrO<sub>2</sub> [M+Na]<sup>+</sup> 300.9835, found 300.9834. **FT-IR** (cm<sup>-1</sup>): 2945, 2883, 2821, 1741, 1703, 1457, 1329, 1123, 909, 786, 752.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 252.1 nm, t<sub>major</sub> = 0.764 min, t<sub>minor</sub> = 0.853 min).

## (R)-3',4'-dihydro-1'H-spiro[cyclopentane-1,2'-naphthalene]-1',2-dione (20)



Following the above general procedure, **20** was obtained in 80% yield (8.56 mg) with 58% ee as an amorphous solid.  $[\alpha]_{D}^{25}$  = 26 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.47 (td, *J* = 7.5, 1.5 Hz, 1H), 7.29 (t, *J* = 7.0 Hz, 1H), 7.23 (d, *J* = 7.7 Hz, 1H), 3.14-3.07 (m, 1H), 3.00-2.92 (m, 1H), 2.58-2.43 (m, 3H), 2.39-2.30 (m, 1H), 2.17-2.06 (m, 1H), 2.04-1.90 (m, 3H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  217.3, 197.5, 143.6, 133.6, 131.0, 128.6, 127.6, 126.7, 60.4, 38.7, 33.6, 30.3, 25.4, 19.0. **HRMS** (ESI) m/z calculated for C<sub>14</sub>H<sub>14</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup> 237.0886, found 237.0885. **FT-IR** (cm<sup>-1</sup>): 3066, 2936, 1712, 1673, 1601, 1455, 1295, 1226, 947, 847, 740.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 95/5, v = 2.0 mL/min,  $\lambda$ = 246.2 nm, t<sub>major</sub> = 2.199 min, t<sub>minor</sub> = 2.516 min).

#### (R)-spiro[4.4]nonane-1,6-dione (2p)



Following the above general procedure, **2p** was obtained in 73% yield (5.55 mg) with 39% ee as an white solid (m.p. = 32-34 °C).  $[\alpha]_{D}^{23} = 2$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 2.43-2.25 (m, 6H), 2.23-2.13 (m, 2H), 1.96-1.87 (m, 2H), 1.86-1.79 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 216.7, 64.3, 38.4, 34.2, 19.7. **FT-IR** (cm<sup>-1</sup>): 2959, 2919, 2850, 1746, 1716, 1658, 1632, 1406, 1313, 1157, 1065, 916.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 95/5, v = 2.0 mL/min,  $\lambda$ = 202.6 nm, t<sub>major</sub> = 0.641 min, t<sub>minor</sub> = 0.684 min).

## (*R*)-5-chloro-2,2'-spirobi[indene]-1,1'(3H,3'H)-dione (2q)



Following the above general procedure, **2q** was obtained in 84% yield (11.85 mg) with 87% ee as an white solid (m.p. = 181-183 °C).  $[\alpha]_{D}^{25} = 28$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75 (d, *J* = 7.7 Hz, 1H), 7.69-7.64 (m, 2H), 7.56 (dt, *J* = 4.7, 2.1 Hz, 2H), 7.43-7.38 (m, 2H), 3.70 (dd, *J* = 17.0, 14.8 Hz, 2H), 3.17 (dd, *J* = 17.0, 8.9 Hz, 2H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>) δ 202.1, 201.0, 155.1, 153.6, 141.8, 135.3, 135.1, 133.8, 128.5, 127.8, 126.5, 126.3, 125.7, 124.8, 65.4, 37.7, 37.5. **FT-IR** (cm<sup>-1</sup>): 1715, 1693, 1599, 1464, 1421, 1318, 1206, 1136, 1068, 1034.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 251.0 nm, tmajor = 1.309 min, tminor = 1.559 min)

# (*R*)-5-fluoro-2,2'-spirobi[indene]-1,1'(3H,3'H)-dione (2r)

Following the above general procedure,  $2\mathbf{r}$  was obtained in 65% yield (8.65 mg) with 63% ee as an white solid (m.p. = 175-176 °C).  $[\alpha]_{D}^{25} = 14$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.76 (dt, J = 8.7, 3.0 Hz, 2H), 7.66 (td, J = 7.5, 1.2 Hz, 1H), 7.56 (dt, J = 7.7, 1.0 Hz, 1H), 7.43-7.39 (m, 1H), 7.22 (dd, J = 8.4, 2.2 Hz, 1H), 7.11 (td, J = 8.6, 2.3 Hz, 1H), 3.71 (dd, J = 17.1, 11.6 Hz, 2H), 3.18 (dd, J = 17.1, 5.5 Hz, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 202.3, 200.7, 167.5 (d, J = 257.5 Hz), 156.7 (d, J = 10.5 Hz), 153.7, 135.4, 135.2, 131.8 (d, J = 1.8 Hz), 127.8, 127.1 (d, J = 10.7 Hz), 126.3, 124.9, 116.2 (d, J = 24.0 Hz), 113.1 (d, J = 22.4 Hz), 65.6, 37.8, 37.7 (d, J = 2.3 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -101.7. FT-IR (cm<sup>-1</sup>): 1723, 1693, 1614, 1591, 1482, 1425, 1252, 1086.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 247.4 nm, t<sub>major</sub> = 0.963 min, t<sub>minor</sub> = 1.097 min).

#### (*R*)-2,2'-spirobi[indene]-1,1'(3H,3'H)-dione (2s)

Following the above general procedure, **2s** was obtained in 90% yield (11.16 mg) with 47% ee as an white solid (m.p. = 172-173 °C).  $[\alpha]_{D}^{25} = 9$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (d, J = 7.7 Hz, 1H), 7.65 (td, J = 7.5, 1.2 Hz, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 3.72 (d, J = 17.0 Hz, 1H), 3.19 (d, J = 16.9 Hz, 1H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  202.6, 153.8, 135.4, 135.2, 127.8, 126.3, 124.9, 65.3, 38.1.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (Trefoil<sup>TM</sup> CEL2, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 246.2 nm, t<sub>major</sub> = 1.253 min, t<sub>minor</sub> = 1.328 min).

## (*R*)-6-methyl-2,2'-spirobi[indene]-1,1'(3H,3'H)-dione (2t)



Following the above general procedure, **2t** was obtained in 95% yield (12.45 mg) with 76% ee as an white solid (m.p. = 176-178 °C).  $[\alpha]_{D}^{25} = 6$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75 (d, *J* = 7.6 Hz, 1H), 7.64 (td, *J* = 7.5, 1.2 Hz, 1H), 7.56-7.54 (m, 2H), 7.48-7.38 (m, 3H), 3.69 (dd, *J* = 21.3, 16.9 Hz, 2H), 3.16 (t, *J* = 17.2 Hz, 2H), 2.41 (s, 3H). <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>) δ 202.8, 202.7, 153.8, 151.2, 137.8, 136.5, 135.6, 135.5, 135.2, 127.7, 126.3, 126.0, 124.8, 124.8, 65.7, 38.0, 37.8, 21.0.

The ee value was determined by the chiral UPC<sup>2</sup> analysis (CHIRALPAK<sup>®</sup> AD-3, CO<sub>2</sub>/MeOH = 80/20, v = 2.0 mL/min,  $\lambda$ = 247.4 nm, t<sub>major</sub> = 1.587 min, t<sub>minor</sub> = 1.774 min).

# 7. X-ray crystallographic information



Table S2. Crystal data and structure refinement for compound 1a. (CCDC: 2099870)

| Empirical formula                           | $C_{13}H_{11}ClO_2$                                                               |
|---------------------------------------------|-----------------------------------------------------------------------------------|
| Temperature/K                               | 292.69(10)                                                                        |
| Crystal system                              | monoclinic                                                                        |
| Space group                                 | P21/n                                                                             |
| a/Å                                         | 13.6872(8)                                                                        |
| b/Å                                         | 6.0620(3)                                                                         |
| c/Å                                         | 14.0247(9)                                                                        |
| $\alpha/^{\circ}$                           | 90                                                                                |
| β/°                                         | 105.577(7)                                                                        |
| $\gamma/^{\circ}$                           | 90                                                                                |
| Volume/Å <sup>3</sup>                       | 1120.91(12)                                                                       |
| Z                                           | 4                                                                                 |
| pealeg/cm <sup>3</sup>                      | 1.391                                                                             |
| µ/mm <sup>-1</sup>                          | 2.863                                                                             |
| F(000)                                      | 488.0                                                                             |
| Crystal size/mm <sup>3</sup>                | $0.1 \times 0.05 \times 0.04$                                                     |
| Radiation                                   | Cu K <sub><math>\alpha</math></sub> ( $\lambda$ = 1.54184)                        |
| 20 range for data collection/°              | 8.014 to 133.2                                                                    |
| Index ranges                                | $\text{-}12 \leq h \leq 16,  \text{-}7 \leq k \leq 5,  \text{-}15 \leq l \leq 16$ |
| Reflections collected                       | 3650                                                                              |
| Independent reflections                     | 1975 [ $R_{int} = 0.0217$ , $R_{sigma} = 0.0316$ ]                                |
| Data/restraints/parameters                  | 1975/0/145                                                                        |
| Goodness-of-fit on F <sup>2</sup>           | 1.026                                                                             |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0460,  wR_2 = 0.1158$                                                    |
| Final R indexes [all data]                  | $R_1 = 0.0624,  wR_2 = 0.1323$                                                    |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.16/-0.24                                                                        |



 Table S3. Crystal data and structure refinement for compound 2a. (CCDC : 2092879)

| Empirical formula                    | $C_{13}H_{11}ClO_2$                                        |
|--------------------------------------|------------------------------------------------------------|
| Formula weight                       | 234.67                                                     |
| Temperature/K                        | 293.0(7)                                                   |
| Crystal system                       | orthorhombic                                               |
| Space group                          | P212121                                                    |
| a/Å                                  | 6.90260(14)                                                |
| b/Å                                  | 6.93126(15)                                                |
| c/Å                                  | 23.3243(4)                                                 |
| α/°                                  | 90                                                         |
| β/°                                  | 90                                                         |
| $\gamma/^{\circ}$                    | 90                                                         |
| Volume/Å <sup>3</sup>                | 1115.92(4)                                                 |
| Z                                    | 4                                                          |
| pcalcg/cm <sup>3</sup>               | 1.397                                                      |
| μ/mm <sup>-1</sup>                   | 2.876                                                      |
| F(000)                               | 488.0                                                      |
| Crystal size/mm <sup>3</sup>         | $0.11 \times 0.08 \times 0.05$                             |
| Radiation                            | Cu K <sub><math>\alpha</math></sub> ( $\lambda$ = 1.54184) |
| 20 range for data collection/°       | 7.58 to 152.36                                             |
| Index ranges                         | $-8 \le h \le 8,  -5 \le k \le 8,  -28 \le l \le 29$       |
| Reflections collected                | 8732                                                       |
| Independent reflections              | 2262 [ $R_{int} = 0.0237$ , $R_{sigma} = 0.0182$ ]         |
| Data/restraints/parameters           | 2262/0/145                                                 |
| Goodness-of-fit on F <sup>2</sup>    | 1.075                                                      |
| Final R indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0335, wR_2 = 0.0862$                              |
| Final R indexes [all data]           | $R_1 = 0.0363,  wR_2 = 0.0884$                             |
| Largest diff. peak/hole / e Å-3      | 0.15/-0.25                                                 |
| Flack parameter                      | 0.000(8)                                                   |

# 8. NMR spectroscopic data and UPC<sup>2</sup> data









/ 0.09 / -0.00

|                                                                                                  |                                          | -144. 23 $-144. 23$ $-1338. 39$ $-1338. 65$ $-1338. 65$ $-1328. 65$ $-1228. 89$ $-1228. 89$ $-121. 71$ $-121. 71$ | -56.04                                                                                                          | - 38. 44 $31. 38$ $31. 38$ $30. 03$                  |                                           |
|--------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| O<br>N<br>N<br>Br<br>Ph                                                                          |                                          |                                                                                                                   |                                                                                                                 |                                                      |                                           |
|                                                                                                  |                                          |                                                                                                                   |                                                                                                                 |                                                      |                                           |
|                                                                                                  |                                          |                                                                                                                   |                                                                                                                 |                                                      |                                           |
| ĸĸĦĦŦĬŦĸŔĸŢĸĿġĸĬŢĸĬĸŎĸŢĨĿĸŔġĸĬĸĔĬĔĸĸĔĬĔĸĬĔĬĊŔĊĬġĬţŸŎĸĸĸŔĬġŔĸĔĬĊŔĸŢŔĸĔŢĸŔŢĸŎĸŔĸĬĊĸŎĿŎŔĸĸĿĬĿĸŎĿŎŔĬ | маралууларууларууларууларууларууларуулар | ๛ฺ฿๛๛๚๚๛๚๚๛๚๚๛๚๚๛๚๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚                                                                           | ringen under Kanstand – General Angelein ein die Bergerein ein die Sterker under Bergerein ein die Sterker unde | ngtarnerna den kil (letar gelett) kil (letar gelett) | ₽ĸ\$yĸ₩₩₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ |

 60
 250
 240
 230
 220
 210
 200
 190
 180
 170
 160
 150
 140
 130
 120
 110
 100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0
 -10
 -2(



 $\bigwedge_{5.77}^{6.05} \stackrel{0.05}{_{5.77}}$ 

9.

1.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.







/ / 0.08 000

| nerter |
|--------|
|        |

⊤ 140 ⊤ 130 



10 0 -10 -20 -30 -40 -50 -60 -70-80  $-90 \quad -100 \quad -110 \quad -120 \quad -130 \quad -140 \quad -150 \quad -160 \quad -170 \quad -180 \quad -190 \quad -200 \quad -210$ 









|                       |             | $\sim$ 144. 81<br>141. 56<br>$\sim$ 133. 75<br>$\sim$ 133. 75<br>$\sim$ 124. 14<br>$\sim$ 122. 87<br>$\sim$ 119. 00 | 77. 64<br>77. 32<br>77. 00 |                                 |
|-----------------------|-------------|---------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|
|                       |             |                                                                                                                     |                            |                                 |
| _cı                   |             |                                                                                                                     |                            |                                 |
|                       |             |                                                                                                                     |                            |                                 |
|                       |             |                                                                                                                     |                            |                                 |
|                       |             |                                                                                                                     |                            |                                 |
|                       |             |                                                                                                                     |                            |                                 |
| 30 220 210 200 190 18 | 0 170 160 1 | 50 140 130 120 110 100                                                                                              | 90 80 70 60 50             | 20 	 40 	 30 	 20 	 10 	 0 	 -1 |









|                                                                                              | — 171.60 | $\begin{array}{c} 145.06\\ 140.46\\ 138.65\\ 138.65\\ 138.65\\ 133.66\\ 133.66\\ 122.57\\ 126.04\\ 1127.57\\ 126.04\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.56\\ 1122.5$ | 77.31<br>77.00<br>76.68 |               |
|----------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|
|                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               |
|                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               |
|                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               |
|                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               |
|                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               |
| ŧang anteresta en esta por for ter atter ter esta en esta esta esta esta esta esta esta esta |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               |
| 30 220 210 200 190 180                                                                       | 170 160  | D 150 140 130 120 110 100 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80 70 60 50             | 40 30 20 10 0 |





| Î      |  |
|--------|--|
|        |  |
| $\sim$ |  |

 $\overbrace{76.68}^{77.32}$ 

 $\frac{535.27}{33.57}$  $\sim 20.35$  $\sim 19.00$ 



----3. 75 ----3. 43







|  | 146. 71<br>142. 03<br>141. 52<br>133. 14<br>133. 18<br>133. 18<br>133. 18<br>131. 50<br>131. 50<br>131. 50<br>132. 35<br>127. 24<br>127. 24<br>127. 24<br>127. 24<br>127. 17<br>128. 35<br>118. 48 |  |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  |                                                                                                                                                                                                    |  |
|  |                                                                                                                                                                                                    |  |
|  |                                                                                                                                                                                                    |  |
|  |                                                                                                                                                                                                    |  |

-1







|                                                |   |                    |     |         |     |     | — 141. 75 | 133.66<br>128.62<br>-176.45 | 125.54 |      | $\frac{171.32}{77.00}$                     | 20.00  | $< \frac{37.80}{37.44}$ | - 34. 53 |        |                    |
|------------------------------------------------|---|--------------------|-----|---------|-----|-----|-----------|-----------------------------|--------|------|--------------------------------------------|--------|-------------------------|----------|--------|--------------------|
| CI                                             | Û | $\hat{\mathbf{x}}$ |     |         |     |     |           |                             |        |      |                                            |        |                         |          |        |                    |
| -                                              |   | 0                  |     |         |     |     |           |                             |        |      |                                            |        |                         |          |        |                    |
|                                                |   |                    |     |         |     |     |           |                             |        |      |                                            |        |                         |          |        |                    |
|                                                |   |                    |     |         |     |     |           |                             |        |      |                                            |        |                         |          |        |                    |
|                                                |   |                    |     |         |     |     |           |                             |        |      |                                            |        |                         |          |        |                    |
|                                                |   | I                  |     |         |     |     |           |                             |        |      |                                            |        |                         |          |        |                    |
| <b>140.01000000000000000000000000000000000</b> |   |                    | 100 | <br>170 | 160 | 150 | 140       | 120                         | 120    | <br> | <br>•••••••••••••••••••••••••••••••••••••• | <br>60 | <br>                    |          | <br>10 | <br>2*10/10/10<br> |



|                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P Q Z Z 8 3 7 7 8 9 7 7 9 8 8 0 0 0 0 1 1 7 5 5 5 8 3 2 0 0 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                             | $i$ $\dot{a}$ $a$ |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





|              |   |           | $\sim$ 134. 01<br>131. 36<br>131. 36<br>133. 56<br>129. 48<br>$\sim$ 125. 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{77.32}{76.68}$ | <br>$\sim 37.74$<br>$\sim 37.34$<br>$\sim 34.45$ |            |
|--------------|---|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|------------|
| Br           |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                  |            |
| -            | 0 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                  |            |
|              |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                  |            |
| 1            |   | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                     |                                                  |            |
| 30 220 210 2 |   | D 150 140 | 1 <b>III</b><br>1 <b></b> | 80 70                 | <br><br>40 30                                    | 20 10 0 -1 |






|  |  |  | $< \frac{156.35}{156.25}$ | $< 131.55 \\ < 131.53 \\ 131.53 \\ < 126.67 \\ 126.67 $ |  | $\frac{77.32}{71.00}$ |  | 37. 76<br>37. 56<br>37. 54<br>34. 51 |  |
|--|--|--|---------------------------|---------------------------------------------------------|--|-----------------------|--|--------------------------------------|--|
|--|--|--|---------------------------|---------------------------------------------------------|--|-----------------------|--|--------------------------------------|--|

F C C

|  | I-LI | <br> | III |
|--|------|------|-----|



 $10 \quad 0 \quad -10 \quad -20 \quad -30 \quad -40 \quad -50 \quad -60 \quad -70 \quad -80 \quad -90 \quad -100 \quad -110 \quad -120 \quad -130 \quad -140 \quad -150 \quad -160 \quad -170 \quad -180 \quad -190 \quad -200 \quad -210$ 

-101.98







|   | <br>$ \begin{array}{c} \overbrace{)}^{135.15} \\ \overbrace{)}^{135.02} \\ \overbrace{)}^{127.66} \\ \overbrace{)}^{124.36} \\ \overbrace{)}^{124.36} \end{array} $ | $   \underbrace{ \begin{array}{c}     77. 32 \\     77. 00 \\     76. 68 \\     \hline     64. 73   \end{array} $ | $ - \frac{37.87}{31.63} - \frac{37.87}{31.63} - \frac{37.87}{34.63} - \frac{19.46}{3} -$ |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - |                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|    |     | ·   | ·   |     |     |     |     |     | , <u> </u> | ·   |     | ·   |     | · · · |    | ,  | ·  |    |    |    | ·  |    |   | · · · |
|----|-----|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-------|----|----|----|----|----|----|----|----|---|-------|
| 30 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140        | 130 | 120 | 110 | 100 | 90    | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1    |



| $84 \\ 61 \\ 656 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ 616 \\ $ | 53353<br>5535353<br>553553<br>553553<br>5535553<br>5535555555555 | $\begin{array}{c} 4 \\ 4 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$ | $\begin{array}{c} 0.00\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                          | ******                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





|     | <br> | $ \begin{array}{c} 77.3 \\ 77.0 \\ 76.6 \\ -64.8 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -55.5 \\ -$ | 7.7.7<br>37.7<br>34.5<br>19.4           |        |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| MeO |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |
| -   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |
|     |      | newsers means and the second second to be a second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | umaanaan luodheenstannon sean loomansea | ****** |







| 215.84 | <br> | <br> | $\underbrace{ < 77, 21}_{76, 79}$ | <br><37.92<br>>34.72<br>>34.72 |  |
|--------|------|------|-----------------------------------|--------------------------------|--|
| Ph     |      |      |                                   |                                |  |

|  |        | 1            |      |
|--|--------|--------------|------|
|  |        |              |      |
|  | ······ | <br><u>م</u> | <br> |

| <br> |     |     | 1 1 |     |     |     | ' ' ' |     |     |     |     |     | 1  |    |    | ·  |    |    | ·   · |    | 1 1 |   |  |
|------|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|----|----|----|----|----|----|-------|----|-----|---|--|
| 220  | 210 | 200 | 190 | 180 | 170 | 160 | 150   | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30    | 20 | 10  | 0 |  |







|        |     | 67 - CO7 |         | <br>$ \begin{array}{c} 138. \ 43 \\ 137. \ 64 \\ 137. \ 64 \\ 129. \ 64 \\ 127. \ 29 \\ 126. \ 98 \\ 124. \ 75 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 32 \\ 124. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ 324. \ $ |         | $\underbrace{<}^{77.\ 21}_{76.\ 79}$ |      | <37.91<br>$\sim 37.86$<br>$\sim 34.72$ | -21.12<br> |         |
|--------|-----|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|------|----------------------------------------|------------|---------|
|        | D   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                      |      |                                        |            |         |
|        | ļ   | Ő        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                      |      |                                        |            |         |
|        |     |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                      |      |                                        |            |         |
|        |     |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                      |      |                                        |            |         |
|        |     |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                      |      |                                        |            |         |
|        |     |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                      |      |                                        |            |         |
|        |     |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                      |      |                                        | J          |         |
|        |     |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                      |      |                                        |            |         |
| 30 220 | 210 | 200 190  | 180 170 | <br>140 130 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110 100 | 90 80 7                              | 0 60 | 50 40 30                               | 20         | 10 0 -1 |







|                         | $ \begin{array}{c}     154.13 \\     154.13 \\     154.13 \\     134.79 \\     130.46 \\     130.46 \\     130.46 \\     130.46 \\     125.88 \\     125.88 \\     125.88 \\     125.88 \\     125.88 \\     122.86 \\     112.667 \\     119.96 \\     119.96 \\   \end{array} $ | $\frac{77.32}{76.68}$ | $-\frac{537.86}{37.80}$ 37.80 $-34.59$ -34.59 $-19.51$ |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------|
| F <sub>3</sub> C        |                                                                                                                                                                                                                                                                                   |                       |                                                        |
|                         |                                                                                                                                                                                                                                                                                   |                       |                                                        |
|                         |                                                                                                                                                                                                                                                                                   |                       |                                                        |
| 220 210 200 190 180 170 |                                                                                                                                                                                                                                                                                   | 90 80 70 60 5         | 50  40  30  20  10  0                                  |



 $10 \quad 0 \quad -10 \quad -20 \quad -30 \quad -40 \quad -50 \quad -60 \quad -70 \quad -80 \quad -90 \quad -100 \quad -110 \quad -120 \quad -130 \quad -140 \quad -150 \quad -160 \quad -170 \quad -180 \quad -190 \quad -200 \quad -210$ 







23.55 23.55 23.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25

|   | - 154. 15 $- 148. 11$ $137. 29$ $137. 29$ $133. 45$ $133. 45$ $127. 65$ $127. 65$ $127. 26$ $127. 46$ $127. 46$ $127. 46$ $127. 48$ | $\overbrace{76.68}^{77.32}$ | <br><37.94<br>37.91<br>$\sim$ 34.73 | 19. 55 |
|---|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|--------|
|   |                                                                                                                                     |                             |                                     |        |
| - |                                                                                                                                     |                             |                                     |        |
|   |                                                                                                                                     |                             |                                     |        |
|   |                                                                                                                                     | J                           |                                     |        |

|     |     | · · · · | · · · · · | · · · · | · · · | · · · | · · · | · · · |     | · · · | · · · | · · · |    |    |    |    |    |    |    |    |    |   |    |
|-----|-----|---------|-----------|---------|-------|-------|-------|-------|-----|-------|-------|-------|----|----|----|----|----|----|----|----|----|---|----|
| 220 | 210 | 200     | 190       | 180     | 170   | 160   | 150   | 140   | 130 | 120   | 110   | 100   | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |







| <br>-154.27 $-142.93$ $-142.93$ $-1440.88$ $-1440.88$ $-126.88$ $-125.65$ $-125.04$ $-125.04$ $-122.81$ | $\frac{77.32}{776.68}$ | $ \begin{array}{c} & \overset{37.89}{\sim} \\ 34.71 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ |
|---------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <br><br><b>III_I∥_I</b><br><br>                                                                         |                        | 50 40 30 20 10 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| 215.92 | — 203. 87 | <br>$\sim 137.75$<br>$\sim 136.40$<br>$\sim 135.46$ | → 125.88<br>→ 124.36 | $\overbrace{76.76}^{77.39}$ | <br>$\overset{37.98}{\sim}_{34.72}^{37.62}$ | / / |
|--------|-----------|-----------------------------------------------------|----------------------|-----------------------------|---------------------------------------------|-----|
| Ľ      |           |                                                     |                      |                             |                                             |     |
|        |           |                                                     |                      |                             |                                             |     |
|        |           |                                                     |                      |                             |                                             |     |









|                          |            | $ - 136. 67 \\ - 135. 02 \\ - 134. 08 \\ - 127. 35 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 124. 09 \\ - 1$ | $ \underbrace{\leftarrow}^{77.\ 21}_{76.\ 79} \\ -65.\ 39 $ | ~37.77<br>~37.32<br>34.49<br>-19.45 |
|--------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|
| CI                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                     |
|                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                     |
|                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                     |
|                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                     |
| 30 220 210 200 190 180 1 | 70 160 150 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90 80 70 60 50                                              | 40 30 20 10 0                       |







|                               |        |                        | $ \underbrace{\begin{array}{c}77.26}77.05\\76.84\\-64.77\end{array} $ |               |
|-------------------------------|--------|------------------------|-----------------------------------------------------------------------|---------------|
|                               |        |                        |                                                                       |               |
| -                             |        |                        |                                                                       |               |
|                               |        |                        |                                                                       |               |
|                               |        |                        |                                                                       |               |
|                               |        |                        |                                                                       |               |
| 30 220 210 200 190 180 170 16 | 60 150 | 140 130 120 110 100 90 | 80 70 60 50                                                           | 40 30 20 10 0 |







|      | — 153. 09 | $\sim 137.81$<br>- 137.14<br>- 129.54<br>- 123.26<br>- 121.68 | $\frac{\sum_{77.32}^{77.32}}{76.68}$ |  |
|------|-----------|---------------------------------------------------------------|--------------------------------------|--|
| Br O |           |                                                               |                                      |  |
|      |           |                                                               |                                      |  |
|      |           |                                                               |                                      |  |
|      |           |                                                               |                                      |  |

| <br> |     |     |     |     |     |     |     | , <u>, , , , , , , , , , , , , , , , , , </u> | <del> </del> | · · · |     | <del>, , , , , , , , , , , , , , , , , , , </del> | <del>, , , , , , , , , , , , , , , , , , , </del> |    |    |    |    |    |    | · · · | <del>, , , , , , , , , , , , , , , , , , , </del> |   |    |  |
|------|-----|-----|-----|-----|-----|-----|-----|-----------------------------------------------|--------------|-------|-----|---------------------------------------------------|---------------------------------------------------|----|----|----|----|----|----|-------|---------------------------------------------------|---|----|--|
| 220  | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140                                           | 130          | 120   | 110 | 100                                               | 90                                                | 80 | 70 | 60 | 50 | 40 | 30 | 20    | 10                                                | 0 | -1 |  |





| 217. 28 | — 197. 51     | <br>$\sum_{\substack{133.63\\127.62\\127.62\\126.66}$ | $\frac{77.32}{76.68}$ | <br> |
|---------|---------------|-------------------------------------------------------|-----------------------|------|
|         | $\mathcal{F}$ |                                                       |                       |      |
| -       |               |                                                       |                       |      |
|         |               |                                                       |                       |      |
|         |               |                                                       |                       |      |
|         |               |                                                       | Ŵ                     |      |
|         |               |                                                       |                       |      |
|         |               | <br>                                                  |                       | <br> |

180 170

 $\overline{\phantom{a}}$ 

0 -1







 $\overbrace{77.21}^{77.21} 64.27$  -64.27 -38.36 -34.20

Ŷ

|    | · I | ·   | ·   · |     |     |     | ' I | r   | · · · · · | 1   | · 1 | · · · | ·   | ·  | · I | ·  | ·  | ·  | · 1 | · 1 | 1  | ·   · |   |    |
|----|-----|-----|-------|-----|-----|-----|-----|-----|-----------|-----|-----|-------|-----|----|-----|----|----|----|-----|-----|----|-------|---|----|
| 30 | 220 | 210 | 200   | 190 | 180 | 170 | 160 | 150 | 140       | 130 | 120 | 110   | 100 | 90 | 80  | 70 | 60 | 50 | 40  | 30  | 20 | 10    | 0 | -1 |







| → 202.07<br>→ 201.03 | / 155.12<br>/ 153.61 | -141.76 $-141.76$ $-135.31$ $-135.05$ $-133.78$ $-127.77$ $-128.50$ $-127.77$ $-124.80$ $-124.80$ | $\overbrace{77.00}^{77.32}$ |  | $<^{37.47}_{37.47}$ |
|----------------------|----------------------|---------------------------------------------------------------------------------------------------|-----------------------------|--|---------------------|
|----------------------|----------------------|---------------------------------------------------------------------------------------------------|-----------------------------|--|---------------------|



| <b>I</b> |  |
|----------|--|









| 30<br>65   | 31 31                | 70<br>63<br>68 | 2232<br>2252<br>2252<br>016<br>016 | 106          | ю | 400                                     |
|------------|----------------------|----------------|------------------------------------|--------------|---|-----------------------------------------|
| 00.        | 68.<br>66.           | 556.<br>53.    | 35.<br>35.<br>116.<br>113.         | 7. 2<br>6. 7 |   | 8 · L · L · L · L · L · L · L · L · L · |
| 5 5<br>  / | $\frac{1}{\sqrt{7}}$ | <u>v</u>       |                                    |              |   | m m m                                   |
| 1.1        | 1.1                  | Υ ſ            | א א אורר א                         | °            |   | Ϋ́                                      |







~3.74 3.70 ~3.70 3.21 3.21 ---0.00


| 202.62                                  | — 153. 79 | <135.24<br>135.24<br>$\sim 127.77$<br>$\sim 124.88$<br>$\sim 124.88$ | $\frac{\frac{77.32}{77.00}}{76.68}$ |                  |
|-----------------------------------------|-----------|----------------------------------------------------------------------|-------------------------------------|------------------|
|                                         |           |                                                                      |                                     |                  |
| 0                                       |           |                                                                      |                                     |                  |
|                                         |           |                                                                      |                                     |                  |
|                                         |           |                                                                      |                                     |                  |
|                                         |           |                                                                      |                                     |                  |
|                                         |           |                                                                      |                                     |                  |
| 220 $210$ $200$ $190$ $180$ $170$ $160$ | 50 150    | 140 130 120 110 100 90                                               | 80 70 60 50                         | 40 30 20 10 0 -1 |









| 202. 75 202. 66 | $- 153. 81 \\ - 151. 19 \\ 137. 75 \\ 136. 53 \\ 135. 18 \\ 135. 18 \\ 135. 18 \\ 125. 31 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ 124. 75 \\ $ | $\frac{177.32}{76.68}$ | <ul> <li>&lt;38. 03</li> <li>37. 75</li> <li>37. 75</li> <li>37. 03</li> </ul> |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------|--|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                |  |
| 0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                                |  |

| - I - I | · · · · | · · · · · | I   | ·   | , I I | · · · · | · 1 | · · · · · | ·   | ·   | ·   | ·   | · · · | ·  | · · · · | ·  | · · · | · · · | ·  | · · · | ·  | · |
|---------|---------|-----------|-----|-----|-------|---------|-----|-----------|-----|-----|-----|-----|-------|----|---------|----|-------|-------|----|-------|----|---|
| 220     | 210     | 200       | 190 | 180 | 170   | 160     | 150 | 140       | 130 | 120 | 110 | 100 | 90    | 80 | 70      | 60 | 50    | 40    | 30 | 20    | 10 | 0 |



|  | peak information: |                  |                |             |                |  |  |  |  |  |  |
|--|-------------------|------------------|----------------|-------------|----------------|--|--|--|--|--|--|
|  |                   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |  |  |  |  |  |  |
|  | 1                 | 0.699            | 446514         | 50.01       | 451526         |  |  |  |  |  |  |
|  | 2                 | 0.789            | 446394         | 49.99       | 414730         |  |  |  |  |  |  |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.699            | 1536335        | 93.61       | 1549795        |
| 2 | 0.789            | 104894         | 6.39        | 99355          |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.794            | 610049         | 50.00       | 557759         |
| 2 | 0.920            | 610100         | 50.00       | 500454         |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.786            | 2966543        | 92.89       | 2566707        |
| 2 | 0.910            | 226985         | 7.11        | 187705         |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.568            | 1048758        | 50.10       | 1184397        |
| 2 | 0.615            | 1044398        | 49.90       | 1134787        |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.566            | 892251         | 82.75       | 1003299        |
| 2 | 0.613            | 185961         | 17.25       | 204528         |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 1.521            | 3917196        | 49.95       | 2047074        |
| 2 | 1.643            | 3925126        | 50.05       | 1901501        |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 1.528            | 1589210        | 87.70       | 854993         |
| 2 | 1.654            | 222822         | 12.30       | 115227         |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.865            | 2182807        | 49.92       | 1805174        |
| 2 | 1.014            | 2190237        | 50.08       | 1591270        |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.864            | 145956         | 70.19       | 121388         |
| 2 | 1.013            | 61997          | 29.81       | 45630          |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 1.233            | 5052605        | 49.05       | 2850984        |
| 2 | 1.629            | 5247521        | 50.95       | 2330634        |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 1.227            | 2497841        | 88.79       | 1492129        |
| 2 | 1.624            | 315280         | 11.21       | 145555         |



| peak information: |                  |                |             |                |  |  |  |
|-------------------|------------------|----------------|-------------|----------------|--|--|--|
|                   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |  |  |  |
| 1                 | 1.304            | 798556         | 49.99       | 452278         |  |  |  |
| 2                 | 1.706            | 799005         | 50.01       | 346227         |  |  |  |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 1.272            | 2830467        | 80.84       | 1600220        |
| 2 | 1.668            | 670640         | 19.16       | 294031         |



| pe | peak information: |                |             |                |  |  |  |  |
|----|-------------------|----------------|-------------|----------------|--|--|--|--|
|    | RetTime<br>(min)  | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |  |  |  |  |
| 1  | 0.777             | 1239691        | 50.52       | 1019726        |  |  |  |  |
| 2  | 2 0.969           | 1214076        | 49.48       | 851741         |  |  |  |  |
| 2  | 2 0.969           | 1214076        | 49.48       | 85             |  |  |  |  |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.777            | 2145987        | 90.28       | 1777314        |
| 2 | 0.969            | 230917         | 9.72        | 159984         |



|  | peak information: |                  |                |             |                |  |  |  |
|--|-------------------|------------------|----------------|-------------|----------------|--|--|--|
|  |                   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |  |  |  |
|  | 1                 | 6.187            | 618704         | 50.21       | 62315          |  |  |  |
|  | 2                 | 7.646            | 613590         | 49.79       | 50612          |  |  |  |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 6.249            | 86428          | 12.41       | 8829           |
| 2 | 7.736            | 610051         | 87.59       | 49246          |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 1.587            | 749548         | 49.99       | 358588         |
| 2 | 2.118            | 749868         | 50.01       | 268700         |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 1.595            | 2563520        | 81.32       | 1218437        |
| 2 | 2.131            | 588992         | 18.68       | 214436         |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.878            | 4566127        | 48.40       | 2957228        |
| 2 | 1.078            | 4868298        | 51.60       | 2628759        |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.871            | 21191          | 91.58       | 16241          |
| 2 | 1.068            | 1949           | 8.42        | 1332           |



| peak information: |                  |                |             |                |  |  |  |
|-------------------|------------------|----------------|-------------|----------------|--|--|--|
|                   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |  |  |  |
| 1                 | 1.548            | 692325         | 50.00       | 367733         |  |  |  |
| 2                 | 1.675            | 692408         | 50.00       | 344020         |  |  |  |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 1.553            | 1056761        | 83.25       | 556228         |
| 2 | 1.682            | 212656         | 16.75       | 106254         |



| peak information: |                  |                |             |                |  |  |  |
|-------------------|------------------|----------------|-------------|----------------|--|--|--|
|                   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |  |  |  |
| 1                 | 0.671            | 2107154        | 49.88       | 2123168        |  |  |  |
| 2                 | 0.735            | 2117069        | 50.12       | 2010733        |  |  |  |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.672            | 1457299        | 85.11       | 1495857        |
| 2 | 0.736            | 254955         | 14.89       | 250473         |



| peak information: |                  |                |             |                |  |  |
|-------------------|------------------|----------------|-------------|----------------|--|--|
|                   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |  |  |
| 1                 | 0.763            | 747054         | 50.03       | 698773         |  |  |
| 2                 | 0.851            | 746042         | 49.97       | 645821         |  |  |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.764            | 2209034        | 81.41       | 2048216        |
| 2 | 0.853            | 504269         | 18.59       | 444067         |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 2.144            | 2844792        | 49.99       | 1022661        |
| 2 | 2.444            | 2845491        | 50.01       | 901586         |



|   |   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|---|------------------|----------------|-------------|----------------|
| ſ | 1 | 2.199            | 2272536        | 78.82       | <b>8497</b> 10 |
| ſ | 2 | 2.516            | 610826         | 21.18       | 204409         |



#### peak information: RetTime Area Area Height (min) $(\mu V^*s)$ (%) (µV) 0.642 1019249 49.78 1048568 1 2 0.685 1028296 50.22 1002483



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 0.641            | 861219         | 69.69       | 887100         |
| 2 | 0.684            | 374572         | 30.31       | 382697         |



| peak information: |                  |                |             |                |  |  |
|-------------------|------------------|----------------|-------------|----------------|--|--|
|                   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |  |  |
| 1                 | 1.303            | 434377         | 50.26       | 246584         |  |  |
| 2                 | 1.549            | 429862         | 49.74       | 205972         |  |  |



|   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|---|------------------|----------------|-------------|----------------|
| 1 | 1.309            | 3746966        | 93.29       | 2106421        |
| 2 | 1.559            | 269576         | 6.71        | 130916         |



|   | (min) | (µV*s) | (%)   | (µV)   |
|---|-------|--------|-------|--------|
| 1 | 0.963 | 484892 | 50.02 | 368449 |
| 2 | 1.096 | 484499 | 49.98 | 327009 |



|  |   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|--|---|------------------|----------------|-------------|----------------|
|  | 1 | 0.963            | 801901         | 81.50       | 608448         |
|  | 2 | 1.097            | 182014         | 18.50       | 123871         |



| peak information: |                  |                |             |                |  |
|-------------------|------------------|----------------|-------------|----------------|--|
|                   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |  |
| 1                 | 1.266            | 1438063        | 50.09       | 858559         |  |
| 2                 | 1.346            | 1432992        | 49.91       | 806892         |  |



|  |   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV)  |
|--|---|------------------|----------------|-------------|-----------------|
|  | 1 | 1.253            | 3929783        | 73.72       | 2287995         |
|  | 2 | 1.328            | 1400636        | 26.28       | 8106 <b>7</b> 1 |



|  |   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|--|---|------------------|----------------|-------------|----------------|
|  | 1 | 1.588            | 2844228        | 50.37       | 1145368        |
|  | 2 | 1.807            | 2802083        | 49.63       | 931809         |



|  |   | RetTime<br>(min) | Area<br>(µV*s) | Area<br>(%) | Height<br>(µV) |
|--|---|------------------|----------------|-------------|----------------|
|  | 1 | 1.587            | 404373         | 12.14       | 168840         |
|  | 2 | 1.774            | 2926961        | 87.86       | 986975         |

#### 9. References

(1) S.-K. Chen, W.-Q. Ma, Z.-B. Yan, F.-M. Zhang, S.-H. Wang, Y.-Q. Tu, X.-M. Zhang, J.-M. Tian, J. Am. Chem. Soc. 2018, 140, 10099.

(2) (a) K. Barral, A. D. Moorhouse, J. E. Moses, *Org. Lett.* 2007, 9, 1809; (b) M. A. E. Pinto-Bazurco Mendieta, M. Negri,
C. Jagusch, U. Müller-Vieira, T. Lauterbach, R. W. Hartmann, *J. Med. Chem.* 2008, 51, 5009.

(3) (a) J. A. Nieman, B. A. Keay, Synth. Commun. 1999, **29**, 3829; (b) X. Gu, Y. Zhang, Z.-J. Xu, C.-M. Che, Chem. Commun. 2014, **50**, 7870.

(4) B. F. Rahemtulla, H. F. Clark, M. D. Smith, Angew. Chem., Int. Ed. 2016, 55, 13180.